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A set of Matlab functions have been created to allow the exploration of the usefulness of setting
geometric SAT into non-Euclidean geometry. Three major models are represented: (1) the Poincare half-
plane (PH), (2) the Poincare disk (PD), and (3) the Beltrami-Klein disk (BK). For more information on
these formulations, see Appendixes A, B and C, respectively (taken from Wikipedia).

The Poincare Half-Plane (H)

Since the goal is to represent n-dimensional polytopes which represent the feasible region for a SAT
solution, it is necessary to represent these in non-Euclidean spaces. Examples are given in 2D for
illustration purposes. Consider the knowledge base with the single clause: A V =B. Then in regular
Euclidean space, the feasible region (after chopping the (0,1) vertex) will be the triangle [(0,0), (1,0),
(1,1)] (see Figure 1).
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Figure 1. Feasible Region for KB with Clause A V =B.

Converting this to the Poincare half-plane model requires deciding how the unit square will be
represented. The most straightforward is to use the same points: (0,0), (1,0), (1,1), (0,1); however, the
points on the x-axis are not in H, and this poses some problems. Figure 2 shows how the unit square
transforms into H.
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Figure 2. (left) Unit Square in Poincare Half-Plane. (right) Feasible Region for KB with Clause A V =B
(cutting plane shown in red).

The left side plot is achieved as follows; first get the sides of the unit square:
segl = NON_PH_seg_pts([0,0],[1,0]);

seg2 = NON_PH_seg pts([1,0],[1,1]);

seg3 = NON_PH_seg pts([1,1],[0,1]);

segd = NON_PH_seg_pts([0,1],[0,0]);

Then plot them:

NON_plot PH_pts([segl;seg2;seg3;seg4],1,'k.');

The right side is found by first finding the cutting line, then plotting the three remaining segments:
seg8 = NON_PH_seg_pts([1,1]1,[0,0]);

NON_plot_PH_pts([segl;seg2],1,'k.");

NON_plot_PH_pts(seg8,1,'.");

Note that the area of the resulting triangle is %, so that the area of the unit square in H is not 1!



The Poincare Disk (D)

The unit square represented by [(0,0),(0.5,0),(0.5,0.5),(0,0.5)] is shown on the left side of Figure 3, while
the same feasible region is shown on the right side of the figure.
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Figure 3. (left) Unit Square in Poincare Disk. (right) Feasible Region for KB with Clause A V =B (cutting
plane shown in red).

This is produced as follows; for the left side:
segl = NON_PD_seg pts([0,0],[0.5,0]);

seg2 = NON_PD_seg_pts([0.5,0],[0.5,0.5]);

seg3 = NON_PD_seg_pts([0.5,0.5],[0,0.5]);

seg4 = NON_PD_seg_pts([0,0.5],[0,0]);
NON_plot_PD pts([segl;seg2;seg3;segd],1,'k.');
The figure on the right:

seg5 = NON_PD_seg_pts([0.5,0.5],[0,0]);
NON_plot_PD_pts([segl;seg2],1,'k.");

>> NON_plot_PD_pts(seg5,1,'r.");



Converting Points between Representations

Sometimes it is convenient to change representation; therefore, we have provided functions to convert
as follows:

e NON_H2D: Poincare half-plane to Poincare disk
e NON_D2H: Poincare disk to Poincare half-plane
e NON_H2K: Poincare half-plane to Beltrami-Klein
e NON_K2H: Beltrami-Klein to Poincare half-plane
e NON_D2K: Poincare disk to Beltrami-Klein
e NON_K2D: Beltrami-Klein to Poincare disk

Note that all of these take on complex number input and produce one complex number output.
Distance Between Points

Functions have been provided to compute the distance between points:

e NON_norm_PD: Poincare norm
e NON_norm_PH: Poincare norm
e NON_norm_BK: Beltrami-Klein norm

Possible Representation of the Hypercube in n-D

A possible representation of the hypercube in n-D is to project the corners of the unit cube (centered a 0
and scaled to circumscribe the unit sphere) onto the unit hypersphere in D. Figure 4 shows this for 2D;
note that the corners of the square are ideal points (see Appendix D), and not in D.
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Figure 4. A projection of the Circumscribed Hypercube onto the Unit Sphere. In this case, the corners are
not in D, but rather are ideal points on the circle boundary.

