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ABSTRACT

Our goal is to build robust, efficient, inexpensive autonomous robots that
perform sensorimotor actions. Current computational approaches based on
Turing Machines (TM) are fundamentally not robust, nor is there any evidence
that the algorithmic solution to intelligent autonomous systems is solvable.

We propose to apply Prigogine’s theory of irreversible processes in far from
equilibrium systems to design robots which when immersed in a flow of sensory
data create dissipative information structures to handle the data coherently.
We are investigating Hoppensteadt’s VCON model of the neuron as a spe-
cific framework for cell assemblies. Some advantages of this approach include
the use of the same model across multiple scales, motor control is directly
incorporated, the explanatory power of the theory applies to both biological
and non-biological systems, and finally, hardware implementation is straight-
forward. We are applying this to the development of low-level vision and mobile
vehicle subsystems; e.g., saccades, focus, object tracking, etc.

1. Introduction

Our goal is to achieve the design and development of intelligent autonomous robots
that can perform useful tasks, such as exploration, guarding, cleaning, inspecting,
etc.; moreover, they must be inexpensive, efficient, and robust. While many robotic
systems have been proposed and built, none exhibit all the desired qualities. We
believe that certain approaches are more likely to fail, namely those based on the
standard theory of computation and its derivatives, and that biologically motivated
methods have a more reasonable chance of success.



Intelligent autonomous systems which are physically instantiated require subsys-
tems for:

e locomotion,
e power,
e sensing, and
e control.

The control subsystem is of major interest to us here, although these remarks may also
hold for the other subsystems where they exploit digital techniques. In particular, we
discuss control systems built from algorithms. (For the remainder of this discussion,
we consider the Turing machine representation of algorithms.)

2. The Case against Turing Machines

The basic issue is that Turing machines are fundamentally not robust.
Given a Turing machine (TM) encoded as 0’s and 1’s, then the change of any bit
produces a new machine; moreover, the new machine can, and generally will, be
quite different from the original intended machine. In addition, the implementation
of a TM is even less robust. TM’s are usually implemented as compiled programs
that are executed on serial hardware. The possibility of error in non-trivial code, and
certainly in any complex set of codes as found in autonomous robots, is very nearly
certain; the possibility of error in the hardware which executes the code, while low,
is not zero (e.g., the known Pentium chip bug!). The problem resulting from these
two facts is that any error completely changes the behavior of the system; moreover,
systems with errors in implementation do not exhibit graceful degradation
of behavior. What’s worse, if error handling code is added, this only compounds
the problem.

One possible approach to overcome these problems is to use multiple processors.
Suppose we run multiple versions and use the majority result? This addresses the
issue of hardware error, but not algorithm error. It also adds the necessity of com-
munication and protocols. Protocols based on regular automata may have provable
properties, and that helps ensure robustness, but this area has not been explored
much in robotics (for some work see *3).

Another major problem with the digital approach is the loss of continuous func-
tions. The digital representation of R is not R. This may be an insurmountable
problem if biological systems can in fact exploit continuity of signals. The relation
of this to chaos theory!* is also of interest since if biological systems are chaotic
controllers, then initial conditions are extremely important for the system trajectory,
and the limited representation of numbers has a large impact.

Of course, the search for algorithms to implement Intelligent Autonomous Sys-
tems implies a belief that this class of problem (call it the IAS problem) is solvable



(decidable). However, it may be that no solution exists. As an example of a seem-
ingly much simpler problem is Hilbert’s Tenth Problem (find an integer solution for
integer coefficient polynomial), which has been proved unsolvable, as has showing the
equivalence of two context-free grammars. Not only do these look easier, but they
may even be part of the ultimate solution. Does it seem likely that the vision problem
is computable? Other problems abound, and no TM solution is in sight: learning,
motivation, self-reference, adaptation, general knowledge, judgment, evolution, etc.

Are these problems real? After all, the fact that men have walked on the moon
indicates that engineering can overcome difficult problems. However, that trip was not
cheap, and probably not efficient either, although it was robust (enough!). Perhaps
a comparison to the automobile gives a better comparison in that there were similar
difficulties early on, but mass production lowers cost and may raise efficiency and
robustness.

