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Abstract We present a practical algorithm for computing the volume of a convex
body with a target relative accuracy parameter ε > 0. The convex body is given as
the intersection of an explicit set of linear inequalities and an ellipsoid. The algorithm
is inspired by the volume algorithms in Lovász and Vempala (J Comput Syst Sci
72(2):392–417, 2006) and Cousins and Vempala (SODA, pp. 1215–1228, 2014), but
makes significant departures to improve performance, including the use of empirical
convergence tests, an adaptive annealing scheme and a new rounding algorithm. We
propose a benchmark of test bodies and present a detailed evaluation of our algo-
rithm. Our results indicate that that volume computation and integration might now
be practical in moderately high dimension (a few hundred) on commodity hardware.

Keywords Volume computation · Convex geometry · Random walks · Hit-and-run ·
Simulated annealing

Mathematics Subject Classification 65D18 · 52A38 · 52-04

1 Introduction

High-dimensional integration and sampling is a fundamental problemof interest across
the sciences and engineering [1–6]. In 1989, Dyer et al. [7,8] found an O∗(n23)
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134 B. Cousins, S. Vempala

algorithm for computing the volume of a convex body (the O∗ notation suppresses
dependences on log factors and error parameters). Their approach was extended to
polynomial time algorithms for integrating logconcave functions. Since then, over
the past quarter century, the theoretical efficiency of algorithms for computing the
volume and for integration has gone down from O∗(n23) membership tests to O∗(n4)
such tests [9]. Recently, we found an O∗(n3) algorithm for computing the Gaussian
measure of a convex body [10] and an O∗(n3) algorithm for computing the volume
of a well-rounded convex body [11].

Together with today’s computation speeds, this progress suggests the possibility
of practical multi-dimensional integration. Indeed, the first such implementation of
the Lovász-Vempala O∗(n4) algorithm was reported in 2012 [12]; however, it could
only compute the volume of cubes of dimension up to 9, with higher dimensional
cubes taking prohibitively long. There are several reasons for this, including (a) the
complexities above are for the number of membership tests; each test typically takes
quadratic or higher number of arithmetic operations, (b) the theoretical bounds have
large constants (e.g., 1010 and multiple logarithmic factors), and (c) the algorithms are
designed for the theworst-case, i.e., they include routines such as: “run for f (n)” steps,
where f (n) is independent of the input body. These aspects had to be addressed to
some extent in [12] to obtain a working implementation even in very small dimension.

In this paper, we present a more practical algorithm for computing volume and
Gaussian volume of a polyhedron, which can handle 100 dimensional bodies in as
little as 10 minutes. We also extend this to polyhedra intersected with ellipsoids.
The algorithm builds on [9–11], but crucially needs a few more ideas. We present
extensive experimental results. TheMATLAB implementation is publicly available on
MATLAB’s File Exchange [13]. To the best of our knowledge, there is no benchmark
for high-dimensional volume computation. So we propose a family of test bodies that
could serve this purpose for future improvements and algorithms. Following our work,
[14] gave a C++ implementation for volume computation of polytopes and reported
even faster results on some bodies in our benchmark.

In the next section, we describe the main ideas of the algorithm, noting clearly
where we extend previous work to obtain a practical algorithm. Following that, we
describe the key aspects of our implementation in details, with rigorous justifications
to the extent possible. In Sect. 4, we present computational results of our algorithm.We
conclude this section with our proposed benchmark for evaluating volume algorithms.

1.1 Benchmark

Wepropose the following families of test bodies. The first 5 families have volumes that
can be computed efficiently by simple formulas, thus serve as testable instances in any
dimension. Within these 5, families 2(b), 4 and 5 will typically require that a volume
algorithm perform some type of “rounding” step to maintain efficiency. The last two
families of bodies have volumes that can be computed exactly, but the best known
algorithms to compute the volume take exponential time. Therefore, approximating
the volume is necessary for efficiency. We discuss these test families in more detail
when we present the results of our evaluation.
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A practical volume algorithm 135

1. Cube: a standard [−1, 1]n cube, which has volume 2n .
2. (a) Isotropic simplex: a regular n-simplex, which has volume

√
n + 1/(n!√2n).

(b) Standard simplex: defined as {x ∈ R
n : ∑n

i=1 xi ≤ 1, xi ≥ 0}, that is all
coordinates are nonnegative and sum to at most 1. The volume of the standard
simplex is 1/n!.

3. Half ball: the n-dimensional unit ball, with the restriction that x1 ≥ 0. The volume
of this body is 1/2 · πn/2/�(n/2 + 1).

4. Transformed cube: starting from the Cube, we apply a random linear transforma-
tion T –each entry of the n by n matrix T was chosen from N (0, 1). The volume
is then |T |2n .

5. Ellipsoid: an axis-aligned ellipsoid with radius 1 along n − 1 axes and radius 100
along 1 axis. The volume of the shape is then 100πn/2/�(n/2 + 1).

6. Zonotope: the Minkowski sum of m line segments where each line segment is in
R
n . The volume of a zonotope can be computed exactly with a direct method, but

the algorithm will take exponential time for general m, n (roughly
(m
n

)
). It is, in

fact, #P-hard to compute the volume of a zonotope.
7. Birkhoff polytope: the polytope of all n×n doubly stochasticmatrices of dimension

n2 − 2n + 1. The volume has been computed exactly for values of n ≤ 10 using
specialized algorithms, but is unknown for n > 10.

2 Algorithm

At a high level, our algorithm is based on that of [9] (henceforth referred to as the LV
algorithm). We give an overview here, and a detailed discussion of each component
in our implementation in Sect. 3. First, note that computing volume is a special case
of integration. That is, the volume of K can be expressed as

vol(K ) =
∫

K
1 dx .

The above quantity is hard to compute, or even estimate, directly, but there is an insight
which makes the problem tractable. Consider the following representation of vol(K ),
for any function f : Rn → R:

vol(K ) =
∫
K f (x) dx

∫
K f (x) dx

·
∫

K
1 dx =

∫

K
f (x) dx ·

∫
K 1 dx

∫
K f (x) dx

.

Now the difficult task of computing the volume has been reduced to two, perhaps
easier, tasks: (1) compute the ratio of two integrals and (2) integrating the function
f over K . Note that the above representation can be extended to any sequence of
functions { f0, . . . , fm−1}where each fi : Rn → R. Given this sequence of functions,
the volume of K can be rewritten as

vol(K ) =
∫

K
f0(x) dx ·

∫
K f1(x) dx

∫
K f0(x) dx

·
∫
K f2(x) dx

∫
K f1(x) dx

. . .

∫
K 1 dx

∫
K fm−1(x) dx
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136 B. Cousins, S. Vempala

The functions fi can be chosen to be anything we like, but should be selected so that
each term in the above equation is efficiently computable. First, we select f0 such that∫
K f0(x)dx is directly computable. For instance, f0 can be the indicator function for a

ball B where B ⊆ K , and then
∫
K f0(x)dx = vol(B), which has a nice, direct formula.

Another option is to select f0 to be a low variance Gaussian centered inside K ; that
is, the weight of the Gaussian will be highly concentrated around a single point inside
K . Then, if the Gaussian is sufficiently “sharp”, then

∫
K f0(x)dx ≈ ∫

Rn f0(x)dx , and
integrating a Gaussian over the full space Rn again has a nice, direct formula. For the
implementation, we select f0 as a low variance Gaussian; further details on how we
select f0 are given in Sect. 3.2.1.

