
Optimal Path Planning for Surveillance

with Temporal Logic Constraints∗

Stephen L. Smith† Jana Tůmová‡§ Calin Belta‡ Daniela Rus¶

Abstract

In this paper we present a method for automatically generating optimal robot paths satisfying
high level mission specifications. The motion of the robot in the environment is modeled as
a weighted transition system. The mission is specified by an arbitrary linear temporal logic
(LTL) formula over propositions satisfied at the regions of a partitioned environment. The
mission specification contains an optimizing proposition which must be repeatedly satisfied.
The cost function that we seek to minimize is the maximum time between satisfying instances
of the optimizing proposition. For every environment model, and for every formula, our method
computes a robot path which minimizes the cost function.

The problem is motivated by applications in robotic monitoring and data gathering. In
this setting, the optimizing proposition is satisfied at all locations where data can be uploaded,
and the LTL formula specifies a complex data collection mission. Our method utilizes Büchi
automata to produce an automaton (which can be thought of as a graph) whose runs satisfy
the temporal logic specification. We then present a graph algorithm which computes a run
corresponding to the optimal robot path. We present an implementation for a robot performing
data collection in a road network platform.

1 Introduction

The goal of this paper is to plan the optimal motion of a robot subject to temporal logic constraints.
This problem arises in many applications where a mobile robot has to perform a sequence of
operations subject to external constraints. For example, in a persistent data gathering task, the
robot is required to gather data at several locations and then visit a different set of upload sites to
transmit the data. Referring to Figure 1, we would like to enable tasks such as “Repeatedly gather
data at locations g1, g2, and g3. Upload data at either u1 or u2 after each data-gather. Follow
the road rules, and avoid the road connecting i4 to i2.” We wish to determine a robot motion
that completes the task and minimizes a cost function, such as the maximum time between data
uploads.

Motion and path planning has been studied extensively in the robotics literature (LaValle, 2006).
Much of the work has focused on point-to-point navigation, where a mobile robot must travel from
a source to a destination, while avoiding obstacles. Many effective solutions have been proposed for

∗A preliminary version of this work appeared as Smith et al. (2010)
†S. L. Smith is with the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo

ON, N2L 3G1 Canada (stephen.smith@uwaterloo.ca)
‡J. Tůmová and C. Belta are with the Department of Mechanical Engineering, Boston University, Boston, MA

02215 (tumova@bu.edu; cbelta@bu.edu).
§J. Tůmová is also affiliated with Faculty of Informatics, Masaryk University, Brno, Czech Republic.
¶D. Rus is with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139 (rus@csail.mit.edu).

1



Figure 1: An environment consisting of roads, intersections and parking lots. An example mission
in the environment is “Repeatedly gather data at locations g1, g2, and g3. Upload data at either
u1 or u2 after each data-gather. Follow the road rules, and avoid the road connecting i4 to i2.”

this problem, including discretized approaches which utilize graph search algorithms such as A∗ (see,
for example Russell and Norvig (2003); LaValle (2006)); continuous approaches involving navigation
functions and potential fields (Rimon and Koditschek, 1992); and sampling-based methods such
as Rapidly-Exploring Random Trees (RRTs) (LaValle and Kuffner, 2001; Tedrake et al., 2010).
However, the above approaches do not address more complex planning objectives, where robots
must visit multiple locations in an environment, subject to logical or temporal constraints.

Recently there has been an increased interest in using temporal logics to specify mission plans for
robots (Antoniotti and Mishra, 1995; Loizou and Kyriakopoulos, 2004; Quottrup et al., 2004; Belta
et al., 2005; Fainekos et al., 2009; Kress-Gazit et al., 2009; Wongpiromsarn et al., 2010). Temporal
logics are appealing because they provide formal high level languages in which to describe a complex
mission. In addition, tools from model checking (Vardi and Wolper, 1986; Holzmann, 1997; Clarke
et al., 1999; Barnat et al., 2009) can be used to verify the existence of a robot path satisfying
the specification, and can produce a satisfying path. However, frequently there are multiple robot
paths that satisfy a given specification. In this case, one would like to choose the optimal path
according to a cost function. The current tools from model checking do not provide a method for
doing this. In this paper we consider linear temporal logic specifications, and a particular form of
cost function, and provide a method for computing optimal paths.

In terms of optimizing paths, the most closely related work has been on the vehicle routing
problem (VRP) (Toth and Vigo, 2001). In vehicle routing, the problem is to plan routes for
vehicles to optimally service customers. The VRP generalizes the well known traveling salesman
problem (TSP) by considering aspects such as multiple vehicles, vehicles with capacity constraints,
and vehicles that must depart and return to specified depot locations. Such aspects can be thought
of as specific examples of logical, or temporal constraints. While the vehicle routing problem is
NP-hard, many effective heuristics have been developed which provide good solutions to moderately
sized problems (Laporte, 2009).

Recent results Karaman and Frazzoli (2008a,b) present extensions of vehicle routing problems
to more general classes of temporal constraints (see also Karaman et al. (2009)). In Karaman and

2



Frazzoli (2008b), the authors consider vehicle routing with metric temporal logic specifications.
The goal is to minimize a cost function of the vehicle paths (such as total distance traveled). The
authors present a method for computing an optimal set of paths by converting the problem to
a mixed integer linear program (MILP). While the approach is computationally intensive, it has
been used to solve problems of real-world significance. However, their method cannot be applied to
the persistent monitoring and data gathering applications that are of interest in this paper. This
is due to the fact that their method applies only to specifications where the temporal operators
are applied directly to atomic propositions. Thus, it does not allow for specifications of the form
“always eventually,” which appear when specifying that a robot should repeatedly perform a task.
Because of this, in this paper we take an entirely different approach to optimizing robot motion.
The approach that we present leads to an optimization problem on a graph, rather than a MILP.

The contribution of this paper is to present an algorithm that generates optimal robot paths
satisfying general LTL formulas. The cost function that we minimize is motivated by problems in
monitoring and data gathering, and it quantifies the time between satisfying instances of a single
optimizing proposition. Our solution, summarized in the Optimal-Run algorithm of Section 4,
operates as follows. We represent the motion of the robot in the environment as a weighted
transition system. Then, we convert the LTL specification to a Büchi automaton. We synchronize
the transition system with the Büchi automaton to create a product automaton. In this automaton,
a satisfying run is any run that visits a set of accepting states infinitely often. We show that there
exists an optimal run that is in “prefix-suffix” structure, implying that we can search for runs
with a finite transient, followed by a periodic steady-state. Thus, we create a polynomial time
graph algorithm based on solutions of bottleneck shortest path problems to find an optimal cycle
containing an accepting state. We implement our solution on the physical testbed shown in Figure 1.
A preliminary version of this work appeared as Smith et al. (2010). Here we expand this preliminary
version by including technical details, analysis of complexity, and more extensive experiments.

For simplicity of presentation, we assume that the robot moves among the vertices of an en-
vironment modeled as a graph. However, by using feedback controllers for facet reachability and
invariance in polytopes (Habets and van Schuppen, 2004; Habets et al., 2006; Belta and Habets,
2006), the method developed in this paper can be easily applied for motion planning and control of
a robot with “realistic” continuous dynamics (e.g., unicycle) traversing an environment partitioned
using popular partitioning schemes such as triangulations and rectangular partitions.

