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Abstract

.Geometric‘optimization techniques useful for studying chemicai

equilibrium traditionally rely upon principles of euclidean

geometry, but such algorithms may also be based upon principles

of a non-euclidean geometry.

The sequential simplex method is

adapted to the hyperbolic plane, and application of optimization

to problems such as the potentiometric titration of plutonium is

suggested.

Introduction

The method of proportional equations, Z|A|
= 0, where |A| represents the absolute
value of a reaction isotherm from which
the multiplicative factor (RT) has been
removed, is a novel method of character-
izing chemical equilibrium [1]. This
technique uses an empirical method of
mathematical optimization, such as the
sequential simplex method. But, for one
reason or another, empirical optimization
methods sometimes do not function satis-
factorily. In circumstances where it is
not practical to select another optimiza-
tion technique, it is desirable to modify
‘either the problem, or the optimization
routine, or both, so that the probability
of.satisfactory convergence is increased.
This report'ofﬁers several suggestions
for modifying chemical equilibrium prob-
iems as well as methods for modifying the
séquential simplex method itself. The
conclusions are that optimization tech-
niques need not be based on traditional,
éuﬁlidean geometry, and that the adapta-
tion of non-euclidean geometry to optimi-
éation schemes adds flexibility to the
practice of mathematical optimization. A
hethod of studying optimum conditions for
.pétentiometric titrations is illustrated

for the case of plutonium.

Sequential Simplex
Optimization

Recently, minimization of the reaction
isotherm absolute value by the sequential
simplex technique has been suggested as a
method of characterizing chemical equi-
librium [1]. '

method is only one optimization method

But the sequential simplex

suitable for minimization of the reaction-
While the

sequential'simplex technique has the ad-

isotherm absolute value [2].

vantage of not being difficult to under-
stand or to computerize, it has several
disadvantages when used to minimize the
sum of several reaction isotherm absolute
values. One of these disadvantages is
convergence to a félse optimum, i.e.,
convergence to a numerical value which is
not zero, or which is not satisfactorily
close to zero, even though it is within
the capacity of the computerAto approach
zero. These false optima may occur
through use of insufficient numerical pre-

cision, for example.

When convergence to a false optimum is a
problem, several possible remedies may be
applied. Perhaps the simplest of these

remedies is to choose a completely new set



of starting points in the hope that con-
vergence to zero, or to a value satisfac-
torily close to zero, will result from
siﬁplex movements beginning at the new
initial points. Alternatively, the co-
‘ordinates of the objective function at
the point of false convergence may be
used as one of the new starting points
together with a new set of remaining ini-
tial points. These new points may include
some of the original initial points, but
should not be simple multiples of one ’
another. It may also be helpful to in-
crease the precision of the computations.
Increased precision is often useful when
it is desired to minimize the sum of three
or more reaction isotherm absolute values,
when reaction isotherms contain very large
og very small equilibrium constants, or
when the equilibrium concentration of a
species is represented as a small differ-
ence between two comparatively large num-

bers.

Modifying the Simplex

Reviewed below are a few sequential sim-
piex strategies useful in the process of
thimization. The five strategies listed
helow are an integral part of the tradi-
tional variable-sized simplex routine,
;hd'are described in References 3-6:

™ ﬁeflection, R
;.Expansion, E

L Céntraction, Cr
® Contraction, Cw

e Rejection of next-to-worst vertex

Less commonly used strategies, but occa-
sionally useful additions to the simplek
routine include the following operations:

® Shrinkage of the simplex [7])
® Rotation of the simplex [7]

® Unlimited expansion of the simplex,

or translation of the simplex [7, 8]

® Change of scale factors for the opera-
tions of reflection, expansion, or con-

traction of the simplex [7]}

e Halved expansion of the simplex (i.e.,
‘the addition of the option of expansion
by half, or by some other fraction, be-
tween the traditional reflection and

expansion points.)

e Skewed reflection in the simplex (i.e.,
reflection through a point which is not
the centroid of one simplex face, but
some other point, perhaps halfway be-
tween the centroid and the vertex with
the best response of the objective func-

tion.)

Changes may be made in the priorities of
In the traditional,

sequential simplex technique it is custom-

a simplex routine.

ary to make certain decisions and movements
in regard to the vertex with the next-to-
worst response of the objective furiction.
(This next-to;worst vertex is usually de-
noted by the letter N.)
and movements can also be made if the point

But such decisions

' N is redefined as the next-to-best point

in three-dimensional problems, or as some
intermediate point in highef dimensional
simplex routines for higher dimensional
problems. This change is useful partly
because it is so simple to implement in
computer programs representing the simplex
algorithm. The possibility of this change
has been noted in Table 6 of Reference 9.

P dimensional optimization problems may be’
tried in simplex routines designed for ‘
P+1 dimensional problems, or even in sim-
plex routines designed for higher dimen-

gional problems. This suggestion has also



been made in Table 6 of Reference 9.
These simple modifications or adaptations
of the sequential simplex algorithms may
occasionally be useful for hastening con-
vergence, or for avoiding the problem of
false convergence.

Modifying the Objective Function

Another useful strategy for problems
amenable to simplex solution involves
modification of the objective function.
This strategy deserves consideration be-
- cause it can take such a wide variety of
forms, and because it is often easy to
implement. It is sometimes possible to
replace one objective function with a
second objective function, equivalent to
thé first, for the purpose of problem
solving by optimization. Many chemical
equilibrium problems may be formulated
in more than one manner. That is, P
reaction isotherms may be necessary to
define an equilibrium problem, but there
may be many possible reaction isatherms
ffom which to select P isotherms. False
cdnvergence or slow convergence with one
set of isotherms does not'necessarily

mean false convergence or slow convergence

with another set.

The variables in an objective function
may be replaced with other variables by
sihple.algebraic changes. These are easy
substitutions which can be qdite useful.
Sﬁppose that an objective function is
giVen in terms of the variables, P and Q.
Then there will always be two numbers, U
And V, such that P= U+ Vv and Q =U - V,

and the function may be rewritten in terms

of the new variables, U and V. Suppose

again that a function is given in terms

of the three variables, P, Q, and R. Then

1

numbers, A and B, may always be found such
that P = (A)(Q) and R = (B)(Q), or P =
Q/A and R = Q/B. The objective function
may thus be rewritten in terms of the new
variables, Q, A, and B.

A chemical equilibrium problem can some-
times be restated in such a manner that

an ill-behaved objective function is re-
placed by a well-behaved objective func-
tion. One of the problems with the method
of proportional equations is that occa-
sionally the concentration of a particular
species appears as the small difference
between two comparatively large numbers.
Actual subtraction of such numbers may
yield a difference with so much round-off
error that it is a very poor representation
of the actual concentration of the species.
In this circumstance it is sometimes pos-
sible to rewrite the problem in such a
manner that the offending difference no
longer occurs. This may be done by shift-
ing the operation of subtraction elsewhere
by the use of substitution variables as
described above. Alternatively, the prob-
lem may be rewritten in such a manner thaf
the operation of subtraction is no longer

necessary.

An Example

In the case of the disproportionation of
tetravalent plutonium, for example,
Reference 1 shows the species Puo,* appear-
ing as the difference, P-Q. In this par- -
ticular representation of the disproportion-
ation reaction, the total concentration of
plutonium, T, was assigned a fixed value.
But the assignment of a fixed value may be
made elsewhere, so that the total concen-
tration becomes a variable. For example,
let Pqu+ = 1. Then the concentration of
hexavalent plutonium may be taken as the
variable, M, and, by virtue of charge con-

servation, the concentration of trivalent



plhtonium is (1 + 2M). Trivalent, hexava-
ient, and pentavalent plutonium are now
deécribed in terms of one variable (M).
and a fixed constant (unity). The unknown
concentration of tetravalent plutonium
may be assigned another variable, for
‘example, X. Reaction isotherms represent-
ing the disproportionation of tetravalent
plutonium may. thus be written in terms of
the two variables, X and M.

be of any value; however, the total con-

X and M may

centration of plutonium is always the sum
of its constituent parts. This sum may
be used to divide the concentration of
any oxidation state to find the fraction
of plutonium present as that oxidation
state. Hence, the éomplete‘valenée state
distribution of plutonium at equilibrium
méy be found without employing the opera-

tion of subtraction.

The'manipulations above may be explained
as follows. Suppose that Puoz+ were as-
signed a variéble, such as Y. Then, in
the operation of finding fractional
valence state distributions, the variable
Y:disappears by cancellation, so that its

actual numerical value is immaterial, and

may be conveniently replaced by a constant.

