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A nonempty closed convex polyhedron X can be represented either as X = {x: Ax < b}, where
(A, b) are given, in which case X is called an H-cell, or in the form X=
{x: x = UA + V , A1, A 0, z 0}, where (U, V) are given, in which case X is called a
W-cell. This note discusses the computational complexity of certain set containment problems.
The problems of determining if X e Y, where (i) X is an H-cell and Y is a closed solid ball, (ii)
X is an H-cell and Y is a W-cell, or (iii) X is a closed solid ball and Y is a W-cell, are all
shown to be NP-complete, essentially verifying a conjecture of Eaves and Freund. Furthermore,
the problem of determining whether there exists an integer poiAt in a W-cell is shown to be
NP-complete, demonstrating that regardless of the representation of X as an H-cell or W-cell,
this integer containment problem is NP-complete.
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1. Introduction and preliminaries

A nonempty closed convex polyhedron X can be represented either in the form
X = {x: Ax -, b}, where (A, b) are given, in which case X is called an H-cell (H for
halfspaces), or in the form X = {x: x = UA + VA, E S = 1, A 0, O ¢ 0} where (U, V)
are given, in which case X is called a W-cell (W for weighting of points). When X
is represented as a W-cell, the columns of U and V contain the extreme points and
extreme rays of X, respectively. The computational complexity of many problems
related to polyhedra depend on the polyhedral representation as an H-cell or a
W-cell. For example, consider a linear program, which can be stated as

maximize ctx subjectto x X,

where X is a polyhedron. If X is an H-cell, this is the usual linear program, whose
solution time, while polynomial, is by no means negligible. However, if X is
represented as a W-cell, the linear programming problem becomes trivial. As another
example, consider the problem of testing if e X for a given , where X is a
polyhedron. If X is an H-cell, the problem is trivial, whereas if X is a W-cell, the
problem reduces to solving a linear program.

This note discusses the complexity of two types of problems. The first problem
is the set containment problem (SCP), that of determining if X a Y. where X (resp.
Y) is a cell, defined to be either a polyhedron (an H-cell or a W-cell), or a closed
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solid ball of the form x: (x - c)'(x - c) r2 }), in which case X (resp. Y) is called
a B-cell. There are nine forms of SCP corresponding to X and Y each being given
as an H-cell, W-cell, or B-cell. For notational convenience, a particular form of
SCP will be denoted, e.g., by (W, B), where X is a W-cell and Y is a B-cell. In
Eaves and Freund [1], SCP is shown to be solvable as a linear program for the six
forms (HH), (WH), (BH), (WW), (WB), and (BB), thus showing that these problems
are solvable in polynomial time. Eaves and Freund also conjectured that the forms
(HW), (BW), and (HB) are 'intractable'. In Section 2 of this article, we show that
these three forms of SCP are co-NP-complete, (i.e., that the corresponding noncon-
tainment problems are NP-complete), thus essentially confirming the conjecture.

Section 3 addresses the computational complexity of the integer containment
problem (ICP), that of finding an integer point in a given polyhedron X in the case
that X is a W-cell. Karp [4] showed that when X is an H-cell, the corresponding
ICP is NP-complete. Herein, it is shown that ICP is also NP-complete when X is
a W-cell.

The notation used is standard. Let RFn be n-dimensional Euclidean space. The
Euclidean norm of xcEIR is represented by Xi. Let e=(1, 1,1,..., 1) where the
dimension is clear from the context. Let Qmln, Q be the set of rational m xn
matrices and n-vectors, respectively. Define

{a, b} =x E Rn: x = a or b, = l,...,n}.

2. Three NP-complete cases of the set containment problem

The three set containment problems of interest, forms (HB), (HW), and (BW),
can be stated in their noncontainment form, as:-

(HB) Given: (A, b, c, r2)E (Qmxn, Qm, Qn, Q1).

Question: Is X Y, where X = {x I": Ax b and
Y = E T"' (x - )t(x - c) r2 }?

(HW) Given: (A, b, U, V) (QmX, Qm, Qnxk Qnxp)

Question: Is X Y, where X = {x E Rn: Ax s b} and
Y= {x eRn: x = UA + VL, e = 1, A ~>0, 0}?

(BW) Given: (c, r2 U, V) E (Qn Q1, Qnxk, Qnxp)

Question: Is X Y, where X = {x c Rn (x - c)t(x - c) < r2 } and
Y= {x E [: x = UA + Vpt, etA = 1, A > 0, 0}?