The organization of the paper is as follows. In Section 2, we give some temporal logic prelim-
inaries. In Section 3, we formally state the robot motion planning problem, and in Section 4 we
present our solution. In Section 5 we present results an experimental case study for a robot per-
forming data gathering missions in a road network environment. Finally, in Section 6, we discuss
some promising future directions.

2 Preliminaries

In this section we briefly review some aspects of linear temporal logic (LTL). LTL considers a finite
set of variables Π, each of which can be either true or false. The variables αi ∈ Π are called atomic
propositions. In the context of robots, propositions can capture properties such as “the robot is
located in region 1”, or “the robot is recharging.”

Given a system model, LTL allows us to express the time evolution of the state of the system.
We consider a type of finite model called the weighted transition system.

Definition 2.1 (Weighted Transition System) A weighted transition system is a tuple T :=
(Q, q0, R,Π,L, w), consisting of (i) a finite set of states Q; (ii) an initial state q0 ∈ Q; (iii)

3



5

3

5

10

7 8

q1

q3q2

q0

Π = {recharge, gather, upload}

L(q0) = ∅

L(q2) = {gather}

L(q1) = {upload}

L(q3) = {upload, recharge}

Figure 2: An example of a weighted transition system. A correct run of the system is for instance
q0q2q1q0q2q3q0 . . ., producing the word ∅{gather}{upload}∅{gather}{upload,recharge}∅ . . ..

a transition relation R ⊆ Q × Q; (iv) a set of atomic propositions Π; (v) a labeling function
L : Q→ 2Π; (vi) a weight function w : R→ R>0.

We assume that the transition system is non-blocking, implying that there is a transition from
each state. The transition relation has the expected definition: given that the system is in state
q1 ∈ Q at time t1, the system is in state q2 at time t1 + w

(

(q1, q2)) if and only if (q1, q2) ∈ R. The
labeling function defines for each state q ∈ Q, the set L(q) of all atomic propositions valid in q.
For example, the proposition “the robot is recharging” will be valid for all states q ∈ Q containing
recharging stations.

For our transition system we can define a run rT to be an infinite sequence of states q0q1q2 . . .
such that q0 is the initial state, qi ∈ Q, for all i, and (qi, qi+1) ∈ R, for all i. A run rT defines a
word L(q0)L(q1)L(q2) . . . consisting of sets of atomic propositions valid at each state. An example
of a weighted transition system is given in Figure 2.

Definition 2.2 (Formula of LTL) An LTL formula φ over the atomic propositions Π is defined
inductively as follows:

(i) ⊤ is a formula,

(ii) every atomic proposition α ∈ Π is a formula, and

(iii) if φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, Xφ1, and φ1Uφ2 are each formulas,

where ⊤ is a predicate true in each state of a system, ¬ (negation) and ∨ (disjunction) are standard
Boolean connectives, and X and U are temporal operators.

LTL formulas are interpreted over infinite runs, as those generated by the transition system T
from Def. 2.1. Informally, Xα states that at the next state of a run, proposition α is true (i.e.,
α ∈ L(q1)). In contrast, α1Uα2 states that there is a future moment when proposition α2 is true,
and proposition α1 is true at least until α2 is true. From these temporal operators we can construct
two other useful operators Eventually (i.e., future), F defined as Fφ := ⊤Uφ, and Always (i.e.,
globally), G, defined as Gφ := ¬F¬φ. The formula Gα states that proposition α holds at all
states of the run, and Fα states that α holds at some future time instance.

An LTL formula can be represented in an automata-theoretic setting as Büchi automaton,
defined as follows:

Definition 2.3 (Büchi Automaton) A Büchi automaton is a tuple B := (S, S0,Σ, δ, F ), consist-
ing of (i) a finite set of states S; (ii) a set of initial states S0 ⊆ S; (iii) an input alphabet Σ; (iv)
a non-deterministic transition relation δ ⊆ S × Σ× S; (v) a set of accepting (final) states F ⊆ S.

4



⊤

⊤
gather ∧ upload

⊤

gather

gather ∧ upload

upload
s0 gather

s2s1

Π = {recharge, gather, upload}

Figure 3: A Büchi automaton corresponding to LTL formula (GF gather ∧GF upload) over the
alphabet Π. The illustration of the automaton is simplified. In fact, each transition labeled with
⊤ represents |2Π| transitions labeled with all different subsets of atomic propositions. Similarly,
a transition labeled with gather represent |2Π|/2 transitions labeled with all subsets of atomic
propositions containing the proposition gather, etc.

The semantics of Büchi automata are defined over infinite input words. Setting the input
alphabet Σ = 2Π, the semantics are defined over the words consisting of sets of atomic propositions,
i.e., those produced by a run of the transition system. Let ω = ω0ω1ω2 . . . be an infinite input word
of automaton B, where ωi ∈ Σ for each i ∈ N (for example, the input ω = L(q0)L(q1)L(q2) . . . could
be a word produced by a run q0q1q2 . . . of the transition system T ).

A run of the Büchi automaton over an input word ω = ω0ω1ω2 . . . is a sequence rB = s0s1s2 . . .,
such that s0 ∈ S0, and (si,ωi, si+1) ∈ δ, for all i ∈ N.

Definition 2.4 (Büchi Acceptance) A word ω is accepted by the Büchi automaton B if and
only if there exists a run rB over ω so that inf(rB) ∩ F ̸= ∅, where inf(rB) denotes the set of states
appearing infinitely often in run rB.

The Büchi automaton allows us to determine whether or not the word produced by a run of
the transition system satisfies an LTL formula. More precisely, for any LTL formula φ over a set
of atomic propositions Π, there exists a Büchi automaton Bφ with input alphabet 2Π accepting all
and only the infinite words satisfying formula φ (Vardi and Wolper, 1986). Translation algorithms
were proposed in Vardi and Wolper (1994) and efficient implementations were developed in Gerth
et al. (1995); Gastin and Oddoux (2001). The size of the obtained Büchi automaton is, in general,
exponential with respect to the size of the formula. However, many rich behaviors can be described
using relatively small LTL formulas, and in these cases the exponential complexity is not prohibitive.
An example of a Büchi automaton is given in Figure 3.

3 Problem Statement and Approach

Consider a single robot in an arbitrary environment, represented as a transition system (as defined
in Section 2) T = (Q, q0, R,Π,L, w). A run in the transition system starting at q0 defines a
corresponding path of the robot in the environment. The time to take transition (q1, q2) ∈ R (i.e.,
the time for the robot to travel from q1 to q2 in the environment) is given by w(q1, q2).

To define our problem, we assume that there is an atomic proposition π ∈ Π, called the opti-
mizing proposition. We consider LTL formulas of the form

φ := ϕ ∧GFπ. (1)

5



The formula ϕ can be any LTL formula over Π. The second part of the formula specifies that
the proposition π must be satisfied infinitely often, and will simply ensure well-posedness of our
optimization.

Let each run of T start at time t = 0, and assume that there is at least one run satisfying
LTL formula (1). For each satisfying run rT = q0q1q2 . . ., there is a corresponding word of sets of
atomic propositions ω = ω0ω1ω2 . . ., where ωi = L(qi). Associated with rT there is a sequence of
time instances T := t0t1t2 . . ., where t0 = 0, and ti denotes the time at which state qi is reached
(ti+1 = ti + w

(

(qi, qi+1)
)

). From this time sequence we can extract all time instances at which the
proposition π is satisfied. We let Tπ denote the sequence of satisfying instances of the proposition π.