For this cancellation, the concentration
of hexavalent plutonium may be visualized
éé»thc product of M and Y, and the concen-
Eiatioh of tetravalent plutonium, as the
?rpduct of X and Y.

An alternate method of determining valence
state distributions is outlined in the

Supplement, p. 26.

Transformations

»

Transformations interposed between the

variables in an objective function and the

K

~ transformation.

variables in the simplex algorithms are
often useful because they are easily im-
plemented and because they may yield con-
vergence paths gquite distinct from the path
of convergence which might have been taken
by the simplex in the absence of the trans-
formations. Simple transformations inter-
posed between the objective function vari-
ables and the variables in the simplex
algorithm may, therefore, be useful in
avoiding false convergence. Suppose that
an objective function and a simplex algo-
rithm are written in terms of the two
variables, J and K.
function is rewritten in terms of other

If the objective

variables, A and B, several interesting

possibilities arise.

If A =J and B = K, the path of convergence
is the same as would be obtained without
But suppose A = (C)log(J)
and B = (C)log(K), where (C) is a constant,
not necessarily the same in the two cases.
With this transformation, A and B change
more slowly in the objective function than
J and K in the simplex algorithm. The
simplex often has a tendency to contract

as it moves through function space, so that

‘more slowly changing variables in the objec-

tive function may provide greater opportun-
ity for the expansion option to be exercised.
Either common or natural logarithms may be
used, but negative arguments of the loga-
rithms must be avoided. All variables may

be transformed, or only some of them.

Again, suppose that A = (C)exp(J) and B =
(C)exp(K) . The function variables now
change more rapidly than the program vari-
ables.
be to base "e" ox base 10. Again, suppose
that A = C-C/(1+J) and B = C-C/(1+4K).

the constant is some number which is cer-

The exponentiation operation may

Here

tain to exceed the optimum value of the

variables, A and B. As J tends to zero,



A also tends to zero; whereas when J tends
to infinity, A tends to C. 1In summary,
there are a very large number of simple
transformations which may be useful in
hastening convergence, or in avoiding the
problem of false convergence, such as A =
(C) (%) or B = C/K>.
be positive or negative.

The constants may

Computer Statements for
Optimization

Just as there are a variety of operations
and transformations which may be incorpor-
ated into a sequential simplex routine,
likewise, computer programs for optimiza-
tidn may exhibit differences even when
thé number and type of operations are the
éame. The possibility of substantial
improvement in a computerized optimization
routine by small program changes should,
therefore, never be overlooked. Simple
computer programs for minimizing functions
of two and three variables have been illus-
trated in Tables 5 and 6, respectively, of
Reference 9. (For functions which are to
be maximized instead of minimized, Tables
5 and 6 of Reference 9 may be used if the
objective function is multiplied by minus

one.)

Table 1 herein illustrates an improvement
in'Table 5 of Reference 9(the two-variable
sequential simplex routine) as well as an
imbrovement in Table 6 of Reference 9 (the
fhree—variable sequential simplex routine).
Paragraphs 11 and 9, respectively, of
Table 1 herein may be substituted for para-
gréphs 11 and 9 of these two- and three-
Addition-

‘ally, the two-variable simplex routine

variable minimization routines.

given in Reference 9 may be modified, with

potential for improvément, by adding lines .
9.28, 9.30, 9.32, and 9.34 of Table 4

(see page 19). (Paragraph 9 in Table 1
herein may also be modified by insertion
of the statement "GOTO 5.02" at steps 9.36

or 9.46.) : -

Non-euclidean Optimization

Many mathematical schemes have been devel-
oéed for computer-assisted optimization [6].
Many of these schemes are amenable to geo-
metric interpretation, which is often use-
ful for the purpose of visualizing the
mechanics of an optimization technique.

Such interpretations always seem to be
formulated in terms of euclidean geometry,
perhaps because this is the familiar geom-
etry in everyday use. But there are other -
geometries based on assumptions different

from those of euclidean geometry, and it .
is the purpose of this section to suggest -
that one of these geometries may be more

useful for some optimization schemes than

ordinary euclidean geometry.

To illustrate this, a two-variable simplex’
routine has been adapted to geometry on a
hyperbolic plane, although no arguments
present this geometry as more suitable for
purposes of optimization than euclidean
geometry, or some other geometry. Simi-
larly, there seems to be no reason to be-
lieve that the sequential simplex method

is the best optimization method for adapta-
tion to some non-euclidean geometry, al-
though the simplicity of the sequential
simplex method may allow it to be more
easily converted than some other, more

complicated optimization technique.

Hyperbolic geometry and euclidean geometry
share the property that lines are infinite



" Table 1 - MODIFICATIONS OF THE TWO- AND THREE-VARIABLE SEQUENTIAL SIMPLEX
ROUTINES GIVEN IN REFERENCE 9

Two-Variable Routine:

11.02 S PJ=(WJ+BJ)I/2; S PK=(WK+BK)/2

11.84 S RJI=PJI+(PJI-NJ)3 S RK=PK+(PK-NK)

1186 S JC1)=BJ3 S K(1)=BK; 5 J(2)=WJ; S K(2)=VK
1188 S J(3)=RJs S K(3)=RK; GOTO. 5.82

Three-Variable Routine:

09.084 1 (RG-NG)Se02,9.86,9.06

@926 I (RG-WG)9: 10,95 20,9+ 20 o

29.18 S CJ=PJ+(PJ=WJ)/2; S CK=PK+(PK-WK)/23 S CL=PL+(PL-WL)/2
@912 S JC(1)=CJ; S K(1)=CK; S L(1)=CL

@9.14 S A=1; D 235 S CG=G(1)

@916 1 (CG=WG)S5e@2,9¢28,9.20 )
89,20 S QJ=PJ-(PJ=WJ)/2} S QK=PK-(PK-WK)/23 S QLaPL-(PL-WL)/2 !
@9422 S JC1)=QJ5 S K(1)=Q@K3 § L(1)=QL

@9+24 S A=1; D 2

09.26 S QG=G(1)3 I (QG-WG)5.02,9.38,9.30 :

8938 S PJ=(BJ#NJ+WJI/3; S PK=(BR#NK+WK)/3; S PL=(BL+NL+WL)/3
09432 S YJ=PJ+(PJ-VJ)} S YK=PK+(PK-VK)} S YL=PL+(PL-VL)

29.34 S J(1)=YJ3 S KC1)=YK3} S LC1)=YL ‘

@936 S A=13 D 2 , ‘ ‘

2938 S YG=G(1)3 I (YG=WG)5¢082,9.48,9.40

09¢4@8 S PJ=(BJ+VJ+WJ)/35 S PK=(BR+VK+WK)/3; S PL=(BL+VL4WL)/3
89,42 S ZJ=PJ+(PJ-NJ); S ZK=PK+(BK-NK); S ZL=PL+(BL~NL)

09.44 S JC1)=ZJ3 S K(1)>=ZK; S L(1)=ZL

@9.46 S A=13 D 2

09.48 S 2G=GC1)3 1 (ZG=WG)S+B32,9¢50,9+58

@958 S JC(1)=RK; S K(1)=RL3 'S LC[)=RJ’

29,52 § J(2)=BJ; § K(2)=BK; § L(2)=BL

@9.54 S J(3)=QK: S K(3)=QL3 S L(3>=QJ

@956 S J(4)=PL3 S K(4)=PJ3 S L(4)=PK; GOTO S.@2



in extent. This similarity is an advan-
tage, since the vafiables in an objective
function may be arbitrarily large or
small, positive or negative. In both of
these geometries, then, a simplex may
progress infinitely far in any direction, .
whereas in geometries which have lines of
finite length, this may not be possible.
For this reason, hyperbolic space may
appear more suitable for optimization
problems than other non-euclidean spaces,
such as one of the elliptic spaces. Cer-
tain easily adjustéd parameters of a model
of hyperbolic space also make this geom-
etry appealing.

There are at least three computational
models of hyperbolic space which may be
pseful for elementary applications of the
sequential simplex technique: the Klein
cross ratio ﬁodel [10], the Poincare cross
ratio model [11], and the Wylie hyperbolic
cosine model [12]. All three models vis-
ualize two~-dimensional space as the inter-~
ior of a circle, and three-dimensional
space as the interior of a sphere. The
Klein and Wylie models will be of interest
here. 1In the Klein model, distance mea-
surements are made by the "cross ratio"
technique, whereas in the Wylie model,

an inverse hyperbolic cosine function is

used for distance evaluations.