Note that problems (HB), (HW), and (BW) are elements of NP. For a given
instance of (HB) or (HW), the resolution of XX Y can be accomplished by
determining an extreme point or extreme ray x of X that is not an element or ray
of Y, respectively; the size of x is polynomially bounded in the size of the input
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data (see, e.g., Gantmacher [2]) and so HB and HW are elements of NP. For a
given instance of (BW), suppose that X X Y Then, either c Y or c Y and there
is an (n - 1)-face F of Y such that the shortest Euclidean distance from c to the
hyperplane Z containing F is less than r. If the former is true, the test c Y amounts
to solving a linear program, which is polynomially bounded in the size of the input
data. If the latter is true, there exists a submatrix U' consisting of columns of U
which are extreme points of F, and submatrix V' consisting of columns of V which
are extreme rays of F, such that the hyperplane Z ontaining F is determined by
a unique (up to positive multiple) solution (, ct) to rrU'= ae, rrV' =O, -rU ae,
irV V0, r # 0, where Z = Ix b x = a}. The size of a solution (, a) to the above
system can be polynomially bounded in the data (U, V) and the shortest Euclidean
distance from c to Z is given by ( - i c)/Jl-. i. The test that ( - c)2/ i - <
r2 is also polynomially bounded in the data (, i, c, r2) and so problem (BW) is in
the class NP.

Consider the following version of the integer containment problem:

(ICP1) Given: A Qmxn

Question: Is there a re {-1, 1} that satisfies Anr e?

This classical integer linear inequalities problem is NP-complete, even if m is
restricted to be 2, as there is an elementary transformation from the number partition
problem. In order to prove that our three cases of SCP are NP-complete, we will
demonstrate a transformation of ICP1 to our desired problem.

Our main result in this section is the following:

Theorem 1. The set containment problems (HB), (HW), and (BW) are NP-complete.

Before proceeding to the proofs, we define a few more terms and we state an
elementary property concerning linear programs defined over the rationals.

For each matrix A, let P(A) = {x: Ax < e, -e < x < e}. Thus the integer contain-
ment problem ICP1 can be stated as follows: Does P(A)n {-1, 1}" #0?

For a given rational matrix A, we will let max (A) denote the maximum absolute
value of a numerator or denominator of a numerator or denominator of a component of A; e.g., max(2, -4)) = 14.
(The numerator and divisor can have a common divisor.)

For two sets S, T, let d(S, T) be the infimum of the distance between the two
sets, where the supremum norm is used. In the proofs, we will use the following
elementary lemma.

Lemma 1. If P(A) n {-1, 1}n = 0, then d(P(A), {-1, 1}n)> (2 max(A)+n)n !)-1.

Proof. Let z*= d(P(A), {-1, 1}"), and z*(y)= d(P(A), {y}); then

z* = min(z*(y): y E {-1, 1}n),
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and

z*(y) = minimum z,

subject to z + (xj-y)0 , j = 1,..., n,

z-(xj-yj)O, j= 1,...,n,

X E P(A).

We now claim that z*(y)> (2 max(A)( n +)(n!))- 1 for any y E {-1, 1}'. To see this
let (x*, f) be a point in P(A) of minimum distance to y, and without loss of generality
we may assume that (x*, z) is an extreme point of the feasible region of the above
linear program. Therefore (x*, i) = B-'f where B is a row basis of the linear program
and f is a vector of O's and l's of the right-hand side components corresponding
to B. B can be written as B = d-'C where d is a common denominator of B, and
C is an integral matrix. Because B-1 = dC- = d(adj(C)/det(C)), a denominator
for B-' is det(C). Because d max(A)"2 and max(C) (max(A)"2 +1), we obtain

det(C) < max(C)"n ! s (max(A)"2 +l)n n!

= max(A)(3+n)n < 2 max(A)(3+")n !

Because the numerator of is a positive integer, we have > (det(C))- 1 , and so
the above bound on det(C) provides a bound for z and hence z*. 

Henceforth, for each A Ec Qmxn, let M(A) = (2max(A)(n+")n !). Note that the size
of M(A) is O(n3 log(1 +max(A)), which is polynomial in the size of A.

Proof that (HB) is NP-complete. Let A be an instance of ICP1, and let = [M(A)] - .
Let X = P(A) and let Y= {y IRn: yt y c n -E}. Consider the instance of (HB) of
determining if X X Y.

Suppose first that X c Y. Then lxll < n - E < n for any x E P(A) and thus P(A) n

{-1, 1} = 0.
Conversely, suppose that X Y Let x c P(A) be selected so that x Y Since

-e x e and xtx-- n e, it follows that Ixjl 1 -e for each j and thus
d(x, {-1, 1} ) E. It follows that d(P(A), {-1, l}) < e, and thus by Lemma 1, we
conclude that P(A) n {-1, 1}n # 0. 

Proof that (HW) is NP-complete. Let A be an instance of ICP1, and let =

[M(A)]-'. Let X= P(A), and let Y={y:' j= Iyl <y 1 n-e}. Note that Y may be
polynomially represented as the W-cell {y: y = UA, A > 0, etA = 1} by letting U =

[(n - E)1, (n - E)(-I)]. Now consider the instance (H, W) of determining if X m Y
Suppose first that X c Y Then any x E P(A) must satisfy SJ IxjI - n -E and thus

P(A) cf {-1, 1) = 0.
Suppose next that X Y Let x c X be chosen so that j xj > n - E. Since -e x <

e, it follows that 1- E I xjl< 1 for each j = 1,..., n and thus d(x, {-1, I.) e.
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Therefore d(P(A), {-1, If') < E, and thus by Lemma 1 we conclude that P(A) )

{fII}#0. E 0

Proof that (BW) is NP-complete. Let A be an instance of ICP1 and let = M(A) - .