Our goal is to synthesize an infinite run rT (i.e., a robot path) satisfying LTL formula (1), and
minimizing the cost function

C(rT ) = lim sup
i→+∞

(Tπ(i+ 1)− Tπ(i)) , (2)

where Tπ(i) is the ith satisfying time instance of proposition π. Note that a finite cost in (2)
enforces that GFπ is satisfied. Thus, the specification appears in φ merely to ensure that any
satisfying run has finite cost. In summary, our goal is the following:

Problem Statement 3.1 Determine an algorithm that takes as input a weighted transition sys-
tem T , an LTL formula φ over its set of atomic propositions in form (1), and an optimizing
proposition π, and outputs a run rT minimizing the cost C(rT ) in (2).

We now make a few remarks, motivating this problem.

Remarks 3.2 (Comments on Problem Statement) Cost function form: The transition sys-
tem produces infinite runs and cost function (2) evaluates the steady-state time between satisfying
instances of π. This form of the cost is motivated by persistent monitoring tasks, where we seek to
optimize the long-term behavior. In the upcoming sections we design an algorithm which minimizes
the time to reach the optimal steady-state: Thus, the runs produced will achieve the cost in (2) in
finite time. In addition, in Remark 4.12 we discuss how we can optimize alternative cost functions
that consider both transient and steady-state behavior.

Expressivity of LTL formula (1): Many interesting LTL specifications can be cast in the form
of (1). For example, suppose that we want to minimize the time between satisfying instances of a
disjunction of propositions ∨iαi. We can write this in the formula (1) by defining a new proposition
π which is satisfied at each state in which a αi is satisfied.

In addition, the LTL formula ϕ in (1) allows us to specify various rich robot motion requirements.
An example of such is global absence (G¬ψ, globally keep avoiding ψ), response (G (ψ1 ⇒ Fψ2),
whenever ψ1 holds true, ψ2 will happen in future), reactivity (GFψ1 ⇒ GFψ2, if ψ1 holds in
future for any time point, ψ2 has to happen in future for any time point as well), sequencing
(ψ1Uψ2Uψ3, ψ1 holds until ψ2 happens, which holds until ψ3 happens), and many others. For
concrete examples, see Section 5. !

4 Problem Solution

In this section we describe our solution to Problem 3.1. We leverage ideas from the automata-
theoretic approach to model checking.

6



10

10
10

10
8

8

8

q1, s0

q1, s1

q1, s2

q3, s0

q3, s1

q3, s2

7

5

7

7

7

7 5

5

5

5

q2, s2

q2, s1

q2, s0q0, s0

q0, s1

q0, s2

5 3

5
3

5
3

8

Figure 4: Product automaton between the transition system in Figure 2 and the Büchi automaton
in Figure 3.

4.1 The Product Automaton

Consider the weighted transition system T = (Q, q0, R,Π,L, w), and a proposition π ∈ Π. In
addition, consider an LTL formula φ = ϕ ∧ GFπ over Π in form (1), translated into a Büchi
automaton Bφ = (S, S0, 2Π, δ, F ). With these two components, we define a new object, which we
call the product automaton, that is suitably defined for our problem.

Definition 4.1 (Product Automaton) The product automaton P = T ×Bφ between the transi-
tion system T and the Büchi automaton Bφ is defined as the tuple P := (SP , SP,0, δP , FP , wP , SP,π),
consisting of

(i) a finite set of states SP = Q× S,

(ii) a set of initial states SP,0 = {q0}× S0,

(iii) a transition relation δP ⊆ SP × SP , where
(

(q, s), (q̄, s̄)
)

∈ δP if and only if (q, q̄) ∈ R and
(s,L(q), s̄) ∈ δ.

(iv) a set of accepting (final) states FP = Q× F .

(v) a weight function wP : δP → R>0, where wP
(

((q, s), (q̄, s̄))
)

= w
(

(q, q̄)
)

, for all
(

(q, s), (q̄, s̄)
)

∈
δP .

(vi) a set of states SP,π ⊆ SP in which the proposition π holds true. Thus, (q, s) ∈ SP,π if and
only if π ∈ L(q).

The product automaton (as defined above) can be seen as a Büchi automaton with a trivial
input alphabet. Since the alphabet is trivial, we omit it. Thus, we say that a run rP in product
automaton P is accepting if inf(rP) ∩ FP ̸= ∅. An example product automaton is illustrated in
Figure 4.

As in the transition system, we associate with each run rP = p0p1p2 . . ., a sequence of time
instances TP := t0t1t2 . . ., where t0 = 0, and ti denotes the time at which the ith vertex in the
run is reached (ti+1 = ti +wP(pi, pi+1)). From this time sequence we can extract a sequence TP,π,
containing time instances ti, where pi ∈ SP,π (i.e., TP,π is a sequence of satisfying instances of
the optimizing proposition π in T ). The cost of a run rP on the product automaton P (which
corresponds to cost function (2) on transition system T ) is

CP(rP) = lim sup
i→+∞

(TP,π(i+ 1)− TP,π(i)) . (3)

7



The product automaton can also be viewed as a weighted graph, where the states define vertices
of the graph and the transitions define the edges. Thus, we at times refer to runs of the product
automaton as paths. A finite path is then a finite fragment of an infinite path.

Each accepting run of the product automaton can be projected to a run of the transition system
satisfying the LTL formula. Formally, we have the following.

Proposition 4.2 (Product Run Projection, Vardi and Wolper (1986)) For any accepting
run rP = (q0, s0)(q1, s1)(q2, s2) . . . of the product automaton P, the sequence rT = q0q1q2 . . . is a
run of T satisfying φ. Furthermore, the values of cost functions CP and C are equal for runs rP
and rT , respectively.

Similarly, if rT = q0q1q2 . . . is a run of T satisfying φ, then there exists an accepting run
rP = (q0, s0)(q1, s1)(q2, s2) . . . of the product automaton P, such that the values of cost functions C
and CP are equal.

Finally, we need to discuss the structure of an accepting run of a product automaton P.

Definition 4.3 (Prefix-Suffix Structure) A prefix of an accepting run is a finite path from an
initial state to an accepting state f ∈ FP containing no other occurrence of f . A periodic suffix is
an infinite run originating at the accepting state f reached by the prefix, and periodically repeating
a finite path originating and ending at f , and containing no other occurrence of f (but possibly
containing other vertices in FP). An accepting run is in prefix-suffix structure if it consists of a
prefix followed by a periodic suffix.

Intuitively, the prefix can be thought of as the transient, while the suffix is the steady-state periodic
behavior.

Lemma 4.4 (Prefix-Suffix Structure) At least one of the accepting runs rP of P that minimizes
cost function CP(rP) is in prefix-suffix structure.

Proof: Let rP be an accepting run that minimizes cost function CP(rP) and is not in prefix-
suffix structure. We will prove the existence of an accepting run ρP in prefix-suffix structure, such
that CP(ρP) ≤ CP(rP). The idea behind the proof is that an accepting state must occur infinitely
many times on rP . We then show that we can extract a finite path starting and ending at this
accepting state which can be repeated to form a periodic suffix whose cost is no larger than CP(rP).

To begin, there exists a state f ∈ FP occurring on rP infinitely many times. Run rP consists
of a prefix rfinP ending at state f followed by an infinite, non-periodic suffix rsufP originating at the
state f reached by the prefix. The suffix rsufP can be viewed as infinite number of finite paths of
form fp1p2 . . . pnf , where pi ̸= f for any i ∈ {1, . . . , n}. Let R denote the set of all finite paths of
the mentioned form occurring on the suffix rsufP .