Next, we want to efficiently compute each integral ratio:

∫
K fi (x) dx

∫
K fi−1(x) dx

.

At first glance, the above problem seems just as intractable as volume. However, we do
not need an exact answer, and instead want to estimate the above integral ratio within
some target relative error. Estimating this ratio of integrals is where sampling comes
into the picture. Suppose we had a random sample from a distribution proportional to
fi−1 restricted to K . Denote the measure of this random sample as μi−1. Then, for a
random sample X drawn from μi−1, define a corresponding variable Y as

Y = fi (X)

fi−1(X)
.

Consider the expected value of this random variable Y , which is equal to the desired
quantity we want to estimate:

E(Y ) =
∫

K

fi (x)

fi−1(x)
dμi−1(x) =

∫

K

fi (x)

fi−1(x)
· fi−1(x)∫

K fi−1(x)
dx =

∫
K fi (x) dx

∫
K fi−1(x) dx

.

Suppose we have k samples {X1, . . . , Xk}. Then, we can estimate the integral ratio as

1

k

k∑

j=1

fi (X j )

fi−1(X j )
,

which converges to E(Y ). For the estimation to be efficient, we need that the number
of samples k to get within a target relative error is not too large. For instance, if wewent
immediately from f0 to the uniform distribution, an exponential number of samples
k would be required. Instead, we construct a cooling schedule from f0 to the uniform
distribution while controlling the variance of Y , which results in a small number of
“phases” (i.e. integral ratios) and not too many samples per phase. We select each fi
as a Gaussian, where we slowly increase the variance until the Gaussian is essentially
the uniform distribution (i.e. the volume). Further details on how to construct such a
sequence are given in Sect. 3.2.2.
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A practical volume algorithm 137

Hit-and-run(K, f, x): Convex body K, target distribution f , current point x.

– Pick a uniform random line through the current point x.
– Return a random point on the chord ∩ K according to the target distribution f .

Fig. 1 Hit-and-run sampler

There is still the question of how to obtain samples from the target distribution. We
use the hit-and-run random walk (Fig. 1) to generate approximate samples from the
target distribution. The implementation details of hit-and-run are given in Sect. 3.4.
Given enough steps, hit-and-runwill converge to the target distribution. So, hit-and-run
can provide sample points we can use to estimate each integral ratio.

But how many steps of hit-and-run are required before the point is from the tar-
get distribution? Subsequent points in the random walk may be highly correlated.
However, if enough steps of hit-and-run are used, then the current point will “forget”
where it started and be an approximately random point from the target distribution.
Assuming the current point is somewhat close to the target distribution, it is known
O∗(n2R2/r2) hit-and-run steps are required before we are close to target distribution,
where r Bn ⊆ K ⊆ RBn ; that is, a ball of radius r is contained in K and K is contained
in a ball of radius R. The term R/r could unfortunately be very high (e.g. n50) for a
general convex body and have a drastic effect on the mixing time. For instance, a long,
thin cylinder will have higher mixing time than that of the unit ball. Intuitively, this
is because it takes a long time to move from one end of the long cylinder to the other,
while it is comparatively easier to move between any two regions in the unit ball.

We can get around this issue by applying a linear transformation T to the convex
body K to get a new body K ′ = TK that is round. Since T is a linear transformation,
we have that vol(K ′) = |T | · vol(K ) where |T | is the determinant of the matrix
corresponding to the transformation. In the case of the long cylinder, while the cylinder
could have essentially an arbitrarily high value of R/r , if we instead work with the
rounded body, wherewe shrink the body along the stretched axis and compute vol(K ′),
then we can efficiently compute the volume. More details of how this transformation
is computed are given in Sect. 3.1.

An outline of the algorithm is given in Fig. 2. Throughout this paper, we assume
that the origin lies in K . We start by rounding the convex body K into approximate
isotropic position, with respect to the uniform distribution over K (Sect. 3.1). We
then compute an annealing schedule {a0, . . . , am} such that almost all of the volume
of e−a0‖x‖2 is contained inside K ′, and am = 0 (i.e. the m-th phase is the uniform
distribution) (Sect. 3.2). Once we have the cooling schedule, we compute the volume
by estimating each of the ratios

∫
K ′ fi (x) dx

∫
K ′ fi−1(x) dx

,

where fi (x) = e−ai‖x‖2 . The ratio is estimated by approximately sampling from
fi−1 ∩ K ′ (Sect. 3.4) and then averaging the function ratio over the sample points.
To test for convergence of this ratio, we use a sliding window over the last W ratios,
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138 B. Cousins, S. Vempala

Volume(K, ε): Convex body K, error parameter ε.

– T = Round(body: K, steps: 8n3), set K = T · K.
– {a0, . . . , am} = GetAnnealingSchedule(body: K ).
– Set x to be random point from f0 ∩ K , ε = ε/

√
m.

– For i = 1, . . . ,m,
– Set k = 0, x0 = x, converged = false,W = 4n2 + 500.
– While converged = false,

• k = k + 1.
• xk=HitAndRun(body: K, target distribution: fi−1, current point: xk−1).
• Set

rk =
1
k

k

j=1

fi(xj)
fi−1(xj)

.

• Set Wmax = max{rk−W+1, . . . , rk} and Wmin = min{rk−W+1, . . . , rk}.
• If Wmax − Wmin ≤ ε /2 · Wmax → converged = true.

– Set Ri = rk, x = xk.
– Return volume = |T | · (π/a0)n/2 · R1 . . . Rm.

Fig. 2 Volume algorithm

where if the lastW ratios are all within some C(ε,m) relative error of each other, then
we declare convergence (Sect. 3.3). The estimated volume is then the product of the
intial integral f0 over K ′, the determinant of the linear transformation T that rounded
the body, and the ratio estimate Ri for each phase. That is,

vol(K )=
∫

K
1 dx=|T | ·

∫

K ′
1 dx=|T | ·

∫

K ′
f0(x) dx ·

∫
K ′ f1(x) dx

∫
K ′ f0(x) dx

· · ·
∫
K ′ 1 dx

∫
K ′ fm−1(x) dx

= |T | · R1R2 · · · Rm ·
∫

K ′
f0(x) dx .

Wewill nowsummarize the keyoptimizations thatweremade inour implementation
to make volume computation practical.

1. For convex bodies that are not sufficiently round, wemay need to perform a round-
ing preprocessing step before estimating the volume. The LV algorithm uses an
O∗(n4) algorithm for rounding, whereas we use a new algorithm which experi-
mentally runs in O∗(n3) membership calls (see Sect. 3.1).

2. Instead of using a fixed rate of cooling to the uniform distribution, we adap-
tively compute a cooling schedule according to some constraints. This significantly
reduces the number of volume phases required (see Sect. 3.2.2).

3. Finally, we only sample from spherical Gaussians, which gives a computationally
efficient hit-and-run sampler and experimentally improves the mixing time over
an arbitrary Gaussian or logconcave function (see Sect. 3.1).

4. First, we use the empirical distribution of hit-and-run to estimate the volume. In
the LV algorithm, hit-and-run is used for some large number of steps, and only a
very small fraction of the total steps as sample points, and we experimentally find
that using every point from hit-and-run provides a better estimate.
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A practical volume algorithm 139

3 Implementation and techniques

In this section we will give a mathematical description of the components of our
implementation, and give proofs and/or motivation behind the components. The pri-
mary motivation behind our implementation decisions was using as few “hard-coded”
constants as possible, and instead try to optimize our runtime for a particular problem
instance. For instance, in Sect. 3.2.1, instead of using a = 2n as in [9], we instead use
concentration inequalities to binary search for a value of a that is close to optimal for
that particular body.