Euclidean Simplex; Euclidean
Function Evaluation

In the adaptation of an optimization

scheme to a geometry such as hyperbolic
geometry, four possibilities arise. The
first of these possibilities is that the
simplex algorithm may operate according

to the rules of euclidean geometry in the

lq

usual manner, and that the numerical values
of the objective function may be evaluated
from the values of the euclidean coordinates
of the simplex vertices. This is the tra-
ditional sequential simplex routine: both
simplex movements and objective function
response values are determined by euclidean
geometry. Symbolically, this possibility
may be denoted by the letter pair (E,E),
where the first E denotes simplex movements
by the rules of euclidean geometry, and the
second E denotes objective function evalu-
ation by the euclidean coordinates of the
simplex vertices. The other cases are then
denoted as (E,H), (H,H), and (H,E), and are
discussed below.

Euclidean Simplex; Hyperbolic

Function Evaluation

A simplex méy be located with euclidean
coordinates (Beltrami coordinates when the
radius of the circle is unity) in the
interior of a circle or sphere. Likewise, -
the simplex may be moved about this inter-
ior region in the customary manner using
the rules of euclidean geometry, and it

may also be constrained to this interior

by rules based upon euclidean geometry.
For purposes of objective function evalua-
tion, however, the coordinates of the sim-
plex vertices may be given hyperbolic
interpretations, so that the parameters of
the objective function are interpreted

in a non-euclidean sense. For example, a
simplex may be located within the circle
of center (x,y) = (0,0), with a radius (R)
of one unit, such that one simplex vertex
is at the euclidean point (0.99,0), i.e.,
very close to the circle perimetér. While
the euclidean x-coordinate (also Beltrami

x-coordinate, since R = 1) of this vertex



~ may be 0.99, the hyperbolic x-coordinate
may be some larger number whose numerical
vdlue depends upon the value of the metric
constant of the hyperbolic space. The
objective function may be interpreted ac-
cording to this larger number. This man-
ner of operation may be denoted as sequen-

tial simplex in the (E,H) form.

Table 2 contains two methods of converting
euclidean numbers representing the coor-
dinates of a simplex vertex into their
hyperbolic counterparts. The first entry
in Table 2 is suitable
simplex routine, while the second entry
in Table 2 is suitable

Both entries use the

for a two-variable

for a three-variable
simplex routine.
cross ratio.method (Klein model) for de-
A The hy-

perbolic distances which are computed are

ﬁermining hyperbolic distances.

those distances from a point to the coor-
dinate axes along lines from the point to
each of the coordinate axes. These lines
are perpendiculaf to the coordinate axes
in both euclidean and hyperbolic senses.
Thus, the euclidean x-coordinate of a .
ﬁbint is converted to the hyperbolic x-
cqérdinate by using the cross ratio method
abplied to a chord intersecting the point
aﬁd perpendicular to the y-axis of the

. This

éomputation assigns to each point in the

circle or sphere. See Figure 1.
circle or sphere a set of numbers taken
to be the hyperbolic coordinates of the
point. Each point within the circle or
sphere has a unique set of euclidean coor-
ainates, and the numbers taken as hyper-
bolic coordinates of the point are thus
uniquely determined., This coordinate
syétem for the hyperbolic plane is ap-

parently new.*

*C. R. Wylie, Furman University, to
C,» L. Silver, private communication.

=

B

O -

FIGURE 1 - Cross-ratio method of measur-
ing hyperbolic distance. In the semi-
circle, chord AD is perpendicular to the
radius at point B in both euclidean and
hyperbolic senses. The hyperbolic length
of segment BC is the metric constant times
the natural logarithm of the euclidean
ratio (BD°CA)/(CD*BA). This length is the
hyperbolic x-coordinate of point C.

The first and second entries in Table 2
may be taken as the second paragraph in
the two- and three-variable simplex rou-
tines, respectively, as illustrated in
Reference 9. Table 3 presents similar

hyperbolic coordinate evaluation schemes

"according to the Wylie hyperbolic cosine

model of computing hyperbolic distance
measurements. The two entries in Table

3 may simila;ly be taken as second para-
graphs in sequential simplex routines for
two and three variables, respectively,
such as illustrated in Tables 5 and 6 of

Reference 9.

Each entry in Tables 2 and 3 requires
specification of the square of the radius,
R, of the circle or sphere, representing
two- or three-dimensional hyperbolic space,
respectively. The square of this radius
is denoted by the letters RR.

also requires specification of the metri¢

Each- entry

. constant of the hyperbolic space, denoted

by the letters MC. The metric constant
defines the unit of measure in hyperbolic
space, i.e., the number of distance units’
between two arbitrarily selected points.
[12] . The hyperbolic distance between

the center and the peribhery of the circle

11



Table 2 - CROSS RATIO METHOD FOR CONVERTING EUCLIDEAN COORDINATES J(A)
. INTO HYPERBOLIC COORDINATES HJ(A)

Two-Variable Conversion:

02.082 S DS=RR-J(A)"2-K(A)" 23 1 (DS)2.30,2.30,2.04

2.4 S XP=RR-K(A)“2; S YP=RR-J(A)"2 :
22.06 S X1=FSQT(XP); S X2==-X15 S YI=FSQT(YP); S Y2=-Y| -
02.08 S ZJ=(X2=-JC(A)I*X]I/ (X2®*(X]1=-JC(A)))

0213 S ZK=(Y2-KC(A))I*Y]/(Y2%(Y]-K(CA)))

@2.12 S HJCAI=MCH*FLOG(ZJ)3 S HKC(A)=MC*FLOG(ZK)

02.14 S GCAI=-S58+HJ(A)"2-24%HJ(A)+HK(AI " 2-36*HK(A)

22.16 R

02.30 S GCAY=]E+]2

Three~-Variable Conversion:

'D§=RR-J(A)'2-K(A)'2-L(A)'23 1 (DS)2.58,2.50,2.084

g92.082 S

@2.84 S XP=RR-K(A)>"2=-L(A)"2; S YP=RR-J(A)"2-LCA)"2

P2.06 S ZP=RR-J(A)“2-K(A)"2; S X1=FSQT(XP); S X2=-Xl .
22.08 S Y1=FSQT(YP)3 S Y2=-Y13 S ZI1=FSQT(ZP);3 S Z2=-21}

B2.108 S ZJd=(X2=-JC(A))I*XI1/(X2%(X1-J(A)))

0212 S ZK=(Y2=-KC(A)I*Y1/(Y2%(Y1~K(A)))

@2+14 S ZL=CZ2-LCA)I*Z1/ (Z2%(Z1-LCAY ) -
P2.16 S HJCA)I=MC*FLOG(ZJ)>3 S HK(A)Y=MC*FLOG(ZK); S HL(A)=MC*FLOG(ZL)

B2.20 S G(A)I==50+HJCA)"2-24%*HJ(A)+HK(A) " 2-36*HK(A) +HL(A) "2~ 1 8*HL (A)

@2.22 R

9258 S G(AY=1E+]2



Table 3 - WYLIE MODEL FOR CONVERTING EUCLIDEAN COORDINATES J(A)
INTO HYPERBOLIC COORDINATES HJ(A)

Two~Variable Conversion:

@2.02 S DS=RR-J(A)"2-K(A)>"2; 1 (DS)2.50,2.50,2.04

02.04 S XX=RR-K(A)"2; S AA=XX*(XX~JCA)"2)3 I CAA)2.50,2.58,2.086
82.86 S YY=RR-J(A)"2; S BB=YY*(YY-K(A)“2); I (BB)2.50,2.50,2.08
02.08 S XN=(FSQT(XX" 2-AA) +XX)/FSQT (AA)

02.18 S YN=(FSQT(YY"2-BB)+YY)/FSQT(BB)

@2.12 S HJCA)=MC*FLOG(XN)3 S HK(A)=MC®*FLOGCYN)

02¢14 1 (JCA)I2¢16,2416,2418

92.16 S HJ(Ad)=-HJ(A)

02.18 1 (KCA))2.20,2.208,2.22

82.28 S HK(A)=-HK(A)

#2.22 S GCA)==SB+HJC(A) " 2-24*HJ(A) +HK(A) " 2~36%HK(A)

