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Abstract. In this paper we study practical solution methods for finding the maximum volume
ellipsoid inscribing a given full-dimensional polytope in �n defined by a finite set of linear inequal-
ities. Our goal is to design a general-purpose algorithmic framework that is reliable and efficient in
practice. To evaluate the merit of a practical algorithm, we consider two key factors: the computa-
tional cost per iteration and the typical number of iterations required for convergence. In addition,
numerical stability is an important factor. We investigate some new formulations upon which we
build primal-dual type interior-point algorithms, and we provide theoretical justifications for the
proposed formulations and algorithmic framework. Extensive numerical experiments have shown
that one of the new algorithms is the method of choice among those tested.
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1. Introduction. The ellipsoidal approximation of polytopes is an important
problem in its own right, while it is also a basic subroutine in a number of algorithms
for different problems. One example is that Lenstra’s algorithm for the integer pro-
gramming feasibility problem [12, 13] uses the ellipsoidal approximation of polytopes
as a subroutine.

Consider a full-dimensional polytope P ∈ �n defined by m linear inequalities. For
brevity, we will call the problem of finding the maximum volume ellipsoid inscribing
P the MaxVE problem. The MaxVE problem has its root in the rounding of convex
bodies in �n. One of the earliest studies was done by John [7]. In particular, John’s
results imply that once the maximum volume inscribing ellipsoid E is found in P, then
E ⊂ P ⊂ nE , where nE is the ellipsoid resulting from dilating E by a factor n about
its center. Such a pair of ellipsoids is also called a Löwner–John pair for P. That is,
E provides an n-rounding for P. Moreover, if P is centrally symmetric around the
origin, then the rounding factor can be reduced to

√
n.

Ellipsoids have good geometric and computational properties that make them
much easier to handle, both theoretically and computationally, than polytopes. For
example, the global minimum of any quadratic in an ellipsoid can be located in poly-
nomial time (see [25], for example), while finding such a global minimum in a poly-
tope is generally an NP-hard problem. For many problems a fruitful and effective
approach is to use ellipsoids to approximate polytopes in various theoretic and al-
gorithmic settings. A celebrated example is Khachiyan’s ellipsoid method [9]—the
first polynomial-time algorithm for linear programming. Other applications include
optimal design [20, 22], computational geometry (for example, [24]), and algorithm
construction (for example, [4] and [21]).
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54 YIN ZHANG AND LIYAN GAO

Recently, several randomized polynomial-time algorithms ([2, 8, 14], for example)
have been proposed for approximating the volume of convex bodies. (Computing
the volume itself is NP-hard.) In the case of a polytope, these algorithms require
approximating the polytope by an ellipsoid.

It is known that the rounding of a polytope can be accomplished by the (shallow-
cut) ellipsoid method in polynomial time (see, for example, [19, 4]). It is also known,
however, that the ellipsoid method is not a practically efficient algorithm. A number of
interior-point algorithms have been proposed in recent years for the MaxVE problems,
for example, by Nesterov and Nemirovskii [17], Khachiyan and Todd [11] (also see [10]
for a related problem), Nemirovskii [16], and Anstreicher [1].

Nesterov and Nemirovskii [17] constructed a three-stage barrier method for find-
ing an ε-optimal ellipsoid E such that its volume Vol(E) ≥ Vol(E∗)e−ε, where E∗ is
the maximum volume ellipsoid inscribing P and ε ∈ (0, 1). They obtained a com-
plexity bound O(m2.5(n2 + m) ln(mR

ε )) for their algorithm, where m is the number
of constraints and R is a priori known ratio of the radii of two concentric balls, the
larger ball containing the given polytope P and the smaller one being contained in P.
The term n2 comes from the requirement of solving linear systems involving an n×n
matrix-valued variable.

Khachiyan and Todd [11] proposed an algorithm that attains the complexity
estimate of O(m3.5 ln(mR

ε ) ln(n lnR
ε )). The algorithm applies the basic barrier method

to a small number of subproblems and requires only solving linear systems of n+m
equations to compute the involved Newton directions. In their formulation the matrix-
valued variable is explicitly treated as dependent on another vector-valued variable
during the solution of Newton linear systems.

Nemirovskii [16] showed that the MaxVE problem can be reformulated as a
saddle-point problem in m + n variables and solved by a path-following method for
approximating saddle points of a sequence of self-concordant convex-concave func-
tions as defined in [16]. Nemirovskii proved that the complexity of the algorithm is
O(m3.5 ln(mR

ε )).
Most recently, Anstreicher [1] proposed an algorithm that uses key ideas of

Khachiyan and Todd [11] but avoids solving the subproblems required in the Khachiyan
and Todd algorithm. This way, Anstreicher’s algorithm attains the complexity esti-
mate of O(m3.5 ln(mR

ε )), which is the same as in [16]. Anstreicher also showed that
first computing an approximate analytic center of the polytope can reduce the com-
plexity to O((mn2 +m1.5n) ln(R) +m3.5 ln(mε )).

In addition, Vandenberghe, Boyd, and Wu [23] proposed an algorithm for the
class of MAXDET problems to which the MaxVE problem belongs. However, their
algorithm does not take into account the special structure of the MaxVE problem.

All the aforementioned works are primarily concerned with the complexity issues,
and the proposed algorithms are theoretical in nature. The objective of the present
study is to identify or construct a numerically efficient and stable algorithm for solving
general MaxVE problems. Our study is not aimed at solving very large-scale problems,
so we will not consider aspects of exploiting sparsity and other special structures that
may be present in the polytope-defining inequalities.

Since for many convex programs primal-dual interior-point algorithms have proven
to be superior in practice than either primal or dual algorithms, we will mainly in-
vestigate primal-dual type algorithms, though we will also consider particular primal
algorithms for the purpose of comparison.D
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 55

Two features are common in all the known interior-point algorithms for solving
the MaxVE problem. First, they are iterative in nature. Second, they require solving
a linear system at each iteration to update the current iterate. Hence, in judging the
practical efficiency of an algorithm, we must consider two key factors: (i) how many
iterations the algorithm typically requires in practice for obtaining an approximate
solution of a certain quality and (ii) how expensive it is to solve the relevant linear
system at each iteration. Besides efficiency, another important consideration is the
robustness of the algorithm. The robustness of an iterative algorithm is often deter-
mined by the numerical stability of the solution procedure for linear systems that has
to be invoked at every iteration.

In most primal-dual algorithms for linear programming or semidefinite program-
ming, at each iteration one solves a large linear system by reducing it to a smaller
Schur complement system obtained by block elimination. Moreover, the coefficient
matrix in the Schur complement system is often positive definite. This procedure has
proven to be efficient and at the same time adequately stable. Likewise, in this paper
we will try to identify primal-dual algorithms for which the corresponding linear sys-
tems can be reduced by block Gauss elimination to a well-behaved Schur complement
system.

The paper is organized as follows. In section 2 we describe the formulation of
the MaxVE problem. We introduce some primal-dual type interior-point algorithms
in section 3 and give related theoretical results in section 4. We summarize the
Khachiyan and Todd algorithm and our modification in section 5. Numerical com-
parative results on these four algorithms are presented in section 6. Finally, we offer
some concluding remarks in section 7.

We now introduce some notation. For any given vector v ∈ �p, we denote the p×p
diagonal matrix with v on its diagonal either by Diag(v) or by its upper-case letter V
whenever no confusion can occur. On the other hand, for a square matrix M , diag(M)
is the vector formed by the diagonal of M . The Hadamard product is represented by
the small circle “◦ .” Unless otherwise specified, superscripts for vectors and subscripts
for scalars that are not elements of a matrix are iteration counts. For a vector v,
inequalities of the form v > a are interpreted as componentwise, where a is a vector
of the same size. For symmetric matrices, A 
 B, or equivalently A− B 
 0, means
that A−B is positive definite. We use �m

+ and �m
++ to represent the nonnegative and

positive orthants in �m, respectively. The notation Sn++ represents the cone of all
symmetric positive definite matrices in �n×n. For a setW in �m, we denote its closure
by cl(W). Finally, by default ‖ · ‖ represents the Euclidean norm unless otherwise
specified.