Let X={xcE :X11x2 ' 1 /(n - )} and let Y={ycER: rrtyl for all rciP(A)}.
We first show that Y can be represented as the W-cell Y' =
{y: y = A1 - A 2 +A tA 3 A 1, A2, A3 O, etA 1+ eA 2 eA3 =. 1. It is easy to see that Y'c
Y by premultiplying any y E Y' by rr c P(A). To show that Yc Y' suppose that
y c Y. Then r ty < 1 for any y c P(A). If y Y', the linear system A - 2 + A'A 3 = y,

etA + etA2 + etA 3 = I, A1 0, A 2 > 0, A 3 0 has no solution. In this case, by a theorem
of the alternative, there exists irE- e, c R, such that rr-e-O, -- e -e O,
Air - ,te 0, and ty - > 0. It is simply to verify that we must have At > 0, and
thus we can assume gt = 1, whereby r E P(A) and rty > 1, i.e. y Y, a contradiction.
Thus Y'= Y.

Consider the case of (BW) of determining if X_ Y. Suppose first that P(A) n
{-1, }In 0, and let v E P(A) n {-1, 1}". Let = (n - e)-112 11v Iv. Note first that

t = (n - E)- and so E X. Also note that. vv = (n - )1/2 'vII v> 1, and so L Y.
We conclude in this case that X t Y Thus if X c Y, P(A) n {-1, 1 = 0.

Next consider the case that X 0 Y In this case there exists x c X and i- E P(A)
such that rtx > 1. Moreover the value of x e X which maximizes Wtx is uniquely
given by - = (n - e)- 1/2 1 l-r whenever rr O. Thus we may assume without loss
of generality that x= (n- )- 1/21 1 rll-1m. It follows that 117r1 2 = rtIrT
(n - E)1211 -TI rrtX > ( - E)1/211 X1j and thus 11 Iij2 > n - e. Since -e r e, 1 - e
I jl < I for j 1,..., n and thus d(r, {-1, 1}") e. We conclude that
d(P(A), {-1, 1}n") E and thus by Lemma 1, P(A) n{-1, 1}" 0. 

3. The complexity of finidng an integer element of a polyhedron

It is well known (see for example Garey and Johnson [3]) that the problem of
determining whether there is an integer point in an H-cell is NP-complete. In this
section we show an analogous result for integral containment in a W-cell. Consider

ICP2: Given: (UE QnXk).

Question: Is there an integral n-vector r E X, where

X = {x E Rn: X = UA, etA = 1, A 0}?

Theorem 2. The problem ICP2 is NP-complete

Proof. Note first that ICP2 is an element of NP since if r E X is integral, then the
size of vi is polynomially bounded in the size of U, and we can demonstrate that
r e X by solving a linear program in polynomial time.
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To show that ICP2 is NP-complete, we carry out a transformation from the
following 0-1 knapsack problem.

Input: Integers a,,..., a, b.
Question: Is there a vector y E {O, l} such that Z= ajyi = b?

The above problem is known to be NP-complete (see for example Garey and Johnson
[3]).

Suppose that a,... , a, b is an instance of the above knapsack problem. We
transform this instance into a problem in modular arithmetic as follows: Are there
vectors A, s satisfying:

(la)(E aj Aj - bA+ 1i is integral,

(n + l)Ai is integral for j = 1,..., n+ 1,

(2n)-1 (Aj + s - An+l) is integral for j = 1,..., n,

(Ilb)

(lc)

(ld)

s, A ~>0. (1 e)

First note that (la)-(le) is a special case of ICP2 in which U has 2n + 1 columns
each of which is in Q2 n+2.

We claim that there is a feasible solution to system (1) if and only if there is a
solution to the knapsack problem.

Suppose first that y e {0, 1} is feasible for the knapsack problem. Let A =
yj/(n+ 1) for j= 1,..., n and let sj= 1/(n+l)-Aj. Finally, let A+ = 1/(n+ 1). It
is easy to verify that A, s satisfy (1).

Suppose next that A, s satisfy (1). If we subtract each of the n constraints of (c)
from (2n)- of constraint (d), we obtain the constraint

((n + 1)/2n)An+l- 1/2n is integral. (if)

Since O <
An+s 1, we conclude from (f) that

(lg)

We conclude from (g), (c) and (d) that

(lh)

and by (lh) and (lb) we conclude that

A =0 or 1/(n+l 1) forj=1,..., n. (li)

From (lg), (li) and (la) we conclude that y = (y,.. . , y,) is feasible for the
knapsack problem, where yj = (n + 1)Aj, j = I,..., n, completing the proof. l
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