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We present a practical algorithm for computing the minimum-volume n-dimensional ellipsoid that must contain m given
points a1� � � � � am ∈�n. This convex constrained problem arises in a variety of applied computational settings, particularly
in data mining and robust statistics. Its structure makes it particularly amenable to solution by interior-point methods, and
it has been the subject of much theoretical complexity analysis. Here we focus on computation. We present a combined
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1. Introduction
This paper is concerned with computing the minimum-
volume ellipsoid in n-dimensional space �n containing m
given points a1� a2� � � � � am ∈ �n. This minimum-volume
covering ellipsoid (MVCE) problem is useful in a variety of
different application areas. In computational statistics, the
minimum-volume ellipsoid covering k of m given points
in �n is well-known for its affine equivariance and positive
breakdown properties as a multivariate location and scat-
tering estimator (Croux et al. 2002). In the area of robust
statistics and data mining, efficiently finding outliers is a
challenge that has attracted much research interest (Knorr
et al. 2001). Indeed, one can identify data outliers quickly
if one can compute the minimum-volume ellipsoid quickly,
because outliers are essentially points on the boundary of
the minimum-volume covering ellipsoid.
Another emerging research area in data mining is that of

finding linear-transformation-invariant (or scale-invariant)
clustering methods that work for very large datasets.
In a multidimensional setting, it is important that data-
clustering results do not vary under changes in the relative
scales of different dimensional coordinates. However, tra-
ditional distance-based clustering methods such as k-mean
or k-median methods are not scale invariant, because typi-
cal distance measures (such as Euclidean distance) depend
on the scale factor of each coordinate dimension (see, for
example, §8.2.1 of Han and Kamber 2001). In contrast,
clustering using minimum-volume ellipsoids, which use
the minimum-volume covering ellipsoid to cover all points

in each cluster and minimize the total volume of these
covering ellipsoids, has the linear-transformation-invariance
property. Such clustering schemes iteratively partition the
datapoints into different clusters, and the minimum-volume
covering ellipsoid of each cluster is computed and used
to choose the next clustering partition. In these schemes,
the fast computation of minimum-volume covering ellip-
soids is critical to the computational success of the clus-
tering method because of the large number of times that
minimum-volume covering ellipsoids (for different subsets
of points) must be computed.
The minimum-volume covering ellipsoid problem has

been studied for over 50 years. As early as 1948, John
(1948) discussed this problem in his work on optimal-
ity conditions. Barnes (1982) provides an algorithm for
this problem based on matrix eigenvalue decomposition.
Khachiyan and Todd (1993) first used interior-point meth-
ods in developing an algorithm and a complexity bound
for the closely related maximum-volume inscribed ellip-
soid problem (MVIE), together with a linear reduction from
MVCE to MVIE; the complexity of their algorithm for
finding an �-optimal ellipsoid is

O

(
m3�5 ln

(
mR

�

)
ln
(
n lnR
�

))
arithmetic operations. Here, R is defined such that the con-
vex hull of the given points contains the unit ball cen-
tered at 0 and is contained in the concentric ball of a given
radius R, and � is a relative measure of nonoptimality.
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Nesterov and Nemirovskii (1994) obtain a complexity
bound of O
m3�5 ln

mR�/��� operations, and more recently
Khachiyan (1996) has reduced this to O
m3�5 ln
m/���
operations. Zhang (1998) presents interior-point algorithms
for MVIE, based on various equation system reduction
schemes. In 2003, Zhang and Gao extended their ear-
lier results and compare different practical algorithms for
the maximum-volume inscribed ellipsoid problem. Vanden-
berghe et al. (1998) and Toh (1999) also consider the
minimum-volume ellipsoid problem as a special case of the
more general maximum determinant problem.
In contrast to the theoretical work on the MVCE prob-

lem, we herein develop a practical algorithm for the
problem that is designed to solve very large instances
(m= 30�000 and n= 30) such as those that arise in data-
mining contexts. We present a combined interior-point and
active-set method for solving this problem. Our computa-
tional results demonstrate that our method solves these very
large problem instances to a high degree of accuracy in
under 30 seconds on a personal computer.
This paper is organized as follows. In the rest of this

section, we present notation. In §2, we review formula-
tions of the minimum-volume covering ellipsoid problem
and issues in solving the problem via available interior-
point software. In §3, we present our algorithm for solving
the MVCE. In §4, we review dual problem formulations
and the conditional gradient method for solving the dual,
and in §5, we develop active-set strategies. Computational
results are presented in §6. Section 7 discusses some unsuc-
cessful algorithmic approaches that we tried, and §8 con-
tains concluding remarks. The appendix contains proofs, an
expanded table of computational results, and results con-
cerning the relationship between our interior-point algo-
rithm and the theory of self-concordance of Nesterov and
Nemirovskii (1994).

1.1. Notation

Let �n
+ and �n

++ denote the convex cone of n×n symmetric
positive semidefinite matrices and symmetric positive defi-
nite matrices, respectively. We use � and � to denote the
partial ordering induced by the cones �n

+ and �n
++, respec-

tively. The vector of ones is denoted by e �= 
1�1� � � � �1�T ,
where the dimension is dictated by context. The capital
letters U and T are used to denote the diagonal matrices
whose diagonal entries correspond to the entries of the
vectors u and t: U �= diag
u� and T �= diag
t�. The
Euclidean norm

√
yTy is denoted by �y�. For a given sym-

metric positive definite matrix M , define the M-norm by
�v�M �=√

vTMv.

2. Formulations and Solution via
Available Interior-Point Software

Our concern is with covering m given points a1� a2�
� � � � am ∈�n with an ellipsoid of minimum volume. Let A

denote the n × m matrix whose columns are the vectors
a1� a2� � � � � am ∈�n:

A �= �a1�a2� · · · �am��
To avoid trivialities, we make the following assumption
for the remainder of this paper, which guarantees that any
ellipsoid containing a1� a2� � � � � am has positive volume:

Assumption 1. The affine hull of a1� a2� � � � � am spans �n.
Equivalently,

rank

[
A

eT

]
= n+ 1�

We point out that in most applications of the minimum-
volume covering ellipsoid problem, particularly those in
data mining, one cannot presume much in the way of spe-
cial structure of the data a1� a2� � � � � am. In particular, the
matrix A may be fairly dense, and in all likelihood ATA, as
well as AAT , will be completely dense.
For c ∈�n and Q ∈�n

++, we define the ellipsoid

EQ�c �= �x ∈Rn � 
x− c�TQ
x− c�� 1��

here c is the center of the ellipsoid and Q determines its
general shape. The volume of EQ�c is given by the formula

�n/2

 
n/2+ 1�
1√
detQ

�

see Grötschel et al. (1998) for example. Here,  
·� is the
standard gamma function of calculus.
Under Assumption 1, a natural formulation of the

minimum-volume covering ellipsoid problem is


MVCE1� min
Q� c

detQ−1/2

s.t. 
ai − c�TQ
ai − c�� 1� i= 1� � � � �m�

Q� 0�

As written, MVCE1 is not a convex program. By the change
of variables

M =Q1/2 and z=Q1/2c�

we restate the problem as


MVCE2� min
M�z

#
M�z� �=− ln detM

s.t. 
Mai − z�T
Mai − z�� 1�

i= 1� � � � �m�

M � 0�

(1)

which is now a convex program. If 
 �M� z̄� is a solution
of MVCE2, we recover the solution of MVCE1 by setting

 �Q� c̄�= 
 �M2� �M−1z̄�.
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2.1. Solution via Available Interior-Point Software

MVCE2 can be rewritten as a log-determinant maximiza-
tion problem subject to linear equations and second-order
cone constraints:


MVCE3� min
M�z� y�w

− ln detM

s.t. Mai − z− yi = 0� i= 1� � � � �m�

wi = 1� i= 1� � � � �m�


yi�wi� ∈Cn
2 � i= 1� � � � �m�

M � 0�

where Cn
2 denotes the second-order cone �
y�w� ∈ �n+1 �

�y��w�. The format of MVCE3 is suitable for a solution
using a slightly modified version of the software SDPT3
(see Toh et al. 1999, Tütüncü et al. 2003), where the soft-
ware is modified to handle the parameterized family of
barrier functions

B'
M�y�w� �=− ln detM − '
m∑
i=1

ln
(
w2

i − 
yi�
T
yi�

)
(2)

for ' > 0 (and the parameter ' is of course absent from the
first term above). However, because the SDPT3 code does
not allow for unrestricted variables, the linear equations
defining the variables yi, wi, i= 1� � � � �m, cannot be elimi-
nated, and as a result the Newton step at each iteration must
unavoidably form and factorize an m
n + 1� × m
n + 1�
Schur-complement matrix. Even for only reasonably large
values n and m, say n= 10 and m= 1�000, the computa-
tional burden becomes prohibitive.
Similar to Khachiyan (1996), one can construct the fol-

lowing dual problem of MVCE2 (see §4 for a derivation
and further exposition):


RD� max
ũ

(
n

2
lnn

)
+ 1
2
ln det

(
AŨAT Aũ

ũTAT eTũ

)
s.t. eTũ= 1�

ũ� 0�

(3)

Note that RD is also a determinant maximization prob-
lem subject to linear inequality constraints and can also be
solved using a modified version of SDPT3. In solving RD
via SDPT3, the computational bottleneck at each iteration
lies in forming and factorizing a Schur-complement matrix
of size(
n2 + 3n+ 4

2

)
×
(
n2 + 3n+ 4

2

)
�

furthermore, computing each entry of the Schur-
complement matrix involves m additions.
To solve large practical instances of the minimum-

volume covering ellipsoid problem (n� 20, m� 1�000, for
example), we develop our own specialized methodology,

designed to take explicit advantage of the structure of
the problem and the typical instance sizes that one might
encounter in practice, particularly in the context of data
mining. In §3, we present our basic algorithm, which we
call the “dual reduced Newton” (DRN) algorithm; this algo-
rithm is then applied and/or modified to work with active
set strategies in §5.