An important question about hit-and-run is how fast it converges to the target dis-
tribution. The LV algorithm was designed to minimize the asymptotic worst case.
Thus, constants of the type 1010 and many log factors are present in the runtime
analysis. For instance, it is proven in [15] that T = 1010n3 log 1/ε steps of hit-
and-run suffice before we are within distance ε of the target distribution. Combined
with the fact that each step of hit-and-run takes Ω(n) arithmetic operations, this
number of steps T is far too large for an actual algorithm, even for very small
dimensions. We observe that in practice, one can do much better, but it seems to
be difficult to obtain tight bounds on the number of required steps. We instead employ
heuristic techniques that try to detect convergence based on the stream of points
observed; these techniques experimentally seem to provide a reasonable estimate,
but do not give a guarantee of accuracy. For a further discussion, please refer to
Sects. 3.3 and 3.5.

In most of the theoretical volume algorithms, there is only an assumption that we
have a membership oracle for the convex body. While our experimental evaluations
are on explicit polytopes and ellipsoids, our algorithm only needs to compute the
intersection of a ray with the body, i.e., the halfspace that first intersects it, and an
outer approximation to this would suffice.

3.1 Rounding the body

Problem: Given a convex body K , we would like to find a linear transformation T
such that T · K is in approximately isotropic position.

Solution: See Fig. 3. We assume that K is contained a ball of radius R, because
we observe that if enough sample points are taken, each rounding should shrink the
maximum singular value by a constant factor. If we do not converge within log R
iterations, we know the number of steps t was not sufficient to accurately estimate the
singular values, so we restart with 2t steps.

The need for such a transformation is exhibited in the following theorem of [15].

Theorem 1 [15] Let K be a convex body that contains a ball of radius r and is
contained in a ball of radius R. Let σ be a starting distribution and let σm be the
distribution of the current point after m steps of hit-and-run in K . Let ε > 0, and
suppose that the density function dσ/dπK is bounded by M except on a set S with
σ(S) ≤ ε/2. Then for
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140 B. Cousins, S. Vempala

Round(K, t): Convex body: K, rounding steps: t. (Note: assume that Bn ⊆ K ⊆ RBn)

– Set x0 = 0, T = I, tries = 0.
– Repeat:

– tries = tries + 1.
– For i = 1, . . . , t,

• xi =HitAndRun(body: TK, target distribution: f = 1, point: xi−1).
– (U, S, V T ) = SV D({x1, . . . , xr}).
– Set T = V S−1T .

– Until: max(S) ≤ 2 OR tries > logR.
– If max(S) ≤ 2:

– Return T .
– Else:

– Return Round(K, 2 · t).

Fig. 3 Rounding algorithm

m > 1010
n2R2

r2
ln

M

ε
,

the total variation distance of σm and πK is less than ε.

The above mixing time is also shown to be best possible in terms of the quantity
R/r , where r Bn ⊆ K ⊆ RBn . This is one measure of how “round” the body K is: if
K is a long, thin cylinder, then the ratio R/r can be very high. We can control the ratio
R/r by putting the body in approximately isotropic position. We say that a density
function is isotropic if its centroid is 0 and its covariance matrix is the identity. That
is, for a random variable X drawn from f ,

E(X) = 0 and E(XXT ) = I.

The above condition is equivalent to saying that for every unit vector v ∈ R
n ,

∫

Rn
(vT x)2 f (x) dx = 1.

We can now consider a notion of approximately isotropic, and say that f isC-isotropic
if

1

C
≤

∫

Rn
(vT x)2 f (x) dx ≤ C.

We tested two approaches for rounding the body, one of which performed signifi-
cantly better. Oneway is to round the body once beforehandwith respect to the uniform
distribution. The second method is to round the body in each volume phase, as in [9].
That is, put the body in approximate isotropic position with respect to the current
distribution. Based on experimental results, while both methods were comparable in
terms of runtime for the actual rounding, the first method of rounding the body once
beforehand made the volume computation much more efficient. The two primary ben-
efits of rounding the body once beforehand are that fewer volume phases are required

123



A practical volume algorithm 141

to keep Var(Y 2)/E(Y )2 ≤ 1 (as in Sect. 3.2), and we can use spherical Gaussians
for every phase, which experimentally appear to mix faster. The second method will
apply a linear transformation T to both the target distribution f and the body K , which
can make the distribution f very skew. For a brief numerical justification, consider a
10-dimensional randomly transformed hypercube. If the cube is rounded once before-
hand, then ∼5 phases with ∼10k steps/phase will give ≤20 % accuracy. If the cube
is rounded in each phase, then ∼12 phases with ∼250k steps/phase will give ≤20 %
accuracy, with the later (i.e. most “skew”) phases requiring ∼500k–1000k steps. So,
even for small dimensions, we notice rounding the body once beforehand is orders of
magnitude faster.

Our goal is to find a linear transformation T such that the TK is 2-isotropic. We do
this by obtaining a sequence of points {X1, X2, . . .} using hit-and-run with uniform
target distribution over K . We then compute the transformation that will put the points
from hit-and-run into isotropic position. If enough steps of hit-and-run are taken, then
applying that transformation to the body will put the body in approximately isotropic
position. Building upon the work of Bourgain [16] and Rudelson [17], Adamczak
et al. [18] showed that O(n) random samples suffice to achieve 2-isotropic position.
However, the trajectory of points from hit-and-run are not random samples because
subsequent points are highly dependent on each other, and to get an adequate “picture”
of the distribution, we will need more than O(n) steps of hit-and-run. We observe that
taking 8n3 steps of hit-and-run seems to suffice for n ≤ 100 to achieve 2-isotropic
position. However, if we note that we are not converging to a sufficiently round body,
we restart the rounding process with twice as many steps per rounding. So, this 8n3

samples for rounding is not a fixed parameter, but rather a first guess at how many
hit-and-run samples are required.

There is one final complexity to the rounding algorithm, which can be seen in the
case of a very long box, say a 109 × 1 × · · · × 1 box. It would require an impractical
number of steps of hit-and-run to round this body to 2-isotropic position, but we can do
it in multiple phases.We let hit-and-runmix for 8n3 steps on this 109×1×· · ·×1 box,
and (very roughly speaking) wemay observe a distribution similar to a 20×1×· · ·×1
box, so when we compute the transformation T that puts the sequence of points
{X1, X2, . . . , . . . Xr } into isotropic position, and apply that transformation to the body
K , we are left with, approximately, a 5 · 107 × 1 × · · · × 1 box. We then repeat until
the sequence of points {X1, X2, . . . , Xr } is in 2-isotropic position.

To compute the transformation that points the sequence of points {X1, X2, . . . , Xr }
into isotropic position, we compute the singular value decomposition of the points.
That is, for the matrix of points M , we find matrices such that M = USV ′ such that S
is a diagonal matrix that contains the n singular values. Assume the minimum singular
value is 1 by rescaling. Then, if any singular value is s > 2, we scale the body K
along that axis by s. We ignore the smaller singular values for numerical stability.