Our thesis, however, is that these problems with TM’s cannot be overcome. One
alternative is to consider more closely the following existence proof: biological sys-
tems.

3. The Case for Analog Bio-Based Systems

First, let’s consider the issue of whether or not biological systems can compute.
(For a good discussion on the biological constraints imposed on early vision, see
Koenderinck!?.) Claude Shannon showed the equivalence between electronic circuits
and logic, after which McCollough and Pitts demonstrated that loglc could be imple-
mented on top of idealized neurons.

If, in fact, intelligent systems have their basis in logic, then this establishes the
chain linking biological systems to logic, and one is free to pursue the implementation
of intelligent systems independently of the embodiment (neurons or circuits). This is
a crucial commitment to abstraction, however, and one we believe is not sound.

We contend that intelligence is an emergent property of the physical system, and
cannot be abstracted away, but must be understood in terms of the dynamics of the
organism: The physical embodiment is the basis of intelligence. Thus, we are
led to the study of organic and neural systems.

A vital question is: Can neurons be built on top of logic? Neurons and sys-
tems built from them are very complicated chemically and functionally. The perfect
simulation of physical systems is impossible; thus, properties of interest are usually
abstracted and the hope is that the simulation can be made as arbitrarily close to the
real process as necessary. (Although we take neurons as the basis for solving the IAS
problem, we have not addressed, and will not address here, whether or not neurons
can represent or process continuous functions.)

Can we use TM’s to simulate neurons? This is a question that is somewhat easier
to answer than the original question of whether the IAS problem is solvable, and
depends on the model of the neuron used. For example, if we take the simplified
McCollough-Pitts model, then it is possible to simulate that on a TM.



Of course, it may eventually be feasible to grow actual organic cells (genetically
designed) and connect them up to form the required system. This may be the desired
approach, for example, in building prosthetics.

Alternatively, it is possible to look to artificial neurons (AN) as the basis for a
solution to the IAS problem; these can be physical devices or mathematical models
which are solved analytically or numerically. Some of the desirable properties of AN’s
are that they:

e capture the essence of the cell and cell assemblies (model)

e permit simulation (numerically)

e straightforward realization (hardware)

e provide basis for loose coupling to higher level (emergent properties).

In general, the AN solution to the IAS problem is derived directly from the biological
versions which makes them more likely correct; however, the choice of a particular AN
model and its parameters, as well as the determination of the principles of organization
of a system of AN’s are the difficult problems to be solved in this approach*®. In
this paper, we describe a useful AN model and a theory we hope will provide some
organizational principles.

4. The VCO AN Model

After reviewing the literature and trying various models, we repfesent AN’s using
the Hoppensteadt Voltage Controlled Oscillator Neuron (VCON) model . The VCON
model views the neuron as a clock in which:

o the cell membrane serves as an oscillatory system (ion flow)
e metabolism of the cell provides the source of energy to drive the clock,
e controlled ionic channels provide the trigger mechanism, and

e the phase of the membrane voltage provides the output and can be viewed as
the hands of a clock.

The global action of the body to complete system can be organized as:

e responding to and providing natural rhythm: day/night, heart beat, breathing,
locomotion.

e muscles and glands serve as actuators and filters

e groups of cells interact with and modulate each other through chemical reac-
tions, and



e information is transmitted by means of firing frequency modulation.

Hoppensteadt shows that a simple clock can be modeled as df/dt = a where « is the
frequency and 6 is the phase variable, and a modulated clock is df/dt = o+ f(27t/a)
where the signal f (we’ll use cosine as the carrier function) modulates the clock.

Such a model can behave much like a biological cell, exhibiting spike potentials
and frequency locking. We let N; —* N, to designate N; excites N, and N; =~ N,
for N; inhibits N;. These are modeled mathematically as:

db,/dt = w1 + cos(6,)
df,/dt = wy + cos(02) + Acos4(61)

where w; and w; are the center frequencies of the particular VCONs, A is positive
(negative) constant for excitation (inhibition) and cos; is maz(0, cos).

Hoppensteadt gives various examples of biological systems modeled as VCON
networks, including von Euler respiration control. We have implemented several low
level mobile robot control functions as VCON networks.