3. Dual Reduced Newton Algorithm
In this section, we describe and derive our basic algorithm
for the minimum-volume covering ellipsoid problem; we
call this algorithm the “dual reduced Newton” algorithm
for reasons that will soon be clear.

3.1. Newton Step

By adding a logarithmic barrier function to the problem
formulation MVCE2, we obtain the formulation


MVCE2
'� min

M�z� t
− ln detM − '

m∑
i=1

ln ti

s.t. 
Mai − z�T
Mai − z�+ ti = 1�

i= 1� � � � �m�

M � 0�

t > 0�

The parameterized solutions to this problem as ' varies
in the interval 
0��� define the central trajectory of
the problem MVCE2. Identifying dual multipliers ui, i =
1� � � � �m, with the equality constraints in MVCE2

', the opti-
mality conditions for (MVCE2

') can be written as

m∑
i=1

ui
[

Mai − z�aTi + ai
Mai − z�T

]−M−1 = 0� (4)

m∑
i=1

ui
z−Mai�= 0� (5)


Mai − z�T
Mai − z�+ ti = 1� i= 1� � � � �m� (6)

Ut = 'e� (7)

u� t � 0� (8)

M � 0� (9)

We could attempt to solve (4)–(9) for 
M�z� t� u� directly
by using Newton’s method, which would necessitate form-
ing and factorizing an(
n
n+ 3�

2
+ 2m

)
×
(
n
n+ 3�

2
+ 2m

)
matrix. However, as we now show, the variables M and z
can be directly eliminated, and further analysis will result
in only having to form and factorize a single m×m matrix.
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To see how this is done, note that we can solve (5) for z
and obtain

z= MAu

eTu
� (10)

Substituting (10) into (4), we arrive at the following equa-
tion for the matrix M :(
AUAT − AuuTAT

eTu

)
M +M

(
AUAT − AuuTAT

eTu

)
=M−1�

(11)

The following proposition, whose proof is in the appendix,
demonstrates an important property of the matrix arising
in (11):

Proposition 2. Under Assumption 1, if u > 0, then

AUAT −AuuTAT/eTu�� 0.

The following remark presents a closed-form solution for
the equation system (11); see Lemma 4 of Zhang and Gao
(2003):

Remark 3. For a given S � 0, X �= S−1/2 is the unique
positive definite solution of the equation system

1
2

XTS+ SX�=X−1�

Utilizing Proposition 2 and Remark 3, the unique solu-
tion of (11) is easily derived:

M �=M
u� �=
[
2
(
AUAT − AuuTAT

eTu

)]−1/2
� (12)

and substituting (12) into (10), we conclude:

Proposition 4. Under Assumption 1, if u > 0, then the
unique solution of (4), (5), and (9) in M , z is given by

M �=M
u� �=
[
2
(
AUAT − AuuTAT

eTu

)]−1/2
(13)

and

z �= z
u� �=

[
2
(
AUAT − AuuTAT

eTu

)]−1/2
Au

eTu
� (14)

Substituting (13) and (14) into the optimality condi-
tions (4)–(9), we can eliminate the variables M and z
explicitly from the optimality conditions, obtaining the fol-
lowing reduced optimality conditions involving only the
variables 
u� t�:

h
u�+ t = e�

Ut = 'e� (15)

u� t � 0�

where hi
u� is the following nonlinear function of u:

hi
u� �= 
M
u�ai − z
u��T
M
u�ai − z
u��

=
(
ai −

Au

eTu

)T [
2
(
AUAT − AuuTAT

eTu

)]−1
·
(
ai −

Au

eTu

)
� (16)

for i = 1� � � � �m, where M
u� and z
u� are specified
by (13) and (14).
For a given value of the barrier parameter ', we

will attempt to approximately solve (15) using Newton’s
method. Let ,uh
u� denote the Jacobian matrix of h
u�.
The Newton direction 
-u�-t� for (15) at the point 
u� t�
is then the solution of the following system of linear equa-
tions in 
-u�-t�:

,uh
u�-u+-t = r1 �= e− t−h
u��

T-u+U-t = r2 �= 'e−Ut�
(17)

This system will have the unique solution

-u= 
,uh
u�−U−1T �−1
r1 −U−1r2��

-t =U−1r2 −U−1T-u�
(18)

provided we can show that the matrix 
,uh
u�−U−1T � is
nonsingular.
To implement the above methodology, we need to explic-

itly compute ,uh
u�, and we also need to show that

,uh
u� − U−1T � is nonsingular. Towards this end, we
define the following matrix function:

/
u� �=
(
A− AueT

eTu

)T

M2
u�

(
A− AueT

eTu

)
(19)

as a function of the dual variables u. Let A �B denote the
Hadamard product of the matrices A, B, namely 
A�B�ij �=
AijBij for i� j = 1� � � � �m. The following result conveys an
explicit formula for ,uh
u� and also demonstrates other
useful properties.

Proposition 5. Under Assumption 1,
(i) ,uh
u�=−2
/
u�/eTu+/
u� �/
u��,
(ii) ,uh
u�� 0, and
(iii) h
u�= diag
/
u��.

The proof of this proposition is presented in the
appendix. From part (ii) of Proposition 5 and the fact that
U−1T � 0 whenever u� t > 0, we then have

Corollary 6. Under Assumption 1, if u > 0 and t > 0,
then 
,uh
u�−U−1T �≺ 0, and so is nonsingular.

Now let us put all of this together. To compute the
Newton direction 
-u�-t� for the reduced optimality con-
ditions (15) at a given point 
u� t�, we compute according
to the following procedure:

Procedure DRN-DIRECTION
u� t� '�: Given 
u� t� satis-
fying u� t > 0 and given '� 0,
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Step 1. Form and factorize the matrix

M−2
u�=
[
2
(
AUAT − AuuTAT

eTu

)]
�

Step 2. Form the matrix

/
u�=
(
A− AueT

eTu

)T

M2
u�

(
A− AueT

eTu

)
�

Step 3. Form

,uh
u�=−2
(
/
u�

eTu
+/
u� �/
u�

)
and factorize 
,uh
u�−U−1T �.
Step 4. Solve (18) for 
-u�-t�.

The computational burden of each of the four steps in
Procedure DRN-DIRECTION is dominated by the need
to factorize the matrices in Steps (1) and (2) above. The
matrix 
AUAT − AuuTAT /eTu� in Step (1) is n × n; it
requires mn2 operations to form and n3 steps to factorize,
while the matrix 
,uh
u�−U−1T � in Step (4) is m×m; it
requires nm2 steps to form and m3 steps to factorize.
The direction 
-u�-t� given in Procedure DRN-

DIRECTION is the solution to the linearization of the
reduced optimality conditions (15), which were derived
from the original optimality conditions (4)–(9) of MVCE2

'.
We call 
-u�-t� the DRN direction for “dual reduced
Newton.” The reason for this is that we started with the
optimality conditions (4)–(9), and reduced them by elim-
inating the primal variables M , z before linearizing the
resulting equation system in defining the Newton step.
Note that MVCE2

' is itself an optimization problem
of a self-concordant barrier function; see Nesterov and
Nemirovskii (1994). Because the theory of self-concordant
functions is essentially a theory for Newton-based algo-
rithms, it is natural to ask whether or not the Newton direc-
tion 
-u�-t� given in Procedure DRN-DIRECTION is
the Newton direction for minimizing some self-concordant
function. In the appendix, we give a negative answer to
this question. However, we show that the Newton direc-
tion 
-u�-t� given in Procedure DRN-DIRECTION is the
Newton direction for the minimization of a function that is
“almost” self-concordant.
Note from (10) that c = M−1z = Au/eTu, which states

that the center of the optimal ellipsoid is a convex weight-
ing of the points a1� � � � � am, with the weights being the
normalized dual variables ui/e

Tu, i = 1� � � � �m. It is also
easy to see that when '= 0, the complementarity condition
uiti = '= 0 has a nice geometric interpretation: A point has
positive weight ui only if it lies on the boundary of the opti-
mal ellipsoid. These observations are well-known. Another
property is that if one considers the points a1� � � � � am to
be a random sample of m i.i.d. random vectors, then with
u �= e/m we have that

M−2
u�= 2
m

(
A− AeeT

m

)(
A− AeeT

m

)T

is proportional to the sample covariance matrix.