2. The maximum volume ellipsoid problem. Consider a polytope P in �n

given by

P = {v ∈ �n : Av ≤ b},(2.1)

where A ∈ �m×n, m > n, and b ∈ �m. Recall that by definition a polytope is a
bounded polyhedron. For convenience of discussion, we will make the following two
assumptions throughout the paper:

A1. The matrix A has full rank n and contains no zero rows.
A2. There exists a strictly interior point v̄ ∈ P satisfying Av̄ < b.

In this paper, we will also make the assumption that m is a small multiple of n, that
is, n < m� n2.
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56 YIN ZHANG AND LIYAN GAO

Given a center x ∈ �n and a nonsingular scaling matrix E ∈ �n×n, an ellipsoid
in �n centered at x can be defined as

E(x,E) = {v ∈ �n : (v − x)T (EET )−1(v − x) ≤ 1};

or, equivalently,

E(x,E) = {v ∈ �n : v = x+ Es and ‖s‖ ≤ 1},(2.2)

where ‖·‖ is the Euclidean norm in �n. Clearly, an ellipsoid is uniquely determined by,
and uniquely determines, the symmetric positive definite matrix EET , but E is not
uniquely determined since the same ellipsoid can also be generated by EQ for any or-
thogonal matrix Q ∈ �n×n. Without loss of generality, we make the assumption that
E itself is symmetric positive definite. With this restriction, every (nondegenerate)
ellipsoid will have a unique representation E(x,E).

It is easy to see that the ellipsoid E(x,E) is contained in P if and only if

sup
‖s‖=1

aTi (x+ Es) ≤ bi, i = 1, . . . ,m,

where aTi is the ith row of A; or, equivalently,

aTi x+ ‖Eai‖ ≤ bi, i = 1, . . . ,m.

Introducing the notation

h(E) = (‖Ea1‖, . . . , ‖Eam‖)T ∈ �m,(2.3)

we have

E(x,E) ⊂ P ⇐⇒ b−Ax− h(E) ≥ 0.(2.4)

Let Vn be the volume of the n-dimensional unit ball. Then the volume of the
ellipsoid E(x,E) defined in (2.2) is

Vol(E) ≡ Vn detE.

It is evident that E(x∗, E∗) is the maximum volume ellipsoid contained in P if and
only if (x∗, E∗) ∈ �n × Sn++ solves the following optimization problem:

min − log detE
subject to (s.t.) b−Ax− h(E) ≥ 0

(E 
 0),
(2.5)

where E 
 0 means that E is symmetric positive definite. (The constraint in paren-
theses may not need to be explicitly enforced.) It is well known that the optimization
problem (2.5) is a convex program with a unique solution (x∗, E∗) ∈ �n×Sn++. More-
over, this solution is uniquely determined by the first-order optimality, or Karush–
Kuhn–Tucker (KKT), conditions for the problem which can be derived as follows.

The Lagrangian function of the convex program (2.5) is

L(x,E, u) = − log detE − uT (b−Ax− h(E)),
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 57

where u ∈ �m is the vector of Lagrange multipliers and u ≥ 0. The KKT conditions
consist of the equations ∇xL = 0, ∇EL = 0, feasibility, and complementarity. Using
the differentiation formulas

∇[log detE] = E−1 and ∇hi(E) =
Eaia

T
i + aia

T
i E

2hi(E)

and introducing the notation U := Diag(u) and

Y ≡ Y (E, u) := Diag(h(E))−1U,(2.6)

we can write the KKT conditions as

ATu = 0,(2.7a)

E−1 − [E(ATY A) + (ATY A)E]/2 = 0,(2.7b)

z − (b−Ax− h(E)) = 0,(2.7c)

Uz = 0,(2.7d)

u, z ≥ 0,(2.7e)

where E 
 0 and z is a slack variable.

3. Formulations and primal-dual algorithms. In this section, we propose
formulations and algorithms for effectively solving the MaxVE problem in practice. In
constructing practically efficient algorithms, we consider the following three guidelines:

1. The algorithms should not carry the matrix-valued variable E as a completely
independent variable because it would require too much computation (given
that n2 � m).

2. The algorithms should be primal-dual algorithms because of their proven
practical efficiency in numerous cases.

3. The algorithms should have theoretical guarantees to be well defined and well
behaved.

The first objective above can be achieved by eliminating the matrix variable E.
The elimination may occur either at the beginning of a formulation or at the time
of solving linear systems during iterations. In this paper, we will take the former
approach.

3.1. Formulations without matrix variable. We now describe three formu-
lations, first proposed in [26], for the MaxVE problem which are free of the matrix
variable E. The key idea in these formulations is to eliminate the matrix-valued vari-
able E from the system by solving (2.7b) for E. As can be verified easily, a solution
to (2.7b) is

E(y) = (ATY A)−1/2,(3.1)

where y = diag(Y ) and Y is defined in (2.6). We will later demonstrate that this
solution is unique in Sn++. Upon the substitution of E(y) into the definition of h(y)
(recall that hi(E) = ‖Eai‖), the vector h(E) becomes a function of y that we will
denote, with a slight abuse of notation, as h(y); namely,

h(y) ≡ h(E(y)).(3.2)
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58 YIN ZHANG AND LIYAN GAO

In [26], after substituting (3.1) and (3.2) into the KKT system, deleting (2.7b),
and adding (2.6) written in a different form, i.e.,

u = g(y) := Y h(y),(3.3)

the author obtained the following system:

F0(x, y, u, z) = 0, y, u, z ≥ 0,(3.4)

where x ∈ �n, y, u, z ∈ �m, and the function F0 : �n+3m → �n+3m is

F0(x, y, u, z) =




ATu
Ax+ h(y) + z − b

u− g(y)
Uz


 .(3.5)

Moreover, it is proposed in [26] to eliminate the variable u from the above system
using (3.3). The resulting system is

F1(x, y, z) = 0, y, z ≥ 0,(3.6)

where the function F1 : �n+2m → �n+2m is

F1(x, y, z) =


 AT g(y)

Ax+ h(y) + z − b
Zg(y)


 .(3.7)

In (3.5) and (3.7), we have used the notation U = Diag(u) and Z = Diag(z), respec-
tively.

In addition, the complementarity conditions Uz = 0 are clearly equivalent to the
conditions Y z = 0 because U = YDiag(h(y)) and h(y) > 0 at the solution. Based on
this observation, a third system is proposed in [26]:

F2(x, y, z) = 0, y, z ≥ 0,(3.8)

where the function F2 : �n+2m → �n+2m is

F2(x, y, z) =


 AT g(y)

Ax+ h(y) + z − b
Y z


 .(3.9)

The three systems (3.4), (3.6), and (3.8) are all free of the matrix-valued variable
E and will form the bases for our algorithm construction.1 However, in obtaining
them we have applied nonlinear transformations whose properties need to be investi-
gated. A most important question is whether or not these transformations preserve
the uniqueness of solutions. We will answer this question and others in a subsequent
section.

1In [26], some additional systems were also derived that we have found to be less satisfactory.
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 59

3.2. Primal-dual algorithmic framework. The primal-dual algorithms to be
proposed can be motivated from the view of the damped Newton’s method applied to
the so-called perturbed complementarity conditions. Another useful perspective is to
view them as path-following algorithms. In this construction, one replaces the zero
right-hand side of relevant complementarity conditions with µw0, where µ > 0 and
w0 ∈ �m

++, and applies the Newton method to the resulting “perturbed” system while
decreasing the parameter µ to zero. Specifically, the perturbed systems for (3.6) and
(3.8) have the form

F (x, y, z) =


 0

0
w


, y, z > 0,(3.10)

where F can be either F1 or F2, and for some w0 ∈ �m
++

w = µw0, µ > 0.