3.2 Annealing schedule

In this section, we describe how to compute an appropriate sequence of functions
{ f0, f1, . . . , fm} that are used in the volume algorithm.We first show how to compute
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142 B. Cousins, S. Vempala

f0 in Sect. 3.2.1, and then give a recursive approach that computes fi from fi−1 in
Sect. 3.2.2.

3.2.1 Selection of starting Gaussian

Problem: Given a convex body K and error parameter ε > 0, select a0 ∈ R
n such

that

∫

K
e−a0‖x‖2 dx ≥ (1 − ε)

∫

Rn
e−a0‖x‖2 dx .

Solution outline:

– Consider a random point X from e−a‖x‖2 over Rn , and bound the probability, as a
function of a, that X /∈ K using Gaussian tail inequalities. Denote this probability
as p(a).

– Binary search of the value of a that gives p(a) = ε, and return a0 = a.

As noted above, we will assume K = P ∩ E , where P is a polyhedron and E is
an ellipsoid. Note that we could select a sufficient value of a0 without much work,
say by assuming that K contains the unit ball and then deriving that a0 = (n +√
8n ln(1/ε))/2 using Lemma 1. However, this could signficantly increase the time

to anneal to Gaussian to the uniform distribution (i.e. the volume). We can use our
explicit description of the body K to select a value of a0 so that K contains close
to a (1 − ε) fraction of the volume over Rn . First, note the following two Gaussian
concentration inequalities.

Lemma 1 Let X be drawn from a spherical Gaussian inRn withmeanμ and variance
σ 2 along any direction. Then for any t > 1,

P
(
‖X − μ‖2 − σ 2n > tσ 2√n

)
≤ e−t2/8.

Lemma 2 Let X be drawn from a one-dimensional Gaussian with variance σ 2 =
1/(2a). Then,

P(X > t) ≤ e−at2

2t
√
aπ

.

To use these bounds, we will first compute the minimum distance from 0 ∈ K to
each hyperplane describing P and to the boundary of E . We then apply Lemma 1 to
the ellipsoid and Lemma 2 to the polyhedron, and union bound over these probabilities
to get a lower bound on the fraction of the Gaussian that lies within the convex body
K . That is, for a given a and d the minimum distance from 0 to the surface of the
ellipsoid,
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A practical volume algorithm 143

P(x /∈ K ) ≤ P(x /∈ P) + P(x /∈ E) ≤
∑

H

P(x violates H) + P(‖x‖ > d)

≤
∑

H

P (‖xH‖ > d(0, H))

+ e−d2/8 where xH is the projection of x onto the normal of H

≤
∑

H

e−a·d(0,H)2

2d(0, H)
√
aπ

+ e−d2/8 =: p(a).

3.2.2 Annealing step

Problem: Given a starting function f0(x) = e−a0‖x‖2 and a convex body K , construct
a sequence of functions that converge to the uniform distribution over K , such that we
can efficiently estimate

Ri =
∫
K fi (x) dx

∫
K fi−1(x) dx

=
∫
K e−ai‖x‖2 dx

∫
K e−ai−1‖x‖2 dx

.

Solution outline: They key idea, which was used in [9,10], is that we would like to
control the quantity

Var(Y )

E(Y )2
,

where Y = e(ai−1−ai )X and X is drawn from distribution proportional to fi−1 ∩ K .
In [9], it is proven that E(Y ) = Ri . Therefore, applying Chebyshev’s inequality to
Y , having Var(Y )/E(Y )2 ≤ 1 guarantees that only a polynomial number of points
are needed to accurately estimate Ri . We estimate Var(Y )/E(Y )2 by taking a small
number of samples, and stepping as far as we can while keeping Var(Y )/E(Y )2 ≤ 1.
We take fm = fi once fi appears to be sufficiently close to the uniform distribution.

The following lemma is essentially shown in [9].

Lemma 3 Let X be a random point in K with density proportional to e−ai‖x‖2 , ai+1 =
ai (1 − 1/n), n ≥ 4, and

Y = e(ai+1−ai )‖X‖2 .

Then,

Var(Y )

E(Y )2
≤

(
a2i

ai+1(2ai − ai+1)

)n+1

=
(

1 + 1

n2 − 2n

)n+1

< 1.
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Our approach seeks to select the sequence of functions { fi } to approach the uniform
distribution as quickly as possible while keeping the variance bounded by a constant.
We do this by trying to maximize r , where ai+1 = ai (1 − 1/n)r so that

Var(Y 2)

E(Y )2
< 1. (1)

By Lemma 3, we know that r = 1 now suffices. We will then binary search to get,
within a factor of 2, themaximum value of r that satisfies (1), by taking a small number
of sample points and observing their variance.

In [19], for the problem of approximating the partition function of a discrete system,
they prove that using a constant number of samples suffice to accurately estimate
Var(Y )/E(Y )2 for their cooling schedule. We empirically observe a similar behavior
for computing the cooling schedule for convex bodies, where a small number of hit-
and-run samples suffice, roughly O(n2), to reasonably estimate Var(Y )/E(Y )2.

3.3 Convergence of ratio

Problem: Given an error parameter ε′ and a stream of dependent random variables
{X1, X2, . . .}, where Yk = 1/k · ∑k

i=1 Xi and

R = lim
k→∞ Yk,

determine a point k such that Yk ∈ [(1 − ε′)R, (1 + ε′)R].
Solution outline: We use a sliding window of size W and declare convergence once
the last W points are all within ε′/2 of each other. That is,

maxi :k−W≤i≤k Yi − mini :k−W≤i≤k Yi
maxi :k−W≤i≤k Yi

≤ ε′/2.

The goal of our algorithm is to compute a quantity V ′ such that V ′ ∈ [(1−ε)V, (1+
ε)V ]where V is the true volume of our convex body K . Our algorithm is composed of
m phases, each of which approximate the ratio of two integrals over K . By a standard
argument, if each of m terms have a relative error ε′ = ε/

√
m and have unbiased

expectation, then the product of the m terms will have relative error ε. Therefore, we
assign relative error ε′ = ε/

√
m to each of our integral estimators (the Ri ’s in Fig. 2).

We are given a stream of random points in K {X1, X2, . . .} drawn approximately
from fi−1 ∩ K , which we then relate to {Y1,Y2, . . .} by

Yk = 1

k

k∑

j=1

e(ai−1−ai )Xk . (2)

Denoting the ratio of integrals in a single phases as R, from [9] we know that

R = lim
k→∞ Yk . (3)
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Our problem is now: compute a quantity R′ with relative error ε′ from R. Formally,
we want to estimate the following quantity within a ε′-fraction:

∫
K fi (x) dx

∫
K fi−1(x) dx

=
∫
K e−ai‖x‖2 dx

∫
k e

−ai−1‖x‖2 dx
.

From hit-and-run, we generate random variables {X1, X2, . . .}, which are points in K
from a distribution approximately proportional to fi−1. Then, applying Eqs. (2) and
(3), we get a sequence of random variables {Y1,Y2, . . .} such that

R = lim
i→∞ Yi .

That is, if we take enough steps of hit-and-run, we will converge to the actual ratio
R. Computationally, we would like to determine a point where we are within our
target accuracy ε′. If the points generated by hit-and-run were independent, then it
would be quite easy to determine howmany points are necessary to obtain an accurate
estimate. However, these points will be highly dependent, and the best known bounds
for the number of steps required are far too high for practical computations. Therefore,
we use a sliding window approach that stores the last few values of Yi , and declares
convergence once these last few values are all within, say, ε′/2 relative distance of
each other.