3.2. Algorithm DRN

Based on the Newton step procedure outlined in §3.1,
we construct the following basic interior-point algorithm
for solving the MVCE2

' formulation of the minimum-
volume covering ellipsoid problem. We name this algorithm
“DRN” for dual reduced Newton algorithm.

Algorithm DRN
Step 0. Initialization. Set r ← 0�99. Choose initial val-

ues of 
u0� t0� satisfying u0� t0 > 0. Set 
u� t�← 
u0� t0�.
Step 1. Check Stopping Criteria. OBJ �=− ln det�M
u��.

If �e−h
u�−t�� �1 and 
u
Tt�/OBJ� �2, STOP. Return u,

Q �= �M
u��2, c �= �M
u��−1z
u� and OBJ.
Step 2. Compute Direction. Set ' ← 
uTt�/10m. Com-

pute 
-u�-t� using Procedure DRN-DIRECTION
u� t� '�.
Step 3. Step-Size Computation and Step. Compute 1̄←

max�1 � 
u� t�+ 1
-u�-t�� 0� and 1̃←min�r1̄�1�. Set

u� t�← 
u� t�+ 1̃
-u�-t�. Go to Step 1.

The algorithm is initialized in Step 0. Strategies for
choosing 
u0� t0� are discussed immediately below in §3.3.
The quantity r < 1 is used to keep the iterate values
of 
u� t� strictly positive; see Step 3. The stopping criteria
are checked in Step 1; the tolerances are �1 for feasibil-
ity and �2 for optimality. We discuss the stopping criteria
in a bit more detail below in §3.4. In Step 2 the barrier
parameter ' is updated and the DRN direction is computed;
similar to standard interior-point methods for conic opti-
mization, we use a rather aggressive shrinking factor of 10
when updating ' at each iteration. In Step 3 we compute
the step size using a standard min-ratio test augmented by
a fraction r ∈ 
0�1�0� that keeps the new iterate values
of 
u� t� strictly positive. We found that setting r = 0�99
tended to work best.

3.3. Initialization Strategies

One way to start Algorithm DRN is to choose any pair

u0� t0� that satisfies u0� t0 > 0, for example 
u0� t0� =

3e�3e� for some suitable positive scalar 3. However, we
found it preferable to choose 
u0� t0� in a way that guaran-
tees the initial primal feasibility of M
u0�, z
u0�. We start
by setting u0 = 
n/2m�e (where the factor n/2m was cho-
sen empirically). We then compute M
u0�, z
u0� via (13)
and (14) and test for strict primal feasibility by checking
if h
u0� � 
0�95�e, and if so we set t0 = e − h
u0� > 0,
thus ensuring positivity of 
u0� t0� as well as initial fea-
sibility of the equations h
u� + t = e at 
u� t� = 
u0� t0�.
If h
u0� � 
0�95�e, observe that because h
3u�= h
u�/3
from (16), we can rescale u0 to ensure strict feasibility of
the algorithm as follows: compute

3= max�h1
u
0�� � � � � hm
u

0��

0�95
�

u0 ← 3u0� (20)

t0 ← e−h
u0��
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This initialization strategy then guarantees strict positivity
of 
u0� t0� as well as initial feasibility of the equations
h
u�+ t = e at 
u� t�= 
u0� t0�.

3.4. Stopping Criteria

The following result is the basis of the stopping criteria
of Algorithm DRN, where recall from (1) that #
M�z�=
− ln detM :

Proposition 7. Under Assumption 1, suppose that u > 0.
If h
u� � e, then 
M�z� �= 
M
u�� z
u�� is feasible for
MVCE2 and #
M�z�−uTt is a lower bound on the optimal
objective function value of MVCE2.

Proposition 7 states that the optimality gap of a feasible
solution 
M�z� �= 
M
u�� z
u�� of MVCE2 is at most uTt,
where t = e−h
u�� 0. The stopping criteria of Algorithm
DRN, specified in Step 1, is to check that primal feasibil-
ity is satisfied to a prespecified tolerance �1, and then to
check if the relative optimality gap is not greater than �2,
where �2 is the prespecified tolerance. In our computational
tests, we set �1 = �2 = 10−7. However, in practical appli-
cations in data mining where optimal objective function
values are desirable but not critical, we might expect the
optimality tolerance to be on the order of �2 = 10−4, for
example.

4. Dual Formulations and the Conditional
Gradient Method for the Dual

4.1. Dual Formulations

Using standard Lagrangean duality constructs, one can con-
struct the following dual problem of MVCE2:

max
u

4
u� �=
(
n

2
ln 2+ n

2

)
+ 1
2
ln det

[
AUAT − AuuTAT

eTu

]
− eTu

s.t. u� 0�

(21)

and 4
u� � #
M�z� for all u and 
M�z� feasible for (1)
and (21), respectively.
Using the fact that

det
[
AUAT − AuuTAT

eTu

]
= det

(
AUAT Au

uTAT eTu

)
· 1
eTu

�

we can rewrite (21) as

max
u

(
n

2
ln 2+ n

2

)
+ 1
2
ln det

(
AUAT Au

uTAT eTu

)

− 1
2
ln
eTu�− eTu

s.t. u� 0�

(22)

If we then rewrite u as u= 5̃ũ, where 5̃= eTu, and ũ ∈�m
+,

we can further rewrite (22) as follows:

max
5̃� ũ

(
n

2
ln 2+ n

2

)
+ n+ 1

2
ln 5̃

+ 1
2
ln det

(
AŨAT Aũ

ũTAT eTũ

)
− 1
2
ln 5̃− 5̃

s.t. eTũ= 1�

5̃� 0� ũ� 0�

(23)

Gathering terms in the objective function of (23) and opti-
mizing with respect to 5̃ yields 5̃= n/2, which when sub-
stituted yields the refined dual problem RD of (3). We refer
to RD as a refinement of (23) because (23) has been opti-
mized with respect to the scalar variable 5̃. The dual prob-
lem RD is well-known in the study of minimum-volume
covering ellipsoids; see Khachiyan (1996), for example.
Furthermore, the D-optimal experimental design problem
can be formulated as an instance of RD (see, for example,
Vandenberghe et al. 1998); and hence the computational
methods developed herein are applicable to large-scale
experimental design problems.
Taking the Lagrangean dual of RD and further refin-

ing the resulting minimization problem yields the following
problem:


PL� min
Y

(
n

2
lnn

)
−
(
n+ 1
2

ln
n+ 1�
)
− 1
2
ln det Y

s.t.
(
ai
1

)T

�Y �

(
ai
1

)
� 1� i= 1� � � � �m�

Y ∈�n+1
++ �

(24)

Problem (PL) seeks to find the minimum-volume ellip-
soid in �n+1 centered at the origin that contains the
lifted points 
ai�1�

T for i = 1� � � � �m, where each point
ai has now been lifted into �n+1 onto the hyperplane
H �= �
x� xn+1� � xn+1 = 1�. Khachiyan and Todd (1993),
Khachiyan (1996), and Nesterov and Nemirovskii (1994)
propose algorithms for solving minimum-volume covering
ellipsoids based on this lifting. The minimum-volume ellip-
soid of the original problem is recovered as the intersection
of the hyperplane H and the minimum-volume covering
ellipsoid centered at the origin containing the lifted points

ai�1�

T , i= 1� � � � �m.

