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These slides do not contain all the topics intended for discussion ..... Watch out errors are everywhere!
In the meantime, I am happy to receive your suggestions, corrections and comments.

But, ”I won’t leave any unfinished manuscripts” Harold Robbins - American author with 25 bestsellers.
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Basics of the Interior Point Method
Consider

(NLP) min
x

f (x)

s.t.

gi (x) ≥ 0, i = 1, 2, . . . ,m1;

hj(x) = 0, j = 1, 2, . . . ,m2;

x ≥ 0,

where f , gi , hj : Rn → R are at least once differentiable functions,
xmin, xmax ∈ Rn are given vectors.

Feasible set of NLP:

F := {x ∈ Rn | gi (x) ≥ 0, i = 1, . . . ,m1;

hj(x) = 0, j = 1, . . . ,m2; x ≥ 0} .
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Basics of the Interior Point Method...

Figure: Feasible set F

Idea of the interior point method:
• to iteratively approach the optimal solution from the interior of the
feasible set
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Basics of the Interior Point Method...
Therefore (requirements for IPM):
• the interior of the feasible set should not be empty

• almost all iterates should remain in (the interior of the) feasible set

Question:

When is the interior of the feasible set non-empty?

Answer:

(i) if there is x ∈ Rn such that

gi (x) > 0, i = 1, . . . ,m1; hj(x) = 0, j = 1, . . . ,m2; x > 0.

(ii) if the Mangasarian-Frmomovitz Constraint Qualification (MFCQ)
is satisfied at a feasible point x ,

then the interior of the feasible set of NLP is non-empty.
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What is MFCQ ?
Let x ∈ F ; i.e. x is a feasible point of NLP.

Active constraints

• An inequality constraint gi (x) is said to be active at x ∈ F if

gi (x) = 0.

• The set
A(x) = {i ∈ {1, . . . ,m1} | gi (x) = 0}

index set of active inequality constraints at x .

(NLP) min
x
{f (x) = x2

1 − x2
2} s.t. g1(x) = x2

1 + x2
2 + x2

3 + 3 ≥ 0,

g2(x) = 2x1 − 4x2 + x2
3 + 1 ≥ 0,

g3(x) = −5x1 + 3x2 + 2 ≥ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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What is MFCQ ?...

The vector x> = (1, 1, 1) is feasible to the NLP and

g2(x) = 0 and g3(x) = 0,

the active index set is A(x) = {2, 3}.

Mangasarian-Fromowitz Constraint Qualification

Let x ∈ F (feasible point of NLP). Them MFCQ is said to be satisfied
at x if there is a vector d ∈ Rn, d 6= 0, such that (i)

(i) d>∇gi (x) > 0, i ∈ A(x), and

(ii) d>∇h1(x) = 0, d>∇h2(x) = . . . , d>∇hm2(x) = 0.
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What is MFCQ ?...

Figure: A Mangasarian-Fromowitz Vector d

• d forms an acute angle (< 900) with each ∇gi (x), i ∈ A(x).
Introduction to Interior Point Methods

TU Ilmenau



What is MFCQ ?...

An implications of the MFCQ:

There is α such that
• x + αd > 0.
• g(x + αd) ≈ g(x) + αd>∇gi (x) > 0, i = 1, . . . ,m1,
• hj(x + αd) ≈ hj(x) + αd>∇hj(x) = 0, j = 1, . . . ,m2.
⇒ x + αd is in the interior of the feasible set F .
⇒ The interior of the feasible set is not empty.

Example (continued...)
• ∇g2(x) = (2,−4, 2) and ∇g3(x) = (−5, 3, 0).
• for d> = (−1, 0, 2) we have d>∇g2(x) > 0 and d>∇g3(x) > 0; and

• x = (1, 1, 1) +
1

10︸︷︷︸
=α

(−1, 0, 2) > 0.

MFCQ guarantees that the interior of F is not empty .
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Forcing iterates remain in the interior of F
Question:

How to force almost all iterates remain in the interior of the feasible
set F?

Answer:

Use barrier functions?