@2.24 R

22.50 S GCA)=1E+12

Three~Variable Conversion:

bSéRR-J(A)'2'K(A)°2-L(A)'2} I (D5)2.50,2.50,2+04

92.02 S
@2.34 S XP=RR=-K(A) 2-L(A) 23 S AA=XP®(XP~JCAY"2)3 1 (AA)2:.50,2:50,2.086
82.06 S YP=RR=J(CA)"2-L(A) 23 S BB=YP®#(YP-K(A) " 2)3 I (BB)2.5@,2.50,2.08
62.08 S ZP=RR~J(A)"2-K(A)"23 S CC=ZP*(ZP-L(AY"2)3; I (CC)2:5@,2:503,2.10
P2.108 S XN=(FSQT(XP"2~AA)+XP)/FSQT(AA) . .
@2¢12 S YN=(FSQT(YP"2-BB)+YP)/FSQT(BB)
@2.14 S ZN=(FSQT(ZP"2-CC)+ZP)/FSQT(CC)
@216 S HJCA)=MC*FLOG(XN)Y3 S HKC(A)Y=MC*FLOG(YN)>3? S HLCA)Y»=MC*FLOG(ZN)
BL:18 I (JCA))R:20,2+20,2.22
22.20 S HJ(A)Y==-HJ(A)
F2.22 1 (KCA))2624,2424,2:26
02.24 S KHC(A)Y=-KH(A)
2226 1 (LCA))2.28,2+28,2.30
@228 S HL(A)Y=-HL(A) ]

 B2¢30 S GCA)=<-S5P+HJ(A)"2-24%HJ(A)+HK(A)Y " 2-36*HK(A) +HL(A) " 2-]18*HL(A)
©2.32 R :
A2.54 S GCAI=]1E+12



or sphere, representing all two- or three-
dimensional hyperbolic space, respectively,
is ‘infinite, however, regardless of the
(The eu-

" clidean distance between these centers

value of the metric constant.

and peripheries is the square root of RR.)
As a point within the circle or sphere
moves closer, in the euclidean sense, to
the periphery of the circle or sphere,
the hyperbolic distance from the center
of the circle or sphere increases rapid-
ly. Thus an ordinary reflection opera-
tion of the euclidean simplex in hyper-
bolic space may appear as an expansion,
even an enormous expansion, to the hyper-
bolic observer. To the euclidean observer
the simplex in the circle or sphere may
move in a predictable and regular manner,
but these same movements may appear unpre-
dictable and irregular to an observer in
hyperbolic space. It is this apparent
irregularity which lends the element of
interest to the euclidean simplex in hy-

perbolic space.

When the sequential simplex method is op-
erated in the (E,H) mode, occasionally

a reflection or expansion operation will
project a simplex vertex outside the cir-
éle or sphere used to represent two- and
ﬁhree—dimensional hyperbolic spaces. To
the hyperbolic observer this movement is
wifhout meaning, since the projected ver-
' ' and such a

When this

happens, the objective function is given

tex lies "beyond infinity,'

movement destroys the simplex.

tbé arbitrarily large value lE+12. To
avgid this circumstance, the value of the
metric constant can be increased. Since
both the radius of the model of hyperbolic
space as well as the metric constant of
the model may be quickly and easily
changed by the user, a great many pos-
sible convergence paths are immediately

éVéilable, and some of these paths may
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avoid the problem of false convergence.
The enfries in Tables 2 and 3 set the ob-
jective function equal to 1lE+12 in the
event that one of the initial points of
the sfarting simplex lies outside or on
the periphery of the euclidean model of
the hyperbolic space.

The entries in Tables 2 and 3 yield re-
sponse values of the test function which
differ because of a factor of 2 intrin-

sic to the method of computation. Thus,
the first entry in Table 2 with R=50 and
MC=3 yields-the same parameter response
values (within round-off error) as the
first entry in Table 3 with R=50 and MC=6.
(The sample test function is denoted by

the symbol G(A) and is a simple polynomial.) )
Where optimum values of the parameters in
some objective function are small, e.g.,
unity or less, it is sometimes helpful to
select large values of R, the radius of the
model of the hyperbolic space, together
with small values of the metric constant,
MC. The meanings of the adjectives "small"
and "large" depend upon the particular
rircumstances, hnt might reprocent ouch
values as 1-50 for R, and 0.5-5 for MC.
Larger values of MC may be more appropriate
for‘larger‘optimum parameter values. The
important point, however, is that simply
changing the values of R and MC cauées
considerable flexibility in the (E,H)

Note that .the optimum
values of the objective function parameters

simplex routine.

are the hyperbolic values (preceded by the
letter H in Tables 2 and 3), and not the .
cdrresponding euclidean values used to ' ’

direct the simplex movements.

The number of significant digits carried
by the computer may affect the usefulness
of the mixed geometry model of the simplex
algorithm. With six-digit precision, for

example, the smallest relative difference



in the parameters of the objective function
is +10-%.

placing limits on the sizes of the numbers

This may have the effect of
available to the simplex routine. Since
iogarithms are used in the models illus-
trated herein, these limits may be rather
restricted. For example, the .distance
between the center of the circle and the
periphery of the circle representing two-
dimensional hyperbolic space is infinite
in the hyperbholic sense, But with six-
digit precision, the closest approach to
infinity in the hyperbolic sense is the
euclidean number 0.999999R, and the op--
timum value of a parameter in the objec-
tive function may be some hyperbolic
number lying between the euclidean num-
bers 0.999999R and R.
‘arises because of this granularity of the
the number system in the computer, it

If a problem

may sometimes be overcome by increasing

the value of the metric constant.

Several other problems may also arise.

The circle or sphere may not be the best
euclidean model of hyperbolic space; an
ellipac or an ellipsoid may instead be

more appropriate for some problems, such
as cases where the magnitudes of the op-
timum parameter valLes are considerabiy
different.
spheres may be changed to the equations

The equations of circles and

of ellipses and ellipsoids by division of
fhe sqﬁared, coordinate terms in -Tables

2 and 3 by unequal constants. Use of an
ellipse or an ellipsoid as the model for
ﬁyperbolic space introduces the possibil-
ity of anisotropic spaces for optimiza—
tion problems. Also, increasing the value
of R, the radius of the model of hyper-
bolic space, will progfessively reduce
'édmputational precision. If R .were se-
lected as 1000, for example, then RR

w§ﬁld be 1,000,000, and .a computer

carrying six-digit precision might not be
able to find precise, fractional values
of the parameters in an objective function.

Precision is lost when small numbers are
subtracted from large numbers such as one
million; the Klein and Wylie models illus-
trated herein depend upon the operation

of subtraction. Precision is also lost
because both of these computational models
depend upon the use of logarithms. As the
simplex contracts in the neighborhood of
an optimum, the distance between two sim-
plex vertices decreases. Precision is
lost, and error may be introduced, since
the computer may not be able to differen-
tiate between the logarithms of closely
spaced numbers. Since.geometry about a
point is euclidean, any advantage which
non-euclideah optimization may offer would
appear to be progressively diminished as
the simplex progressively contracts about

an optimum.

Hyperbolic Simplex; Hyperbolic
Function Evaluation

The development of a sequential simplex
routine in which the operations of reflec-
tion, expansion, and contraction are taken
in hyperbolic context may follow fruw Lhe
Klein cross ratio method or from the Wylie
hyperbolic cosine method. Let the latter
method be arbitrarily selected [12]. 1In '
this model, k represents the metric con-
stant denoted earlier in this report as
MC. According to this model, the distance
between the two points B and N is given by
f(PBPN)
VE(PPL) £(P P )

P_P._ = (k)cosh~! (1)

B'N

- 12



The point C is equidistant from points B

and N when PBPC = PNPCor

3

L E(PgPC) £(PPo)

VE(?CPC)f(PBpB) v?(PNPN)f(PCPCX

(2)

where a term such as f(PBPB) is defined as

%2 _ y2 .
RR XB YB and a term such as f(PBPC) is
defined as RR - XBXC- YBYC’ xB and YB

representing the euclidean x- and y-
Note that, in
this statement of distance equivalence,

coordinates of point B.

the metric constant (k) disappears.
Squaring both sides of Equation 2 yields

fZ(PBPC) £2 (PyPo)
= (3)
£(P.P.) £ (PLPL) £(PyPy) £(PLPL)
or
Cf2(P_P.) £(P_P.)
B C’ _ BB _ po (4)
fz(PNPC) £(PPy)

where DQ is a number which may be evalu-

ated from Equation 4.

Equation 4 may be reduced to a linear

equation in X, and Y., the euclidean x-

C
and y- coordinates of the point C equi-

distant from points B and N:

RR(1-DQ) = X, (Xp-X\DQ) + Y. (Yp-¥DQ) (5)

But the points B and N determine both a
euclidean and a hyperbolic line. Since
point C is on this line, the equation of
the euclidean line through points B and

N may take the form

BB = ~(MM) (X,) + Y. (6)

where the terms BB and MM represent the
numbers customarily associaﬁed with the
equation of a straight line. Equations

5 and 6 may be solved together by deter-
minants and Cramer's rule to give explicit

numerical definition to the points XC and

16

YC’ the euclidean x- and y- coordinates
of point C, the point equidistant from
points B and N. Hence, point C is a
point of the line connecting B and‘N
(Equation 6), and is eguidistant (in the
hyperbolic sense only) from points B and

N (Equation 4).