Normally, one chooses w0 = e, where e is the vector of all ones.
We will prove later that each of the perturbed systems has a unique solution for

every µ > 0, and as µ → 0 the corresponding solutions will converge to the (same)
solution of the unperturbed systems from which the solution to the MaxVE problem
can be easily constructed.

We now present our primal-dual interior-point algorithmic framework for the sys-
tems (3.6) and (3.8). The framework for the system (3.4) would be the same except
that an extra variable u ∈ �m is present. In the rest of the paper, we will concentrate
only on the formulations (3.6) and (3.8) but omit (3.4) because, being so closely re-
lated to (3.6), system (3.4) shares almost identical theoretical properties with (3.6),
while in our tests it seems to produce algorithms with performance inferior to that of
their counterparts based on (3.6) and (3.8).

Algorithm 1 (primal-dual interior-point algorithm).

Given x0 in the interior of P and y0, z0 ∈ �m
++, set k = 0.

Step 1. Choose σk ∈ (0, 1), set µk to σk
g(yk)T zk

m for F = F1 or to σk
(yk)T zk

m for
F = F2.

Step 2. Solve for (dx, dy, dz) from

F ′(xk, yk, zk)


 dx

dy
dz


 = µk


 0

0
e


− F (xk, yk, zk).(3.11)

Step 3. Choose a step length αk ∈ (0, 1] and update

(xk+1, yk+1, zk+1) = (xk, yk, zk) + αk(dx, dy, dz)

such that xk+1 ∈ P, yk+1 > 0 and zk+1 > 0.
Step 4. If ‖F (xk+1, yk+1, zk+1)‖ ≤ ε, stop; else increment k and go to Step 1.

In addition to the initial guesses, this algorithmic framework has two essential
parameters, σk and αk, that need to be specified at each iteration. The main compu-
tation required is to solve the linear system (3.11) at every iteration.

D
ow

nl
oa

de
d 

08
/3

0/
22

 to
 1

55
.9

8.
13

1.
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



60 YIN ZHANG AND LIYAN GAO

When F = F1, the coefficient matrix in the linear system (3.11), i.e., the Jacobian
matrix of F1(x, y, z), is of the form

F ′
1(x, y, z) =


 0 AT g′(y) 0

A h′(y) I
0 Zg′(y) Diag(g(y))


 ,(3.12)

where g′(y) and h′(y) are the Jacobian matrices of g(y) and h(y), respectively. A
direct differentiation shows that

g′(y) = H(y) + Y h′(y)(3.13)

and (see also [26])

h′(y) = −1

2
H(y)−1[Q(y)◦Q(y)],(3.14)

where

H ≡ H(y) := Diag(h(y)), Q ≡ Q(y) = A(ATY A)−1AT .(3.15)

It is worth noting that Y 1/2Q(y)Y 1/2 is an orthogonal projection matrix.
On the other hand, when F = F2 we have

F ′
2(x, y, z) =


 0 AT g′(y) 0

A h′(y) I
0 Z Y


 .(3.16)

An efficient way to solve the linear system (3.11) is the following block Gaussian
elimination procedure: first eliminating dz and dy, then solving for dx, finally com-
puting dy and dz by back substitutions. We now formally describe the procedure for
F = F1. To simplify notation, we define the following two m×m matrices:

N ≡ N(y) := g′(y)(3.17)

and

M1 ≡M1(y, z) := −h′(y) + [Y H(y)]−1ZN(y).(3.18)

For now we will assume that M1 is nonsingular, and we will prove this fact later.
The aforementioned block Gaussian elimination reduces F ′

1(x, y, z) into a lower
triangular matrix, which is equivalent to, when F = F1, premultiplying (3.11) by the
upper triangular elimination matrix

T1(y, z) =


I ATNM−1

1 −ATNM−1
1 (Y H)−1

0 I −(Y H)−1

0 0 I


 .

It is straightforward to verify that

T1(y, z)F
′
1(x, y, z) =


A

TNM−1
1 A 0 0

A −M1 0
0 ZN YH


(3.19)
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 61

and for any vectors r1 ∈ �n and r2, r3 ∈ �m

T1(y, z)


r1
r2
r3


 =


r1 +ATNM−1

1

(
r2 − (Y H)−1r3

)
r2 − (Y H)−1r3

r3


 .(3.20)

Clearly, the linear system

F ′
1(x, y, z)


dx
dy
dz


 =


r1
r2
r3




is equivalent to the linear system where the coefficient matrix is the one in (3.19) and
the right-hand side is that of (3.20). This linear system can be formally solved by the
following procedure:

dx = [ATNM−1
1 A]−1

(
r1 +ATNM−1

1 (r2 − (Y H)−1r3)
)
,(3.21a)

dy = −M−1
1

(
r2 − (Y H)−1r3 −Adx

)
,(3.21b)

dz = (Y H)−1(r3 − ZNdy).(3.21c)

This solution procedure requires O(m3) operations (recall that m > n), with the bulk
of the computation involving the m×m matrix M1.

Similarly, the linear system (3.11) corresponding to F = F2 can be formally solved
by the following procedure:

dx = [ATNM−1
2 A]−1(r1 +ATNM−1

2

(
r2 − Y −1r3)

)
,(3.22a)

dy = −M−1
2

(
r2 − Y −1r3 −Adx

)
,(3.22b)

dz = Y −1(r3 − Zdy),(3.22c)

where

M2 ≡M2(y, z) := −h′(y) + Y −1Z.(3.23)

This procedure also requires O(m3) operations in terms of the order but less linear
algebra computation than required by procedure (3.21a)–(3.21c).

Of course, we still need to establish in theory that the proposed primal-dual
algorithms are well defined. To this end, we need to show that the matrices F ′

i (x, y, z)
are nonsingular for any y, z > 0, and the matrices Mi and ATNM−1

i A are also
nonsingular for both i = 1 and 2. These results will be presented next.

4. Theoretical results. In this section, we give theoretical results regarding
the well-definedness of the proposed algorithms, the uniqueness of solutions in our
formulations, as well as the existence and convergence of solution paths. We note
that the formulations introduced in the last section are obtained by applying some
nonlinear transformations. Therefore we need to show that these nonlinear transfor-
mations preserve the uniqueness of solution. We also mention that when F = F2, the
system in (3.10) is not equivalent to the optimality conditions of a convex program.
Hence, it is not evident that solution paths defined by (3.10) should always exist for
F = F2.
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62 YIN ZHANG AND LIYAN GAO

4.1. Well-definedness of algorithms. We will show in this subsection that
the proposed primal-dual algorithmic framework and the solution procedures (3.21a)–
(3.21c) and (3.22a)–(3.22c) are well defined for both F = F1 and F = F2. (Following
the same approach, one can also easily verify similar results for F = F0.)

We recall that throughout the paper we have assumed that A has full rank with
no zero rows. The main result of this subsection is the following theorem.

Theorem 4.1 (nonsingularity of Jacobian). For any y, z > 0, the Jacobian ma-
trices F ′

i (x, y, z) are nonsingular for i = 1, 2. Moreover, both the procedures (3.21a)–
(3.21c) and (3.22a)–(3.22c) are well defined.

Proof. The theorem follows directly from Lemma 4.4 below.
Now we prove three technical results that will lead to the proof of Theorem 4.1.
Lemma 4.2. Let P ∈ �n×n be an orthogonal projection matrix; i.e., P satisfies

PT = P and P 2 = P . Then the symmetric matrix

Gγ = I◦P − γP◦P(4.1)

is positive semidefinite for any γ ≤ 1. Moreover, if diag(P ) > 0, then Gγ is positive
definite for any γ < 1.

Proof. We note that since I � P � 0, i.e., both P and I − P are symmetric
positive semidefinite, so are P◦P and (I − P )◦P because the Hadamard products
of positive semidefinite matrices are also positive semidefinite (see, for example, [6]).
Gγ is obviously positive semidefinite for γ ≤ 0. Using the identity

Gγ = γ(I − P )◦P + (1− γ)I◦P,
we see that Gγ is a convex combination of two positive semidefinite matrices for
γ ∈ [0, 1], and hence is positive semidefinite. The second statement follows from the
conditions diag(P ) > 0 and γ < 1 which ensure that the second term above is positive
definite.