Note, that each path in the set R has to contain at least one occurrence of a state from SP,π.
To see this, assume by way of contradiction that there is a path fp1p2 . . . pnf that does not contain
any state from SP,π. The prefix rfinP followed by infinitely many repetitions of this path is indeed
an accepting run of P. However, if projected into run of T , formula GFπ and thus also formula
φ is violated, contradicting Proposition 4.2.

Similarly as for infinite paths, we associate with each finite path of length n a sequence of time
instances TP := t0t1t2 . . . tn, where t0 = 0, and ti denotes the time at which the ith vertex in the
run is reached (ti+1 = ti +wP(pi, pi+1)). From this time sequence we can extract a sequence TP,π,
containing time instances ti, where pi ∈ SP,π.

For each finite path r ∈ R with n states and k occurrences of a state from SP,π we define the
following three costs

8



• cf"(r) = TP,π(0)− TP(0)

• c(r) = maxi∈{0,...,k−1} (TP,π(i+ 1)− TP,π(i))

• c"f (r) = TP(n)− TP,π(k).

Further, we define an equivalence relation ∼ over R as follows. Let r1, r2 ∈ R. r1 ∼ r2 if and
only if

• cf"(r1) = cf"(r2),

• c(r1) = c(r2), and

• c"f (r1) = c"f (r2).

Costs cf", c, and c"f can be extended to cf"∼ , c∼, and c"f
∼ in a natural way. For example, we

define cf"∼ ([r]∼) = cf"(r), where r ∈ [r]∼. The other two costs are defined analogously.
Let us extract a setRinf/∼ from the set of equivalence classesR/∼ such that each class inRinf/∼

is infinite or contains a finite path that is repeated in rP infinitely many times. As a consequence,
for each class [r]∼ in Rinf/∼, it holds that c∼([r]∼) ≤ CP(rP). The set R/∼ is finite, because there
is only a finite number of different values of costs. Furthermore, accepting run rP is infinite and
thus Rinf/∼ is nonempty.

Let [ρ]∼ ∈ Rinf/∼ now be a class such that cf"∼ ([ρ]∼) is minimal among the classes from Rinf/∼.
Each time a finite path in [ρ]∼ appears in rP , it is followed by another finite path. Consider, that

infinitely many times the “following” path comes from a class ([r]∼) ∈ Rinf/∼. Then, we must have
c"f ([ρ]∼) + cf"([r]∼) ≤ CP(rP). But, cf"([r]∼) ≥ c"f ([ρ]∼), and thus c"f ([ρ]∼) + cf"([ρ]∼) ≤
CP(rP).

Thus we can build the run ρP as the prefix rfinP followed by a periodic suffix ρsufP , which is obtained
by infinitely many repetitions of an arbitrary path ρ ∈ [ρ]∼. ρP is in prefix-suffix structure and for its
suffix ρsufP it also holds CP(ρP) = maxi∈N

(

TP,π(i+1)−TP,π(i+1)
)

= max
(

c(ρ), cf"(ρ)+c"f (ρ)
)

≤
CP(rP).

Definition 4.5 (Suffix Cost) The cost of the suffix p0p1 . . . pnp0p1 . . . of a run rP is defined as
follows. Let t0,0, t0,1, . . . , t0,n, t1,0, t1,1 . . . be the sequence of times at which the vertices of the suffix
are reached on run rP . Extract the sub-sequence Tsuf

P of times ti,j, where pj ∈ SP,π (i.e., the
satisfying instances of proposition π in transition system T ). Then, the cost of the suffix is

Csuf
P (rP) = max

i∈N
(Tsuf

P (i+ 1)− T
suf
P (i)).

From the definition of the product automaton cost CP and the suffix cost Csuf
P we obtain the

following result.

Lemma 4.6 (Cost of a Run) Given a run rP in prefix-suffix structure and its suffix
p0p1p2 . . . pnp0p1 . . ., the value of the cost function CP(rP) is equal to the cost of the suffix Csuf

P (rP).

Our aim is to synthesize a run rT of T minimizing the cost function C(rT ) and ensuring that
the word produced by this run will be accepted by B. This goal now translates to generating a run
rP of P, such that the run satisfies the Büchi condition FP and minimizes cost function CP(rP).
Furthermore, to find a satisfying run rP that minimizes CP(rP), it is enough to consider runs in
prefix-suffix structure (see Lemma 4.4). From Lemma 4.6 it follows that the whole problem reduces
to finding a periodic suffix rsufP = fp1p2 . . . pnfp1 . . . in P, such that:

9



(i) f is reachable from an initial state in SP,0,

(ii) f ∈ FP (i.e., f is an accepting state), and

(iii) the cost of the suffix rsufP is minimum among all the suffixes satisfying (i) and (ii).

Finally, we can find the shortest prefix in P that starts at an initial state in SP,0 and ends at the
state f in the suffix rsufP . By concatenating the prefix and suffix, we obtain an optimal run in P. By
projecting the optimal run to T , via Proposition 4.2, we obtain a solution to our stated problem.

4.2 Graph Algorithm for Shortest Bottleneck Cycles

We now focus on finding an optimal suffix in the product automaton. We cast this problem as a
path optimization on a graph. To do this, let us define some terminology.

A graph G = (V,E,w) consists of a vertex set V , an edge set E ⊆ V ×V , and a weight function
w : E → R>0. A cycle in G is a vertex sequence v1v2 . . . vkvk+1, such that (vi, vi+1) ∈ E for
each i ∈ {1, . . . , k}, and v1 = vk+1. Given a vertex set S ⊆ V , consider a cycle c = v1 . . . vkvk+1

containing at least one vertex in S. Let (i1, i2, . . . , is) be the ordered set of vertices in c that
are elements of S (i.e., Indices with order i1 < i2 < · · · < im, such that vj ∈ S if and only if
j ∈ {i1, i2, . . . , is}). Then, the S-bottleneck length is

max
ℓ∈{1,...,s}

iℓ+1−1
∑

j=iℓ

w(ej),

where is+1 = i1. In words, we S-bottleneck distance is defined as follows.

Definition 4.7 (S-Bottleneck Length) Given a graph G = (V,E,w), and a vertex set S ⊆ V ,
the S-bottleneck length of a cycle in G is the maximum distance between successive appearances of
an element of S on the cycle.1

The bottleneck length of a cycle is defined as the maximum length edge on the cycle (Korte and
Vygen, 2007). In contrast, the S-bottleneck length measures distances between vertices in S. With
the terminology in place, our goal is to solve the constrained S-bottleneck problem:

Problem Statement 4.8 Given a graph G = (V,E,w), and two vertex sets F, S ⊆ V , find a
cycle in G containing at least one vertex in F , with minimum S-bottleneck length.

Our solution, shown in Algorithm 1, is called the Min-Bottleneck-Cycle algorithm. It
utilizes Dijkstra’s algorithm (Korte and Vygen, 2007) for computing shortest paths between pairs
of vertices (called Shortest-Path), and a slight variation of Dijkstra’s algorithm for computing
shortest bottleneck paths between pairs of vertices (called Shortest-Bot-Path).

