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Abstract

Recognition of 3-D objects and the determination of their orientation in space
are two major problems of robot vision systems. Moreover, in an industrial environ-
ment, these tasks should be performed quickly and accurately. A simple representation
of 3-D objects is given which makes possible a technique for recognition and orienta-
tion determination of 3-D objects in laser range images. This technique is an exten-
sion of the 2-D Hough shape transform to handle 3-D surfaces ; the technique is
applied directly to a set of 3-D points extracted from a range image.

1. Introduction

The representation of 3-D objects has received much attention, and a plethora
of models have been proposed (see [1]). Most of these models permit a hierarchical
organization of primitive solids (or volumes) and are based on constructive solid
geometry, boundary, or sweep representations. The generality of such models Tleads
to complex object description and detection schemes and this reduces their effecti-
veness. We present here a 3-D representation based on the Hough transform ; this
representation is a simple and efficient description of the surface of the object
and does not include structural information.

The classical Hough transformation is used to detect curves by mapping all the
feature points of an image into a parameter space (see Iannino and Shapiro [2] for
an introduction to the Hough transform and its applications). The parameter space
depends on the class of curves to be detected, and in the case of straight lines is
characterized by either the slope-intercept plane (see Hough [3] or Rosenfeld [41)
or by the angle of the normal to the line and the minimum distance from the line to
the origin (Duda and Hart [51). In practice, the parameter space is quantitized,
and an accumulator is associated with each point in the parameter space. An accumu-
lator is incremented for every detected point whose associated curve in parameter
space crosses that accumulator.

The 2-D shape Hough transform as described by Navis and Yam [6] and Sloan and
Ballard [7] is a generalization of the Hough transform. The 2-D shape transform 1is
applied to edge images produced from 2-D intensity images. Efficient detection



algorithms can be devised for arbitrary shapes by using the edge responses and taking
advantage of the gradient at the edge pixel to reduce the ambiguity in the parameter
space.

The current method is applied directly to laser ranging images, i.e., given an
image, I(i,j), then (i,j,I(i,J)) is the (x,y,z) lTocation on the surface of an object
(or the background). In our laser ranging system, the distance to the background is
known, and the non-background points are extracted from the range image and kept as
a list. The points in this 1ist are called the detected points. The surface of a 3-D
object is likewise modeled as a Tist of points, and the detection procedure is to
match the set of model points with the detected points. We show how the Hough trans-
form can be efficiently used to perform this matching even without the knowledge of
the surface normal at each detected point. Both the 2-D and the 3-D applications of
the Hough technique can be used to find partial matches.

Section 2 describes the representation of 3-D objects and gives an algorithm for
position invariant matching. Section 3 shows how the method can be used for orienta-
tion invariant matching. Finally, Section 4 discusses data compression methods and

Timitations.

2. Position Invariant 3-D Hough Transform

The representation used is basically a generalization of that of Merlin and
“Farber [8]. Given a set of points P = {xi,yi,zi)}, i=1,n representing a 3-D object,
choose some reference point, P0 = (xo,yo,zo), e.g., the centroid of the object. The
object representation, G-(P,PO), is given as O = {(dxi,dyi,dzi)}, where dxi = XpX55
dy; = yp~¥;» and dz; = zp-z;- O is then a characterization of P as a displacement
from each point of P to the reference point PO'

Given a set of detected points, D = {(xi,y?zi)}, i=1,m, use a 3-D array, H, to
accumulate counts for possible locations of P0 in space. Namely :

y (xi,yi,zi) e D, i=1,m
¥ (dxi,dyi,dzi) e O, j=1,n
Increment H(x1+dx1,yi+dy1,zi+dzi) by 1.

Then the location in H having the maximum value corresponds to the translated posi-
tion of the reference point, PO’ of the object, & .

The algorithm produces a uninque maximum for any translation of P, and the maxi-
mum value is equal to the number of object points in D. This is true since the algo-
rithm is simply an efficient way of computing the (3-D) convolution of the object
template with the detected surface points. It must be noted that if all the points in
P are not in D, then the maximum will be Tless than n, and if there are several copies
of the object, then the maximum may not be unique ; however, the reference point is
always guaranteed to be among the maxima. The ratio Hmax/|D| can be used to judge the
likelihood that the maximum location does indeed correspond to PO‘



3. Rotation Invariant 3-D Hough Transform

Given a set of detected points in D = {(Xi’yi’zi)}’ j=1,m, and an object repre-
sentation  as described in Section 2, use O to define a set of radii, R = {ri},
i=1,k where the ri's represent all the distinct lengths of vectors in &. With every
r ¢ R associate a list, Sr, of offset vectors which describes the surface of the di-
gital sphere of radius r. Then the rotation invariant 3-D Hough transform is computed

by :

¥p = (x,y,z) € D
¥r ¢ R
¥s = (dx,dy,dz) e Sr

Increment H(x+dx,y+dy,z+dz) by 1.

The reference point, PO’ for the object representation & is found the same way as
for the translation transform. However, there is now no guarantee of a unique maxi-
mum. Even if the maximum location does correspond to PO for a rotated version of the
object, the orientation of the object remains unknown.

As suggested by Davis in the 2-D case, two reference points, P0 and Pé, can be
chosen and used to produce two distinct object representations, & and CG'. In this
way, the vector Po"Pé has a direction and gives the orientation of the object. In
3-D, three reference points must be used.

4. Discussion

A direct model of a 3-D object in a 3-D array, i.e., the characteristic function
in 3-D space is essentially empty and for direct implementation of the convolution
would require a 3-D accumulator array which could easily exhaust the memory of a ma-
chine. Therefore, it is convenient (and necessary) to compress the size of the repre-
sentation. We have developed an alternative approach which drastically reduces the
set of accumulators. This is done by choosing two detected points and keeping accu-
mulators only for the points of intersection of the various spheres centered at the
two points. This can be further constrained by choosing k more points and checking
that each hypothesized reference Tocation lies on the surface of some sphere for
each of the k points ; we currently use 2 such extra points. Note that the accumula-
tors are kept as a list, and the quantization of the parameter space can be to any
precision desired and can also vary from place to place.

A model of the object shown in Figure 1 was constructed. The object description
contained 8334 surface points. Different views of the object were located under
various transformations. For example, one view containing 914 points was correctly
located with on the order of 700 points contributing to the accumulator (over 100
points more than for any other accumulator) at the transformed reference point.
Obviously, the thresholds chosen for sampling the surface of the spheres will
influence the number of points contributing to the maximum, and this threshold will
be dependent on the sampling rate on the surface of the object.



Another way to reduce the size of the representation is to map esach face of the
3-D object into a 4-D transform space and model these points considered as an object.
Planar faces can be found, for example, using the technique described by Duda et al.
[9]. However, they assume that intensity information is also available, and this aids
in finding planar regions ; even so, finding planar regions is a non-trivial task.
Once the set of faces are found, associate each face, fi, with the 4-D point (ai’bi’
Ci’di) whose coordinates define the plane containing fi. The number of faces is
usually small, and the corresponding 4-D points can be kept as a list instead of in
a 4-D array. Obviously, the disadvantage is to locate the faces of the object ;

moreover, the object may be curved and not have any planar faces.

Figure 1. Workpiece (part of a Renault).

In summary, a fast technique for the recognition of 3-D objects in laser range
images and for determination of their orientation in space has been demonstrated.
Examples have béen presented, and methods for reducing the memory requirementé
proposed.
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