4.2. The Conditional Gradient Method for
Solving RD

Interior-point methods and other second-order methods
exhibit computational superiority in a number of settings
in convex optimization. However, the work per iteration
is necessarily large, which suggests that one might use a
first-order method such as the conditional gradient method
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(Bertsekas 1999) in the early solution stages. Khachiyan
(1996) analyzed the theoretical complexity of a first-order
method for the solution of the minimum-volume cover-
ing ellipsoid problem via formulation RD. Upon careful
examination, the algorithm in Khachiyan (1996) can be
interpreted as a version of the conditional gradient method
applied to this problem. Here, we restate this algorithm
in our notation and interpretation. Let S
m−1� denote the
standard simplex in �m, namely S
m−1� �= �u ∈�m � u� 0,
eTu= 1�, and let

V 
u� �=
[
AUAT Au

uTAT eTu

]
�

Then, problem RD can be cast as maxu∈S
m−1� ln detV 
u�.
It is straightforward to derive the partial derivatives of the
objective function of RD:

gi
u� �=
; ln detV 
u�

;ui

= 
aTi 1�V 
u�−1
(
ai

1

)
� i= 1� � � � �m�

Let ū ∈ S
m−1� be the current iterate value. At each iter-
ation of the conditional gradient method, we compute the
gradient g
ū� �= 
g1
ū�� � � � � gm
ū�� of the objective func-
tion of RD and solve the subproblem maxu∈S
m−1� g
ū�Tu,
whose optimal solution is given by the jth unit vec-
tor ej ∈�m, where j = argmaxi gi
ū�. The method then
requires the solution of the line-search problem

max
3∈�0�1�

fū� j 
3� �= ln detV 

1−3�ū+3ej�

= ln det
(

1−3�V 
ū�+3

(
aj

1

)(
aTj 1

))
�

Khachiyan (1996) cleverly observed that this line-search
problem has a closed-form solution, namely

3= gj
ū�− 
n+ 1�


n+ 1�
gj
ū�− 1�

(see Khachiyan 1996 for details). This leads to the follow-
ing algorithm:

Algorithm Conditional Gradient
Step 0. Initialization. Choose an initial value of u0 sat-

isfying u0 � 0, eTu0 = 1. Set u← u0.
Step 1. Solve Subproblem. Compute

gi
u�= 
aTi 1�V 
u�−1
(
ai

1

)
� i= 1� � � � �m�

Set j ← argmaxi gi
u�.
Step 2. Step-Size Computation and Step.

3← gj
u�− 
n+ 1�


n+ 1�
gj
u�− 1�
�

u← 
1−3�u+3ej . Go to Step 1.

The computational effort at each iteration of the con-
ditional gradient method is dominated by the gradient
computation, which is m
n + 1�2 operations to form and
factorize V 
u� and another m
n + 1�2 operations to then
compute g
u�.

5. Active-Set Strategies
It is easy to see from the optimality conditions (5)–(9)
at ' = 0 that the minimum-volume covering ellipsoid is
determined only by points ai located on its boundary. The
following well-known result of John (1948) states that the
number of such boundary points is not too large:

Remark 8. The minimum-volume covering ellipsoid is
determined by a subset of at most 
n2+3n�/2 points (John
1948).

This motivates the design of active-set strategies for solv-
ing MVCE2, wherein we try to make an intelligent guess of
active points ai at each iteration, and we discard presum-
ably inactive points from time to time. Let � denote the set
of points that must be covered, namely � �= �a1� � � � � am�,
and consider the following active-set method:

Generic Active-Set Method
Step 0. Initialization. Define some initial active set of

points �0 �= �ai1� ai2� � � � � ail � for which �0 satisfies
Assumption 1. Define an initial starting point u00. k← 0.
Step 1. Solve MVCE2 for the Set of Points �k. Use

Algorithm DRN with starting point uk0. Let 
ū
k�Qk� ck� be

the output returned.
Step 2. Check Feasibility. If �aj − ck�Qk

� 1 + �1 for
i ∈�\�k, stop. Return 
u�Q�c� �= 
ūk�Qk� ck�. Otherwise
go to Step 3.
Step 3. Update Active Set. Update the active set to �k+1.

Determine a new starting point uk+10 . k ← k + 1. Go to
Step 1.

To implement the above framework, we need to address
the following specific questions: how to determine the ini-
tial active set �0 and the initial starting point u00, how to
update the active set from iteration to iteration, and how
to choose the starting point uk0 for all subsequent iterations.

5.1. Initial Active Set

One naïve approach is to randomly choose l� n+1 points
that satisfy Assumption 1. Not surprisingly, this method is
inefficient in practice. Also, linear programming could be
used to test and permanently eliminate all points ai that lie
in the convex hull of �\�ai�. This also is inefficient.
We concentrated on developing heuristics for determin-

ing which points ai are “far away” from the “center”
of the data. We developed two main active-set initializa-
tion schemes that we call Sample Covariance Initialization
(SCI) and Conditional Gradient Initialization (CGI), both
of which we now describe.
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5.1.1. Sample Covariance Initialization (SCI). Fol-
lowing (12), the matrix M−2
e� is proportional to the sam-
ple covariance matrix

1
m− 1

[
AAT − AeeTAT

m

]
of the datapoints a1� � � � � am. The inverse of the sample
covariance matrix can serve as a reasonable initial guess of
the shape matrix of the covering ellipsoid and its induced
norm �·�Q
e�, where Q
e� �=M2
e� can serve as a natural
initial distance metric to determine which points are far
from the sample mean ā �= 
Ae�/m. Following this idea,
we define the initial active set to contain m0 points whose
distances from the sample mean di �= �ai − ā�Q
e� are
the largest. To determine the cardinality of the initial set
m0, we need to trade off small size (for faster computa-
tion) against quality of information (which improves for
larger m0). We found that m0 �=min�n1�5�m� worked well
in practice. The computational burden of the SCI scheme
is O
mn2� operations.

5.1.2. Conditional Gradient Initialization (CGI).
The strategy in the CGI scheme is to run the conditional
gradient algorithm for a small number of iterations starting
at the barycenter u= e/m of S
m−1�. At each iteration, we
record the point aj whose index j gave rise to the maxi-
mum partial derivative gj
u� at that iteration; see Step 1 of
the algorithm in §4.2. We accumulate these points to form
the initial active set �0. Although this method tended to
produce initial active sets that were superior to those pro-
duced by the SCI scheme, the computational effort of this
method is much greater than for SCI. Each conditional gra-
dient step needs O
mn2� operations (which is the same as
the entire SCI scheme), and running the method for l steps,
then, is O
lmn2� operations. To satisfy Assumption 1, we
need to have at least n+ 1 affinely independent points in
the initial active set to have a full-dimensional ellipsoid,
and so we must set l � n+ 1. Because of this, we chose
l= n+1 as the number of conditional gradient steps to run.
We compare the computational performance of SCI ver-

sus CGI in §6.

5.2. Determining uk
0

We first discuss the issue of determining u00. If the initial
active set �0 is chosen via SCI, we set 
u00�i proportional
to the distance di �= �ai − ā�Q
e� for i ∈ �0, normalizing
so that eT
u00�= n/2. If the initial active set is chosen via
CGI, we set 
u00�i proportional to the output values ui of
the conditional gradient algorithm for i ∈ �0, normalizing
so that eT
u00�= n/2. The reason for this normalization is
that it follows from (22) that u optimal for (22) must satisfy
eTu= n/2.
We now discuss how uk0 is determined for k� 1. At the

end of the previous active-set step, Algorithm DRN has
computed ūk for the active set �k. If the active set has just

been expanded so that �k+1 =�k ∪-� , we set uk+10 to be
a combination

3

(
ūk
0

)
+ 
1−3�

(
0
d̄

)
�

where the indices are partitioned here into �k and -� and
d̄i = �ai − ck�Qk

. We found that 3= 0�75 worked well in
practice. Then, we normalize so that eT
uk+10 �= n/2.
If the active set has just been shrunk, we simply

renormalize ūk so that the remaining indices satisfy∑
i∈�k+1
u

k+1
0 �i = n/2.

5.3. Updating the Active Set

5.3.1. Expanding the Active Set. Suppose that the
current active set is �k and that we have just run Algo-
rithm DRN on this set, obtaining 
ūk�Qk� ck� as output. We
consider expanding the active set to �k+1 = �k ∪ -� for
some set -� . When we expand the active set, we choose
points ai ��k, whose distances from the current center ck
are largest, using the current ellipsoidal norm to define the
distances: di �= �ai−ck�Qk

. We would like to add a reason-
able number of points to the active set whose distances di

satisfy di � 1 (otherwise, ai would remain inactive in the
current active set), and are large. We sort the dis to deter-
mine a priority ranking. The simple strategy of choosing
the l � 1 farthest points to enter the active set does not
work well because, for example, the second-farthest point
may be nearby and dominated by the farthest point. Intu-
itively, we want the points that we add to the active set to
be spread around the current ellipsoid EQk� ck

. This is han-
dled in our code as follows: After sorting points according
to the dis and considering only points ai with di > 1, if
there are fewer than 30 such points we simply include all
of them in -� . Otherwise, the first point to be added to
-� is the point ai with the largest di. After that, we exam-
ine points one by one in descending order of di, and we
add aj to -� if

∑
i∈-� 
aj − ck�

TQk
ai − ck� < 0. In this
way, the points that wind up in -� will tend to make larger
angles with other points in -� (measured with respect to
the matrix Qk), and so will hopefully be spread around the
ellipsoid EQk� ck

.