Shortest-Path takes as inputs a graph G = (V,E,w), a set of source vertices A ⊆ V , and a set
of destination vertices B ⊆ V . It outputs a distance matrix D ∈ R|A|×|B|, where the entry D(i, j)
gives the shortest-path distance from Ai to Bj . It also outputs a predecessor matrix P ∈ V |A|×|V |,
where P (i, j) is the predecessor of j on a shortest path from Ai to Vj . For a vertex v ∈ V , the
shortest path from v to v is defined as the shortest cycle containing v. If there does not exist a
path between vertices, then the distance is +∞. Shortest-Bot-Path has the same inputs as
Shortest-Path, but it outputs paths which minimize the maximum edge length, rather than the
sum of edge lengths.

1If the cycle does not contain an element of S, then its S-bottleneck length is defined as +∞.

10



Figure 5 (left) shows an example input to the algorithm. The graph contains 12 vertices,
with one vertex (diamond) in F , and four vertices (square) in S. Figure 5 (right) shows the
optimal solution as produced by the algorithm. The bottleneck occurs between the square vertices
immediately before and after the diamond vertex.

Algorithm 1: Min-Bottleneck-Cycle(G,S, F )

Input: A directed graph G, and vertex subsets F and S
Output: A cycle in G which contains at least one vertex in F and minimizes the

S-bottleneck distance.
1 Compute shortest paths between vertices in S:

(D,P )← Shortest-Path(G,S, S).

2 Define a graph GS with vertices S and adjacency matrix D.
3 Shortest S-bottleneck paths between vertices in S:

(Dbot, Pbot)← Shortest-Bot-Path(GS , S, S).

4 Compute shortest paths from each vertex in F to each vertex in S, and from each vertex in
S to each vertex in F :

(DF→S , PF→S)← Shortest-Path(G,F, S)

(DS→F , PS→F )← Shortest-Path(G,S, F ).

Set DF→S(i, j) = 0 and DS→F (j, i) = 0 for all i, j such that Fi = Sj .
5 For each triple (f, s1, s2) ∈ F × S × S, set

C(f, s1, s2) :=

{

DF→S(f, s1) +DS→F (s2, f) if f ̸= s1 = s2

max
{

DF→S(f, s1) +DS→F (s2, f), Dbot(s1, s2)
}

, otherwise

6 Find the triple (f∗, s∗1, s
∗
2) that minimizes C(f, s1, s2).

7 If minimum cost is +∞, then output “no cycle exists.” Else, output cycle by extracting the
path from f∗ to s∗1 using PF→S , the path from s∗1 to s∗2 using Pbot and P , and the path from
s∗2 to f∗ using PS→F .

In the algorithm, one has to take special care that cycle lengths are computed properly when
f = s1, s1 = s2, or f = s2. This is done by setting some entries of DF→S and DS→F to zero in
step 4, and by defining the cost differently when f ̸= s1 = s2 in step 5. In the following theorem
we show the correctness of the algorithm.

Theorem 4.9 (Min-Bottleneck-Cycle Optimality) The Min-Bottleneck-Cycle algorithm
solves the constrained S-bottleneck problem (Problem 4.8).

Proof: Every valid cycle must contain at least one element from F and at least one element
from S. Let c := v1v2 . . . vkv1, be a valid cycle, and without loss of generality let v1 ∈ F . From this

11



Figure 5: The left figure shows a possible input to the Min-Bottleneck-Cycle algorithm. In
the directed graph, the edge weights are given by the Euclidean distance. The set F is a singleton
given by the diamond. The vertices in S are drawn as yellow squares. The right figure shows a
cycle with minimum S-bottleneck length optimal cycle using thick edges.

cycle we can extract the triple (v1, va, vb) ∈ F × S × S, where va, vb ∈ S, and vi /∈ S for all i < a
and for all i > b. (Note that, a = b = 1 is possible.)

Consider a cycle c with corresponding triple (f, s1, s2), and let L(c) denote its S-bottleneck
length. It is straightforward to verify, using the definition of S-bottleneck length, that L(c) ≥
C(f, s1, s2).

The cycle computed in step 5 (as given by the four predecessor matrices) takes the shortest
path from f to s1, the shortest S-bottleneck path from s1 to s2, and the shortest path from s2 to
f . However, the shortest path from f to s1 (and from s2 to f) may contain other vertices from S.
Thus, the S-bottleneck length of this cycle, denoted L(f, s1, s2), satisfies

L(f, s1, s2) ≤ C(f, s1, s2) ≤ L(c), (4)

implying that C(f, s1, s2) upper bounds the length of the computed cycle. However, if we take c to
be a cycle with minimum length, then necessarily L(c) ≤ L(f, s1, s2). Hence, equation (4) implies
that for an optimal cycle, L(f, s1, s2) = C(f, s1, s2) = L(c). Thus, by minimizing the cost function
in step 5 we compute the minimum length cycle.

Computational Complexity: Finally, we characterize the computational complexity of the
Min-Bottleneck-Cycle algorithm. Let n, m, nS , and nF , be the number of vertices (edges)
in the sets V , E, S, and F , respectively. Dijkstra’s algorithm can be implemented to compute
shortest paths from a source vertex v ∈ V , to all other vertices in V in O(n logn +m) run time.
Thus, for sparse graphs (which includes many transition systems), the run time is O(n logn).

Proposition 4.10 (Min-Bottleneck-Cycle Run Time) The run time of the Min-Bottleneck-

Cycle algorithm is O
(

(nS+nF )(n log n+m+n2
S)
)

. Thus, in the worst-case, the run time is O(n3).
For sparse graphs with nS , nF ≪ n, the run time is O

(

(nS + nF )n log n
)

.

Proof: We simply look at the run time of each step in the algorithm. Step 1 requires nS calls
to Dijkstra’s algorithm, and has run time O(nS(n log(n)+m)). Step 3 requires nS calls to Dijkstra’s
algorithm on a smaller graph GS = (S,ES , wS), and has run time O(nS(nS log(nS) + |ES |)). Step

12



4 has run time O(nF (n log(n) + m)). Finally, step 5 and 6 require searching over all nF · n2
S

possibilities, and have run time O(nFn2
S). Since |ES | ≤ n2

S , the run time in general is given by
O
(

(nS + nF )(n log n+m+ n2
S)
)

.

4.3 The Optimal-Run algorithm

We are now ready to combine the results from the previous section to present a solution to Prob-
lem 3.1. The solution, the Optimal-Run algorithm, is summarized in Algorithm 2.

Algorithm 2: Optimal-Run(T ,φ)

Input: A weighted transition system T , and temporal logic specification φ in form (1).
Output: A run in T which satisfies φ and minimizes (2).

1 Convert φ to a Büchi automaton Bφ.
2 Compute the product automaton P = T × Bφ.
3 Compute the cycle Min-Bottleneck-Cycle(G,SP,π, FP), where G = (SP , δP , wP).
4 Compute a shortest path from SP,0 to the cycle.
5 Project the complete run (path and cycle) to a run on T using Proposition 4.2.

The correctness of the Optimal-Run algorithm follows directly from Lemma 4.4, Theorem 4.9,
and Proposition 4.2.

Theorem 4.11 (Correctness of Optimal-Run) The Optimal-Run algorithm solves
Problem 3.1.

Remark 4.12 (Alternative Cost for Optimizing Prefix) The Optimal-Run algorithm op-
timizes the cost of the repeated suffix. For the prefix, we simply find the shortest path from an
initial state to the suffix. However, the cost of the prefix is not optimized. This is due to the fact
that the cost function C was chosen with persistent monitoring tasks in mind, where the long-term
behavior is of interest. However, in some applications, the transient behavior may be of interest.
In this case we can define an alternative cost function C′:

C′(rT ) = sup
i∈N

(Tπ(i+ 1)− Tπ(i)) . (5)

Then, we can consider two alternative problems: (i) Find a run rT minimizing the cost C′(rT ); or
(ii) Find a run rT that minimizes the cost C′(rT ) among all the runs minimizing the cost C(rT ).
Both problems can be solved by slightly modifying the Min-Bottleneck-Cycle algorithm.