This makes a shape that is geometrically similar to the square, but note that its area is . Figure 4 is
produced by:

NON_H2circumcribedinPD; % files in PSSAT/non_Euclidean/develop
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Development over last few weeks is in PSSAT/non_Euclidean/ with prefix NE_ (see Non-Euclidean-
Matlab-Functions.pdf and NE_Function_Dependencies.pdf).

Results testing Euclidean circle intersection (NE_test_int_E2_2circles):
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Results testing great circle intersection angles (NE_test_angle_2circles):



Angle: 90 Angle: 45 Angle: No intersection Angle: 0
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Results tiling PD with a regular pentagon (NE_inversion_experiment1):
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inversion_experiment2):

Results tiling PD with 45-degree angle regular triangle (NE
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Appendix A: Poincare Half-Plane

Poincaré half-plane model

Article  Talk

From Wikipedia, the free encyclopedia

In non-Euclidean geometry, the Poincaré half-plane model is the
upper half-plane, denoted below as H = {{z,y) | y > 0;z,y € R},
together with a metric, the Poincaré metric, that makes it a model of
two-dimensional hyperbolic geometry.

Equivalently the Poincaré half-plane model is sometimes described as
a complex plane where the imaginary part (the y coordinate
mentioned above) is positive.

The Poincaré half-plane model is named after Henri Poincare, but it
originated with Eugenio Beltrami who used it, along with the Klein
model and the Poincaré disk model, to show that hyperbolic geometry
was equiconsistent with Euclidean geometry.

Xp 7 languages v

Read Edit View history Tools v

Parallel rays in Poincare half-plane model of hyperbolic 57
geometry

This model is conformal which means that the angles measured at a point are the same in the model as they are in the actual

hyperbolic plane.

The Cayley transform provides an isometry between the half-plane model and the Poincaré disk model.

This model can be generalized to model an n 4 1 dimensional hyperbolic space by replacing the real number x by a vector in

an n dimensional Euclidean vector space.

Metric [edit]
The metric of the model on the half-plane, {(z,y) | y > 0}, is:
_ (de)® + (dy)*

(ds)? -

where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric
tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-

circles whose centers are on the x-axis) and straight vertical rays perpendicular to the x-axis.

Distance calculation [edit]

Ifp1 = (@1,%1) andps = (x2,y2) are two points in the half-plane

y > 0andp, = (@1, —y1) is the reflection of p; across the x-axis ()
into the lower half plane, the distance between the two points under

the hyperbolic-plane metric is:

[lp2 — o1l

dist(py, p2) = 2arsinh
(p1,72) S

lp2 — |

= 2artanh —
[[p2 — 51l

- + —D
_ g Il =5l
2,/0192 (xy=0)

T . . The distance between two points in the half-plane &
where = = /(2 —21)? — y1)? is the Euclidean
sz P " ( 2 l) + (y2 yl) model can be computed in terms of Euclidean distances in
distance between points p; and ps, arsinhz = In (z +1/x2 + 1) an isosceles trapezoid formed by the points and their

is the inverse hyperbolic sine, and

1 ; : Y
artanhz = 5 In((1 + )/(1 — z)) is the inverse hyperbolic distp1, p9) = g+ d2hihy)
tangent. This 2 arsinh formula can be thought of as coming from the

reflection across the x-axis: a "side length" s, a "diagonal”
d, and two "heights" k11 and h3. Itis the logarithm



chord length in the Minkowski metric between points in the
hyperboloid model, chord(p;, p2) = 2 sinh % dist(p1,p2),
analogous to finding arclength on a sphere in terms of chord length.
This 2 artanh formula can be thought of as coming from Euclidean
distance in the Poincaré disk model with one point at the origin,
analogous to finding arclength on the sphere by taking a
stereographic projection centered on one point and measuring the
Euclidean distance in the plane from the origin to the other point.

