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Abstract

A direct Monte Carlo method for volume estimation of star-shaped or convex domains is presented, and is gener-

alized to a Markov Chain Monte Carlo method for high-dimensional problems. The direct approach itself, which is

closely related to a method proposed by Fok and Crevier, is already applicable to some moderately high-dimensional

problems. The combination with a Markov Chain Monte Carlo method and nested sampling or thermodynamic in-

tegration extends its scope considerably. Applications to the volume estimation for high-dimensional polytopes are

presented, and the method is tested using exact results for the first 10 Birkhoff polytopes.
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1. Introduction

Estimating the volume of a high-dimensional domain is a difficult problem with important applications in many

fields. The first random polynomial time algorithm for approximating the volume of a convex body has been proposed

by Dyer, Frieze and Kannan [1] with a very high power of the dimension d, that could be reduced in later works.

Currently, the best available algorithm [2] is based on a multiphase Markov chain Monte Carlo approach that requires

O∗(d4) calls of a membership oracle, where O∗(d4) means O(d4) up to polynomial factors in log(d).

In this paper, an alternative Monte Carlo algorithm is constructed from a representation of the volume of a convex

or star shaped domain as an integral over the unit sphere. This allows to construct a direct Monte Carlo method that

already leads to good results for some interesting test problems with fewer than about 20 dimensions. For higher-

dimensional problems, however, the curse of dimensionality is reflected in the occurrence of very sharp peaks of the

integrand, such that it becomes necessary to combine this method with importance sampling techniques.

To overcome the limitations of the direct Monte Carlo approach, a generalization of this method to a Markov

Chain Monte Carlo (MCMC) approach is presented that is based on the interpretation of the integrand as a probability

distribution with an unknown normalization coefficient. The Metropolis-Hastings method allows to sample prefer-

ably close to peaks of the integrand without knowledge of the normalization factor. In order to find the latter, the

Metropolis-Hastings method is combined with a thermodynamic integration method. Thermodynamic integration is a
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method originating in statistical physics and can favorably be combined with parallel tempering approaches that allow

to overcome problems arising from the possibly highly multi-modal density over the unit sphere.

An important application of volume estimation, relevant e.g. in theoretical and systems biology ([4], [5], [6]) is

volume estimation for high-dimensional polytopes. The methods developed in this paper were tested with the first 10

Birkhoff polytopes, for which exact results are known ([7]-[9]). The Birkhoff polytopes are sets of doubly stochastic

matrices occurring in a wide range of applications from combinatorial optimization to quantum information.

2. A direct Monte Carlo method for volume estimation

2.1. The general idea

A direct Monte Carlo method for volume estimation in high-dimensional spaces has been proposed by Fok and

Crevier [3], assuming that it is possible to find for every direction e the point at which a straight line starting from

an interior point of the domain with direction e hits the boundary. In many important applications this can be done

efficiently, either in closed form or by iterative methods.

We derive a related, but not completely equivalent method using Gauss’ divergence theorem, assuming that Ω ⊂
R

d is a compact domain with piecewise smooth boundary. Let F be a vector field with constant divergence divF = 1.

A natural – but not necessarily optimal – choice is F(x) = 1
d x. Then the volume V of the domain can be computed

using the divergence theorem

V =

∫
Ω

dV =
∫

K
divF dV =

∫
∂Ω

divF · n dσ, (1)

where ∂Ω is the boundary of the domain, n(x) is the outer normal vector at the point x of the boundary, dσ is the

(d − 1)-dimensional volume element on the boundary, and a · b denotes the scalar product of the two vectors a and b.

For the moment, we assume that K is star shaped around an interior point x0 located inside Ω. Then the volume can

be estimated as a Monte Carlo integral over F · n using the following algorithm:

1. Draw K vectors ek, k = 1 . . .K uniformly distributed from the unit sphere.

2. Starting from x0, move along direction ek until the boundary is hit, i.e. compute the smallest parameter tk > 0

such that xk = x0 + tek lies on the boundary.

3. Compute the normal vector nk and the value Fk of the vector field F at xk.

The volume element on the unit sphere is scaled by the projection to the boundary at xk by a factor of td−1/nk · ek. The

surface hypervolume of the n-dimensional unit sphere is Ad = 2Γ(d/2)/πd/2 and we find for the Monte Carlo estimator

V̂K =
2Γ(d/2)

Nπd/2

K∑
k=1

Fk · nk

ek · nk
td−1
k → V for K → ∞. (2)

2.2. Choice of the vector field and the Fok-Crevier estimator

For the choice F(x) = 1
d x, the estimator becomes

V̂K =
2Γ(d/2)

dKπd/2

K∑
k=1

xk · nk

ek · nk
td−1
k . (3)

The origin of the co-ordinate system can be located anywhere. However, in order to minimize the variance and to

avoid roundoff errors, the projection xk · nk should not change its sign, i.e. the origin should lie inside Ω. If the origin

is shifted to the point x0, the search direction vector ek is parallel to the boundary vector xk = tkek, such that the

estimator reduces to

V̂K =
2Γ(d/2)

dKπd/2

K∑
k=1

tkek · nk

ek · nk
td−1
k =

2Γ(d/2)

dKπd/2

K∑
k=1

td
k . (4)
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This is the estimator proposed by Fok and Crevier [3], which can therefore be regarded as a special case of the

estimator in Eq. (2). Note, however, that the estimator in Eq. (4) can be derived without assumptions on the smoothness

of the boundary ∂Ω.