We can extend the proof of Lemma 4.4 to show that there is a run in prefix-suffix form that
minimizes C′. By appropriately defining the cost of the prefix, we can also show that the cost C ′

is equal to the maximum of the prefix cost and the suffix cost. Then, to solve problems (i) and
(ii) we add a step to the Min-Bottleneck-Cycle algorithm in which we compute the shortest
bottleneck path from each initial state v0 ∈ V to each state s ∈ S. We record the cost of the
path from v0 to s as Cp(v0, s). For problem (i) we alter step 6 to find the tuple (v∗0, f

∗, s∗1, s
∗
2)

that minimizes max{Cp(v0, s1), C(f, s1, s2)}. For problem (ii) we alter step 6 to find the tuple
(v∗0, f

∗, s∗1, s
∗
2) that minimizes Cp(v0, s1) among the tuples that minimize C(f, s1, s2). Finally, we

remove step 4 from the Optimal-Run algorithm. !

Computational Complexity of Optimal-Run: The worst-case computational complexity of
the Optimal-Run algorithm can be characterized as follows. Any LTL formula φ can be translated

13



into a Büchi automaton in time 2O(|φ|) computation time2 (Baier et al., 2008). The worst-case size
of the Büchi automaton (i.e., the number of states) is also 2O(|φ|). The size of the product obtained
in step 2 of the Optimal-Run algorithm is therefore O(|T | · 2O(|φ|)), where |T | is the number of
states in the transition system. Then, from Proposition 4.10, the worst-case complexity of the
Optimal-Run algorithm is O(|T |3 · 2O(|φ|)).

Thus, the worst-case complexity is quite restrictive, being exponential in the size of the LTL
formula. However, many rich robot behaviors can be described using relatively small LTL formulas.
In addition, the time required to compute the Büchi automaton, and the size of the Büchi automa-
ton, are frequently much smaller than the worst-case bound. In the following section we show that
the proposed approach can be used to generate robot motion plans that satisfy rich requirements
in complex environments.

5 Case Studies and Experiments

In this section, we present an implementation of theOptimal-Run algorithm on a physical testbed.
We focus on a data gathering mission in which a robot must repeatedly gather data at interesting
locations, and then upload it at designated sites. We also present a case-study which outlines several
different robot missions, and how they can be expressed in LTL. The purpose of this section is to i)
demonstrate the utility of the proposed approach in generating complex motion plans; ii) illustrate
the expressivity of LTL and the class of optimizations considered in this paper; ii) highlight the
subtleties and challenges that arise when expressing a desired behavior in LTL; and, iv) provide
numerical data on the complexity and computation time of our proposed approach.

5.1 The Road-Network Testbed

We implemented the Optimal-Run algorithm on the road network shown in Figure 1. This
network is a collection of roads, intersections, and parking lots (which serve as data gather and
upload locations), connected by a simple set of rules (e.g., a road connects two (not necessarily
different) intersections, the parking lots can only be located on the side of a road). The city is
easily reconfigurable through re-taping. The robot used is a Khepera III miniature car. The car
can sense when entering an intersection from a road, when entering a road from an intersection,
when passing in front of a parking lot, when it is correctly parked in a parking space, and when an
obstacle is dangerously close. The car is programmed with motion and communication primitives
allowing it to safely drive on a road, turn in an intersection, and park. The car can communicate
through Wi-Fi with a desktop computer, which is used as an interface to the user (i.e., to enter the
specification) and to perform all the computation necessary to generate the control strategy. Once
computed, this is sent to the car, which executes the task autonomously by interacting with the
environment.

Modeling the motion of the car in the road network using a weighted transition system (Def.
2.1) is depicted in Figure 6 and proceeds as follows. The set of states Q is the set of labels assigned
to the intersections, parking lots, and branching points between the roads and parking lots. The
transition relation R shows how the regions are connected and the transitions’ labels give distances
between them (measured in inches). In our testbed the robot moves at constant speed ν, and
thus the distances and travel times are equivalent. For these experiments, the robot can only
move on right hand lane of a road and it cannot make a U-turn at an intersection. To capture

2The notation |φ| denotes the size of the LTL formula, and is measured in terms of the number of operators
(temporal and boolean) that appear in the formula.

14



Figure 6: The weighted transition system for the road network in Figure 1.

case length time (min) # of states # of states time (sec) time (sec)
(m) travel Büchi product LTL to Büchi computation

A 6.23 2.5 3 78 ∼ 1 ∼ 1
B 6.23 2.5 7 182 ∼ 1 ∼ 1
C 9.13 3.6 11 286 ∼ 1 ∼ 1
D 9.13 3.6 17 442 ∼ 1 ∼ 1
E 9.13 3.6 49 1274 ∼ 1 ∼ 8
F 10.48 4.1 34 884 ∼ 1 ∼ 2
G 9.50 3.7 34 884 ∼ 1 ∼ 2

Table 1: A summary of the seven data gathering cases.

this, we model each intersection as four different states. Note that, in reality, each state in Q has
associated a set of motion primitives, and the selection of a motion primitive (e.g., go straight,
turn right) determines the transition to one unique next states. This motivates our assumption
that the weighted transition system from Def. 2.1 is deterministic, and therefore its inputs can be
removed.

5.2 An Experimental Case Study on Data Gathering Missions

In our experiments, we have consider data gathering missions of the following form. Parking lots u1
and u2 in Figure 6 are data upload locations (light shaded regions in Figure 7) and parking lots g1,
g2, and g3 are data gather locations (dark shaded regions in Figure 7). The optimizing proposition
π in LTL formula (1) is

π := u1 ∨ u2, (6)

i.e., we want to minimize the time between data uploads. Assuming infinite runs of the robot in
the environment, we are able to describe the motion requirements as LTL formulas, where atomic
propositions are simply names of the parking lots.

In this section we describe seven different data gathering cases. Each case describes a data
gathering mission, and the cases are roughly ordered in increasing complexity. For each case we

15



i3

i4i2

u1

i1

g1 u2

g3
g2

Figure 7: Schematic illustration of the road network. For each road, the median is shown as a
red line. The robot must drive on the right-hand side of the road (i.e., the right-hand side of the
median). Intersections are labelled i1 through i4. Data gather locations, labeled g1, g2, and g3, are
shaded green (dark). Data upload locations, labeled u1 and u2, are shaded yellow (light).

have computed the optimal run according the to Optimal-Run algorithm, and have implemented
the run on our testbed. In Table 1 we summarize the key statistics for each case. The summary
data consists of i) the maximum distance between uploads on the optimal path, ii) the maximum
time between uploads observed in the robot experiment, iii) the number of states in the Büchi
automaton, iv) the number of states in the product automaton, v) the time to translate the LTL
formula into a Büchi automaton, and vi) the time to compute the optimal path in the product
automaton. The computations were performed on a desktop computer with a 2.8GHz quad core
processor and 8GB of RAM. We utilized the LTL2BA software by Gastin and Oddoux (2001) to
translate an LTL formula to a Büchi automaton.