If the two points p; and p, are on a hyperbolic line (Euclidean half-
circle) which intersects the x-axis at the ideal points pg = (zg,0) and
p3 = (z3,0), the distance fromp; to p, is:

P2 — pollllpr — sl
lp1 = pollllp2 — o3l

dist(p1,p2) = ‘hl

Cf. Cross-ratio.

Some special cases can be simplified. Two points with the same =
coordinate:!"]

dist((z,y1), (z,42)) =

mz—j\ = lIn(gz) — In(y1))| -

Two points with the same y coordinate:

y o ze —
dist({z1,v), (®2,y)) = 2arsinh ———.

(XO, 0) (X3, 0)

Distance between two points can alternately be &1
computed using ratios of Euclidean distances to the ideal
points at the ends of the hyperbolic line.

(xp r) 1 ¢
gd "¢ ’ sec u du
v

(x, + rsing, r cos )

(x,,0)

Distance from the apex of a semicircle to another point &
on it is the inverse Gudermannian function of the central
angle.

One point (z;, ) at the apex of the semicircle (z — x; )2 + y2 = 72, and another point at a central angle of ¢.

dist(({z1,7), (z1 + rsing¢,rcos¢)) = 2artanh(tan %(f:) =gd !¢,



s < : 2 1+
where gd 1 is the inverse Gudermannian function, and artanh z = % In T

is the inverse hyperbolic tangent.

Special points and curves |edit)
« Ideal points (points at infinity) in the Poincaré half-plane model are of two Kinds:
« the points on the x-axis, and
* one imaginary point at ¥y = oo which is the ideal point to which all lines orthogonal to the x-axis converge.
« Straight lines, geodesics (the shortest path between the points contained within it) are modeled by either:
« half-circles whose origin is on the x-axis
« straight vertical rays orthogonal to the x-axis
« A circle (curves equidistant from a central point) with center (:c, y) and radius r is modeled by:
a circle with center (z, y cosh(r)) and radius y sinh(r)
« A hypercycle (a curve equidistant from a straight line, its axis) is modeled by either:

 a circular arc which intersects the x-axis at the same two ideal points as the half-circle which models its axis but at an
acute or obtuse angle

« a straight line which intersects the x-axis at the same point as the vertical line which models its axis, but at an acute o
obtuse angle.

« A horocycle (a curve whose normals all converge asymptotically in the same direction, its center) is modeled by either:
« a circle tangent to the x-axis (but excluding the ideal point of intersection, which is its center)
« aline parallel to the x-axis, in this case the center is the ideal point at y = oo.

Euclidean synopsis [edit]
A Euclidean circle with center (ze, ye) and radius . represents:

« when the circle is completely inside the halfplane a hyperbolic circle with center

(zea vV y?». - 7'2)



and radius

1 e + Te
—In(y +7 )
2 Ye — Te

» when the circle is completely inside the halfplane and touches the boundary a horocycle centered around the ideal point
(ze,0)

« when the circle intersects the boundary orthogonal (y. = 0) a hyperbolic line

« when the circle intersects the boundary non- orthogonal a hypercycle.

Compass and straightedge constructions [edit)
See also: Compass and straightedge constructions

Here is how one can use compass and straightedge constructions in the model to achieve the effect of the basic constructions in
the hyperbolic plane.l?! For example, how to construct the half-circle in the Euclidean half-plane which models a line on the
hyperbolic plane through two given points.

Creating the line through two existing points |[edit]

Draw the line segment between the two points. Construct the perpendicular bisector of the line segment. Find its intersection
with the x-axis. Draw the circle around the intersection which passes through the given points. Erase the part which is on or
below the x-axis.

Or in the special case where the two given points lie on a vertical line, draw that vertical line through the two points and erase
the part which is on or below the x-axis.