A well-known barrier function is the logarithmic barrier function

B(x , µ) = f (x)− µ

(
m1∑
i=1

log(gi (x)) +
n∑

l=1

log(xl)

)

where µ is known as barrier parameter.
• The logarithmic terms log(gi (x)) and log(xl) are defined

at points x for which gi (x) > 0 and xl > 0, l = 1, . . . , n .
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Basics of the Interior Point Method...

• Instead of the problem NLP, consider the parametric problem

(NLP)µ min
x
B(x , µ)

s.t.

hj(x) = 0, j = 1, . . . ,m2.

• To find an optimal solution xµ of (NLP)µ for a fixed value of the
barrier parameter µ.

Lagrange function of (NLP)µ:

Lµ(x , λ) = f (x)− µ

(
m1∑
i=1

log(gi (x)) +
n∑

l=1

log(xl)

)
−

m2∑
j=1

λjhj(x).
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Basics of the Interior Point Method...

Necessary optimality (Karush-Kuhn-Tucker) condition:

for a given µ, a vector xµ is a minimum point of (NLP)µ if there is a
Lagrange parameter λµ such that, the pair (xµ, λµ) satisfies:

∇λLµ(x , λ) = 0

∇xLµ(x , λ) = 0

⇒ Thus we need to solve the system

−h(x) = 0

∇f (x)− µ

(
m1∑
i=1

1

gi (x)
∇gi (x) +

m1∑
l=1

1

xl
el

)
+

m2∑
j=1

λj∇hj(x) = 0

• Commonly, this system is solved iteratively using the Newton Method.
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Basics of the Interior Point Method...

Newton method to solve the system of nonlinear equations
Fµ(x , λ) = 0 for a fixed µ, where

Fµ(x , λ) =

 h(x)

∇f (x)− µ
(∑m1

i=1
1

gi (x)∇gi (x) +
∑m1

l=1
1
xl
el

)
+

+
∑m2

j=1 λj∇hj(x)


Algorithm:
Step 0: Choose (x0, λ0).
Step k: • Find (∆k

x ,∆
k
λ) = d by solving the linear system

JFµ(xk, λk)d = −Fµ(xk, λk)
• Determine a step length αk

• Set xk+1 = xk + αk∆k
x and λk+1 = xk + αk∆k

λ

STOP if convergence is achieved; otherwise CONTINUE.
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Basics of the Interior Point Method...

• For each give µ, the above algorithm can provide a minimal point
xµ of the problem (NLP)µ.
Question: What is the relation between the problem NLP and
(NLP)µ?
Question: How to choose µ’s?
Answer(a general strategy): choose a sequence {µk} of decreasing,
sufficiently small non-negative barrier parameter values
• to obtain associated sequence {xµk} optimal solutions of (NLP)µk .

Properties

• The optimal solutions xµ lie in the interior of the feasible set of NLP.
• The solutions xµk converge to a solution x∗ of NLP; i.e.

lim
µ↘0+

xµ = x∗.
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Drawbacks of the primal barrier interior

JFµ (x, λ) =


Jh(x) 0

H(x)− µ

m1∑
i=1

1

gi (x)

[
∇gi (x)∇gi (x)> + Gi (x)

]
−

m1∑
l=1

1

x2
l

el


︸ ︷︷ ︸

:=D(x)

+
∑m2

j=1 λj∇Hj (x) [Jh(x)]>

 ,

where, H(x) is the Hessian matrix of f (x), Jh(x) is the Jacobian matrix of h(x)> = (h1(x), h2(x), . . . , hm2
(x)), Gi (x)

is the Hessian matrix of gi (x), Hj (x) is the Hessian matrix of hj (x).