Case A. To begin, let us consider the following mission. Repeatedly visit data gather locations
(g1, g2 or g3) to gather data and repeatedly visit upload locations (u1 or u2) to upload data.
The objective is to minimize the time between visits to data upload locations, and therefore
the optimizing proposition π is given by the LTL formula from Eqn. (6). We can specify this
behavior as the following LTL formula:

φA := GF (g1 ∨ g2 ∨ g3) ∧GFπ.

Using the Optimal-Run algorithm, we compute the robot path shown in Figure A. This
figure is interpreted as follows. The figure consists of a sequence of environment snapshots,
read from left to right. Each snapshot shows a robot path as a line which starts and ends at a
data upload location. The starting point of the robot path on the (i+1)th snapshot is given
by endpoint of the path on the ith snapshot. The endpoint of the final snapshot connects
with the starting point of the first snapshot. Thus, the infinite robot path is obtained by
cycling through these snapshots.

The time to run the algorithm, and the value of the cost function are summarized in Table 1.

Case B. Looking at results of Case A, we see that the robot does not always gather new data
before visiting an upload location (in Figure A the robot visits two upload locations in a

16



Figure A: The robot path (shown as lines with arrows) for Case A. Green (dark shaded) areas
are data-gathering locations, and yellow (light shaded) areas are upload locations. The robot
periodically follows the path which is composed of the illustrated fragments as seen from left to
right.

row). To eliminate this behavior, we should specify that the robot can only visit a data
upload location if it has just gathered data. This can be specified as follows:

φB := φA ∧G
(

(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2)U (g1 ∨ g2 ∨ g3))
)

The corresponding robot path is shown in Figure B.

Figure B: The robot path for Case B. Note that the robot does not visit two upload locations
without visiting a download locations in between. The value of the optimization function is the
same as in Case A (6.23 meters).

Case C. In some situations the data gather locations g1, g2 and g3 may contain different informa-
tion, and thus it is beneficial to periodically visit each of them. To specify this, we can build
on Case B and write the following formula:

φC := GF g1 ∧GF g2 ∧GF g3 ∧GFπ ∧G
(

(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2)U (g1 ∨ g2 ∨ g3))
)

Using the Optimal-Run algorithm, the computed path of the robot is shown in Figure C.
Extension 1 shows the robot’s execution of this path. The video ends at the completion of
the second snapshot in Figure C. The time to run the algorithm, and the value of the cost
function are summarized in Table 1. Note that this more restrictive formula results in a larger
cost function value than in Cases A or B.

17



Figure C: The robot path for Case C. Note that the robot visits all three download locations and
only visits an upload location if it has just gathered data. Extension 1 shows the robot executing
the first two snapshots.

Case D. Notice that in the last snapshot of Figure C, the robot visits data gather location g3
twice in a row. Such behavior does not increase the value of the cost function, but may not
be desirable in some circumstances. We can eliminate this behavior by specifying that the
robot must visit an upload location after gathering data:

φD := φC ∧G ((g1 ∨ g2 ∨ g3)⇒ X (¬(g1 ∨ g2 ∨ g3)U (u1 ∨ u2)))

The new path of the robot is shown in Figure D. Note from Table 1 that the maximum
distance between uploads does not change from Case C to Case D.

Figure D: The robot path for case D. One may observe that snapshots 1,2 and 6 are redundant and
it would be sufficient to periodically repeat snapshots 3,4,5 to satisfy the formula. Such “aesthetic”
changes do not improve the value of cost function.

Case E. Now, suppose that we would like to require an equal number of visits to each data gather
location. We can observe than in Case D, some of the gather locations are visited more

18



frequently than the others. To formalize this idea of equality, we can specify an order in
which the data gather locations should be visited: g3, g1, and g2, in this order. The syntax
for specifying this order is somewhat complicated, and involves the nested “until” operators.
The specification becomes

φE :=(¬g1 ∧ ¬g2)U g3 ∧

G
(

g3 ⇒ X((¬g2 ∧ ¬g3)U (g1 ∧X ((¬g1 ∧ ¬g3)U (g2 ∧X ((¬g1 ∧ ¬g2)U g3)))))
)

∧

G
(

(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2)U (g1 ∨ g2 ∨ g3))
)

∧

G
(

(g1 ∨ g2 ∨ g3)⇒ X (¬(g1 ∨ g2 ∨ g3)U (u1 ∨ u2))
)

∧

GFπ

The robot path for this case is shown in Figure E.

Figure E: The robot path for Case E. The robot visits g1, then g2 and then g3, periodically. The
value of optimization function is 9.13 meters, which is the same as in Case D.

Case F. We can also specify “safety” constraints for the robot. For example, consider the objective
of Case D with the additional constraint that the road connecting i4 to i2 (illustrated in pink
in Figure F) should be avoided. In this case, the specification becomes

φF := φD ∧G¬(i4 ∧X i2)

The robot path for this case is shown in Figure F.

Figure F: The robot path for Case F. The robot never uses the road connecting i4 to i2. The value
of optimization function is 10.48 meters, which is more than in Case D.

Case G. Another type of constraint may be that data from location g3 must be uploaded at loca-
tion u2. The specification from Case D can easily be extended to incorporate this constraint:

φG := φD ∧G (g3 ⇒ (¬u1U u2)).

19



The robot path for this case is shown in Figure G. Note that from Table 1, the cost function
value for this case lies between that from Case D and from Case F.

Figure G: The robot path for Case G. The robot uploads the data in u2 after gathering them in
g3. The value of optimization function is 9.5 meters, which again exceeds that of Case D.

Remark 5.1 (Modeling Robot Navigation Errors) In implementing the robot paths on our
testbed, there were instances in which the robot failed to make the proper transition. This occurred
when the robot was following a road, turning at intersections, or entering/exiting data gather
and upload locations. For example, in 50 trials of each motion primitive we observed 3 failures
when performing left turns, 1 failure when performing right turns, 3 failures when entering a
gather/upload location, and 1 failure when exiting a gather/upload location. When such failures
occur, the robot enters a different state than expected. Our current method does not allow the
robot to recover in these situations.

Such failures can be modeled and dealt with formally by allowing for non-determinism and/or
probabilistic transitions. For example, if in our experimental setup we observe that by applying
a right turn motion primitive in an intersection may result in going straight through it, then we
associate both going straight and right turn outcomes to this motion primitive. The transition
system describing the motion of the robot in the environment becomes non-deterministic. If, in
addition, we can quantify the success and failure rates of the motion primitives at different locations
in environment, then we could model the motion of the robot as a Markov Decision Process. While
there are recent results for temporal logic control of both such systems Ding et al. (2011); Tůmová
et al. (2010); Lahijanian et al. (2011), the connection with optimality is still an open problem and
it is a future direction for our research. !

6 Conclusions and Future Directions

In this paper we presented a method for planning the optimal motion of a robot subject to temporal
logic constraints. Temporal logic provides a rich language in which to describe complex robot mis-
sions. Motivated by persistent monitoring and data gathering applications, we considered temporal
logic specifications which contain a single optimizing proposition that must be repeatedly satisfied.
We developed an algorithm for computing the optimal robot path that minimizes the maximum
time between satisfying instances of the optimizing proposition. Experimental results show the
applicability of this approach for a robot moving in a city-like environment.