4.1. VCON Systems in Mobile Robotics

As a step towards creating a VCON-based autonomous robot we have designed
several simple VCON structures implementing low-level sensory and control functions
for a mobile robot.

One example of such a structure is an obstacle avoidance system. This system
takes as its inputs three sonar sensors mounted on the front of the robot. The sensors
tell the system if there is an object ahead. The system’s outputs go directly to the
motors controlling the two wheels.

The system is composed of just six interconnected VCONs as seen on Figure 1.
The constants on the arrows indicate the strength of the connections and whether
they are excitory or inhibitory. The Control VCON is the pacemaker which sets the
speed of the entire system. The left and right wheel VCONs directly control the
motors on the wheels. In the absence of any sensory input these VCONs simply
drive the robot forward at the speed set by the Control VCON. The three sensor
VCONs are connected to the sonars. In the presence of an obstacle, they inhibit
the corresponding wheel VCON slowing it down so that the other wheel can turn
the robot away. The Central Sensor VCON inhibits both wheels so as to slow the
robot down when an object is straight ahead. However, the Central VCON is itself
inhibited by the other sensors so that it will not slow the robot to a halt.
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Fig. 1. VCON network for Obstacle Avoidance

A mathematical representation of the system on Figure 1 is given by the following
system of six differential equations:

dOs/dt = 30 + cos(0cr1)

df;/dt =1+ cos(8;) + 10cos+(0r1) — 10cos4 (0rs) — 3cos4(0cs)
db,/dt =1+ cos(0,) + 10cos4(0cri) — 10cos4 (615) — 3cos 4 (Oes)
dl.s/dt =1+ cos(0.s) + sensorcenter(t) — cos4(0ys) — cosy(6is)
dOis/dt =1+ cos(0;5) + sensories:(t)
db,s/dt =1+ cos(0,s) + sensoryigh:(t)

where sensorcenter(t), sensories(t), and sensory;gn(t) are the inputs from the sonar
sensors. Finding analytical solution to such a system is very difficult, but a numerical
answer is easily obtainable using the standard RK4 algorithm.

We have tested the above VCON system using our Multipurpose Robot Simulation
program and obtained some good results (see Figure 2). The system functioned
virtually without calibration and performed reasonably well under many different
parameters. Figure 3 shows the graph of frequencies generated by the wheel VCONs
versus time of the simulation. The peaks on the graph correspond to the turns made
by the robot.

One of the most important properties of the given VCON system is the fact
that the motors can be controlled directly by the VCONs eliminating the need for
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Fig. 2. Mobile Robot Simulation
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complicated control circuits. Another interesting property of the system is that an
arbitrary number of additional redundant VCONs can be added quite easily. Then,
if any are damaged or function improperly, the system as a whole will continue to
operate. In this simple example we have used only the three front sensors, however
this system can be generalized to six, twelve, or all 24 sensors without changing the
structure. Moreover, if one of the sensors fails (which happens quite often) the system
will exhibit graceful degradation.

Obviously, the simulation is useful only insofar as it provides insight into the
structure and parameters of the VCONs network — the real test of the system will
be in the physical version operating with the VCONs connected to the sensors and
actuators. We are in the process of constructing such systems.

5. A Theory for Emergent Properties

To adequately model TAS requires a set of behaviors which is context-free, but
which operates in any context. That is, the theory must account for the dynamic
interaction of the IAS and the environment. Recent developments in the theory of far
from equilibrium systems provide the basis for the organizational principles of IAS
13 The thesis of this theory is that:

e irreversible processes are real
e they play a fundamental constructive role
e irreversibility is deeply rooted in dynamics.

In such systems, dissipative structures arise to dissipate the energy entering the
system; e.g., when water starts to boil, convection cells form which help transport
heat. For an IAS, information is the energy source, and we believe that information
dissipation requires the emergence of dissipative structures. These form the basis of
the necessary emergent properties of a collection of AN’s.

Prigogine has made a couple of relevant observations:

e “Living organisms are far from equilibrium objects separated by instabilities
from the world of equilibrium and are necessarily ‘large,” macroscopic objects re-
quiring a coherent state of matter in order to produce the complex biomolecules
that make the perpetuation of life possible.”

e “The origin of life is related to successive instabilities somewhat analogous to
the successive bifurcations that have led to a state of matter of increasing co-
herence.”