Drawback: as the values of µ get closer to 0 the matrix D can

become ill-conditioned .
Example (continued):
For our example we have

D(x) =
1

g1(x)

4x2
1 + 2 4x1x2 4x1x3

2x1x2 4x2
1 + 2 2x1x2

4x1x3 4x3x2 4x2
3 + 2

 +
1

g2(x)

 4 −8 4x3
−8 16 −8x3
4x3 −8x3 4x3 + 2

 +
1

g3(x)

 25 −15 0
−15 9 0

0 0 0


− X−2

where X = diag(x). For example, at the feasible interior point x> = (1, 2, 8) we have cond(D) ≈ 113.6392, which is

large.
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Drawbacks of the primal barrier interior
Note that:
• the matrix ∇g(x) [∇g(x)]> is of rank 1, so not invertible and has
large condition number.
• the expression 1

g(x) gets larger as g(x) gets smaller, usually near to
the boundary of the feasible region.

Advise: Do not use the constraint function gi (x) ≥ 0, i = 1, . . . ,m1

directly with the logarithmic barrier function .

Instead, introduce slack variables s = (s1, s2, . . . , sm1) for inequality
constraints so that:

gi (x)− si = 0, si ≥ 0, i = 1, . . . ,m1.

(That is, we lift the problem into a higher dimension by adding new variables, so that we have to work with

z = (x, s) ∈ Rn+m1 . Frequently, in higher dimensions, we may have a better point of view. )
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The Primal-Dual Interior Point Method
This leads to the problem

(NLP)µ min
(x ,s)

{
f (x)− µ

(
n∑

l=1

log(xl) +

m1∑
i=1

log(si )

)}
s.t.

gi (x)− si = 0, i = 1, . . . ,m1

hj(x) = 0, j = 1, . . . ,m2.

only with equality constraints and objective function with barrier
terms on the variables.

(NLP)µ min

(x,s)

f (x) =
(
x2

1 − x2
2

)
− µ

 3∑
i=1

(log si + log xi )

 (1)

s.t. (2)

g1(x) = x2
1 + x2

2 + x2
3 + 3− s1 = 0,

g2(x) = 2x1 − 4x2 + x2
3 + 1− s2 = 0,

g3(x) = −5x1 + 3x2 + 2− s3 = 0.

(3)
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Primal-dual Interior Method for LOPs
• Consider a standard linear optimization problem

(LOP) min
x

c>x

s.t.

Ax = b,

x ≥ 0

where A is m × n matrix, b ∈ Rn.

• The dual problem to LOP is:

(LOP)D max
(λ,s)

b>λ

s.t.

A>λ+ s = c .

Here, s is slack variable.
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Primal-dual Interior Method for LOPs

The Lagrange function of LOP:

L(x , λ, s) = c>x − λ> (Ax − b)−
m∑
i=1

sixi ,

where:
• λ> = (λ1, . . . , λm) is a vector of Lagrange multipliers associated
with the equality constraints Ax = b,and
• s = (s1, . . . , sn) is a vector of Lagrange-multipliers associated with
x ≥ 0; hence s ≥ 0.

• Here, the Lagrange-multiplier vector s is same as the slack variable
s in the dual problem (LOP)D .
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Primal-dual Interior Method for LOPs...
• The optimality criteria for x∗ to be a solution of the primal problem
(P) and (λ∗, s∗) to be a solution of dual problem (D) is that
(x∗, λ∗, s∗) should satisfy:

c − A>λ− s = 0 (4)

Ax = b (5)

XSe = 0 (6)

(x , s) ≥ 0 . (7)

where:

X =


x1

x2

. . .

xn

 ,S =


s1

s2

. . .

sn

 , e =


1
1
...
1
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Primal-dual Interior Method ...

Question:

Where is the relation with the interior point method?

• The barrier function associated to LOP is

B(x , µ) = f (x)− µ
m1∑
i=1

log(xi )

• The barrier problem will be

(NLP)µ min
x

{
f (x)− µ

m1∑
i=1

log(xi )

}
s.t.

Ax = b.

• The Lagrange function of the barrier Problem
Lµ(x , λ) = c>x − λ> (Ax − b)− µ

n∑
i=1

log(xi ).
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Primal-dual Interior Method for LOPs...
• For a given µ, the pair (xµ, λµ) is a solution of the primal problem
NLPµ if it satisfies the optimality conditions:

∇xLµ(x , λ) = 0 (8)

∇λLµ(x , λ) = 0 (9)

x > 0. (10)

⇒

c − A>λ− µX−1e︸ ︷︷ ︸
:=s

= 0,

Ax = b,

x > 0.