Lemma 4.3. For any y > 0, the matrix N(y) ≡ g′(y) is similar to a symmetric
positive definite matrix, and thus is nonsingular.

Proof. We first note h(y) > 0 whenever y > 0. In view of (3.17), (3.13), and
(3.14),

N = H − (2H)−1Y [Q◦Q]

= H−1

(
HYH − 1

2
Y [Q◦Q]Y

)
Y −1 = H−1GY −1

= [H−1/2Y 1/2]
(
[HY ]−1/2G[Y H]−1/2

)
[H−1/2Y 1/2]−1,

where

G := HYH − 1

2
Y [Q◦Q]Y.(4.2)

Therefore, N is similar to [HY ]−1/2G[Y H]−1/2, which is positive definite if and only
if the matrix G is positive definite since both Y and H are positive diagonal matrices.

Recall that by our notation Q = A(ATY A)−1AT , H = Diag(h(y)), and

h(y) ≡ h(E(y)) = (diag(Q(y))1/2,

where the square root is taken elementwise. We have

HYH = (I◦Q)Y = I◦ (Y 1/2QY 1/2).
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 63

In addition, since yiQ
2
ijyj =

(√
yi Qij

√
yj
)2

, we have

Y [Q◦Q]Y =
(
Y 1/2QY 1/2

)
◦
(
Y 1/2QY 1/2

)
.

Therefore we can write

G = I◦P − 1

2
P◦P,

where the matrix

P = Y 1/2QY 1/2 = Y 1/2A(ATY A)−1ATY 1/2

is an orthogonal projection matrix. Since the vector y is positive and the matrix A
has no zero rows, we have diag(P ) > 0. It follows from Lemma 4.2 with γ = 1/2 that
G is indeed positive definite. This completes the proof.

The relationships

N = H−1GY −1 and N−1 = Y G−1H(4.3)

that were used in the proof of Lemma 4.3 will be useful later.
Lemma 4.4. For y, z > 0, there hold the following statements:
1. The matrix M1 is similar to a symmetric positive definite matrix, and ATNM−1

1 A
is symmetric positive definite.

2. The matrix M2 is similar to a symmetric positive definite matrix, and ATNM−1
2 A

is nonsingular.
Proof. To prove the first statement, it suffices to prove that the matrix M1N

−1

is symmetric positive definite. Using the definitions of M1, N , and the formula for
g′ (see (3.18), (3.17), and (3.13), respectively), and the relationships (4.3), we have
h′ = Y −1(N −H) and

M1N
−1 = ((Y H)−1ZN − h′)N−1

= (Y H)−1Z − Y −1(N −H)N−1

= (Y H)−1Z − Y −1 + Y −1HN−1

= (Y H)−1Z − Y −1 + Y −1H(Y G−1H)

= (Y H)−1Z − Y −1 +HG−1H

= (Y H)−1Z +H
(
G−1 − (HYH)−1

)
H.

Then it suffices to show thatG−1−(HYH)−1 is symmetric positive definite sinceH,Y ,
and Z are all positive diagonal matrices. While the symmetry is obvious, the positive
definiteness follows from the fact that G equals HYH minus a positive semidefinite
matrix; see (4.2); hence G ≺ Y HY and G−1 
 (Y HY )−1 (see [5], for example).

To prove the second statement, we use the formula for h′(y) in (3.14) to obtain

M2 = Y −1Z − h′ = H−1

(
HY −1Z +

1

2
Q◦Q

)
,

which is the product of two symmetric positive definite matrices, implying that M2 is
similar to a symmetric positive definite matrix. Since both M2 and N are nonsingular,
so is ATNM−1

2 A. This completes the proof.
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64 YIN ZHANG AND LIYAN GAO

4.2. Uniqueness of solution. Since we have utilized nonlinear transformations
in the elimination of variables E = E(y) and u = g(y) from the KKT system (2.7a)–
(2.7d), we need to establish a rigorous equivalence of our formulations (3.6) and (3.8)
to the original KKT system. The main result is the following.

Theorem 4.5 (uniqueness of solution). The systems (3.6) and (3.8) have the
same, unique solution (x∗, y∗, z∗) such that y∗, z∗ ≥ 0. Moreover, let u∗ = g(y∗)
and E∗ = E(y∗). Then (x∗, E∗, u∗, z∗) is the unique solution of the KKT conditions
(2.7a-)–(2.7e).

Proof. The conclusions follow directly from Lemmas 4.6 and 4.7, given below,
and the uniqueness of the solution to the MaxVE problem.

We now prove the two technical lemmas.
Lemma 4.6. Let C ∈ Sn++; then the matrix equation

X−1 =
1

2
(CX +XC)(4.4)

has a unique solution X∗ = C−1/2 in Sn++. Moreover, the mapping: C → X∗ defined
implicitly through (4.4) is homeomorphic between Sn++ and itself.

Proof. One can easily verify that both X∗ and −X∗ are solutions to (4.4). This
implies that the matrix equation (4.4) does not in general have a unique solution in
�n×n.

Suppose that X̂ ∈ Sn++ is a solution to (4.4) and U is an orthogonal matrix that

diagonalizes X̂, i.e., UT X̂U = Σ, where Σ is a positive diagonal matrix. Premultiply-
ing both sides of (4.4) by UT and postmultiplying them by U , we obtain

Σ−1 =
1

2
(DΣ+ ΣD),

where D = UTCU . Comparing the elements on both sides, we have

1

2
Dij(Σii +Σjj) =

{
0, i �= j,

1/Σii, i = j.

Since diag(Σ) > 0, we must have (i) Dij = 0 for i �= j and (ii) Σii = D
−1/2
ii . The first

relationship says that D = UTCU is also diagonal. The second relationship says that
Σ = D−1/2, that is, X̂ = C−1/2 ≡ X∗. Consequently, X∗ is the only solution of (4.4)
in Sn++.

The last statement of the lemma is evident in view of the explicit relationships
X∗ = C−1/2 and C = (X∗)−2.

Lemma 4.7. Let g(y) ≡ Y h(y). Then the mapping g : �m
++ → �m

++ is homeo-
morphic between �m

++ and its image under g, i.e., g(�m
++) ⊂ �m

++.
Proof. It is straightforward to verify that the function g(y) is continuously dif-

ferentiable in �m
++, whose derivative is represented by the matrix g′(y) ≡ N(y). By

Lemma 4.3, N(y) is nonsingular in �m
++. With these properties, the lemma is a direct

consequence of the inverse function theorem.

4.3. Existence and convergence of solution paths. To justify our algo-
rithms as the path-following type, we will show that (i) the perturbed system (3.10)
with either F = F1 or F = F2 permits a unique solution for any given w0 ∈ �m

++

and each µ > 0, and hence the solution set forms a path; and (ii) as µ→ 0 the path
converges to the unique solution of the unperturbed system. Although it is straight-
forward to establish these results in the case of F = F1, it is much more involved in
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 65

the case of F = F2 since the perturbed system (3.10) for F = F2 does not correspond
to the optimality conditions of a convex program.

Following the conventional terminology in the literature of interior-point methods,
we will refer to the collection of solutions to the system (3.10) for w0 = e and µ > 0
as the central path of the system, where e ∈ �m is the vector of all ones. Our analysis
in this subsection applies to not only the central path but also to so-called weighted
paths where w0 > 0 is not equal to e.