If the letters B, N, and W represent the
vertices of a simplex with the best, next-
to-worst, and worst responses of an objec-
tive function, respectively, then the
points W and C (the hyperbolic centroid of
the line connecting points B and N) also
determine a straight line. This line may
contain the reflection point, R, the ex-
pansion point, E, and the two contraction
points, Cr and Cw. Point R lies on this
line, which may take the same form as
Equation 6:

Yy = (MM)X, + BB (7)
But point C is equidistant from points R

and W so that

f(PRPC) 'f(PCPw)

(8)

VE(BL ko) f(rora)  VE(P P )E(P b )
R'R cc c°C W' W

Squaring both sides of Equation 8 yields

£2(P_P.) £2(p,.P.)
RC _ CW_ _ or (9)
£(PRPp) £ (PPr)
or
(RR - X X_ - Y Y. )2 :
C R CR_ _ or (10

- X2 - . y2
RR XR YR

where QR is a number that can be evaluated

from Equation 9.

Equation 7 may be substituted into Equa-
tion 10 to yield an equation which is

quadratic in X This equation has two

R®



solutions for Xpr say X1l and X2. Both
lie along the line defined by Equation 7,
and both are equidistant from C. Two
points satisfy these criteria: the de-
sired hyperbolic reflection point, and
point W. The desired value of the x-
coordinate of the reflection point (XR)
may be determined by a small test. The
value |X1} - |Xw| should be nonzero if

the solved value of X1 is the x-coordinate
of the reflection point, and zero if the
solved value of X1 is the x-coordinate of
point W. Due to round-off error in the
computer, the value of the difference
|X1| - |x,| may not always be exactly
zero when calculated X1 is the coordinate
of the W point.
coordinate of the point W the difference
|Xl|’- |X,;| will be smaller than the simi-

lar difference when X1 is the coordinate

However, when X1 is the

0f the reflection point. In other words,
if the difference ||x1| - |xw|I -

I|XZ| - lxw|| is negative, then X2 is the
x—-coordinate of the reflection point;
whéreas if this difference is positive,
the x-coordinate of the reflection point
is X1.
iﬁ‘paragraphs 4 and 12 of Table 4.

These calculations are summarized

Téble 4 is a statement of a two-variable,
séquential simplex routine in the (H,H)
form, i.e,, hyperbolic movements of the
éimplex and hyperbolic interpretation of
the euclidean coordinates of the simplex
vertices.
method as the observer in the hyperbolic
space might use it. Paragraph 3 of Table
4‘finds the euclidean coordinates of the
gehtroid of the line connecting points B
and N.
?ériphery of the circle, round-off error

As the simplex approaches the

may occasionally project one of the sim-
piex vertices outside the circle. 1In

This is the sequential simplex

this event, a "violation" message is
printed and the program terminates. An
increase in the value of the metric con-

stant may prevent this problem.

Paragraphs 4 and 12 find the euclidean
coordinates of'the reflection point.
paragraphs 6 and 12 find the euclidean
coordinates of the expansion point; para-
graph 8, the euclidean coordinates of the
C, point; while paragraph 10 finds the
euclidean coordinates of the C, point.
Paragraph 11 is for rejection of point N.
With the exception of paragraph 2 and the
above mentioned paragraphs, the remaining
paragraphs represent a suggested form of
the traditional sequential simplex routine.
Paragraph 2 gives hyperbolic interpreta-
tion to the euclidean (x,y) coordinates
of the hyperbolic points C, R, E, Cr and
Cw' Paragraph 2 uses the cross ratio
technique for this calculation, whereas
the remainder of the program uses the
Table 4 is
thus a hybrid program containing both the

hyperbolic cosine technique.

Klein and Wylie techniques for hyperbolic
distance evaluations. There is no speci-
fic reason for using the Klein technique
in paragraph 2 of Table 4; it has been
inserted only as a matter of curiosity,
and because it is somewﬁat shorter than
the similar Wylie form. If desired, the
Wylie method of evaluating hyperbolic
coordinates from euclidean coordinates
may be inserted in paragraph 2. Merely
take the first entry in Table 3 and insert
(Table 4
presently contains the first entry in
Table 2.)
possibility of two hyperbolic sequential

Either

it as paragraph 2. in Table 4.
Table 4 thus presents the
simplex schemes in the (H,H) form.

of these schemes may be useful for optimi-

zation.

17



Table 4 - HYPERBOLIC TWO-DIMENSIONAL SEQUENTIAL SIMPLEX ROUTINE

C-FOCAL, 5/8K-71 F

18

B1.10 T "HYPERBOLIC SIMPLEX, HYPERBOLIC INTERPRETATION", 1!
Ol«12 T "FOR TEST FUNCTION MINIMIZATION®, !

Bl1.28 A "J(l1)= ", J(1)s ™ KC1)= ", K(1), !

Ble22 A "J(2)= ", J(2), " K(2)= ", K(2), !

Q1424 A "J(3)= ", J(3)s " K(3)= ", K(3), !

P1.26 A "GIVE CIRCLE RADIUS ", R, !; S RR=R*R3; S A=0@
@1.28 A "GIVE METRIC CONSTANT ", MC, !!3 GOTO S5.@2

92.92 S DS=RR=J(A)Y"2-K(AY" 23 1 (DS)2.30,2.30,2.084

@2.04 S XP=RR-K(A)"2; S YP=RR-J(A)"2 ’

P2.P6 S X1I=FSQT(XP)3 S X2==X13; S YI=FSQT(YP): S Y2=-YI
0207 1 (X1-JCA)I2.08,2« 30,208 -

P2.08 S ZJ=(X2=-JCAII*X1/(X28(X1~-JCA)))

0289 1 (Y1-KCA))2:.10,2¢30,2.10

P2 10 S ZK=(Y2=-KCA)I*Y1/ (Y2*(Y]1=-K(A)))

82412 S HJCAI=MC*FLOG(ZJ)3 S HKC(A)=MC*FLOG(ZK)

B2.14 S G(AI==SP+HJC(A) " 2-24*HJ(AI+HK(A) " 2~36"HK(A)

P2.16 R

02J38 S GCAY=1E+12

§3.06 S DB=RR-BJ"2=BK"2; I (DB)3¢50,3.50,3.08

23.08 S DN=RR=NJ"2=-NK"2; I (DN)3¢50,3.50,3.10

G310 S DW=RR-WJ"2-WK"23 1 (DW)3¢50,3¢508,3.12

@3.12 S DA=FSQT(DB/DN)Y3 S TI=RR*(1-DQ); S T2=NJ*BK~BJ*NK
03«14 S Cl=BJ-NJ*DQ; S C2=BK=-NK; S Bl=BK~-NK*DQ; S B2=NJ-BJ
B3.18 S XC=(T1%B2~T2*Bl)/(C1*B2-C2%B1); S YC=(C1*T2-C2*T1)/(C1*B2-C2*B1)
#3+.22 S QR=(RR=-WJ*XC-WK*YC)"2/ (RR=WJ"2-WK"2)3

P3.24 S SX=XC3 S SY=YC> GOTO 4.0Q6

@3.50 T "VIOLATION": Q

Q406 S BB=(WJ*YC~WK*XC)/ (WJ=XC)}3 S MM=(WK~-YC)/ (WJ=XC)
P4.38 S Q!=RR=-YC*BB; S Q2=XC+YC*MM; S Q3=RR~BB"2; S Q4=2%BB*MM
G4+10 S Q5=1+MM"23 S Q6=QR*Q5+Q2°25 S Q7=QR*Q4-2%*Q[*Q2
f4.12 S Q@8=Q1°2~QR*Q3; D 123 S A3=FABS(WJ)

P4+ 16 S DD=FABS(X!1=-A3)~FABS(X2-A3)3 1 (DD)4¢18,4+20,4.20
B4.18 S RJ=XR(2): GNTN a.22 ’ ’
B4.2@8 S RJ=XR(1)

B4.22 S RK=BB+MM*RJ

BS.82 F A=1,1,35D 2

05604 1 (GC1)=G(2))S5.86,5:24,5.24

05.86 1 (G(2)~G(3))5.08,5+3055.30

PS«B8 I (GC1)-G(2))5.10,5¢36,5+36

#5.18 S BG=G(1)3 S NG=G(2)3 S WG=G(3)

@512 S BJ=dJ(1)3 S NJ=J(2)3 S WJ=J(I)

@S.14 5 BK=K(1)3 S NK=K(2); S WK=K(3)

05«16 T BG, ! .