KKT Conditions

⇒

c − A>λ− s = 0,

Ax = b,

s = µX−1e

(x , s) > 0.

KKT Conditions

• Where : s = µX−1e .
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Primal-dual Interior Method for LOPs...
• It follows (since xi 6= 0) that si = µ

xi
> 0⇒ sixi = µ, i = 1, . . . , n.

s1x1

s2x2

. . .

snxn




1
1
...
1

 = µ


1
1
...
1


⇒ 

x1

x2

. . .

xn


︸ ︷︷ ︸

=X


s1

s2

. . .

sn


︸ ︷︷ ︸

=S


1
1
...
1


︸︷︷︸

=e

= µ


1
1
...
1


︸︷︷︸

=e

⇒ XSe = µe.
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Primal-dual Interior Method for LOPs...
• Now, the optimality conditions, for the barrier problem NLPµ, given
in (8) - (10) can be equivalently as:

Ax = b, (11)

A>λ+ s = c , (12)

XSe = µe (13)

(x , s) > 0. (14)

• Note that, this system is the same as the equations (4) - (7), except
the perturbation XSe = µe and (x , s) > 0.
• For a given µ, the system of nonlinear equations (11)-(14) provides
a solution (xµ, λµ, sµ).
• xµ lies in interior of the feasible set of LOP, while the pair (λµ, sµ)
lies in the interior of the feasible set of LOPD , due to XSe = µe and
(x , s) > 0. Furthermore,
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Primal-dual Interior Method for LOPs...
• Furthermore, if

x∗ = lim
µ↘0+

xµ and (λ∗, s∗) = lim
µ↘0+

(λµ, sµ)

the x∗ is a minimum point of LOP, while (λ∗, s∗) is a maximum point
of LOPD .
• Therefore, any algorithm that solves the system of nonlinear
equations (11)-(14) is known as a primal-dual interior point
algorithm.
• For a given µ, to determine the triple (xµ, λµ, sµ),

(I ) solve the nonlinear system Fµ(x , λ, s) =

 Ax − b
A>λ+ s − c
XSe− σµe

 = 0,

(II ) and guarantee always that (x , s) > 0.
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Primal-dual Interior Method for LOPs...
• The set of
C = {(x(µ), λ(µ), s(µ)) | Fµ(x(µ), λ(µ), s(µ)) = 0, (x(µ), s(µ)) > 0}
is known as the central path.
(I) To solve the system

Fµ(x , λ, s) =

 Ax − b
A>λ+ s − c
XSe− σµe

 = 0

use a Newton method.
• For a given µ and feasible point (x , λ, s), determine
d = (∆x ,∆λ,∆s) by solving Jµ(x , λ, s)d = −Fµ(x , λ, s); i.e.,A 0 0

0 A> I
X 0 S

∆x
∆λ
∆s

 = −

 Ax − b
A>λ+ s − c
XSe− σµe

 (15)

• Next iterate (x+, λ+, s+) = (x , λ, s) + α(∆x ,∆λ,∆s).
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Primal-dual Interior Method for LOPs...

II: Question

How to guarantee that (xµ, sµ) > 0?

Answer

We know that xi si = µ, i = 1, . . . , n. Hence,

x>s = x1s1 + x2s2 + . . .+ xnsn = nµ⇒ x>s

n
= µ

Therefore, choose µ so that x>s
n > 0.

Importance of the central path

• Additionally, for (xµ, λ(µ), sµ) ∈ C we have
x>(µ)s(µ)

n
= µ.

• Fast convergence of a PDIPM algorithm is achieved if iterates lie on the central path.
• The parameter σ is known as a centering parameter. Thus, σ is chosen to force iterates remain closed to (or on) the
central path.
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Primal-dual Interior Method for LOPs...
A primal-dual interior point algorithm (PDIPM):
Step 0: • Give an initial point (x0, λ0, s0) with (x0, s0) > 0.