Appendix B: Poincare Disk

Poincaré disk model A 10 languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In geometry, the Poincaré disk model, also called the conformal disk
model, is a model of 2-dimensional hyperbolic geometry in which all points W
are inside the unit disk, and straight lines are either circular arcs contained QN
within the disk that are orthogonal to the unit circle or diameters of the unit ‘
circle.

The group of orientation preserving isometries of the disk model is given by —
the projective special unitary group PSU(1,1), the quotient of the special
unitary group SU(1,1) by its center {7, —1}.

Along with the Klein model and the Poincaré half-space model, it was
proposed by Eugenio Beltrami who used these models to show that
hyperbolic geometry was equiconsistent with Euclidean geometry. It is
named after Henri Poincaré, because his rediscovery of this representation
fourteen years later became better known than the original work of

ji.(1]
Beltrami. Poincaré disk with hyperbolic parallel lines &

The Poincaré ball model is the similar model for 3 or n-dimensional

hyperbolic geometry in which the points of the geometry are in the
n-dimensional unit ball. ‘



Lines [edit]

Hyperbolic straight lines consist of all arcs of Euclidean circles contained within the o/
disk that are orthogonal to the boundary of the disk, plus all diameters of the disk.

Compass and straightedge construction [ edit]

The unique hyperbolic line through two points P and ) not on a diameter of the
boundary circle can be constructed by:

« let P’ be the inversion in the boundary circle of point P

« let Q' be the inversion in the boundary circle of point Q

« let M be the midpoint of segment PP’

« let IV be the midpoint of segment QQ’

Poincaré disk with 3 ultraparallel 2

« Draw line m through M perpendicular to segment PP’ (hyperbolic) straight lines
« Draw line n through IV perpendicular to segment QQ’
« let C' be where line m and line n intersect.
« Draw circle ¢ with center C' and going through P (and Q).
« The part of circle c that is inside the disk is the hyperbolic line.
If P and Q are on a diameter of the boundary circle that diameter is the hyperbolic line.

Another way is:

« let M be the midpoint of segment PQ

« Draw line m through M perpendicular to segment PQ

« let P’ be the inversion in the boundary circle of point P

« let N be the midpoint of segment PP’

« Draw line n through N perpendicular to segment PP’

« let C' be where line m and line n intersect.

« Draw circle ¢ with center C' and going through P (and Q).

« The part of circle ¢ that is inside the disk is the hyperbolic line.

Distance [edit]

Distances in this model are Cayley—Klein metrics. Given two distinct points p and q inside the disk, the unique hyperbolic line
connecting them intersects the boundary at two ideal points, a and b, label them so that the points are, in order, a, p, g, b and
lag| > |ap| and |pb| > |gb|.

The hyperbolic distance between p and q is then

lag| |pb]

d(p,q) =In :
’ lap| |qb|

The vertical bars indicate Euclidean length of the line segment connecting the points between them in the model (not along the
circle arc), In is the natural logarithm.

Another way to calculate the hyperbolic distance between two points is

2pal2lrl2
arcosh (1 re—s |p2q] | |2 =
(Irl™ = lop|")(I7]" — logl”)
where |op| and |og| are the distances of p respective g to the centre of the disk, |pg| the distance between p and g, |r| the
radius of the boundary circle of the disk and arcosh is the inverse hyperbolic function of hyperbolic cosine.




When the disk used is the open unit disk and one of the points is the origin and the Euclidean distance between the points is r
then the hyperbolic distance is:

111(1-’_1‘) = 2artanhr

where artanh is the inverse hyperbolic function of the hyperbolic tangent.

When the disk used is the open unit disk and point ' = (r', ) lies between the origin and pointz = (r, 0) (i.e. the two points
are on the same radius, have the same polar angle and 1 > r > ' > 0), their hyperbolic distance is

147 1-—7
1—7r 1+7

) = 2(artanhr — artanhr’).

This reduces to the previous formula if ' = 0.