95.22 GOTO 7.82

B5.24 S TG=G(1)3 S G(1)=G(2)3 S G(2)=TG

0526 S TJ=J(133 S J(1)=J(2)3 S J(2)=Td

#9528 S TK=K(1)3 S K(1)=K(2)3 S K(2)=TK:; GOTO S.06

?5.30 S TG=G(2)3 S G(2)=G(3)3 S G(3)=TG ’

@5432 S TJd=J(2)3 S JC2)=J(3)3 S JC(3)=TJ

P534 S TK=K(2)3 S K(2)=K(3)3 S K(3)=TK: GOTO S5.08

9536 S TG=G(1)3 S G(1)X=G(2)3 S G(2)=TG )

P5.38 S TJ=J(1)d3 S JC1I=d(€2)3 S J(2)=TJ

OS540 S TK=K(1)3 S K(1)=K(2)3 S K(2)=TK3 GOTO S.10



Table 4 - HYPERBOLIC TWO-DIMENSIONAL SEQUENTIAL SIMPLEX ROUTINE

P6.086
36.08
36.10
06.12
gé6. 14
@616
06.18
86+ 20

@7.062
27.064
8786
27.28
0710
g7.12
g7. 14
27.16
27.18

@8.034
88.026
98.088
98.10
P8.12

89+ 24
29.20
@9.22
99.28
99. 30
29.32

09. 34

@9+ 40
@9.42
09.50
89.52
3956

180.02
18.24
18.026
16.08
10.10

11.02
11.04
11.06
11.08
11.10
1112

12.982
12. 24
1236
12.28
12.10
12.12
12. 14

nununuun—=oe~wuno “nfnunun-~ounnn

VWVENODVN WO -~ e n

runnne=n

(CONTINUED)

QE=(RR-SX#RJ~SY*RK)" 2/ (RR-5X"2-5Y"2)3 S QI=RR-RK*BB
Q2=RJ+RK®*MM3 S Q3=RR-BB" 2} S Q4=2*MM%BB3 S Q5=1+MM"2
Q6=QE*Q5+Q2"23 S Q7=QA%QE-2%Q1 %023 S Q8=Q1"2-QE%*Q3
123 S AC=FABS(SX)3 S DD=FABS(X1-AC)~-FABS(X2-AC)
(DD)6¢16,6418,6418

EJ=XR(2); GOTO 6.208

EJ=XR(1) ’

EX=BB+MM*®*EJ

33 D 43 S J(1)=RJ3 S K(1)=RK3 S J(2)=BJ3 S K(2)=BK
J€3)=NJ3 S K(3)=NK; F A=1,1,33D 23 S RG=G(1)
(RG=-BG)7.98,9+04,9.04

63 S J(1)=EJ: S K([)=EK3 F A=1,1,33D 23 § EG=G(1)
(EG-BG)7+16,7-12,7.12

JC13=BJ3? S K(I)=BK;: S J(2)=RJ3 S K(2)=RK

J(3)=NJ; S K(3)=NK3 GOTO S.02

J(1)=EJ; S K(1)=EK3 S J(2)2BJs S K(2)=BK

J(3)aNJ3 S K(3)=NK; GOTO S.82

DC=RR=-SX"2-SY"23 S DR=RR-RJ"2~RK"2; 1 (DC)»3.50,8.06,8.06
(DR)3+50,3.50,8.08 ’ ’
DQ=FSQT(DC/DR)
CJ=(BB#*(SY=-RK*DQ)-RR*(1-DQ) )/ (-MM* (SY~RK*DQ) -~ (SX~-RJ*DQ))
CK=(~-MM*RR*(1-DQ)-BB*(SX-RJ*DQ))/ (-MM®# (SY-RK*DQ)~-(SX-RJ*DQ))

(RG=NG)7¢ 12,9¢20,9. 20

(RG-WG)9+22,9¢40,9.40

83 S J(1)=CJ3 S K(1)=CK3 S J(2)=BJ} S K(2)=BK’
J(3)=NJ3 S K(3)=NK3; F A=1,1,33D 2; S CG=G(1l)
(CG-WG)9+32,9. 40,9+ 40

J(1)=BJ3 'S K([)=BK; S J(2)=NJs § K(2)=NK
J(3)=CJs S K(3)=CK3 GOTO 5.02

1803 S J(1)=BJ: S K(1)=BK3 S J(2)=NJ3 S K(2)=NK
J(3)=QJ3 S K(3)=QK3 F A=1,1,33D 23 S QG=G(3)
(QG-WG)9.52511-02011o62

J(1)=BJ3 S K(1)=BK3 S J(2)=NJ3 S K(2)=NK
J(3)=QJ3 S K(3)=QK3 GOTO S.@2

DW=RR=WJ"2-WK"23 S DC=RR~S5X"2=5Y"23 1 (DC)3+50,3+50,13.084
(DW)3¢50,10+86,10.06 ’
DQ=FSQT(DW/DCY; S T1=RR*(1=-DQ)
QU=C(T1-BB*(WK=SY*DQ) )/ (WJ=-DQ*SX+MM* (WK-SY*DQ))

WUK= (BB* (WJ=DQ*SKX)+MM*T1 )/ (WJ-DA*SX+MM® (WK=SY*DQ))

DW=RR=-WJ"2-WK" 25 S DB=RR-BJ"2-BK"2; S DQ=FSQT(DW/DB)
T1=RR®*(1-DQ); S T2=WJ*BK-BJ®*WK; S Cl=WJ-DQ*BJ
C2=BK-WK3 S Bl=WK-DQ*BK; S.B2=WJ=-BJ; D 3.18
WJsNJ; S WK=NK; D 3223 D 45 S JC1)=BJs S K(1)=BK
J(2)=WJ3 S K(2)=WK3 'S J(3)=RJ3 S K(3)=RK

0TO 5.022

RD=Q7°2-4%Q6%Q83 I (RD)12.04,12.06,12.06

RD=0 )

XR(1)= (FABS(Q7)+FSQT(RDIIFFSA (-07¥/ (2%QK)
(XRC1)3312:14,12410,124 14

XR(1)=(~Q7=FSQT(RD) )/ (2%*Q6)

XR(2)=(~Q7+FSQTC(RD))/ (2%*Q6)

XR(2)=Q8/ (XR(1)%Q6)3 S X1=FABS(XR(1))2 S X2=FABS(XR(2))

19



Note: The euclidean counterparts (XE, YE)
to any set of hyperbolic coordinates (XH,
Yﬁ) may be found by use of a short program
such as is illustrated below. 1In a circle
of radius 1 unit and metric constant 3,
the point with euclidean coordinates
(0.306, 0.306) has hyperbolic coordinates
(1, 1), and a simplex started at these
hyperbolic coordinates should be started

in the Table 4 program at the point
J(1)=0.306, K(1)=0.306.
euclidean coordinates have been calculated

Since these

with the hyperbolic cosine model, the
metric constant 3 is changed to 1.5 when
these coordinates are entered into the
program in Table 4. (Coordinate signs
are determined by the quadrant into which

point falls.)

Table 4 - APPENDIX

C-PS/8 FOCAL., 197!

“CONVERSION OF HYPERBOLIC TO EUCLIDEAN COORD!NAfES CWYLIE)®, !

Ple@2 T
B1.23 T "ABSOLUTE VALUES ONLY", 1!
@l1+.84 A "CIRCLE RADIUS= *“, R, " METRIC CONSTANT= ", MC, !
P1.86 A "HX= ", HX, " HY= ", HY.,
P1.08 S HX=HX/MC3 S HY=HY/MC; S RR=R*R
Ple 10 S A=(FEXP(HX)+FEXP(~ HX))/ZI S B=(FEXP(HY)+FEXP(~HY))/2
Pl.12 S C=A"2+B"2~1
Ple14 S X2=RR*(A“2~1)/C; S Y2=RR*(B"2-1)/C
Plel16 S XEaFSQT(X2)3 S YE=aFSQT(Y2)
2118 T "XE= ", XE, " YE= *, YE,
Gl.20 GOTO 1.06
»
G

CONVERSION OF HYPDRDOL!O TO EUCLIDEAN CUURDINATES (WYLIE)

ABSOLUTE VALUES ONLY

CIRCLE RADIUS= 1, METRIC CONSTANT- 3.