• Set k ← 0 and µ0 =
x>0 s0

n
Repeat:

• Choose σk ∈ (0, 1];
• Solve the linear system (16) with µ = µk and σ = σk
to obtain (∆xk ,∆λk ,∆sk);
• Choose step-length αk ∈ (0, 1]
• and set

• xk+1 = xk + αk∆xk

• λk+1 = λk + αk∆λk

• sk+1 = sk + αk∆sk .

Until: Some termination criteria is satisfied.
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Primal-dual Interior Method for LOPs...

Questions:

Q1: How to determine the step length αk?
Q2: How to choose the centering parameter σk?
Q3: What is a suitable termination criteria?
Q4: How to solve the system of linear equations (16)?

Some strategies for step-length selection:
(a) Use αk = 1, k = 1, 2, . . .. But, generally, not advised.
(b) Choose αk so that

xk + αk∆xk > 0

sk + αk∆sk > 0.

Compute the largest α that satisfies these condition

αmax = min


min

{
xk,i

−∆xk,i
| ∆xk,i < 0

}
︸ ︷︷ ︸

αx,max

,min

{
sk,i

−∆sk,i
| ∆sk,i < 0

}
︸ ︷︷ ︸

=αs,max


Then choose αk = min{1, ηk · αmax}. Typically ηk = 0.999.
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Primal-dual Interior Method for LOPs...
(c) Different step lengths for x and s may provide a better accuracy.
So choose

αk,x = min{1, ηk · αmax,x} and αk,s = min{1, ηk · αmax,s}

Use the following update xk+1 = xk + αk,x∆xk and
(λk+1, sk+1) = (λk , sk) + αk,s (∆λk ,∆sk).

Some strategies for choice of centering parameter:
(a) σk = 0, k = 1, 2, . . . , - affine-scaling approach;
(b) σk = 1, k = 1, 2, . . . ,
(c) σk ∈ [σmin, σmax ] = 1, k = 1, 2, . . . Commonly, σmin = 0.01 and
σmax = 0.75 (path following method)
(d) σk = 1− 1√

n
, k = 1, 2, . . . , (with αk = 1 - short-step

path-following method)
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Primal-dual Interior Method for LOPs...

Some termination criteria:
• Recall that, at a solution (x , s, λ) equation (12) should be satisfied

c = A>λ+ s.

This is equivalent to
c> = λ>A + s>.

Multiplying both sides by x , we obtain c>x = λ> Ax︸︷︷︸
=b

+s>x .

⇒ c>x = b>x + s>x . Hence, s>x = c>x − b>x .
• Hence,

s>x = c>x − b>x

s>x is a measure of gap between the primal objective function c>x
and the dual objective function b>λ.
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Primal-dual Interior Method for LOPs...

• The optimality condition LOP’s demands that: optimal solutions
should satisfy c>x = b>x .
• So the expression µ = s>x

n = c>x−b>x
n is known as a measure of

the duality gap between LOP and LOPD .

Termination

The algorithm can be terminated at iteration step k if the duality gap

µk =
x>k sk
n

is sufficiently small, say µk < ε.
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Primal-dual Interior Method for LOPs...

Solution strategies for the system of linear equationsA 0 0
0 A> I
X 0 S

∆x
∆λ
∆s

 =

 b − Ax
c − A>λ− s
µe− XSe

 (16)

• The efficiency of the primal-dual interior point methods is highly
dependent on the algorithm used to solve this 2n + m linear system.
• The choice of an algorithm depends on the structure and properties

of the coefficient matrix
A 0 0

0 A> I
X 0 S

.
• Sometimes it may be helpful first to eliminate ∆x and ∆s and solve for ∆λ from the reduced system

(
AX−1XA>

)
∆λ = AX−1S

(
c − µX−1

λ
)

+ b − Ax, (17)

then to directly compute ∆s = c − A>λ− s − A>∆λ and ∆x = X−1 (µe− XSe− S∆s).
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