Circles [edit]

A circle (the set of all points in a plane that are at a given distance from a given point, its center) is a circle completely inside the
disk not touching or intersecting its boundary. The hyperbolic center of the circle in the model does not in general correspond to
the Euclidean center of the circle, but they are on the same radius of the boundary circle.

Hypercycles |edit]

A hypercycle (the set of all points in a plane that are on one side and at a given distance from a given line, its axis) is a
Euclidean circle arc or chord of the boundary circle that intersects the boundary circle at a positive but non-right angle. Its axis is
the hyperbolic line that shares the same two ideal points. This is also known as an equidistant curve.

Horocycles [edit]

A horocycle (a curve whose normal or perpendicular geodesics all converge asymptotically in the same
directionl™rther explanation needed]) g a circle inside the disk that touches the boundary circle of the disk. The point where it
touches the boundary circle is not part of the horocycle. It is an ideal point and is the hyperbolic center of the horocycle.

Euclidean synopsis |[edit]
A Euclidean circle:

« that is completely inside the disk is a hyperbolic circle.
(When the center of the disk is not inside the circle, the Euclidean center is always closer to the center of the disk than what
the hyperbolic center is, i.e. t, < t; holds.)

« that is inside the disk and touches the boundary is a horocycle;
« that intersects the boundary orthogonally is a hyperbolic line; and
« that intersects the boundary non-orthogonally is a hypercycle.

A Euclidean chord of the boundary circle:

« that goes through the center is a hyperbolic line; and
« that does not go through the center is a hypercycle.



Metric and curvature [edit]

If v and v are two vectors in real n-dimensional vector space R” with the usual
Euclidean norm, both of which have norm less than 1, then we may define an isometric
invariant by

llu — vl
(1= [lull?)(@ — [lv]?) ’
where ||-|| denotes the usual Euclidean norm. Then the distance function is

d(u,v) = arcosh(1 + d(u,v))
3(u,v)
2

Ju— ol + /TPl =22 o 1

VI -T)

Such a distance function is defined for any two vectors of norm less than one, and

o(u,v) =2

= 2 arsinh

=2In

&

Poincaré 'ball' model view of the
hyperbolic regular icosahedral
honeycomb, {3,5,3}

makes the set of such vectors into a metric space which is a model of hyperbolic space of constant curvature —1. The model has
the conformal property that the angle between two intersecting curves in hyperbolic space is the same as the angle in the model.

The associated metric tensor of the Poincaré disk model is given by!®!
i da} 4|dx||?
g 2
1-%i2f)" (-2

ds® =4

where the x; are the Cartesian coordinates of the ambient Euclidean space. The geodesics of the disk model are circles

perpendicular to the boundary sphere S™1.

An orthonormal frame with respect to this Riemannian metric is given by

e = % (1 - |x|2) 6(:;“

with dual coframe of 1-forms

2

= ——— d2'.
1-—|x?

¢



Relation to the Klein disk model [edit]

Hy-Hyperboloid
K -Klein Disk

The Klein disk model (also known as the Beltrami—Klein model) and the Poincaré He-Hemisphere
P -Poincare Disk

disk model are both models that project the whole hyperbolic plane in a disk. The Ha-Half-Plane /

two models are related through a projection on or from the hemisphere model. The
Klein disk model is an orthographic projection to the hemisphere model while the
Poincaré disk model is a stereographic projection.

An advantage of the Klein disk model is that lines in this model are Euclidean
straight chords. A disadvantage is that the Klein disk model is not conformal
(circles and angles are distorted).

When projecting the same lines in both models on one disk both lines go through
the same two ideal points. (the ideal points remain on the same spot) also the pole
of the chord in the Klein disk model is the center of the circle that contains the arc

the Poincaré disk model (line P), and &1

in the Poincaré disk model. their relations with the other models

x ~ % W 2z 2y :
A point (x,y) in the Poincaré disk model maps to ( e TR ) in the
Klein model.
A point (x,y) in the Klein model maps to L 3 - Y in the Poincaré disk model.
l+\/1—mz—y2 l+\/1—:1'2—y2

For ideal points z? + y2 = 1 and the formulas become x = & , y = y so the points are fixed.