HX= 1, HY= 1,
XE= @.3060818637E+00 YE=

HXa>
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Hyperbolic Simplex;
Euclidean Function Evaluation

Table 4 may be converted to a sequential
simplex routine in the (H,E) form merely
by replacing paragraph 2 with a simple
statement of the objective function, as
shown in Table 5 of Reference 9. When
used in the (H,E) form, care must be
taken that the radius of the circle is
larger than the absolute value of the
largest parameter in the function to be
optimized. The metric constant is not
used in the (H,E) form.

of an arbitrary simplex BNW. The.euclid-

ean coordinates of points B, N, and W are

1.0 S
~|E
Cr
R
C}’ Cw w

0 4 B
. Xe
05

T

05 0 i 038

FIGURE 2 - Movements of an arbitrary
hyperbolic simplex. The simplex BNW has
euclidean (x,y) coordinates B(0, 0.1),
N(O, 0.9), and W(0.5, 0.5). It may move
to E(-0.506, 0.814), R(-0.368, 0.771),

C (-0.218, 0.724), and C (0.258, 0.576)
tﬁrough centroid C(0, 0.g56). It may
also move to point X(0.686, -0.429).
Radius of circle is one unit.

éigure 2 illustrates hyperbolic movements

(0.0, 0.656), (-0.218, 0.724) and (0.258,

(0, 0.1), (0, 0.9), and (0.5,.0.5),

. respectively. The simplex has been placed

in a circle with a radius of unity, and
this circle represents all two-dimensional
hyperbolic space. The hyperbolic dis- '
tances between points E and R, between
points R and C (the centroid of line BN),
between points C and W, and between points
C, and Cw are all equal, and are equal to
twice the hyperbolic distance between
points W and C,, C, and C, and C_ and C.
Point X in Figure 2 is the point formed

by reflection of point N through the cen-
troid of the line BW, this reflection and
centroid being taken in the hyperbolic
senses. The euclidean coordinates of
peints E, R, C, Cr' and Cw are, respec-—
tively, (-0.506, 0.814), (-0.368, 0.771),

i

0.576).

A computer program for hyperbolic sequen-
tial simplex may also be based on some

of the distance formulas conveniently
listed by Martin [13]. Although not
strictly non-euclidean in the traditional
sense, interesting optimization élgorithms
may be developed by applying a distance
measurement such as the cross ratio tech-
nique to the interior of any closed, con-
vex curve such as, for example, X' + Y' =

oenstant.

Non-euclidean simplex optimization may be
used in the laboratory as well as in the
computer. Changing the value of‘thé met-
ric constant in the (H,H) algorithm changes

the path of a simplex even when started at

the same initial points. This situation
occurs because hyperbolic planes with dif-
fering metric constants are only "almost

isomorphic".
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The Nonequilibrium
Titration of Plutonium

Optimization problems arise not only in
mathematical expressions, but also in
such métters as determining the optimum
conditions for nonequilibrium titrations.
As an aid to the understanding of poten-
tiometric titrations of plutonium in
dilute acid, for exaﬁple, the potential
and potential derivatives of plutonium
valence state distributions might be
examined [9]. It has also been suggested
that the inflection point and the stoichio-
metric end point of plutonium potentio-
me%ric'titrations may not always corres-
pond, and this lack of correspondence has
to be further explored [14]. It might be
possible to simulate a nonequilibrium
poﬁentiometric titration of plutonium if
values were known for the actual concen-
tration Quotients, Ql, and Q5. for reac-
tions lla and 1llb, respectively.

* +2HOH = pudt

2Py + puot + au’ (11a)

LR PuOt

Pu Pud® +puoz* (11b)
6.97E-04 and

13.2 at equilibrium, the inflec-

In 10M acid, where Q1 = Kl =
tion point slightly precedes the stoichio-
In 1M acid,
an inflection point in the

metric end point [9]. on the
othér hand,
neighborhood of the stoichiometric end

point is not easy to discern under equilib-

rium conditions [9].

As a nonequilibrium potentiometric titra-
tion of trivalent plutonium nears the
stoichiometric end point in dilute acid,
it seems likely that the actual concentra-
tion of tetravalent plutonium will exceed
ifs equilibrium concentration, while the

nonequilibrium concentrations of other

plutonium species are likely to be less
the
value of Q, is likely to be less than Ki,

than their equilibrium values. Hence,
the equilibrium constant for Equation lla.
Likewise, the value of Q, may also be less
than Ky the equilibrium constant for
Equation 1l1lb. Hence, for purposes of simu-
lating nonequilibrium titrations in dilute
acid, values of Ql.and Q2 which are less
than the values of Ky and K, may be used

in the plutonium (N,H) characteristic
equation. The problems which then arise
are: how much less than Kl'and K2 should
be the values.of Ql and Q2' respectively;
and what value should be given the ratio
Q2/Ql-
seems unlikely that the ratio QZ/Ql would

In nonequilibrium circumstances it

be some constant multiple of the ratio
KZ/Kl' As an illustration, '
sume that QZ/Ql =
02 and Ql are decreased. For example, when
Q, = 6.97E-07 and Q, = 13.2E-03, an in-

flection point is observed near a plutoni-

however, as-

K2/Kl as the values of

um average oxidation number of about 3.998.
(The average oxidation number at the
stoichiometric end point is 4.000.) As

the values of Ql’and Q, are decreased
still farther,
flection and the stoichiometric end pouint
this

suggests that the optimum circumstances

the peoint of potential iu-
correspond more and more closely;

for potentiometric titration in 1M acid
devoid of complcxing agents are circum-
stances far from the equilibrium distri-

bution of plutonium valence states.

The simulation described above may be
criticized for a variety of reasons, among
them the arbitrary assignment of the value
of Q2/Ql as equal to that of the ratio
K, /K, .
fore,

For the sake of diversity, there-
let this ratio have saome other
arbitrary value, such as the ratio of the
specific rate constants [15] for reactions
1l and 2. Thus, QZ/Ql = 37.1/2.56E-05.



Again it is found that, as the absoluté
values of Ql and Q2 are diminished, the
iriflection point and the stoichiometric
end point of the titration correspond

more and more closely. As an example of
lack of corresponaence of these parameters,
however, it may be noted that when QZ =
37.1E-02 and Q1 = 2.56E-07, the inflec-
tion point occurs near the plutonium

average oxidation number of 3.994.

This simulation procedure may also be
criticized because it assumes that the
potential of the potential-sensing '
electrode corresponds to the nonequilib-
rium Pu0§+/Pu0: ratio, or to the nonequi-
librium Pu“+/Pu3+ ratio. That the
potential-sensing electrode accurately
reflects the ratios of these nonequilib-
fium_redox pairs has not been demonstrated.
Yet the electrode response is in some.
manner surely due to some redox couple,
evénAthough, as assumptions suggest, an
inflection in the response of an electrode
may not necessarily correspond to a
stoichiometric end point. In other words,
in a plutonium solution which is under-
gping volumetric or electrometric titra-
tion, the plutonium ion alpha coefficients
and the solution acidity may be taken as
constants'to a first approximation. For
suéh a titration, nonequilibrium circum-
séances may occur such that the numerical
Qalues of Q1 and Q2 lead to a plutonium
(N,H) characteristic equation for which
;ﬁe potentiometric inflection point and
stoichiometric end point fail to corre-
spénd. Thus, arbitrary assignment of the
éotential inflection point as the stoi-
éhiometric end point of a titration may
not be justified. '
That a potential inflection point may
occur apart from the stoichiometric end
point may be further illustrated by

consideration of the coulometric titration
of plutonium in sulfuric acid solution [16].
This procedure is commonly used for the
accurate assay of plutonium and involves
coulometric titration of the plutonium

from the trivalent to the tetravalent state
in half molar sulfuric acid. In the con-
stant potential version of this titration, ~
the oxidation potential is taken as +0.67
volt vs. S.C.E., i. e., about +0.91 volt
vs. N.H.E. 1In order for this titration to

‘give accurate, reliable, and reproducible

results, the initial oxidation number of

the plutonium should be close to 3.0, and
the final oxidation number of the plutonium,
near 4.0. If the plutonium initial and
final oxidation numbers are exactly 3.0

and 4.0, respectively, then accurate
measurement of the coulombs which have )
passed through the titration cell, corrected
for background currents; may yield an
accurate measurement of the plutonium
present in the solution. Otherwise, ]
chemical calibration of the titration, as
with accurately assayed specimens of plu-

tonium, is desirable.