The existence of paths for F = F1 follows a standard argument as given below.
Proposition 4.8 (existence and convergence of path for F = F1). For any w0 ∈

�m
++ and µ > 0, the system (3.10) with F = F1 has a unique solution (x(µ), y(µ), z(µ))

such that y(µ), z(µ) > 0. Moreover,

lim
µ→0

(x(µ), y(µ), z(µ)) = (x∗, y∗, z∗),

where (x∗, y∗, z∗) is the solution of (3.6).
Proof. The proof follows from a standard argument which we will outline as

follows. It is well known that the system of the “perturbed” KKT (PKKT) conditions

ATu = 0,(4.5a)

E−1 − [E(ATY A) + (ATY A)E]/2 = 0,(4.5b)

z − (b−Ax− h(E)) = 0,(4.5c)

Uz = w,(4.5d)

u, z > 0,(4.5e)

has a unique solution for any w > 0, where Y is defined as in (2.6), because it is
equivalent to the condition that the gradient of the barrier function Bw(x,E) equals
zero, where

Bw(x,E) = − log det(E)−
m∑
i=1

wi log
(
bi − aTi x− hi(E)

)
.(4.6)

This barrier function is strongly convex and has a unique stationary point (x(µ), E(µ))
corresponding to w = µw0 for a fixed w0 ∈ �m

++ and any µ > 0, which, together with
the dual variable u(µ) and the slack variable z(µ), satisfies (4.5a)–(4.5e) for w = µw0.
This can be seen as follows. From (4.5c) and (4.5d), we obtain u = Diag(b − Ax −
h(E))−1w. Substituting the expressions of y and u into (4.5a) and (4.5b), we obtain
the partial gradient of Bw(x,E) with respect to x and E, respectively. It is well
known that (x(µ), E(µ), u(µ), z(µ)) converges to the unique solution (x∗, E∗, u∗, z∗)
of the (unperturbed) KKT system as µ→ 0. Due to the homeomorphic relationships
between the PKKT conditions and the conditions in (3.10) with F = F1, we know
that (x(µ), y(µ), z(µ)), where y(µ) = Diag(h(E(µ)))−1u(µ) is also the unique solution
of (3.10) with F = F1. Moreover, the path {(x(µ), y(µ), z(µ)) : µ > 0} converges to
(x∗, y∗, z∗), where y∗ = Diag(h(E∗))−1u∗.

We now consider the existence of solution to the system (3.10) when F = F2,
that is, the existence of solution to the system

AT g(y) = 0,(4.7a)

Ax+ h(y) + z − b = 0,(4.7b)

Y z = w,(4.7c)

y, z > 0,(4.7d)
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66 YIN ZHANG AND LIYAN GAO

where w ∈ �m
++ and g(y) is defined as in (3.3). The situation here is more complicated

because this system is no longer equivalent to the PKKT conditions (4.5a)–(4.5e) when
w > 0, even though they are equivalent when w = 0. As such, we can no longer use
the standard argument used in the proof of Proposition 4.8. The question is whether
or not the following holds:

{0 ∈ �n} × {0 ∈ �m} × �m
++ ⊂ R(F2),

where

R(F2) := F2(�n ×�m
++ ×�m

++)

is the range of the function F2 corresponding to the domain �n × �m
++ × �m

++. In
particular, we want to know if the vectors (0, 0, µe) for µ > 0 are in the range of F2, in
other words whether a central path exists for the system (3.10) in the case of F = F2.

The answer to the above question is affirmative and given in Theorem 4.14 which
we will prove now. There is a strong possibility that we can prove this theorem by
identifying and verifying a set of conditions under which an existing general result is
applicable to problem (3.8)—an instance of the so-called nonlinear mixed complemen-
tarity problem for which a number of potentially applicable results exist (for example,
in [15]). However, we choose to provide an elementary and self-contained proof in this
paper. We start with the following proposition stating some useful facts.

Proposition 4.9. The following facts hold:
1. Both F1 and F2 are locally homeomorphic at any point (x, y, z) ∈ �n×�m

++×
�m

++.
2. If (x̂, ŷ, ẑ) is the solution to the system (3.10) with F = F1 and w = ŵ,

then (x̂, ŷ, ẑ) also satisfies (3.10) with F = F2 (i.e., (4.7a)–(4.7d)) and w =
Diag(h(ŷ))−1ŵ.

We note that the local homeomorphism of Fi implies that corresponding to any
point (u, v, w) ∈ Fi(�n × �m

++ × �m
++), i = 1, 2, there is a unique point (x, y, z) ∈

�n ×�m
++ ×�m

++ such that Fi(x, y, z) = (u, v, w).
If one were able to choose ŵ such that Diag(h(ŷ))−1ŵ = µe, then the point

(0, 0, µe) would be in the range of F2. However, since ŷ is dependent on ŵ, it is not
clear whether or not such a vector ŵ exists, let alone how to find it. Nevertheless, we
do find that points of the form (0, 0, w) with w = Diag(h(ŷ))−1ŵ are in the range of
F2.

Lemma 4.10. Let x ∈ �n, E ∈ Sn++, and z ∈ �m
+ satisfy the equation

Ax+ h(E) + z = b.(4.8)

Then there exists a constant γ > 0, independent of x, E, and z, such that

max(‖x‖, ‖E‖, ‖z‖) ≤ γ.

Proof. Equation (4.8) implies that x ∈ P, where P is the given polytope; hence
such x’s must be uniformly bounded above. Consequently, b − Ax for x ∈ P is also
uniformly bounded above, which in turn implies that both z and h(E) are uniformly
bounded above because they are both nonnegative and they sum up to b−Ax. Since
hi(E) = (aTi E

2ai)
1/2 and, by our assumption, the set {a1, a2, . . . , am} spans �n, the

uniform boundedness of h(E) implies that of E. This completes the proof.
Lemma 4.11. Let the barrier function Bw(x,E) be defined as in (4.6), and let W

be a bounded set with its closure cl(W) in �m
++ ∪ {0}. For any w ∈ �m

++, define

(xw, Ew) := argminBw(x,E)(4.9)
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 67

and for w = 0 ∈ �m define (xw, Ew) := (x∗, E∗) as the solution of the MaxVE problem
(2.5). Then

βW := inf
w∈cl(W)

{log det(Ew)} > −∞.

Proof. Since the pair (xw, Ew), Ew 
 0, is the unique minimizer of Bw(x,E),
there exists some (uw, zw) ∈ �m

++ × �m
++ such that together they satisfy (4.5a)–

(4.5e). It is well known that the quadruple (xw, Ew, uw, zw) is a continuous function
of w in �m

++ and that (xw, Ew, uw, zw) converges to (x∗, E∗, u∗, z∗) as w converges
to 0 from the interior of �m

++. Hence, the composite function log det(Ew) of w is a
continuous function of w in �m

++ ∪ {0} and must attain its minimum on the compact
set cl(W) ⊂ �m

++ ∪ {0}. This proves the lemma.
Lemma 4.12. Let R(F2) be the range of the function F2 corresponding to the

domain �n × �m
++ × �m

++, and let W be a bounded set in �m
++ such that its closure

cl(W) ⊂ �m
++ ∪ {0}. Let

{0 ∈ �n} × {0 ∈ �m
++} ×W ⊂ R(F2),

and let (x(w), y(w), z(w)) be the solution to (4.7a)–(4.7c) corresponding to w ∈ W.
Then the set {y(w) : w ∈ W} is bounded.

Proof. The triple (x(w), y(w), z(w)) being the solution to (4.7a)–(4.7c) implies
that the quadruple

(xw′ , Ew′ , uw′ , zw′) := (x(w), E(y(w)), g(y(w)), z(w))

is the solution to (4.5a)–(4.5e) with the right-hand side of (4.5d) being replaced by
w′ = Diag(h(y(w)))w. It is worth noting that the pair (xw′ , Ew′) also satisfies (4.9)
with w = w′. Evidently, we have

Ew′ ≡ E(y(w)).

Define the set

W ′ := {w′ = Diag(h(yw))w : w ∈ W},
which is bounded because both W and the set of {h(y(w)) : w ∈ W} are bounded. It
follows from Lemma 4.10 that the set

{Ew′ : w′ ∈ W ′} ≡ {E(y(w)) : w ∈ W}
is bounded. Hence, the eigenvalues of E(y(w)) are uniformly bounded above. On the
other hand, Lemma 4.11 implies that

log det(E(y(w))) ≥ βW .