The benefit of this approach is that it will quickly detect convergence of {yi } to an
ε′-fraction of R. However, the drawback is that we can have false positives; that is, we
can declare the sequence has converged too soon and we are not within a ε′-fraction
of R. There is a clear relationship between the size of this window and how accurately
we will estimate R: the more values we store, the longer we will take before declaring
convergence. It is unclear how to obtain a good bound on the probability of failure
with relation to the window size, but we choose the size of the window based on
experimental results (Sect. 4.2).

3.4 Hit-and-run steps

Throughout the implementation, we use the random walk hit-and-run (Fig. 1) for
generating approximately randompoints from sphericalGaussians restricted to convex
bodies. A single hit-and-run sample requires computing the intersection of a line
with our convex body K and then sampling along that chord according to our target
distribution. This section can be viewed as the “inner-most” section of our algorithm,
so the efficiency of a hit-and-run step significantly affects the total runtime of our
volume algorithm. For polytopes and ellipsoids, we describe here how to efficiently
compute the chord. For other convex bodies, such as zonotopes in Sect. 4.4, the chord
computation is less efficient and has a drastic effect on the overall runtime. Once the
chord is computed, we then need to efficiently sample from the chord according to a
Gaussian distribution. We now discuss how each of the two steps are implemented in
our algorithm.
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3.4.1 Chord computation

Problem: Given a random direction u ∈ R
n and a point x ∈ K , determine the two

endpoints (x−, x+) of the line x + αu, α ∈ R intersected with the convex body K .

Solution outline: One simple approach is to binary search for the positive α that inter-
sects K (likewise for the negative α value), which only relies on having a membership
oracle. However, if we know

K = P ∩ E = {x : Ax ≤ b} ∩ {x : (x − v)T Q−1(x − v) ≤ 1},

we can use this description to get a more efficient algorithm by explicitly computing
the intersection points of x+αu with both P and E , and taking the closest intersection
points in each direction as (x−, x+).

For the polyhedron P = {x : Ax ≤ b}, we can compute the distance to each
hyperplane of P (row,entry pair of A, b) in the +u and −u direction, and take the
minimum distance for each direction. Letting the rows of A and entries of b be labeled
1, . . . , r , the values (α−

P , α+
P ) are given by the following:

α−
P = max

1≤i≤r :Ai ·u≤0

bi − Ai · x
Ai · u α+

P = min
1≤i≤r :Ai ·u>0

bi − Ai · x
Ai · u . (4)

For the ellipsoid E = {x : (x − v)T Q−1(x − v) ≤ 1}, we would again like to
determine the two points that intersect E along the line x +αEu. To simplify notation,
wewill assume v = 0 and shift x accordingly.We thenwould like to solve the equation
(x + αE )T Q−1(x + αEu) = 1, which is quadratic in αE and yields a solution pair
(α−

E , α+
E ):

uT Q−1u · α2
E +

(
uT Q−1x + xT Q−1u

)
· αE + xT Q−1x − 1 = 0. (5)

Combining the values from 4 and 5, the chord for the convex body is then
(x−, x+) = (x + max{α−

P , α−
E }u, x + min{α+

P , α+
E }u). Note that all of the values

may not exist, for instance if the polyhedron is unbounded, but if a particular α
+/−
P/E

does not exist, we simply ignore it.

3.4.2 Sampling from chord

Problem: Given a description of a chord as � = (u, v) ⊂ R
n , generate a sample

according to a density proportional to f (x) = e−a‖x‖2 restricted to �.

Solution outline:

– If ‖u− v‖ ≥ 2/
√
2a → returnGaussianSample(chord: (u, v), target distribution:

f ).
– Else → return UniformSample(chord: (u, v), target distribution: f ).

123



A practical volume algorithm 147

GaussianSample: Since this density is spherical Gaussian, its restriction to the 1-
dimensional chord will be a 1-D Gaussian with variance 1/(2a). The projection of 0
onto the line extending � will be the mean of this Gaussian, call it μZ . Note we can
map the points u and v to this 1-dimensional Gaussian in terms of their distance and
direction fromμZ . We can then sample Z ∼ N (0, 1/(2a)) until the pointμZ + Z ·−→uv

lies on � = (u, v), where −→uv is a unit vector in the direction from u to v. Then, return
μZ + Z · −→uv.

UniformSample: Another way to sample from this chord is by simple rejection sam-
pling. We enclose the distribution by a rectangle whose width is ‖u − v‖ and height
is maxx∈(u,v) e−a‖x‖2 . We then sample uniformly from the box and reject the point if

it lies outside the region enclosed by e−a‖x‖2 .
To sample efficiently from the chord, we use a combination of these two methods.

Note that the two methods perform well in different cases. The first method will
perform better when the Gaussian is sharp and mostly contained inside the chord,
whereas the second method will perform better when the Gaussian is flat. In the first
method, the success probability is themeasure of theGaussian inside (u, v), and for the
secondmethod, the success probability is the ratio of the average value to themaximum
value of e−a‖x‖2 in (u, v). We can compute these values, and select the approach
that has the highest acceptance probability. However, computing the exact values is
somewhat expensive compared to actually generating the random samples.We achieve
better performance by a rough approximation which performs well in practice: if the
chord length ismore than 2 standard deviations long, thenwe use theGaussianmethod.
In practice, using this rough approximation for the Gaussian and uniform sampler, we
observe an average failure probability of at most 20 % over all the test bodies in
Sect. 4.

3.5 Sampling and multiple threads

An unavoidable problem with hit-and-run is that subsequent points of a trajectory are
very dependent. In recent volume computation algorithms [9,10,20], this dependence
was handled by allowing the trajectory to mix for some c(ε) steps before collecting a
new “sample point” to obtain ε-independence between subsequent points. The draw-
back of this approach is that c(ε) could be very large. Another approach is to use
every point along the chain, with the hope that the greater number of sample points
outweighs the dependency. There is theoretical evidence in favor of this approach
for different applications of Markov chains [21], and we observe it to be true experi-
mentally for estimating volume with hit-and-run. We then test for convergence by the
heuristic approach outlined in Sect. 3.3.

Another natural question is if we can obtain a better estimate of the volume ratio in a
single phase by using multiple trajectories of our Markov chain. That is, concurrently
run t independent threads of hit-and-run in a circular queue–step thread 1, step thread
2, …, step thread t , step thread 1, etc. The following intuition gives some insight
into how for a fixed number of total steps s (i.e. s/t steps per thread), the number of
threads could affect our answer. Running t threads can be thought of as running 2t
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threads, where thread 2i starts from the last point of thread 2i − 1. The last point of
this thread will be fairly mixed as opposed to whatever point thread 2i would start with
if we were actually using 2t threads. Therefore, using a smaller number of threads
decreases the total mixing time, but a smaller number of threads increases the total
dependence between the sample points. So increasing the number of threads gives a
trade-off between dependence and mixing time. In Sect. 4.6, we see that mixing times
seems to have a more significant effect than the dependence, and we should therefore
use a very small number of threads. Based on the experiments, we use 5 threads, a
constant number independent of dimension, throughout our implementation.

4 Computational results

In this section, we will present numerical results of our algorithm over a test set of
convex bodies, which are described in Sect. 1.1.