5.3.2. Shrinking the Active Set. There are several
ways to delete points from the current active set with the
guarantee that they will not enter the active set again. One
way is to use linear programming to test if a given point
in the active set lies in the convex hull of the other points
in the active set, but this approach is obviously too expen-
sive. Another possibility is to check if any of the points
in the active set lie in the inscribed Löwner-John ellipsoid
E
n2Qk�� ck

, which is guaranteed to be contained in the con-
vex hull of the current active set (see John 1948). Checking
this is relatively inexpensive, but is not effective in higher
dimensions because it simply deletes too few points.
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We used the following simple heuristic to delete points:
When the cardinality of the active set first reaches
100�150�200� � � � � we delete all points ai whose current
distance from the current center (using the current ellip-
soidal norm) satisfies di < 0�9999.
Finite termination of active-set methods typically can

be proved under the assumption that each subproblem is
solved exactly; see some of the discussions on this in
Powell (1982) or Gill and Murray (1974), for example.

6. Computational Results
To perform computational tests, we generated datasets of
varying dimension n and number of points m. The datasets
were generated using independent random multinomial
Gaussian distribution or several Gaussian distributions, to
mimic the datapoints from one or more clusters, as might
be encountered in practice. All computation was done
in MATLAB 6.5.0.180913a Release 13 on a Pentium IV
1.5 GHz PC with 1 GB RAM, running LINUX.

6.1. Small- and Medium-Size Problems

Table 1 shows computational results for the solution
of the minimum-volume covering ellipsoid problem on
small- and medium-sized problems, namely 4 � n � 20
and 20�m� 500. We tested three different algorithms:
(i) solution via Algorithm DRN described in §3, (ii) solu-
tion via formulation RD solved by using a modified version
of SDPT3 (modified to handle the parameterized family of
barrier functions in (2) with ' absent from the first term),
and (iii) solution via formulation MVCE3 using the same
modified version of SDPT3. In Table 1 and elsewhere, we
refer to these three approaches simply as DRN, RD-SDPT3,
and MVCE3-SDPT3. All three methods were run on the
full problems, i.e., without any active-set methodology. The
starting point used for Algorithm DRN was as described
in §3.3. We tried a variety of different ways to choose start-
ing points for Algorithms RD-SDPT3 and MVCE3-SDPT3,
but ultimately found no obvious advantage over the default
starting-point methodology built into SDPT3. All feasibil-
ity and relative duality gap tolerances were set to �= 10−7.
The “Iterations” columns in Table 1 show the number of
IPM/Newton iterations for each method. Table 1 also shows
the geometric means of iterations and solution times. Note
that in Table 1 there were two problem instances of size
n= 10 and m= 500 for which MVCE3-SDPT3 terminated
prematurely due to numerical problems.
The first observation from Table 1 is that MVCE3-

SDPT3 has vastly inferior solution times to DRN and to
RD-SDPT3. This is almost surely due to the very large
Schur-complement matrix 
m
n+1�×m
n+1�� that must
be formed and factorized to solve MVCE3 via SDPT3.
The second observation from Table 1 is that DRN

needs to take roughly one-half as many Newton steps as
RD-SDPT3. Examining the output of SDPT3 in greater
detail to assess the reasons for this, we found that, par-

ticularly in the first 10 iterations, RD-SDPT3 routinely
had slow convergence to primal and/or dual feasibility.
(In interior-point codes such as SDPT3, slow convergence
to feasibility is indicated by step sizes that are much less
than 1.) However, in the last few iterations of RD-SDPT3,
the iterates of RD-SDPT3 converged as quickly as for
DRN. This probably means that SDPT3 is not as capable
of capitalizing on good starting-point information, but it
also could mean that the directions produced by DRN are
somehow better. Of course, the performance of RD-SDPT3
could potentially improve if a more successful starting-
point methodology is found, but so far such a method-
ology has eluded us even after testing several different
approaches.
The computational effort per iteration for DRN is dom-

inated by factorizing and solving an m × m matrix,
whereas for RD-SDPT3 it is dominated by factorizing and
solving an(
n2 + 3n+ 4

2

)
×
(
n2 + 3n+ 4

2

)
matrix. When m/n2 � 1/2, we might expect DRN to dom-
inate RD-SDPT3; when m/n2 � 1/2, we might expect
RD-SDPT3 to dominate DRN. This intuition is verified
by the numbers in Table 2. The rightmost column in
Table 2 shows the ratio of the DRN solution times to the
RD-SDPT3 solution times. Table 2 shows the trend that
the relative advantage of DRN over SDPT3 diminishes as
m/n2 grows. However, for m/n2 � 1/2, DRN outperforms
RD-SDPT3.

6.2. Solving Large Problems Using DRN and
Active-Set Strategies

The computational results in §6.1 are for small- to medium-
size problems; for larger-sized problems, an active-set
strategy is necessary to achieve good computational perfor-
mance. Recall from Remark 8 that the minimum-volume
ellipsoid is determined by at most 
n2 + 3n�/2 points.
Furthermore, our computational experience indicates that
the number of points that determine the minimum-volume
ellipsoid tends to be closer to n2/4 in practice. Based on the
analysis reported in Table 2, this suggests that Algorithm
DRN should be used to solve the active-set subproblems
at each major iteration, because its performance is superior
to RD-SDPT3 when mk/n

2 � 1/4< 1/2, where mk is the
number of points in the active set at iteration k.
Table 3 summarizes the computational performance

of Algorithm DRN coupled with the active-set strategy
described in §5, for dimensions n and m in the ranges
10� n� 30 and 1�000 � m � 30�000, over samples
of 10 randomly generated problems. (For completeness,
Table 4 in the appendix shows the computational perfor-
mance measures for every problem solved.) The average
performance measures in Table 3 are computed using the
geometric mean of the 10 randomly generated problems.
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Table 1. Performance of Algorithms DRN, RD-SDPT3, and MVCE3-SDPT3 on small- and medium-sized problem
instances of the minimum-volume covering ellipsoid problem.

Algorithm

DRN RD-SDPT3 MVCE3-SDPT3

Dimensions Solution time Solution time Solution time
n m Iterations (seconds) Iterations (seconds) Iterations (seconds)

4 20 10 0�06 18 0�91 12 1�19
4 20 11 0�03 22 0�93 12 1�03
4 20 11 0�03 15∗ 0�65∗ 13 1�1
4 20 9 0�02 17 0�75 15 1�28
4 20 10 0�02 17 0�74 10 0�84
4 20 9 0�02 14 0�61 14 1�19
4 20 10 0�02 16 0�69 10 0�86
4 20 10 0�02 18 0�8 13 1�11
4 20 10 0�03 16 0�69 13 1�11
4 20 10 0�02 19 0�82 13 1�1

Geometric mean 9�980 0�0252 17�073 0�7524 12�406 1�072

4 60 11 0�08 18 1�12 12 2�75
4 60 10 0�07 23 1�44 11 2�58
4 60 11 0�08 18 1�12 13 2�99
4 60 12 0�09 19 1�18 13 3�01
4 60 10 0�07 18 1�11 13 2�97
4 60 11 0�07 20 1�25 14 3�17
4 60 12 0�08 16 0�98 12 2�81
4 60 11 0�08 18 1�12 13 2�98
4 60 14 0�1 24 1�48 16 3�64
4 60 11 0�08 16∗ 1�01∗ 11 2�56

Geometric mean 11�250 0�0795 18�841 1�171 12�727 2�932

10 200 14 1�46 28 4�96 12 96�89
10 200 13 1�32 26 4�45 14 112�27
10 200 16 1�61 21 3�64 14 112�07
10 200 13 1�32 21 3�64 14 112�42
10 200 15 1�52 26 4�5 13 104�45
10 200 15 1�52 21 3�61 14 112�47
10 200 14 1�41 29 4�97 13 104�79
10 200 15 1�51 24 4�15 13 105�06
10 200 18 1�82 24 4�15 14 112�09
10 200 12 1�22 22 3�79 14 112�14

Geometric mean 14�411 1�462 24�038 4�157 13�483 108�34

10 500 16 19�08 23 14�08 15∗∗ 2�008�13∗∗

10 500 16 19�13 27 16�54 16 1�970�17
10 500 15 17�98 23 14�13 15 1�869�81
10 500 17 20�35 33 20�17 18 2�281�87
10 500 15 17�95 29 17�68 16 1�985�44
10 500 18 21�51 30 18�38 16 1�985�84
10 500 15 17�91 20 12�29 15∗∗ 2�105�83∗∗

10 500 16 19�18 19 11�68 14 1�726�04
10 500 17 20�32 25 15�36 15 1�838�34
10 500 16 19�16 28 17�05 15 1�890�58

Geometric mean 16�073 19�225 25�338 15�52 15�468 1�960�957

20 500 16 19�46 35 29�25
20 500 17 20�75 21 17�66
20 500 15 18�28 29 24�31
20 500 15 18�69 27 22�64
20 500 14 18�03 29 24�36 OUT OF MEMORY
20 500 17 21�99 30 25�1
20 500 14 18�17 29 24�33
20 500 16 20�79 27 22�6
20 500 15 19�47 31 25�95
20 500 16 20�79 36 30�11

Geometric mean 15�466 19�599 29�114 24�396

∗Indicates premature termination of SDPT3 with termination code “Stop: progress is too slow.”
∗∗Indicates premature termination of SDPT3 with termination code “Stop: failure to solve the Schur-complement equation by using the

Sherman-Morrison update.”
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Table 2. Geometric mean of solution times of Algo-
rithms DRN and RD-SDPT3 as a function
of the dimensions for random samples of 10
problems.