There are many promising directions for future work. First, as discussed in Remark 5.1, since
robot actions are imprecise, we would like to extend the optimization in this paper to Markov
Decision Processes (MDPs). This would allow us to model actuator failures, imprecise robot motion,
and probabilistic propositions. We are also interested in the case of multiple robots. The difficulty

20



in this problem appears to be capturing the relative positions of robots during their motion. It does
not appear that such information can be captured in the transition system model of this paper. A
solution may be to move to timed automata, which are rich enough to capture the full configuration
of a group of robots. The apparent drawback of this approach is in the increased computational
complexity. Finally, it would be interesting to identify other types of optimization problems can be
solved using this approach. This paper focused on the min-max cost function formulation since it
gives a hard guarantee on the time between satisfying instances. However, there are other relevant
costs, such as the average time between satisfying instances. It seems likely that the approach used
in this paper could be extended to solve these alternate cost functions, and in our future work we
will explore this direction.

Acknowledgements

This material is based upon work supported in part by ONR-MURI Award N00014-09-1-1051, ARO
Award W911NF-09-1-0088, and grants LH11065 and GD102/09/H042 at Masaryk University. The
work by S. L. Smith was performed while at MIT. We thank Yushan Chen and Samuel Birch
at Boston University for their work on the road network platform and Alphan Ulusoy at Boston
University for his work on the implementation.

References

Antoniotti, M. and Mishra, B. (1995), Discrete event models + temporal logic = supervisory
controller: Automatic synthesis of locomotion controllers, in ‘IEEE Int. Conf. on Robotics and
Automation’, Nagoya, Japan, pp. 1441–1446.

Baier, C., Katoen, J.-P. and Larsen, K. G. (2008), Principles of Model Checking, MIT Press.

Barnat, J., Brim, L. and Ročkai, P. (2009), DiVinE 2.0: High-performance model checking, in ‘High
Performance Computational Systems Biology’, IEEE Computer Society Press, pp. 31–32.

Belta, C. and Habets, L. C. G. J. M. (2006), ‘Control of a class of nonlinear systems on rectangles’,
IEEE Transactions on Automatic Control 51(11), 1749–1759.

Belta, C., Isler, V. and Pappas, G. J. (2005), ‘Discrete abstractions for robot motion planning and
control in polygonal environment’, IEEE Transactions on Robotics 21(5), 864–875.

Clarke, E. M., Peled, D. and Grumberg, O. (1999), Model checking, MIT Press.

Ding, X. C., Smith, S. L., Belta, C. and Rus, D. (2011), LTL control with probabilistic satisfaction
guarantees, in ‘IFAC World Congress’, Milan, Italy. To appear.

Fainekos, G. E., Girard, A., Kress-Gazit, H. and Pappas, G. J. (2009), ‘Temporal logic motion
planning for dynamic robots’, Automatica 45(2), 343–352.

Gastin, P. and Oddoux, D. (2001), Fast LTL to Büchi automata translation, in ‘Conf. on Computer
Aided Verification’, number 2102 in ‘Lecture Notes in Computer Science’, Springer, pp. 53–65.

Gerth, R., Peled, D., Vardi, M. and Wolper, P. (1995), Simple on-the-fly automatic verification
of linear temporal logic, in ‘Protocol Specification, Testing and Verification’, Chapman & Hall,
pp. 3–18.

21



Habets, L. C. G. J. M., Collins, P. J. and van Schuppen, J. H. (2006), ‘Reachability and control
synthesis for piecewise-affine hybrid systems on simplices’, IEEE Transactions on Automatic
Control 51, 938–948.

Habets, L. C. G. J. M. and van Schuppen, J. H. (2004), ‘A control problem for affine dynamical
systems on a full-dimensional polytope’, Automatica 40, 21–35.

Holzmann, G. (1997), ‘The model checker SPIN’, IEEE Transactions on Software Engineering
25(5), 279–295.

Karaman, S. and Frazzoli, E. (2008a), Complex mission optimization for multiple-uavs using linear
temporal logic, in ‘American Control Conference’, Seattle, WA, pp. 2003–2009.

Karaman, S. and Frazzoli, E. (2008b), Vehicle routing problem with metric temporal logic specifi-
cations, in ‘IEEE Conf. on Decision and Control’, Cancún, México, pp. 3953–3958.

Karaman, S., Rasmussen, S., Kingston, D. and Frazzoli, E. (2009), Specification and planning of
uav missions: a process algebra approach, in ‘American Control Conference’, St. Louis, MO,
pp. 1442–1447.

Korte, B. and Vygen, J. (2007), Combinatorial Optimization: Theory and Algorithms, Vol. 21 of
Algorithmics and Combinatorics, 4 edn, Springer.

Kress-Gazit, H., Fainekos, G. E. and Pappas, G. J. (2009), ‘Temporal logic-based reactive mission
and motion planning’, IEEE Transactions on Robotics 25(6), 1370–1381.

Lahijanian, M., Andersson, S. B. and Belta, C. (2011), Temporal logic control for Markov decision
processes, in ‘American Control Conference’, San Francisco, CA. To appear.

Laporte, G. (2009), ‘Fifty years of vehicle routing’, Transportation Science 43(4), 408–416.

LaValle, S. M. (2006), Planning Algorithms, Cambridge University Press.

LaValle, S. M. and Kuffner, J. J. (2001), ‘Randomized kinodynamic planning’, International Journal
of Robotics Research 20(5), 378–400.

Loizou, S. G. and Kyriakopoulos, K. J. (2004), Automatic synthesis of multiagent motion tasks
based on LTL specifications, in ‘IEEE Conf. on Decision and Control’, Paradise Island, Bahamas,
pp. 153–158.

Quottrup, M. M., Bak, T. and Izadi-Zamanabadi, R. (2004), Multi-robot motion planning: A
timed automata approach, in ‘IEEE Int. Conf. on Robotics and Automation’, New Orleans, LA,
pp. 4417–4422.

Rimon, E. and Koditschek, D. E. (1992), ‘Exact robot navigation using artificial potential func-
tions’, IEEE Transactions on Robotics and Automation 8(5), 501–518.

Russell, S. and Norvig, P. (2003), Artificial Intelligence: A Modern Approach, 2 edn, Prentice Hall.

Smith, S. L., Tůmová, J., Belta, C. and Rus, D. (2010), Optimal path planning under temporal
logic constraints, in ‘IEEE/RSJ Int. Conf. on Intelligent Robots & Systems’, Taipei, Taiwan,
pp. 3288–3293.

22



Tedrake, R., Manchester, I. R., Tobenkin, M. M. and Roberts, J. W. (2010), ‘LQR-trees: Feedback
motion planning via sums of squares verification’, International Journal of Robotics Research
29(8), 1038–1052.

Toth, P. and Vigo, D., eds (2001), The Vehicle Routing Problem, Monographs on Discrete Mathe-
matics and Applications, SIAM.

Tůmová, J., Yordanov, B., Belta, C., Černá, I. and Barnat, J. (2010), A symbolic approach to
controlling piecewise affine systems, in ‘IEEE Conf. on Decision and Control’, Atlanta, GA. To
appear.

Vardi, M. Y. and Wolper, P. (1986), An automata-theoretic approach to automatic program veri-
fication, in ‘Logic in Computer Science’, pp. 322–331.

Vardi, M. Y. and Wolper, P. (1994), ‘Reasoning about infinite computations’, Information and
Computation 115, 1–37.

Wongpiromsarn, T., Topcu, U. and Murray, R. M. (2010), Receding horizon control for temporal
logic specifications, in ‘Hybrid systems: Computation and Control’, Stockholm, Sweden, pp. 101–
110.

A Index to Multimedia Extensions

Extension Media Type Description

1 Video Robot implementation of data gathering for case study C

Table 2: Index to multimedia extensions.

23