4.1 Complexity

The plots in Figs. 4 and 5 show how our program scales with dimension for
the n-dimensional Cube. We give results over two different hardware configura-
tions. We plot the number of hit-and-run steps and total computation time, for
n = 5, 10, . . . , 95, 100. For each value of n, 5 trials were performed. The figures
suggest that the volume of the cube can be computed in O∗(n2) membership oracle
calls. For the time complexity, note that each step of hit-and-run requires a chord
computation and sampling along that chord. The chord computation requires 	(n2)
arithmetic operations, while the sampling steps requires O(1) time. So, we would
expect that the time grows as n2 × n2 = O(n4) based on the number of oracle calls,
but the hidden constant in the sampler is quite high. For these small values of n,
we instead observe the time to grow roughly like n2.5. We note that the current best
theoretical complexity is O∗(n3) oracle calls and O∗(n5) arithmetic operations [11].
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Fig. 4 The above data was computed on a 64-bit Windows 8 machine with a i7-3630QM (8 threads, 2.40
GHz) processor and 8GB RAM using MATLAB R2013a. a In the above graph, the correlation coefficient
(R-value) is 0.997 for both lines. b The above runtimes grow at roughly n2.5
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Fig. 5 The above data was computed on a 64-bit CentOs 5.6 machine with a X5570 (8 threads, 2.93 GHz)
processor and 48 GB RAM using MATLAB R2014b. a As expected, this plot is nearly identical to Fig. 4a
and the number of steps taken is consistent across a different hardware configuration. b The computation
time appears to be roughly double that of Fig. 4b on a different machine, but grows at approximately the
same rate

4.2 Accuracy and times

TheTables 1, 2, 3 and4 in this section show the numerical results of our implementation
on our set of 5 bodies, in 10, 50, and 100 dimensions. The tables show the mean and
standard deviation over a certain number of trials, where the standard deviation is
reported as a percentage of the mean. Also included are the average time for one run
of the algorithm and the average number of hit-and-run steps that were taken. The total
number of hit-and-run steps is equivalent, up to a logarithmic factor, to the number of
membership oracle calls, and the best known theoretical algorithmaccurately estimates

Table 1 10-Dimensional results

Body Actual vol Mean
Std dev

Mean
Time (s) # Steps

Cube 1.02 × 103 9.91 × 102 0.165 6.48 × 100 1.22 × 104

Isotropic Simplex 1.47 × 10−6 1.34 × 10−6 0.249 9.10 × 100 1.92 × 104

Half-Ball 1.28 × 100 1.22 × 100 0.164 1.09 × 101 1.73 × 104

Numerical results for 10-dimensional bodies using 1000 trials with error parameter ε = 0.20

Table 2 50-Dimensional results

Body Actual vol Mean
Std dev

Mean
Time (s) # Steps

Cube 1.12 × 1015 1.09 × 1015 0.189 1.11 × 102 4.59 × 105

Isotropic Simplex 3.85 × 10−64 3.21 × 10−64 0.324 2.02 × 102 6.62 × 105

Half-Ball 8.65 × 10−14 8.36 × 10−14 0.159 1.20 × 102 3.95 × 105

Numerical results for 50-dimensional bodies using 200 trials with error parameter ε = 0.20
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Table 3 100-Dimensional results

Body Actual vol Mean
Std dev

Mean
Time (s) # Steps

Cube 1.26 × 1030 1.23 × 1030 0.172 4.68 × 102 2.12 × 106

Isotropic Simplex 1.77 × 10−157 1.41 × 10−157 0.478 8.30 × 102 3.81 × 106

Half-Ball 1.18 × 10−40 1.16 × 10−40 0.202 4.56 × 102 1.72 × 106

Numerical results for 100-dimensional bodies using 100 trials with error parameter ε = 0.20

Table 4 10-Dimensional results

Body Actual vol Mean
Std dev

Mean
Time (s) # Steps

Transformed Cube 5.20 × 100 4.94 × 100 0.192 9.33 × 100 1.73 × 104

2.72 × 104

Ellipsoid 2.55 × 102 2.46 × 102 0.130 2.85 × 101 1.01 × 104

2.40 × 104

Standard Simplex 2.76 × 10−07 2.46 × 10−07 0.312 8.60 × 100 2.40 × 104

3.13 × 104

Numerical results for 10-dimensional bodies using 1000 trials with error parameter ε = 0.20

volume in O∗(n4) membership oracle calls [9]. The majority of the experimental data
here was computed on Georgia Tech’s Jinx computing cluster, and the computation
times given were computed with a i7-3630QM (quad-core, 2.40 GHz) processor and
8GB 1600 MHz RAM using the MATLAB R2013a profiler. Each time given was
averaged over 5 trials.

4.2.1 Volume, no rounding

In this section, we will give experimental results for convex bodies without the
rounding step. The rounding step is an expensive preprocessing step that ensures
the efficiency of our volume algorithm, so these bodies will run much faster than
bodies that need to be rounded. We observe that the Cube and Half-Ball perform
noticeably better than the Isotropic Simplex. There is theoretical motivation for a
simplex being a “bad” case for sampling and volume computation. For one, the
value of R for an isotropic body K that contains the unit ball, where R is the
minimum radius ball that contains K , is maximized when K is a simplex [22],
where R is essentially n. Most of the mass of the Isotropic Simplex will lie near
its n + 1 corners, which are sharper than the vertices of the Cube. In a rough sense,
sharp corners perform poorly with hit-and-run; it will take longer to visit a sharp
corner than, say, a region in the middle of the body. But once a sharp corner is
visited, hit-and-run will take small steps that stay near the corner before eventu-
ally drifiting away. Since most of the volume of a simplex is contained near its
corners, it may take more steps of hit-and-run to get an accurate estimate of its vol-
ume.
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Table 5 50-Dimensional results

Body Actual vol Mean
Std dev

Mean
Time (s) # Steps

Transformed Cube 5.57 × 10−17 5.24 × 10−17 0.286 1.12 × 103 4.93 × 105

6.19 × 106

Ellipsoid 1.73 × 10−11 1.69 × 10−11 0.096 4.75 × 102 1.52 × 105

2.30 × 106

Standard Simplex 3.29 × 10−65 2.84 × 10−65 0.691 8.21 × 102 8.16 × 105

6.39 × 106

Numerical results for 50-dimensional bodies using 200 trials with error parameter ε = 0.20

4.2.2 Volume with rounding

The following bodies go through a rounding preprocessing step to put the body in
approximate isotropic position. To illustrate the rounding complexity, the “# Steps”
columnwill now have two lines: the first line will be “# Volume Steps”, and the second
line will be “# Rounding Steps”. Note the substantial decrease in efficiency for these
bodies, as compared to the round bodies in Sect. 4.2.1, where this increase in both
runtime and membership oracle calls is due to the rounding preprocessing step, which
begins to take a prohibitively long time for bodies much higher than 50 dimensions.

After the rounding phase, the efficiency of the volume computation is comparable,
but slightly worse, than the corresponding bodies in the previous section. For instance,
the 50-dimensional Transformed Cube required around 10 % more hit-and-run steps
than the 50-dimensional Cube and had a higher standard deviation in its computed
volume; we observe a similar relationship between the 50-dimensional simplices. This
behavior is in line with what we expect, because the Cube and Isotropic Simplex are in
isotropic position, whereas the rounding phasewill only achieve approximate isotropic
position for the Transformed Cube and Standard Simplex.