Geometric mean of
solution time (seconds)

Ratio

n m m/n2 DRN RD-SDPT3
DRN

RD-SDPT3

10 50 0�5 0�062 1�221 0�051
10 100 1 0�224 1�933 0�116
10 200 2 1�335 3�827 0�349
10 400 4 9�294 10�589 0�878
10 600 6 30�911 17�826 1�734
10 800 8 78�889 30�482 2�588

20 200 0�5 1�361 6�98 0�195
20 300 0�75 4�067 11�047 0�368
20 400 1 9�104 19�381 0�470
20 600 1�5 30�393 34�774 0�874
20 800 2 74�428 60�157 1�237
20 1�000 2�5 153�018 95�412 1�604
20 1�200 3 288�510 143�678 2�008

30 450 0�5 13�571 33�813 0�401
30 900 1 149�895 114�429 1�310
30 1�350 1�5 408�515 270�31 1�511
30 1�800 2 1�012�718 478�09 2�118

The table presents results using the two initialization
schemes SCI and CGI that were described in §§5.1.1 and
5.1.2. The “Iterations” columns report the number of outer
iterations, that is, the number of different subproblems
solved, and the “Final Active Set” columns report the num-
ber of points present in the last active-set subproblem.
(Note that the active set is the current working set of points,
as opposed to the set of points that lie on the boundary
of the optimal ellipsoid, which we call the set of “bind-
ing points.”) The “Initialization Time” columns report the
time taken by the algorithm to initialize the active set using
the CGI and the SCI initialization schemes. The “Total
Solution Time” columns report the total time to solve the
problems. As before, all subproblems were solved to a
feasibility tolerance and a relative duality gap tolerance
of �= 10−7. Note that the Final Active Set numbers are

Table 3. Summary performance of Algorithm DRN with an active-set strategy using CGI and SCI initialization
schemes on large-problem instances of the minimum-volume covering ellipsoid problem for random samples
of 10 problems.

CGI SCI
Dimensions Final Initialization Total solution Final Initialization Total solution
n m Iterations active set time (seconds) time (seconds) Iterations active set time (seconds) time (seconds)

20 1�000 7�49 75�63 0�15 1�2 6�28 75�24 0�01 1�63
10 10�000 5�82 37�92 0�35 0�88 8�98 39�19 0�05 1�13
20 10�000 11�77 112�57 1�2 4�7 9�79 111�95 0�08 4�1
20 20�000 10�53 97�97 2�57 5�52 11�92 101�55 0�18 5�4
20 30�000 11�36 115�21 3�48 7�76 12�51 106�16 0�23 6�36
30 10�000 15�4 201�69 3�34 16�86 12�66 193�14 0�15 14�96
30 20�000 15�71 213�87 6�9 23�91 12�4 214�48 0�29 18�22
30 30�000 16�69 201�59 10�08 28�83 13�44 195�18 0�44 19�82

different for the two initialization schemes. This reflects the
fact that the two initialization schemes start with different
active sets, and hence terminate with different active sets
as well.
The table indicates that SCI dominates CGI in terms

of Total Solution Time, becoming more advantageous for
larger problem dimensions. This is probably due to the
fact that CGI requires roughly mn3 operations as opposed
to mn2 for SCI, but also it appears from the numbers in
Table 3 that the active set generated by CGI is just not as
good, as evidenced by the fact that if the initialization times
are subtracted from the total times, then SCI still wins by
a large margin, especially on the larger problems.
The Total Solution Times reported in Table 3 for the

largest problems (n= 30, m= 30�000) clearly indicate that
Algorithm DRN coupled with a suitable active-set strat-
egy solves these problems to a high degree of accuracy

�1 = �2 = 10−7� in well under 30 seconds on a personal
computer.

7. Some Unsuccessful Strategies
In developing Algorithm DRN and the active-set strategies
discussed in §5, we tested and discarded a wide variety of
computational strategies in favor of more efficient meth-
ods. Some of these strategies were mentioned in §5; here
is a short list of other strategies that were not previously
discussed.
• Directly Linearizing the Optimality Conditions. The

direction computed by Algorithm DRN at each iteration
is the result of first eliminating the variables M , z from
Equations (4)–(9) and then linearizing the remaining non-
linear system, finally yielding a system of linear equa-
tions of dimension m. An alternative strategy is to directly
linearize Equations (4)–(9) and then eliminate variables t
and u and solve the remaining system of linear equations
for M , z. Using this strategy, one would only need to fac-
torize a matrix of dimension 
n
n+ 3��/2, which should
be less than m. Unfortunately, we found that forming
the matrix of the resulting linear system required roughly
m2n4 operations, which dominates the factorization pro-
cedure for each Newton step. In computational tests, we
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found that not only is the overall computation time much
slower than that of Algorithm DRN, but the number of
Newton iterations was consistently higher as well, suggest-
ing that the directions produced by this method are inferior
to those of Algorithm DRN.
• Expanding the Active Set. The strategy for expanding

the active set was described in detail in §5.3.1, where we
described how points are chosen to be added to the active
set based on the idea of having the new points be far from
the center ck as measured in the ellipsoidal distance di

for each point ai (see §5.3.1 for details) and also spread
out in all directions around the ellipsoid. This was orig-
inally accomplished by examining points one by one in
descending order of di, and then including aj into -� if

aj − ck�

TQk
ai− ck� < 0 for all i ∈-� . However, compu-
tational testing revealed that this resulted in too few points
being added at each outer iteration.
• Hybrid of SCI and CGI. We tested several hybrids of

SCI and CGI. In one approach, SCI was used to obtain
m/3 points, and then these points were used to initialize the
conditional gradient algorithm, which would then be run
for l = n + 1 iterations to then produce the initial active
set �0 and u00. The motivation for this strategy was that
this would essentially cut the computation time of CGI by
one-third. Another idea that we tested was to start the CGI
from a point u0 whose ith component was proportional to
the distance from ai to the sample mean ā �= 
1/m�Ae.
Neither of these approaches proved to be very effective.
• Conditional Gradient Algorithm for the Solution

of RD. Khachiyan (1996) provides the best-known com-
plexity bound for solving the minimum-volume covering
ellipsoid problem, and his method can be interpreted as the
conditional gradient algorithm applied to the formulation
RD. However, as one might expect, this algorithm is not
effective in practice.

8. Concluding Remarks
Algorithms and associated software for conic formulations
of convex optimization problems that use primal-dual
interior-point methods are intended for general convex
problems presented in such conic format. While these
algorithms generally perform well in practice, they are
not designed to be able to consider any special struc-
ture of certain classes of problems, such as the minimum-
volume covering ellipsoid problem. Herein, we have
presented Algorithm DRN for solving the minimum cover-
ing ellipsoid problem, which is itself an interior-point-type
algorithm, and which is designed around the optimality
conditions of the problem augmented with a logarithmic
barrier term, although it does not quite fall into the exist-
ing interior-point algorithm theoretical framework of self-
concordant functions. We have shown that this algorithm
performs very well for problems of moderate size. When
the number of points to be covered is large, we show how
Algorithm DRN can be used with an active-set strategy

(where the active-set strategy is also designed specifically
for the minimum-volume covering ellipsoid problem), and
we report computational results on large problems that val-
idate the efficiency of these approaches. (Incidentally, we
also did some computational testing of algorithms applied
to problems of large dimension (n = 100, 200, and 500)
with a moderate number of points 
m= 1�000�. Consistent
with the implications discussed in §6.1, we found that DRN
outperformed RD-SDPT3 by factors of 3 to 20.)
From a practical point of view, most applications of the

minimum-volume ellipsoid are based on the ideal situation
in which there are no outliers in the data. To make the
minimum-volume ellipsoid problem more amenable in the
presence of outliers, it is necessary to explore problem for-
mulations that allow points that lie outside of the ellipsoid,
such as in the following problem formulation, which penal-
izes such points:


MVCEP� min
M�z�?