As a result, the eigenvalues of E(y(w)) are also uniformly bounded away from zero in
the set W. Consequently, the components of h(y(w)) are uniformly bounded above
and away from zero in the set W because hi(y(w)) = (aTi E(y(w))ai)

1/2 and the rows
aTi of A are all nonzero for i = 1, . . . ,m.

We note that the vector Diag[h(y(w))]2y(w) is the diagonal of the orthogonal
projection matrix Y (w)1/2A[ATY (w)A]−1ATY (w)1/2 and therefore is componentwise
bounded above by unity; namely,

yi(w) ≤ 1

hi(y(w))2
, i = 1, 2, . . . ,m.
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68 YIN ZHANG AND LIYAN GAO

Since h(y(w)) is uniformly bounded away from zero for w ∈ W, we conclude that
y(w) is uniformly bounded above for w ∈ W. This completes the proof.

Lemma 4.13. Let R(F2) be defined as in Lemma 4.12. Then

{0 ∈ �n} × {0 ∈ �m} × �m
++ ⊂ R(F2).

Proof. From the second statement of Proposition 4.9, we know that there exists
a triple (0, 0, wα) ∈ R(F2) for some wα ∈ �m

++. Now for any given wβ ∈ �m
++, we are

to show that (0, 0, wβ) ∈ R(F2).
Let us define the line segment between wα and wβ ,

w(t) = (1− t)wα + t wβ ,

and the number

t̂ = sup{t ∈ [0, 1] : {(0, 0, w(t′)) : t′ ∈ [0, t]} ⊂ R(F2)}.

Since (0, 0, w(0)) ∈ R(F2) and F2 is homeomorphic between �n × �m
++ × �m

++ and

R(F2), we must have t̂ > 0. If t̂ = 1, we already have wβ ∈ R(F2) and we are done.
Now suppose t̂ < 1. This implies that (0, 0, w(t̂)) /∈ R(F2); otherwise by the local

homeomorphism of F2 the number t̂ would not have been a supremum. Consider the
set

W := {w(t) : t ∈ [0, t̂)} ⊂ R(F2),

which is clearly bounded with its closure cl(W) in �m
++. It follows from Lemmas 4.10

and 4.12, that the set

{(x(w), y(w), z(w) : w ∈ W}

is also bounded. Let us denote x(w(t)) by x(t), and so on. Then there must exist
a sequence {tk}∞k=1 such that tk → t̂ and (x(tk), y(tk), z(tk)) → (x̂, ŷ, ẑ) for some
(x̂, ŷ, ẑ) ∈ �n ×�m

+ ×�m
+ . (Otherwise, a convergent subsequence can be selected.)

Since the function F2 is continuous, we have F2(x̂, ŷ, ẑ) = (0, 0, w(t̂))T , meaning
that (0, 0, w(t̂)) ∈ R(F2). This is a contradiction. Thus the assumption t̂ < 1 is false,
and we have proved the lemma.

Finally we prove the existence and convergence of solution paths, including the
central path, leading to the solution of the original MaxVE problem in the sense
specified in the following theorem.

Theorem 4.14 (existence and convergence of path for F = F2). For any w0 ∈
�m

++ and µ > 0, the system (3.10) with F = F2 and w = µw0 has a unique solution
(x(µ), y(µ), z(µ)). Moreover,

lim
µ→0

(x(µ), y(µ), z(µ), u(µ), E(µ)) = (x∗, y∗, z∗, u∗, E∗),

where (x∗, y∗, z∗) satisfies the system (3.8), and (x∗, E∗, u∗, z∗) satisfies the KKT
system (2.7a)–(2.7e). Consequently, (x∗, E∗) solves the MaxVE problem (2.5).

Proof. The first statement follows directly from Lemma 4.13 and the fact that F2

is homeomorphic in �n ×�m
++ ×�m

++.
By Lemmas 4.10 and 4.12, the quantities x(µ), y(µ), z(µ), u(µ), and E(µ) are all

bounded as µ → 0. Hence, they must have accumulation points as µ → 0, say,
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SOLUTION OF MAXIMUM VOLUME ELLIPSOID PROBLEM 69

x∗, y∗, z∗, u∗, and E∗. Clearly, these accumulation points satisfy the two systems in
the theorem. Since these systems permit only unique solutions, we conclude that all
accumulation points of x(µ) as µ → 0 must coincide, and the same is true for other
quantities as well; namely, accumulation points are actually the limit point. Obviously,
x∗ and E∗ solve the optimization problem (2.5) because they, together with u∗ and
z∗, satisfy the optimality conditions (2.7a)–(2.7e). This proves the theorem.

4.4. Issues of algorithmic convergence. So far polynomial convergence the-
ory for primal-dual interior point algorithms has been established only for convex
conic programming in symmetric cones (see [18], for example), with the exception
of Nemirovskii [16]. Given the highly nonlinear formulations upon which we build
our primal-dual interior-point algorithms, it seems unlikely that polynomial conver-
gence could be proven for our primal-dual algorithms unless some new technique is
discovered.

On the other hand, performing some nonpolynomial, global convergence analysis
for the proposed algorithmic framework appears to be a worthy task. Given the good
theoretical properties we have already established for our formulations, we do not
see any fundamental difficulty in proving global and fast local convergence for some
parameter choices in the proposed algorithmic framework (for example, following the
approach in [3]). Such an analysis, however, would be rather lengthy and technical.
To keep the current paper focused and within a reasonable length, we will not attempt
a convergence analysis in this paper.

5. Khachiyan–Todd algorithm and modification. We will introduce two
other algorithms, the Khachiyan and Todd algorithm [11] and a modification of it,
and will later compare them with algorithms proposed in section 3.

Given a set of inequalities Ax ≤ b and a strictly interior point x0, using the
change of variable x = v + x0, we can rewrite the inequalities as Av ≤ b − Ax0. By
multiplying both sides by the positive diagonal matrix Diag(b − Ax0)−1, we obtain
the following polytope:

P = {v ∈ �n : Cv ≤ e},(5.1)

where C ≡ Diag(b−Ax0)−1A ∈ �m×n and e is the vector of all ones in �m. We will
use this form of polytopes in this section as it was used by Khachiyan and Todd in
[11].

In the formulation (2.5), the matrix-valued variable E appears in the constraints
in a nonlinear manner. In an alternative formulation given below, through the change
of variables B = E2 one can have the unknown matrix B appear linearly in the
constraints. Indeed, after substituting E2 by B and using the form (5.1), we can
rewrite the problem (2.5) into

min − log detB
s.t. cTi Bci ≤ (1− cTi x)

2, i = 1, . . . ,m,
(Cx < e, B 
 0).

(5.2)

While the constraints of (5.2) are linear with respect to the matrix variable B, they
are no longer linear or convex with respect to the vector variable x.

5.1. Khachiyan and Todd’s algorithm. Khachiyan and Todd’s algorithm [11]
for the MaxVE problem has a good complexity bound and also takes the advantage
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70 YIN ZHANG AND LIYAN GAO

of the special structure of the MaxVE problem. It is a suitable candidate for the
purpose of performance comparison.

To make use of the simplicity of linear constraints, Khachiyan and Todd intro-
duced the following subproblem, or auxiliary problem AP (a), from (5.2):

min − log detB
s.t. cTi Bci ≤ (1− cTi x)(1− cTi a), i = 1, . . . ,m,

(B 
 0)
(5.3)

for a fixed a ∈ �n, where Ca < e. Note that now the constraints are linear in both
B and x. The key idea here is to solve subproblems AP (a) iteratively until x and
a become sufficiently close to each other so (5.3) becomes a good approximation of
(5.2). Khachiyan and Todd use a primal barrier method to solve the subproblem
AP (a). Their barrier function has the form

Ft(x,B| a) = − log detB − t

m∑
i=1

log ((1− cTi x)(1− cTi a
k)− cTi Bci),

where a is fixed and t is the barrier parameter. The Khachiyan and Todd (KT)
algorithm can be summarized as follows.