The possibility of a new solution resulting from a bifurcation of some critical param-
eter value is intrinsic to emergent behavior (and learning, too). Note that one of the
earliest studies of bifurcation in chemical kinetics was done by Alan Turing!® and
heavily influenced Prigogine’s work.



6. Related Work

A number of similar proposals for modeling various aspects of biological systems
have been proposed. Gregson® studies the generation of sensory intensity as a response
to a physically varying environment. He is interested in the sequential dynamics of a
system when it is:

not in static equilibrium

locally entropy producing

dissipative: uses energy and is irreversible
quasi-closed,

not continuous (small input change does not necessarily mean small output
change), and

strongly dependent on initial conditions.

Thus, the goal is to determine the simplest dynamic structure which might support
a diversity of observable input-output relationships whose parameters are potentially
interpretable.

A strong discussion of coupled oscillator and the organization of behavior is given
by Gallistel®. Elementary units of behavior include:

o reflexes,

e oscillators, and

servomechanisms.

Several examples of animal behavior are given and it is shown that:

Coupled oscillators can:

— Interact through phase adjusting signals
— Display wide variety of behavior
— Be controlled by a few signals, and

— Be at the heart of complex behavior units.
Higher levels can control by:

— Selective potentiation (lowers threshold)
— Selective depotentiation (raises threshold)

— Corresponds to concept of drive (ethology)



Finally, Kugler, Kelso and Turvey®!!'2 have been making the argument for quite
some time that locomotory patterns can be explained by non-equilibrium dynamics
(stability theory, bifurcation theory, and fluctuation theory) rather than by an appeal
to formal programs of instruction. They conceptualize living systems and their com-
ponent subsystems, as well as their characteristic processes, as ensembles of coupled
and mutually entrained nonlinear oscillators. For them, the problem is not:

e How the mind operates on sensory data,
e How past experience can interpret and give meaning to sensory data, or
e How the brain processes or organizes the input of nerves.

but rather:

e How perceptual systems resonate to new macroscopic qualities.

7. Conclusion

We believe that there is no TM solution to the IAS problem, and that some form
of AN system is required. Moreover, the theory of far from equilibrium systems
can provide crucial insight into the organization of any AN system which exhibits
intelligent, autonomous behavior. The Hoppensteadt VCON model seems to be a
reasonable and useful AN model. We are currently trying to understand how to
structure networks of VCON’s so as to exhibit emergent behavior.

If we consider information as energy:

e Biosystems may create dissipative information structures to handle information
rich environments.

e The same theory of irreversible systems works across multiple scales and may
allow loose coupling between them.

e Motor control is directly incorporated in the model.

e The explanatory power of the theory covers both biological and non-biological
systems.

e Hardware implementation is straightforward.

We are currently applying these ideas to develop a mobile robot with vision and
sonars and a binocular robot head. Our research program will proceed as follows:

1. VCON theory and practice provides a convenient, reasonable, bio-based theory
of the neuron. We are actively exploring ways to get a better intuitive grasp of
the differential equations governing systems designed this way.



2. The link between VCON models and dissipative structures needs to be worked
out both theoretically and for examples. This is crucial to the success of the
approach. There are some sample systems in chemical kinetics that we are
looking at as to their relation and applicability to robotics.

3. We currently have tailor VCON models for various autonomous robot behaviors.
This gives us particular systems to study parameters and connections. These
are important to make progress, but the ultimate goal is to develop a basic
VCON structure which through interaction with the environment adjusts itself
and its parameters.

4. Given a VCON model for a behavior, it is useful to simulate the activity by
solving the differential equations. This has led us to write some of our own
numerical codes, and areas of further interest are large parallel simulations.

5. Another research area is designing and building hardware to implement the
VCON models directly. We are exploring ways to do this efficiently, and also
trying to determine if there is some basic general configuration that can be
modified for each particular behavior subsystem.

6. The best system is one which evolves over time, and therefore, we are trying to
determine how that can take place with respect to the VCON systems. This
is also related to the dissipative structures and how they come into being and
change over time.

7. Finally, dissipative structure construction is still the missing link between any
AN model and theories of far from equilibrium dynamics. We are actively
looking for a relevant example in vision or locomotion control.
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