− ln detM +PeT?

s.t. 
Mai − z�T
Mai − z�� 1+ ?i�

i= 1� � � � �m�

? � 0�

M � 0�

in which P is a user-specified penalizing coefficient. For-
mulation (MVCEP) could also be solved by a slight mod-
ification of Algorithm DRN, with the active-set strategy
if need be. This formulation has the potential of identi-
fying outliers in the data, which has been an important
focus in data mining; see Knorr and Zamar (2001). How-
ever, from the point of view of determining a “robust”
minimum-volume ellipsoid, MVCEP still has the draw-
back that the shape of the optimal ellipsoid is poten-
tially determined in part by points that lie outside of the
optimal ellipsoid. Future work in this area could include
developing formulations and solution methods for this
problem that include nonconvex penalizing terms such as
P
∑m

i=1 sign
?i�.

Appendix

Proofs of Propositions 2, 5, and 7

Proof of Proposition 2. Let A =U 1/2e. Then, note that(
AUAT − AuuTAT

eTu

)
=AU 1/2

[
I − AAT

ATA

]
U 1/2AT � 0

because P �= �I − AAT /ATA� � 0 (P is a projection
matrix, P 2 = P , P = PT ). Now suppose that yT
AUAT −
AuuTAT /eTu�y = 0, y �= 0. This can only happen if
U 1/2ATy = 'A for some scalar ', i.e., U 1/2ATy = 'U 1/2e.
Therefore, ATy = 'e, y �= 0, which violates Assump-
tion 1. �
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Proof of Proposition 5. Define C
u� �= M2
u� =
�2
AUAT−AuuTAT/eTu��−1 and ãi
u� �=ai−Au/eTu. From
the definition of /
u�, we have

Cij
u� �= �/
u��ij = 
ãi
u��
TM2
u�
ãj
u��� (25)

and thus hi
u�= �/
u��ii from (20), which shows part (iii)
of Proposition 5. To compute ,uh
u�, we employ the chain
rule. We have

;ãi
u�

;uj
= Au


eTu�2
− aj

eT u
= −ãj

eTu

and

;C
u�

;uj
=−2C
u�

[
aja

T
j +

AuuTAT


eTu�2

− aju
TAT

eTu
− AuaTj

eTu

]
C
u�

=−2C
u�ãj
u�
ãj
u��TC
u��

Now invoke the chain rule on (25):

;hi
u�

;uj
= −2

eTu

ãi
u��

TC
u�ãj
u�

− 2
ãi
u��
T C
u�ãj
u�
ãj
u��

TC
u�ãi
u�

=−2
(
Cij
u�

eTu
+ 
Cij
u��

2

)
�

Therefore, ,uh
u�=−2
/
u�/
eTu�+/
u� �/
u��, prov-
ing part (i). Now note that /
u�� 0, eTu > 0, and /
u� �
/
u� � 0 because the Hadamard product of symmetric
positive semidefinite matrices is also symmetric positive
semidefinite; see Theorem 7.5.3 of Horn and Johnson
(1985). Therefore, ,uh
u�� 0, proving part (ii). �

Proof of Proposition 7. Let 
M�z� = 
M
u�� z
u��.
M
u� � 0 from Proposition 2, and from (16) we see
that h
u� � e is the same as 
Mai − z�T
Mai − z� � 1,
i= 1� � � � �m, whereby 
M�z� is feasible for MVCE2. Note
that u is feasible for the dual problem (21), with duality gap

#
M�z�−4
u�=− ln detM − n

2
ln 2− n

2

− 1
2
ln det

[
AUAT − AuuTAT

eTu

]
+ eTu

=−n

2
+ eTu (from (13))

=−n

2
+ uTt+ uTh
u��

If uTh
u� = n/2, then #
M�z�− uTt = 4
u�, which is
a dual-feasible objective function value and hence a lower
bound on the optimal objective function value of MVCE2.

We therefore need to show that uTh
u� = n/2, which we
do now:

uTh
u�=
m∑
i=1

ui
Mai − z�T
Mai − z�

=
m∑
i=1

ui

(
ai −

Au

eTu

)T

M2

(
ai −

Au

eTu

)

=
m∑
i=1

ui

(
ai −

Au

eTu

)(
ai −

Au

eTu

)T

·M2

=
(
A− AueT

eTu

)
U

(
A− AueT

eTu

)T

·M2

=
(
AUAT − AuuTAT

eTu

)
·M2 = 1

2
M−2 ·M2 = n

2
�

where “·” denotes the trace operator A ·B = trace
ATB�=∑n
i=1
A

TB�ii. �

Extended Version of Table 3

Table 4 shows the computational performance measures for
all problems solved by Algorithm DRN coupled with the
active-set strategy. As discussed in §6.2, the table presents
results using the two initialization schemes SCI and CGI,
which were described in §§5.1.1 and 5.1.2. The “Iterations”
columns report the number of outer iterations, that is, the
number of different subproblems solved, and the “Final
Active Set” columns report the number of points present
in the last active-set subproblem. The “Initialization Time”
columns report the time taken by the algorithm to initial-
ize the active set using the CGI and the SCI initialization
schemes. The “Total Solution Time” columns report the
total time to solve the problems. As before, all subproblems
were solved to a feasibility tolerance and a relative duality
gap tolerance of �= 10−7.

The DRN Direction Is Not a Newton Direction of a
Self-Concordant Function

In this subsection, we show that the (Newton) direction pro-
duced by Algorithm DRN is not the Newton direction of a
self-concordant function. However, it is the Newton direc-
tion of a function that is almost self-concordant.
For a given u> 0 and t > 0, the DRN direction is given

by the formula

-u= 
,uh
u�−U−1T �−1
e− 'U−1e−h
u��� (26)

see (18).
Let

Df �=
{
u ∈�m

∣∣∣∣ (AUAT − AuuTAT

eTu

)
� 0

}
�

and for u ∈Df define the function

f 
u� �=−1
2
ln det

(
AUAT − AuuTAT

eTu

)
� (27)

and recall the definition of h
u� in (16).
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Table 4. Performance of Algorithm DRN with an active-set strategy using CGI and SCI initialization schemes on large-
problem instances of the minimum-volume covering ellipsoid problem.

CGI SCI
Dimensions Final Initialization Total solution Final Initialization Total solution

n m Iterations active set time (seconds) time (seconds) Iterations active set time (seconds) time (seconds)

20 1�000 8 76 0�17 1�18 7 74 0�02 1�62
20 1�000 6 83 0�15 1�2 5 84 0�01 1�23
20 1�000 7 79 0�15 1�14 8 79 0�02 2�14
20 1�000 9 74 0�15 1�33 10 71 0�01 2�5
20 1�000 6 57 0�14 0�64 5 57 0�01 1�4
20 1�000 9 72 0�15 1�27 7 72 0�01 1�72
20 1�000 6 74 0�13 1 5 75 0�01 1�16
20 1�000 7 72 0�14 1�12 7 72 0�01 1�71
20 1�000 9 71 0�14 1�33 7 71 0�02 1�85
20 1�000 9 107 0�14 2�38 4 106 0�01 1�38
Geometric mean 7�49 75�63 0�15 1�20 6�28 75�24 0�01 1�63

10 10�000 6 29 0�34 0�74 11 32 0�05 1�57
10 10�000 6 37 0�34 0�96 7 41 0�05 1�16
10 10�000 7 52 0�36 1�01 9 52 0�04 1�16
10 10�000 5 33 0�37 0�84 10 37 0�06 1�4
10 10�000 7 34 0�38 0�95 9 63 0�04 1�08
10 10�000 4 34 0�38 0�76 12 34 0�05 1�18
10 10�000 6 41 0�33 1�05 7 33 0�05 0�8
10 10�000 7 50 0�33 1�07 6 42 0�04 0�66
10 10�000 5 47 0�33 0�82 12 38 0�04 2�02
10 10�000 6 30 0�33 0�66 9 30 0�04 0�88
Geometric mean 5�82 37�92 0�35 0�88 8�98 39�19 0�05 1�13

20 10�000 11 97 1�22 3�29 13 116 0�08 4�95
20 10�000 14 123 1�21 6�76 7 119 0�08 3�02
20 10�000 14 127 1�19 4�69 14 116 0�08 6�13
20 10�000 9 98 1�19 3�38 12 106 0�08 4�65
20 10�000 13 119 1�23 5�91 8 118 0�08 3�77
20 10�000 13 141 1�19 6�64 7 119 0�08 3�05
20 10�000 13 137 1�19 6�58 7 129 0�08 3�09
20 10�000 10 88 1�18 3�1 15 81 0�08 5�66
20 10�000 10 87 1�18 3�21 15 97 0�08 5�55
20 10�000 12 125 1�23 5�79 6 128 0�08 2�85
Geometric mean 11�77 112�57 1�20 4�70 9�79 111�95 0�08 4�10