Algorithm 2 (Khachiyan and Todd’s algorithm).

Step 1. Let a0 be a strictly interior point of P, B0 
 0, ε > 0, and k = 0.
Step 2. Solve the subproblem AP (ak) by using Newton’s method to minimize the

barrier function Ft(x,B| ak) for a sequence of t ↓ 0. The solution of AP (ak)
is (xk, Bk).

Step 3. If ‖xk − ak‖ ≤ ε, then stop; else let ak+1 = (ak + xk)/2, increment k, and
go to Step 2.

Khachiyan and Todd prove that to attain a sufficient accuracy only a small num-
ber of subproblems need to be solved, and they derive a linear system of size n +m
for calculating the Newton direction. Since the updates to the matrix-valued vari-
able B are parameterized by a vector-valued variable, they are able to reduce the
complexity of the algorithm. However, the drawback of their algorithm is that the
barrier method used to solve the subproblem is not efficient in practice. Particularly,
as we can see from the algorithmic framework, three layers of loops are involved in
the KT algorithm: the loop for the subproblem parameter a, the loop for the barrier
parameter t, and the iterations for a fixed a and a fixed t.

5.2. A modification of the KT algorithm. Since primal barrier methods are
generally less efficient than primal-dual, interior-point methods, in order to speed up
the KT algorithm we modify it by applying a primal-dual interior-point method to
the subproblems in Step 2 of the KT algorithm, while keeping the outer iterations
intact.

Following Khachiyan and Todd’s approach, we transform the subproblem AP (a)
into the standard form AP (0):

min − log detB
s.t. cTi Bci + cTi x ≤ 1, i = 1, . . . ,m,

(B 
 0)
(5.4)

by the change of variables x ⇒ x + a and the change of data ci/(1 − cTi a) ⇒ ci for
i = 1, . . . ,m.
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The optimality conditions, or KKT conditions, of problem AP (0) are as follows:

CT y = 0,(5.5a)

B−1 − CTY C = 0,(5.5b)

Cx+ diag(CBCT ) + z − e = 0,(5.5c)

Y z = 0,(5.5d)

y, z ≥ 0,(5.5e)

where y ∈ �m is the vector of Lagrangian multipliers, z ∈ �m consists of slack
variables, and C ∈ �m×n with cTi as its ith row.

Following the same strategy used earlier, we eliminate the matrix variable B from
the system using the substitution B(y) = (CTY C)−1 that is the solution to (5.5b).
We also replace the zero right-hand side of (5.5d) by µe. The resulting system that
defines the central path is

F3(x, y, z) :=


 CT y

Cx+ diag(Q(y)) + z − e
Y z


 =


 0

0
µe


 ,(5.6)

where y, z > 0, and Q(y) = C(CTY C)−1CT . Clearly, (5.6) is a square, nonlinear
system of n+ 2m variables. The Jacobian matrix of F3(x, y, z) is

F ′
3(x, y, z) =


 0 CT 0

C −Q ◦Q I
0 Z Y


 .

To solve the Newton linear system

F ′
3(x, y, z)


 dx

dy
dz


 =


 r1

r2
r3


 :=


 0

0
µe


− F3(x, y, z),

we use the following block Gaussian elimination procedure:

dx = (CTM−1C)−1(r1 + CTM−1(r2 − Y −1r3)),

dy = M−1(Cdx− r2 + Y −1r3),

dz = Y −1(r3 − Zdy),

where the matrix M := Q ◦Q+ Y −1Z is symmetric positive definite.
The primal-dual algorithm for solving the subproblem AP (0) falls into the same

framework of Algorithm 1.

6. Numerical results. In this section, we report our numerical results on the
four algorithms: the KT algorithm, the modified KT, or MKT, algorithm, and the
two direct primal-dual interior-point algorithms based on the systems (3.6) and (3.8)
which we name F1PD and F2PD, respectively. The numerical tests were performed on
three sets of test problems with a total of 200 problems. Our implementations of the
four algorithms are in Matlab. All the experiments were run on an SGI Origin2000
computer with multiple 300-MHz R12000 processors. However, our programs use only
a single processor at a time.
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72 YIN ZHANG AND LIYAN GAO

6.1. Implementation details. In describing the implementation details, we
first give some features common to all the algorithms and then other features specific
to individual algorithms.

For all the algorithms, the input data for a polytope include the matrix A, the
vector b, and a strictly interior point x0 such that Ax0 < b which will serve as the
starting point for the center of the initial ellipsoid. In our implementations, the point
x0 is selected to be the solution to an auxiliary linear program max{τ : Ax + τe ≤
b}. Other choices are certainly possible such as the analytic center of the polytope.
However, it was not our intention to use the best possible starting point.

Scaling is an important issue in numerical computation. In our implementations,
we always first transform the inequality Ax ≤ b into the form Cv ≤ e using the
change of variables and the row scaling as described at the beginning of section 5.
After the transformation, the starting point x0 is transformed into the origin, and the
transformed polytope is better scaled.

In all the algorithms, the stopping tolerance is set to ε = 10−4. In the case of the
KT and MKT algorithms, we stop the outer iterations whenever the relative change
between the current and previous centers is less than or equal to ε. In the case of the
F1PD and F2PD algorithms, we stop whenever the residual norm of Fi, i = 1 or 2,
becomes less than or equal to ε.

We now describe some algorithm-specific features.
• The KT and MKT algorithms: Both algorithms have the same outer loop
with the center varying. The initial center is the origin and the initial value
for the matrix variable B is B0 = ρI, where I is the identity matrix and ρ
is chosen such that the corresponding ball, centered at the origin with radius
ρ, lies entirely inside the polytope. During the outer iterations, we use a
warm-start strategy in which a later iteration always starts from the solution
of the previous iteration.
• The KT algorithm: In the subproblems, the barrier parameter t is set to 0.5
initially and then decreased by a factor of 10 whenever the subproblem stop-
ping criterion is met. For a fixed t value, the subproblem stopping criterion
is that the gradient norm of the corresponding barrier function becomes less
than or equal to t. This way, the stopping criterion becomes progressively
more stringent as t approaches zero. We found that this adaptive strategy
made the algorithm run significantly faster. To prevent the loss of symmetry
during the computation, we set B = (B+BT )/2 after B is updated at every
iteration. We update an iterate for (x,B) by a damped Newton step to en-
sure that the updated ellipsoid remains inside the polytope. Specifically, the
step length is 0.75 times the largest allowable step that keeps the updated
ellipsoid inside the polytope.
• The primal-dual algorithms: The primal-dual algorithmic framework (i.e.,
Algorithm 1) encompasses the F1PD and F2PD algorithms, and the sub-
problem solver of the MKT algorithm. The initial values for the primal-dual
algorithms are set as follows: the initial center is x = 0; the initial multi-
plier value is y = e; and the initial slack variable z, say, in the equation
z − g = 0, is set as zi = max(0.1, gi). In addition to the initial values,
there are two critical parameters in these algorithms: the so-called cen-
tering parameter σk and the step length αk. In our implementations, we
choose σk = min{0.5, g(yk)T zk/m} for F1PD or σk = min{0.5, (yk)T zk/m}
for F2PD, and αk = min(1, τ α̂), where τ ∈ (0, 1) and α̂ is the maximum
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length such that updated iterate for (x, y, z) reaches the boundary of the set
P × �m

++ × �m
++. We use τ = 0.75 for the F1PD and F2PD algorithms, and

a more aggressive value τ = 0.9 for the subproblem solver of the MKT al-
gorithm because the subproblem (5.3) is not as nonlinear as its counterparts
are in the F1PD and F2PD algorithms.