It has generally been assumed that the
coulometric titration of plutonium does
proceed from N=3.0 to N=4.0 within a
small error which may be assayed by a
calculation from the formal potentials

of plutonium in sulfuric acid. Such for-
mal potentials pertain to equilibrium,
however, and this circumstance may not be
well approxihated in actual titration
circumstances. That a potential of 0.91
volt leads to a plutonium oxidation num-
ber which is close to 4.0, and which is
repfoducible from one titration to the

next, may still await demonstration.
Often, in the sulfuric acid titration of

plutonium by constant potential coulometry,
a small correction factor is desirable in
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order that the coulombs accumulated in
the instrument will closely correspond

to the plutonium in the beaker. 1In some
circumstances, this correction factor

is about 0,1% of the plutonium being
titrated, i.el, the instrument accumulates
about 0.1% too much current.* During the
course of the titration, the values of Ql
and Q2 are difficult to assay with accu-
racy. There are several reasons for this,
among them the inaccurately known alpha
coefficients for plutonium, the extent to
which the plutonium has been perturbed
from its equilibrium distribution, and
the rate at which disproportionafion
reactions attempt to correct this im-
balance. Owing to these circumstances,
however, the values of Q1 and Q2 are
likely to be considerably less than K,
and K2, respectively. Some selected
values of Q; and Q2 with an acidity of

1M and a potential of 0.91 volt may,
therefore, be combined in the plutonium
(E,H) characteristic équation, in order
to examine valence state distributions
accompanying nonequilibriuﬁ circumstances.
When a valence state distribution has

thus been assayed, the average oxidation
number of the plutonium in the titration
vessel may be ascertained by a simple

calculation.

As an example of this approach, it is

found that where Q, = (6.97) (10~ *°) and

Q, = (13.2) (1077), then the average oxida-
tion number for uncomplexed plutonium at
an imposed potential of 0.91 volt vs

NeH.E. 1s about 4.001, 1i.e., .about 0.1%-
more oxidation has occurred than suspected.
Other values of Ql and Qy similarly yield
plutonium valence state distributions

*R. J. Seiler, Mound Laboratory, to G. L.
Silver, private communication.
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which do not correspond exactly to N=4.0.

For example, when Q; = 10—7‘and 0, = 11

oxidation of the plutpnium is about 0.1%
greater than may have‘béen predicted.

Since the values of Q, and‘Qz_in a real
titration depend upon_ a variety of factors,
a titration carried out at.some preselected
oxidation potential may not correspond to

a plutonium average oxidation‘number of .
exactly 4.0 at the end of the titration.
Either too much or too little oxidation

of the plutonium may occur,.so chemical

and electrical calibration 6f a coulometer
should not be assumed ﬁo yieid an exact

el correspondencé. Hénce, chemical cali-
bration of a plutonium.titration may

always be desirable.: Complexation effects

do not change the essence of the foregoing
arguments. For example, when the alpha
coefficients AW, AX, AY,:AZ,‘for the tri-,
tetra-, penta-, and hexa-valent states of
plutonium are taken as 100, 105000, 1, and

10, respectively, then at a potential of

+0.91 V the average Qxidatiop number of i
the plutonium is about 4.001 for Q, = 1032

and Q, = 10" °.

The location of the inflection point in a
potentiometric titration of plutonium
depends upon the alpha coefficients of

the various plutonium ions,. as illustrated
elsewhere [9]. An alpha coefficient of
considerable interest is the one which
derives from the first hydrolysis reaction
of the tetravalent plutopiﬁm.cation. Many
years ago, an attempt was made to deter-
mine the value of this alpha coefficient
by direct potentiometry [17].,. (The term
H/ (H+KH) measured in Reference 17 is the
reciprocal of the alpha coefficient
1+(KH/H) ; KH is the first Pu(IV) hydrolysis
constant.) In this determination, the
potentials of solutions containing ini-

tially prescribed values of thé



Pu(IV)/Pu(III) ratio were measured as a
function of the solution acidity. Depend-
ing upon the initial, fixed value of this
ratio, such solutions will be increasing-
ly distant from equilibrium as the acid-
ity of the solutions decreases or in-
creases, since, for a given acidity, there
is only one equilibrium value of the
Pu(IVv)/Pu(1Il) ratio.*

tial measurements are made soon after the

Hence, if poten-

preparation of such solutions, some of
the measurements may pertain to solutions
not at equilibrium, Since a chemical
reaction may occur at the surface of an
eléct;ode placed in a solution.which is
not at equilibrium, and since the values
of the Pu(IV)/Pu(IIl) and Pu(VI)/Pu(V)
ratios are not their equilibrium values
inAsuch a solution, any potential recorded
frOm_an electrode in this circumstance may

*The establishment of fixed initial
quantities of Pu(III) and Pu(IV)
establishes the value of the pluton-
ium average oxidation number in the
solution. For any prescribed aver-
age oxidation number, the equilibrium

_value of the Pu(IV)/Pu(IIl) ratio is
uniquely established by the equilibrium
acid concentration of the solution.

be a mixed potential. But mixed poten-
tials are often difficult to interpret
unambiguously, and may bear no simple
relation to potentials predicted by the
Nernst equation [18]. Such potentials
may,- therefore, be insufficiently reliable
to ascertain the first hydrolysis constant
of tetravalent plutonium (KH) beyond ques-
tion, and this unreliability may explain
in part the discrepancies observed in
various experimental determinations of

the value of KH {19].

may be extended to experimental determina-

Similar arguments

tions of the formal potentials of the.
various plutonium couples [20). Changes
in observed potentials in plutonium solu-
tions of fixed plutonium average oxida-
tion number may derive from more than one
cause: hydrolysis may be one cause, but
the progressive rearrangement of plutonium
oxidation states may also be a cause.
Thus, the mixed potentials observed under
nonequilibrium circumstances may not be
sufficiently reliable for accurate end
point determinations in plutonium titra-
tions or for equilibrium constant evalua-

tions in aqueous plutonium solutions.
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Supplement

Algorithms suitable for solving the plu-
tonium (N,H) equation include the bisec-
tion method and the modified Regula Falsi
method [21]. Other methods are also
available, however; among them is solu-
tion by infinite series. While a series
may be easier to adapt to popular "pocket"
calculators than one of the iterative
techniques, a series solution of equations
is not without drawbacks, such as failure
of the series to converge, failure of the
series to converge sufficiently rapidly,
In the
last case, the correct root may be ob-

or convergence to the wrong root.

tained from the knowledge that the charac-
teristic ‘equation has but one positive
root, that this positive root is the de-
sired root, and that, given any root of
fhé equation, the other roots may be ob-
tained by a simple calculation involving
the coefficients of the cubic equation.

The purpose of this section is to exam--
ine one particular series for thé root
of a cubic equation, and to remark that
other series solutions for cubic equa-
£ions are also available [22]. The
method illustrated here depends upon the
now obscure theorem of Lagrange [23, 24].

To apply the theorem of Lagrange, it is
first desirable to take the general cuhic
equation

AX3+ BX?+ CX + D =0 o (12)

and divide all coefficients by A, the
cdefficients of the cubed term:

X?j+ pX? + gXx + r =0 (13)

Equation 13 may be reduced to Equation
14 or Equation 15

Y3 - aY +b =0 ' (14)
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Y = (b/a) + (Y¥/a) (15)

by means of the substitution

X=Y - p/3 (16)
where a=p*3 -gq (17)
and b=r - (pq)/3 + 2p?/27 (18)

The theorem of Lagrange states that the
desired expansion f£(z) is f(z) =

44444444 _ aN-1 N1 1 X
£(y) + ZE: 1 [k¢(y)) £ (yﬂ 57 (19)

which, when applied to Equation 15 yields

.

Y = (b/a) + (b/a)?®(l/a) + (6/2!) (b/a)®(1/a)?
+ (9)(8/3%) (b/a)’ (1/a)® + (12) (11)(10/4%)
(b/a)®(l/a)* + (15) (14) (13) (12/5%) (b/a)'?
(1/a)° + (18)(17)(16)(15)(;4/6!)(b/a)13
(L/a)® + ... (20)

where terms beyond the third (b/a counted
as the 0Oth term) may be computed. from the
recursion relation

3(3N+2) (3NF1)

2
(2N+3) (2N+2) (b/a) (1/&) (A(N))

A(N+1)

(21)

Example: By means of Lagrange's theorem,
evaluate the root of the plutonium (N,H)
polynomial which represents the equilib-
rium valence distribution of plutonium of
average oxidation number 5.0 in one molar
acid. Neglect hydrolysis and complexation
effects. The polynomial whose root is to

be evaluated is
M3 - (1.9)(10*)M - (5)(10°) =0 (22)

and this is the form of Equation 14 with-
out further modification. Application of



Lagrange's theorem for a cubic equation
(Equation 20 above) yields M = -27.398.
Since M is negative, this is not the
désired root. However, the sum of all

the roots is zero
-27.398 + Rl + R2 = 0 ' (23)

whereas the product of all the roots is
(5) (10°%)

(5) (10°%) = (-27.398) (R1) (R2) (24)

and the desired root is thus found to be
M = 149.28.
Bromwich lists other series for the cubic

equation in its various forms [25].
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