4.2.3 Improving accuracy

In the above tables, the simplices had the highest standard deviation relative to the
mean volume. The standard deviation divided by the mean will give a rough idea of
how accurate the reported volume is. The worst case was the 50-dimensional standard
simplex, where the observed standard deviation divided by the mean is 0.691, much
higher than the target relative error of 0.20. For the results in Table 5, only 70 of
200 trials were within 20 % of the actual volume. We can improve this accuracy by
averaging the result overmultiple trials. The average volume over 200 trials waswithin
0.20 relative error of the actual volume for the 50-dimensional standard simplex; this
observation also holds true for all other test bodies reported in this section. The simplex
is conjectured to be the body with the smallest isoperimetric coefficient, i.e., where
the random walk mixes slowest.

There are two general ways to do increase the probability of an accurate answer.
The first is to average over multiple trials. For the 50-dimensional standard simplex, if
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we group the trials into pairs and average the volume of the two trials, the probability
that we are within our target relative error is now 0.49, as opposed to 0.35 when just
considering a single trial. If we group the trials into groups of 10, then this probability
improves to 0.65. Another heuristic to obtain a more accurate volume estimate is
to lower the error parameter provided to the volume algorithm, until the observed
standard deviation divided by mean is approximately the desired relative error.

The main reason we did not incorporate either of these methods in our implemen-
tation is that for all other test bodies it seems superfluous and results in a constant
factor increase in the runtimes.

4.3 Birkhoff polytope

An interesting application of our volume algorithm was for computing the volume of
the Birkhoff polytope. The nth Birkhoff polytope Bn is the polytope of all n×n doubly
stochastic matrices; equivalently, it is the perfect matching polytope of the complete
bipartite graph Kn,n . This polytope has a number of nice combinatorial properties, with
one important question being its volume [23–27]. There has been previous work on
computing the volume of Bn for small values of n, where specialized algorithms were
developed for this specific polytope [28,29]. The most recent work of [28] computed
Bn for n = 10 through a distributed algorithm, with a total computation time of 17
years at 1GHz. To our knowledge, the values for n > 10 have not yet been obtained,
as the current approaches are too computationally expensive for any value of n higher
than 10.We showhere that if you relax the requirement for an exact answer, our volume
algorithm can obtain a reasonable estimate for the value for n = 15within a few hours.

We now give a more complete description of Bn using its formulation as all n × n
doubly stochastic matrices. Define n2 variables Xi j for i, j ∈ {1, . . . n} as the values
assigned to the corresponding entries of a doubly stochastic matrix. The following
equations then define the polytope Bn :

n∑

i=1

Xi j = 1, j ∈ {1, . . . , n} (6)

n∑

j=1

Xi j = 1, i ∈ {1, . . . , n} (7)

Xi j ≥ 0, i, j ∈ {1, . . . , n} (8)

Note that while Bn ⊂ R
n2 , the dimension of the polytope is lower: dim(Bn) =

(n − 1)2. We have 2n equality constraints above on n2 variables, but one is redun-
dant. Therefore, to compute the volume of Bn , we compute the volume of the
n2 − (2n − 1) = (n − 1)2 dimensional subspace spanned by Eqs. (6)–(7), restricted
to the positive orthant by Eq. (8).

One aspect of the Birkhoff polytope that benefits our approach is that the polytope
is already round. In Sect. 4.2.2, we see that the rounding preprocessing step for our
convex body is quite expensive and dominates computing its volume. By avoiding this
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Table 6 Birkhoff polytope results

n Actual vol Mean Std dev
Mean Time (s) # Steps

2 2.00 × 10+00 2.01 × 10+00 0.044 4.80 × 10−1 8.87 × 102

3 1.12 × 10+00 1.14 × 10+00 0.146 1.45 × 100 4.41 × 103

4 6.21 × 10−02 5.79 × 10−02 0.209 3.68 × 100 1.33 × 104

5 1.41 × 10−04 1.32 × 10−04 0.233 8.00 × 100 4.09 × 104

6 7.35 × 10−09 6.67 × 10−09 0.211 2.08 × 101 1.12 × 105

7 5.64 × 10−15 5.34 × 10−15 0.240 4.66 × 101 2.82 × 105

8 4.42 × 10−23 3.92 × 10−23 0.290 1.18 × 102 6.27 × 105

9 2.60 × 10−33 2.36 × 10−33 0.289 2.33 × 102 1.26 × 106

10 8.78 × 10−46 8.04 × 10−46 0.261 5.39 × 102 2.35 × 106

11 ??? 1.26 × 10−60 0.238 8.62 × 102 4.07 × 106

12 ??? 7.17 × 10−78 0.254 1.37 × 103 6.49 × 106

13 ??? 1.21 × 10−97 0.281 2.15 × 103 1.04 × 107

14 ??? 5.52 × 10−120 0.292 3.51 × 103 1.59 × 107

15 ??? 4.97 × 10−145 0.277 5.67 × 103 2.35 × 107

Numerical results for Birkhoff polytopes using 100 trials with error parameter ε = 0.20. Computational
times were on a 64-bit Windows 8 machine with a i7-3630QM (8 threads, 2.40 GHz) processor and 8GB
RAM using MATLAB R2013a
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Fig. 6 a A plot of 10 independents trials for B10 and the computed volume of each trial as a function of the
number of steps per volume phase. b A plot of the average computed volume over 100 independent trials
for B10. We see that taking the average over trials provides a more accurate estimate

rounding step for the Birkhoff polytope, we can more easily go to high dimensions.
Here we go up to n = 15, i.e. a 196-dimensional polytope, and each run completes
within 5 h. If desired, it should be computationally feasible to get accurate estimates for
n = 20 or n = 25 within days or weeks, respectively. In Table 6, we show the results
of 100 independent runs of our volume algorithm for B2, . . . , B15 with ε = 0.20. In
Fig. 6, we show how our computed volume converges as the number of steps per phase,
over multiple trials. In Fig. 7, we show a similar plot for n = 15, where the volume is
unknown. The plot indicates that the volume of B15 should be close to 5.5 · 10−145.
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Fig. 7 A plot of 25 independents trials for B15 and the computed volume of each trial as a function of the
number of steps per volume phase. The average of the trials is included

4.4 Zonotopes

Another application where our algorithm can efficiently provide an accurate estimate,
where the exact volume is difficult to compute, is with zonotopes. A zonotope is
defined as the Minkowski sum of a set of line segments. Let {vi |1 ≤ i ≤ m} be a set
of line segments, where each vi lives in Rn . The zonotope Z is then defined as

Z =
{

m∑

i=1

λivi |0 ≤ λi ≤ 1

}

.

To compute its exact n-dimensional volume deterministically, consider a set of
n line segments and compute the volume of the parallelopiped formed by these n
line segments. Then, sum over all

(m
n

)
sets of n segments to obtain the volume for the

zonotope Z . The volume of each parallelopiped is the absolute value of the determinant
of the matrix of the n line segments. However, for a fixed dimension n, the runtime
of this algorithm will scale as O(mn). Even for a somewhat small dimension n = 10,
when the number of line segments m grows to, say, 50 or 100, this approach quickly
becomes inefficient. For a further discussion of zonotope volume, we refer the reader
to [30], where it is shown that exactly computing the volume of a zonotope is #P-Hard.