The parameter settings given above are rather generic and unsophisticated. For
example, a line search scheme for determining step length could be a more effective
and theoretically sound strategy. However, given our purpose of identifying the most
robust and efficient algorithm, we consider our current settings to be appropriate and
sufficient.

6.2. Test problems. Three sets of test problems were used in our numerical
experiments, consisting of 47, 143, and 10 problems, respectively. The total number
of test problems is 200. (All the test problems, as well as detailed problem information
and numerical results, are available from http://www.caam.rice.edu/˜zhang/mve.)

Test sets 1 and 2 are obtained from an implementation of Lenstra’s algorithm
for an integer programming feasibility problem [12, 13]. This algorithm searches on a
tree of subproblems and applies ellipsoidal approximation on each one of them. The
polytopes in sets 1 and 2 are taken from some branches of the search trees for two
different integer programming feasibility problems. The problem sizes in sets 1 and 2
are relatively small with m ≤ 288 and n ≤ 80. Nevertheless, our numerical experience
has indicated that some of the problems are nontrivial to solve.

In order to test the ability of our algorithms for solving larger problems, we
generated a set of 10 random problems that is called set 3. The largest problem in
this set has m = 1200 and n = 500. For each problem, we first use the Matlab function
sprandn to generate a sparse random matrix B and then use the rand function to
generate a right-hand side vector c > 0, an upper-bound vector ub > 0, and a lower-
bound vector lb < 0. Together, they form a polytope

{x ∈ �n : Bx ≤ c, lb ≤ x ≤ ub},
where B ∈ �k×n and c ∈ �k and lb, ub ∈ �n. By construction, the origin x = 0 is
strictly interior to the polytope. Then we rewrite the polytope into the standard form

{x ∈ �n : Ax ≤ b},
where A ∈ �m×n, b ∈ �m, with m = k + 2n. The matrix A is constructed, in an
obvious manner, from the matrix B and the identity matrix in �n, and the vector b
is constructed from the vectors c ∈ �k and lb, ub ∈ �n. The problems in set 3 are
sparse.

6.3. Test results. Test results on sets 1 and 2, totaling 190 problems are sum-
marized in Table 6.1. Six rows of numbers are presented in Table 6.1. For each test
set, in the first row we list the test set number, the number of test problems in the set,
the total number of iterations, and the total amount of CPU time in seconds taken by
each algorithm for solving the entire set of test problems; then in the last two rows for
each category we give the algebraic mean and the standard deviation (std) of the set.

We note that the iteration numbers for the KT and the MKT algorithms are
the numbers of innermost, Newton iterations that involve solving systems of linear
equations. These innermost iterations are comparable to the iterations of the primal-
dual algorithms in terms of complexity of linear algebra computation. Specifically,
all of the iterations require either solving m ×m linear systems or inverting m ×m
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Table 6.1
Summary of results on tests 1 and 2.

Test No. of KT MKT F1PD F2PD
set probs iter time iter time iter time iter time
1 47 19416 3340 2655 240 692 124 694 77

mean 413.1 71.1 56.5 5.1 14.7 2.6 14.8 1.6
std 17.7 38.6 5.8 2.9 1.9 1.8 1.6 1.0

2 143 56783 3567 9720 429 2448 168 2058 104
mean 397.1 24.9 68.0 3.0 18.1 1.2 14.4 0.7
std 54.3 6.0 10.1 0.8 3.6 0.4 2.3 0.2

Table 6.2
Results on test set 3: Problems 1–10.

Prob Size F1PD F2PD
number m n nnz iter time iter time

1 600 100 7426 31 97 22 30
2 600 150 8408 30 107 23 39
3 600 200 7669 53 203 29 58
4 600 250 5022 60 249 31 73
5 800 100 5914 34 235 22 63
6 800 200 8029 34 271 24 91
7 800 300 8933 58 549 32 165
8 1000 300 11993 40 675 28 245
9 1000 400 8433 60 1134 31 330
10 1200 500 10518 73 2917 37 703

mean — — — 47.3 643.3 27.9 179.6
std — — — 15.3 860.5 5.0 211.9

matrices, and hence have an O(m3) complexity per iteration. Nevertheless, these
algorithms do differ in terms of secondary computational tasks. For example, both
KT and MKT algorithms compute matrices of the form ATM−1A, while F1PD and
F2PD algorithms compute ATNM−1A, where A is m×n (m > n) and M and N are
m×m. For both cases the leading complexity term is O(m3), but the latter is more
expensive than the former. Similarly, comparing (3.18) and (3.21c) with (3.23) and
(3.22c) we can see that F1PD requires more linear algebra computation than F2PD.

From Table 6.1, we observe that on average the MKT algorithm is about 10
times faster than the KT algorithm, the F1PD algorithm is over 2 times faster than
the MKT algorithm, and the F2PD algorithm is about 1.5 times faster than the F1PD
algorithm. Moreover, the standard deviations in both iteration count and CPU time
decrease monotonically in the same order: KT, MKT, F1PD, and F2PD. The results
are remarkably consistent; for example, there is not a single problem which F1PD
solved in less time than F2PD did.

We mention that out of the 190 test problems in test sets 1 and 2 the KT algorithm
failed to converge on two: problems 22 and 120 in set 2. More conservative choices of
parameters would make the KT algorithm converge on these two problems but would
also adversely affect the overall performance of the algorithm. We kept the current
choices of parameters for the benefit of the KT algorithm.

The test results on the randomly generated test set 3 are presented in Table 6.2.
Only the F1PD and F2PD algorithms were tested on this set of larger problems
because the other two algorithms would require an excessively long time to run. Since
these test problems are sparse, in addition to the matrix sizes m and n, we also include
the number of nonzero entries, denoted as nnz, in the matrix A. We mention that
although the sparsity in A makes relevant matrix multiplications cheaper, the matrix
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Q = A(ATY A)−1AT involved in h′(y) (see (3.14)) is still generally dense. As a result,
it is still necessary to solve m×m dense linear systems in the algorithms.

The results in Table 6.2 indicate that given the current choices of parameters, the
F2PD algorithm clearly outperforms the F1PD algorithm by a considerable margin
on test set 3. Although the performance of the F1PD algorithm may be somewhat
improved by selecting different parameters, we do not believe that it can in general
outperform the F2PD algorithm because it requires more linear algebra calculation
in each iteration for solving its version of the Newton linear system.

7. Concluding remarks. The goal of this study is to find a practically efficient
algorithmic framework for solving general MaxVE problems where the number of
constraintsm is a small multiple of the number of variables n. Our extensive numerical
results show that among the four tested algorithms, the method of choice is clearly
the F2PD algorithm built on the formulation (3.8), which has been shown to have a
sound theoretical foundation. We have established, among other things, the existence
of a central path for this formulation even though this central path is not known to
be directly connected to the optimality conditions of a barrier function.

The main advantage of the F2PD algorithm over the KT and the MKT algorithms
is that, without the need for solving a number of subproblems either for fixed centers or
fixed barrier parameter values, it requires fewer iterations (or linear system solutions)
than the other two algorithms. We expect that the same advantage would still hold
against some other untested algorithms like the one given in [1]. In addition, compared
to the F1PD algorithm, the F2PD algorithm requires less linear algebra computation
per iteration and seems to be more robust. These features make the F2PD algorithm
particularly attractive.

We should point out that the polynomial algorithm recently proposed by Ne-
mirovskii [16] is, much like our algorithms, a primal-dual type algorithm free of matrix
variables. Such a characteristic indicates that it may also be promising as a practi-
cally efficient algorithm. This algorithm deserves further study from a computational
point of view.

The algorithms considered in this paper are all of the general-purpose type. For
really large-scale problems with special structures, one will likely need special-purpose
algorithms that can take full advantage of the problem-specific structures, in particular
sparsity, in order to solve the problems efficiently. This should be a topic of further
research.
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thoughtful and helpful comments and suggestions which have enabled us to improve
the paper significantly. Our thanks also go to Michael Todd for suggesting that we
consider the modification of the Khachiyan–Todd algorithm.
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