20 20�000 12 97 2�35 5�13 18 96 0�15 7�45
20 20�000 11 92 2�34 5�7 9 92 0�16 4�31
20 20�000 10 92 2�55 5�15 15 84 0�17 5�68
20 20�000 11 84 2�58 5�22 11 105 0�17 4�41
20 20�000 11 98 2�59 5�76 12 106 0�19 5�49
20 20�000 11 92 2�73 5�69 16 104 0�19 6�73
20 20�000 12 118 2�72 6�47 8 112 0�18 4
20 20�000 11 108 2�56 5�53 11 104 0�19 5�5
20 20�000 8 97 2�57 4�92 8 98 0�18 3�71
20 20�000 9 106 2�76 5�74 16 119 0�18 8�62
Geometric mean 10�53 97�97 2�57 5�52 11�92 101�55 0�18 5�40

20 30�000 10 111 3�63 7�09 12 108 0�26 6�32
20 30�000 10 126 3�77 8�29 12 108 0�23 6�78
20 30�000 12 135 3�72 9�34 13 123 0�25 7�38
20 30�000 15 154 3�59 10�94 8 132 0�25 5�14
20 30�000 12 127 3�56 8�62 16 112 0�23 7�54
20 30�000 12 108 3�37 6�97 13 93 0�22 5�04
20 30�000 14 135 3�32 9�98 11 147 0�22 6�79
20 30�000 9 79 3�28 5�52 13 81 0�22 5�84
20 30�000 10 95 3�29 5�98 15 88 0�22 7�01
20 30�000 11 102 3�28 6�64 14 88 0�22 6�29
Geometric mean 11�36 115�21 3�48 7�76 12�51 106�16 0�23 6�36
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Table 4. (Continued.)

CGI SCI
Dimensions Final Initialization Total solution Final Initialization Total solution

n m Iterations active set time (seconds) time (seconds) Iterations active set time (seconds) time (seconds)

30 10�000 14 194 2�97 12�63 11 174 0�14 8�98
30 10�000 19 224 2�97 26�83 17 219 0�13 24�95
30 10�000 18 223 3�06 20�67 16 198 0�14 16�13
30 10�000 15 189 3�42 13�2 12 195 0�15 13�05
30 10�000 13 199 3�55 13�72 15 177 0�15 16�76
30 10�000 15 172 3�55 13�43 13 172 0�15 11�51
30 10�000 15 195 3�43 16�02 14 170 0�16 15�22
30 10�000 14 158 3�47 12�94 15 162 0�15 16�66
30 10�000 17 254 3�55 25�05 8 244 0�15 14�78
30 10�000 15 227 3�52 20�94 9 240 0�15 16�46
Geometric mean 15�40 201�69 3�34 16�86 12�66 193�14 0�15 14�96

30 20�000 14 184 7�05 17�62 20 195 0�29 24�19
30 20�000 14 198 6�65 20�09 14 192 0�28 15�95
30 20�000 15 189 6�85 18�89 11 169 0�29 12�45
30 20�000 17 234 6�85 25�05 18 228 0�3 26�17
30 20�000 17 216 6�81 28�61 10 239 0�29 20�02
30 20�000 19 220 6�97 27�79 13 205 0�29 19�18
30 20�000 17 239 6�93 31�68 8 239 0�3 14�44
30 20�000 14 227 6�96 24�6 9 227 0�3 17�13
30 20�000 17 241 6�93 31�7 11 262 0�29 22�86
30 20�000 14 200 7�05 18�58 15 205 0�25 14�76
Geometric mean 15�71 213�87 6�90 23�91 12�40 214�48 0�29 18�22

30 30�000 14 167 8�96 19�5 15 178 0�43 17�96
30 30�000 16 245 10�14 34�7 11 244 0�43 24�54
30 30�000 14 175 8�72 18�58 13 147 0�44 12�28
30 30�000 17 147 10�39 22�06 19 145 0�43 16�19
30 30�000 17 239 10�57 34�78 11 222 0�43 20�64
30 30�000 18 169 10�52 25�7 13 170 0�45 13�65
30 30�000 18 248 10�53 45�20 10 248 0�42 25�08
30 30�000 19 212 10�47 33�21 20 193 0�44 26�96
30 30�000 20 268 10�47 41�96 11 246 0�44 24�69
30 30�000 15 185 10�2 25�39 15 195 0�45 22�69
Geometric mean 16�69 201�59 10�08 28�83 13�44 195�18 0�44 19�82

Proposition 9. Suppose that u ∈ Df . Then, ,f 
u� =
−h
u�.

Proof. This follows by direct but tedious application of
the chain rule. �

Our analysis relies on the non-self-concordance of f 
u�,
which is stated in the next proposition, and whose proof
appears at the end of this section.

Proposition 10. f 
u� is not a self-concordant function
on Df .

Now consider the following optimization problem, which
is equivalent to the program (21) with a logarithmic barrier
term added:


D1
'� min

u
f 
u�+ eTu− '

m∑
i=1

ln
ui�

s.t. u> 0�
(28)

At any point u > 0, the Newton direction for D1
' is

given by

-̃u= 
, 2f 
u�+ 'U−2�−1
−,f 
u�− e+ 'U−1e�� (29)

and note from Proposition 10 that the objective function of
D1

' is not a self-concordant function for ' > 0 and suffi-
ciently small. The following proposition shows that when
u, t satisfy Ut = 'e, then the directions -u of (26) and -̃u
of (29) are the same.

Proposition 11. Suppose that u� t > 0 and that Ut = 'e.
Then, -u= -̃u.

Proof. From Proposition 9 we have ,f 
u� = −h
u� and
so , 2f 
u�=−,uh
u�. Substituting these equalities and the
hypothesis of this proposition into (29) yields

-̃u= 
−,uh
u�+U−1T �−1
h
u�− e+ 'U−1e�=-u� �

From Proposition 11, we see that at points 
u� t� satis-
fying Ut = 'e, the DRN direction is exactly the Newton
direction of the non-self-concordant objective function of
D1

' for ' > 0 and sufficiently small.
Note that if the DRN direction were instead derived as

a “dual only” direction, then it would correspond to the
Newton direction of problem D1

' for all u > 0, and so
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would correspond to the Newton direction of a non-self-
concordant function for all u> 0. To see this, let us rewrite
Equations (15) as

h
u�+ 'U−1e= e� u > 0� (30)

and the Newton direction -̄u at a point u> 0 for (30) is

-̄u= 
,uh
u�− 'U−2�−1
e−h
u�− 'U−1e��

It then follows from Proposition 9 that -̄u = -̃u, and so
the “dual only” version of Algorithm DRN is the Newton
direction of a non-self-concordant function for ' > 0 and
sufficiently small.
Finally, we point out that while f 
u� is not a self-

concordant function, the function

f 
u�− 1
2
ln
eTu�=−1

2
ln det�AUAT −AuuTAT ��

is known to be a self-concordant function (see Nesterov
and Nemirovskii 1994), and so f 
u� is very closely related
to a self-concordant function.

Proof of Proposition 10. For each u ∈Df and any direc-
tion d, define the univariate function fu�d
3� �= f 
u+3d�.
Then, f 
·� is self-concordant or not, depending on whether
the quantity

�f ′′′
u�d
0��


f
′′
u�d
0��3/2

can be bounded independent of u and d; see Nesterov and
Nemirovskii (1994). Here we will show that this quantity
cannot be bounded, thereby demonstrating that f 
·� is not
self-concordant. We can write

fu�d
3�=−1
2
ln det

(
A
U +3D�AT A
u+3d�


u+3d�TAT eT 
u+3d�

)
+ 1
2
ln
eT
u+3d��

=−1
2
ln det
M +3N�+ 1

2
ln
eTu+3eTd��

where

M =
[
AUAT Au

uTAT eTu

]
and N =

[
ADAT Ad

dTAT eTd

]
�

It then follows from the rules of differentiation that

f ′
u�d
0�=−1

2
Tr
M−1N�+ eTd

eTu
�

f ′′
u�d
0�=

1
2
Tr
M−1NM−1N�−

(
eTd

eTu

)2

�

f ′′′
u�d
0�=−

(
Tr
M−1NM−1NM−1N�−

(
eTd

eTu

)3)
�

where “Tr
B�” denotes the trace of a matrix B.

Now let

A=
[
1 0 −1 0 0

0 −1 0 1 0

]
� u= 
 1 1 1 1 1 �T�

and d= 
 0 0 0 E 1− E �T

for a given scalar E. Then,

M =


2 0 0

0 2 0

0 0 5

 � N =


0 0 0

0 E E

0 E 1

 �

M−1N =


0 0 0

0 1
2E

1
2E

0 1
5E

1
5

 �

and eTd/eTu= 1/5, and direct substiution of these equali-
ties yields

f ′′
u�d
0�=

9
40

E2 and f ′′′
u�d
0�=

11
40

E3 + 3
50

E2�

Therefore, for E> 0 we have

�f ′′′
u�d
0��


f
′′
u�d
0��3/2

= 
11/40�E3 + 
3/50�E2


9/40�3/2E3
�

which goes to +� as E ↓ 0. �
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