If u is a vector of norm less than one representing a point of the Poincaré disk model, then the corresponding point of the Klein
disk model is given by:

i 2u
T l4u-u

Conversely, from a vector s of norm less than one representing a point of the Beltrami—Klein model, the corresponding point of
the Poincaré disk model is given by:

N (1-vI=5"9)s
1+y1—-5-38 $:8 '

Relation to the Poincaré half-plane model |[edit]
See also: Cayley transform § Complex homography

The Poincaré disk model and the Poincaré half-plane model are both named after Henri Poincaré.
If u is a complex number of norm less than one representing a point of the Poincaré disk model, then the corresponding point of

the half-plane model is given by the inverse of the Cayley transform:

u+1
T du+1"

2

1—22—
2z S ) in the halfplane model.l”!

A point (x,y) in the disk model maps to §
P (xy) P (1:2 (1 y)2 z24(1-y)*

2 z2+y2-—1
224(14y)? | 224 (14y)?

A point (x,y) in the halfplane model maps to ( ) in the disk model.



Appendix B: Beltrami-Klein Disk

Beltrami—Klein model % 8 languages v
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From Wikipedia, the free encyclopedia

In geometry, the Beltrami—Klein model, also called the projective model, Klein
disk model, and the Cayley—Klein model, is a model of hyperbolic geometry in
which points are represented by the points in the interior of the unit disk (or

n-dimensional unit ball) and lines are represented by the chords, straight line
segments with ideal endpoints on the boundary sphere.
The Beltrami—Klein model is named after the Italian geometer Eugenio Beltrami
a
k

and the German Felix Klein while "Cayley" in Cayley—Klein model refers to the
English geometer Arthur Cayley.

A/

The Beltrami—Klein model is analogous to the gnomonic projection of spherical
geometry, in that geodesics (great circles in spherical geometry) are mapped to
straight lines.

This model is not conformal, meaning that angles and circles are distorted, Maxy hyperbokic ines through poiit P not
. % b intersecting line a in the Beltrami Klein

whereas the Poincarée disk model preserves these. e

In this model, lines and segments are straight Euclidean segments, whereas in the

Poincare disk model, lines are arcs that meet the boundary orthogonally. T

Distance formula [edit]

The distance function for the Beltrami—Klein model is a Cayley—Klein metric. Given two distinct points p and q in the open unit
ball, the unique straight line connecting them intersects the boundary at two ideal points, a and b, label them so that the points
are, in order, a, p, q, band |aq| > |ap| and |pb| > |gb|.

— . 1. |ag| |pb|
The hyperbolic distance between p and q is then: d(p, q¢) = — In ———

2 |ap| |qbl

The vertical bars indicate Euclidean distances between the points in the model, In is the natural logarithm and the factor of one
half is needed to give the model the standard curvature of -1.

When one of the points is the origin and Euclidean distance between the points is r then the hyperbolic distance is:

1 1
5111(11_:) = artanhr,

where artanh is the inverse hyperbolic function of the hyperbolic tangent.



The Klein disk model [edit;

In two dimensions the Beltrami-Klein model is called the Klein disk model. It is a disk
and the inside of the disk is a model of the entire hyperbolic plane. Lines in this model
are represented by chords of the boundary circle (also called the absolute). The points
on the boundary circle are called ideal points; although well defined, they do not
belong to the hyperbolic plane. Neither do points outside the disk, which are sometimes
called ultra ideal points.

The model is not conformal, meaning that angles are distorted, and circles on the
hyperbolic plane are in general not circular in the model. Only circles that have their
centre at the centre of the boundary circle are not distorted. All other circles are
distorted, as are horocycles and hypercycles

Properties [edit]

N ==

Lines in the projective m
hyperbolic plane

odel of the &7