The description of a zonotope is different than a polytope or ellipsoid. To use our
volume algorithm, we need to compute the chord in one step of hit-and-run. That is,
given a current point x ∈ Z and a direction u ∈ R

n , determine the points at which the
line x + αu, α ∈ R, intersects the boundary of Z . We can formulate this as a linear
program:
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Table 7 Zonotope results

m Exact volume Exact time (s) Approx volume Approx time # Steps

20 4.93 × 103 1.04 4.10 × 103 3.01 × 103 9.58 × 104

50 1.33 × 108 5.78 × 104 1.17 × 108 3.73 × 103 1.04 × 105

100 ??? 9.74 × 108 1.62 × 1011 4.90 × 103 1.25 × 105

Numerical results for zonotopes in R
10 with 20, 50, and 100 line segments. For each value of m, the data

is averaged over 10 independent trials. Computational times were on a 64-bit Windows 8 machine with a
i7-3630QM (8 threads, 2.40 GHz) processor and 8GB RAM using MATLAB R2013a

min α (9)

s.t.

x =
m∑

i=1

λivi − αu (10)

0 ≤ λi ≤ 1 1 ≤ i ≤ m (11)

Solving (9)–(11) will produce one point at which the line intersects the boundary
(i.e. one endpoint of the hit-and-run chord). To find the other, we simply minimize
−α in the objective function (9). The chord computation therefore requires solving
two linear programs. We note that this is much less efficient than the corresponding
algorithms for polytopes or ellipsoids, and in the below computational results, the time
to solve these linear programs heavily dominates the runtime.

To generate a zonotopewithm line segments,we startwith the generators e1, . . . , en
for the unit cube and then add m − n random unit vectors. The zonotope constructed
in this fashion may not necessarily be round, so we perform a rounding preprocessing
step before computing our estimate for the volume. In Table 7, we give computa-
tional results for computing volumes of zonotopes. The dimension n = 10 is fixed,
and we increase the number of line segments m. For m = 20, we see that the exact
algorithm is much more efficient than our algorithm. However, for m = 50, the exact
algorithm’s runtime drastically increases, while our approximation takes roughly the
same amount of time to compute. The exact answer for m = 50 took approximately
16 computation hours. The data for m = 100 was also included for our algo-
rithm, along with an estimated time for the exact answer, which is approximately 31
years.

4.5 Convergence

Here we will give experimental results for the rate at which the relative error decreases
as a function of the number of hit-and-run steps per volume phase. For a fixed body
K and dimension n, we expect that O(ε−2) hit-and-run steps are required to obtain
relative error ε [9]. We observe this to be true in expectation in Fig. 8 for the 20-
dimensional Cube, where we plot the following quantity as a function of the number
of steps per volume phase t :
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Fig. 8 In the above plot, the relative error ε decreases as O(ε−2) as a function of the number of steps per
phase. The data was averaged over 1000 trials for the 20 dimensional cube

ε(t) = E
( |V (t) − 220|

220

)

,

where V (t) is the observed volume after t hit-and-run steps per phase. That is, ε(t) is
the expected error after taking t steps per phase, and we estimate ε(t) by averaging
over 1000 independent trials.

We also observe an additional property of how our estimate converges to the true
value, where the estimated value is monotonically increasing, in expectation, as a
function of the number of hit-and-run steps. This behavior can be best viewed in
Sect. 4.6, Fig. 9where a large number of threads estimates the behavior of our estimated
volume in expectation, and we see that a large number of threads clearly exhibits the
monotonicity property for the 20-dimensional Cube. Also, all of the reported volumes
in Sect. 4.2 are lower than the actual volume, which suggests we approach the true
volume from below.

4.6 Number of threads

In this section, we give experimental results on the 20-dimensional Cube for how
the number of threads, as discussed in Sect. 3.5, affects the accuracy of the volume
estimate. Figure 9 illustrates the effect of mixing time on the volume estimate. We
see that for a greater number of threads, it takes longer to approach the true volume,
but it does so more “smoothly” because nearby samples are less dependent. Figure
9 also suggests that the computed ratio approaches the true ratio monotonically, in
expectation, but this fact remains to be proven. In Fig. 10, we see the computed
volume after 500,000 steps per volume phase. It suggests that using a smaller number
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Fig. 9 In the above graph,we see how the volume estimate approaches the true volume, for varying numbers
of threads. The volumes are averaged over 50 trials

of threads will provide the most accurate estimate for a fixed number of steps. Using 1
thread will provide the fastest mixing time, but at the cost of high dependence between
subsequent sample points; 5 to 10 threads seems to provide an appropriate balance
between mixing time and dependence.

5 Concluding remarks

1. Our implementation is available from the MATLAB File Exchange [13] and also
from our webpage [31].

2. In the implementation, we use an adaptive cooling schedule; experimentally it per-
forms significantly faster than a fixed cooling schedule. In subsequent work [11],
we obtained an O∗(n3) volume algorithm with an accelerated schedule. Roughly
speaking, we start with a Gaussian with σ 2

0 = 1/n and cool according to the
schedule:

σ 2
i =

⎧
⎨

⎩

σ 2
i−1 ·

(
1 + 1√

n

)
if σ 2

i−1 = O(1)

σ 2
i−1 ·

(
1 + σi−1√

n

)
otherwise

Note that this schedule does not depend on the body. In practice, we observe an
even faster convergence of O∗(n2) steps for the convex bodies in our benchmark
(for example, in Figs. 4, 5).
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Fig. 10 This is a snapshot of the computed volumes after 500,000 steps per phase, for # threads=
1, . . . , 100. The volumes are averaged over 50 trials

3. Hit-and-run was one choice for the random walk to sample from the body. We
could also use the well-studied ball walk [10,20]; in each step of the ball walk,
we pick a random point y in a ball centered at the current point, and move to
y if y ∈ K . In brief implementation tests, it seemed to perform comparable to
hit-and-run if the average local conductance (i.e. the probability that y ∈ K ) is
kept around 1/2.

4. For our implementation, the volume computation experimentally runs in O∗(n2)
oracle calls, and the rounding algorithm runs in O∗(n3) oracle calls. The cur-
rent best algorithm for volume computation is O∗(n3) [11] and for rounding is
O∗(n4) [9]. So our empirical results suggest algorithms with better worst-case
bounds are possible.

5. One area for improvement in this algorithm is the sliding window convergence test
(Sect. 3.3). The size of the window is based on experimental results to perform
well for n ≤ 100 and 0.10 ≤ ε ≤ 0.20. It would be preferable to have a more
robust way to determine convergence of the volume estimator in a single phase
that will perform accurately and efficiently for all values of n and ε.

6. We note that we can naively parallelize both the volume and rounding algorithms
by assigning each thread of hit-and-run to a different processor. Additionally, for
the volume algorithm, we could assign each volume phase (Sects. 3.2.2, 3.3) to a
separate processor, provided we first obtain a warm start for each phase.
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Several intriguing theoretical questions arise from our implementation:

1. Convergence tests: Our implementation uses empirical convergence tests to test
that a sample estimates a ratio within a desired error. How can such methods be
made rigorous?

2. Sampling: Instead of using a random walk to generate approximately independent
points and then using these points to estimate the volume as in the theoretical
algorithms, is it asymptotically more efficient, in terms of the total number of
hit-and-run steps, to use the entire sequence of points visited during the walk to
estimate the volume?

3. Monotonic convergence:When estimating the integral ratio of two functions f, g
over a convex body K (i.e.

∫
K f (x)dx/

∫
K g(x)dx) with a sequence of points

from the empirical distribution of hit-and-run, under what conditions on f , g
and the starting distribution, does the estimated value approach the true value
monotonically from below in expectation? We observed such monotonicity when
f, g are spherical Gaussians and f has higher variance than g (Fig. 9).
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