It remains to be shown that there are reasonable choices for the vector field F and the location of the reference

point x0 other than those leading to the estimator by Fok and Crevier. In order to see that, consider a thin rectangle I =
{(x, y)|0 ≤ x ≤ 1∧ 0 ≤ L} where L � 1, and assume that the integral shall be computed using an importance sampling

method (such as the Markov Chain Monte Carlo method developed in section 3), in a variant where x0 = (0, 0), and the

integral is only over the intersection of the unit sphere with the first quadrant. For the choice leading to the Fok-Crevier

estimator, the MCMC method will sample values for t ranging from 1 to
√

L2 + 1. If we choose F(x, y) = (0, y), the

value of F · n will only be non-zero on the upper boundary {(x, y)|0 ≤ x ≤ 1∧ y = L}. Therefore, importance sampling

will avoid the right boundary completely, and sample only values for t ranging from L to
√

L2 + 1, leading to a much

smaller variance of the estimator.

2.3. Generalizations
2.3.1. Membership oracles and convex domains

Many of the available methods for volume estimation only require the existence of a membership oracle, which for

the general case is a much less restrictive requirement than an algorithm that computes all intersections of a straight

line with the boundary of the inspected domain. However, for convex domains, starting from an interior point x0, a

membership oracle can be used to find the intersection points efficiently by line search methods. A membership oracle

is therefore not a less restrictive requirement for convex domains.

2.3.2. Integrations over domains that are not star shaped
For domains that are not convex or star shaped, the generalization is straightforward in principle, and analogous to

the construction in [3], provided there is an algorithm that yields all intersections of a straight line with the boundary

of the domain as well as the oriented normal vectors in these boundary points. This requirement is obviously fulfilled

for polytopes. However, the non-negativity of the integrand will be lost, which makes the application of the MCMC

generalization developed in section 3 more difficult.

2.4. Application to convex polytopes
2.4.1. Polytopes without equality constraints

A convex polytope can be characterized as the solution set of multiple inequalities:

P =
{
x ∈ Rd

∣∣∣∣Ax≤b
}

where A is an r × d-matrix, b ∈ R
r, and the inequality is to be understood componentwise. In this case, the value t

where x = x0 + te hits the boundary is the minimal value t > 0 above which one of the constraints is violated. If a j is

the j-th row vector of A, and b j the j-th component of b, this value can be computed from

t( j) =
b j − a j · x0

a j · e , j = 1, . . . r

t = min
({

t(1), . . . , t(r)
}
∩
{
t( j)
∣∣∣∣t( j) > 0

})
.

The normal vector of the surface that has been hit is the corresponding row vector of A.

2.5. Polytopes with equality constraints
Many polytopes useful in practical applications are defined via mixed inequality and equality constraints:

P =
{
x ∈ Rd

∣∣∣∣A≤b ∧ Cx = d
}

where A is an s×d-matrix, d ∈ Rs. Interesting special cases are transportation or flux polytopes that play an important

role, e.g. for biomedical applications in the description of metabolic networks [5], [4]. The algorithm can be adapted
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easily to this problem by the computation constructing an inner point of the polytope, and then restricting the search

directions to the null space of C.

Famous representatives of this class are the Birkhoff polytopes which serve as test problems in this paper. The n-th

Birkhoff polytope Bnis formed by the set of doubly stochastic n × n matrices, i.e. matrices with non-negative entries

where all row sums and all column sums are equal to 1. The Birkhoff polytopes therefore form an (n−1)2-dimensional

subspace of the space of n × n matrices. Bn has n2 facets and, as it can be characterized as the convex hull of the

n-dimensional permutation matrices, n! vertices. The Birkhoff polytopes were selected as non-trivial reference cases

since exact results have been derived for the volumes of the first 10 Birkhoff polytopes [7],[8], [9] in the case of B10

by a long and massive computation on a workstation farm. The volume of B10 is

volB10 ≈ 8.8 · 10−46

relative to the 81-dimensional unit hypercube. The naive Monte Carlo approach by sampling from the unit hypercube

and counting points hitting the polytope is obviously hopeless in this case.

2.6. Application of the direct approach to high-dimensional polytopes
The direct algorithm can be implemented in a few lines of MATLAB code. There are only two implementation

details one should care about:

1. For this straightforward implementation, the reference point x0 obviously should not be located close to a vertex:

If the vertex is, for instance, the intersection of d orthogonal hyperplanes, the probability that a direction vector

sampled from a uniform distribution on the unit sphere does not point to one of the nearby facets converges to

2−d. With a probability of of 1−2−d, the distance t to the boundary will be tiny and give a negligible contribution

to the integral, as the integrand is proportional to td. If available, an estimation for the center of the polytope

is a good choice. Alternatively, since the expectation value does not depend on the location of x0, it is possible

to let the reference point walk through the polytope. Good results can be achieved by keeping track of the

maximum value of the integrand on the sample, and moving the reference point to x0 +
1
2
tkek whenever the

integrand exceeds a few percent of the maximum.

2. It should be controlled if the polytope is thin in one or more directions. This can be achieved by keeping track of

the covariance matrix C of the sampled boundary points. Small eigenvalues reveal “thin directions” in form of

the corresponding eigenvectors. These can be compensated by rescaling the coordinates using the eigenvectors

as a new basis.

The direct method described above was tested with standard simplices and Birkhoff the polytopes B1, . . . ,B10.

The volume of the d-dimensional standard simplex

Δd−1 =

⎧⎪⎪⎨⎪⎪⎩x ∈ Rd
∣∣∣∣0 ≤ xi ≤ 1∀i = 1 . . . d ∧

d∑
i=1

xi = 1

⎫⎪⎪⎬⎪⎪⎭
is 1/d!. For d = 30, this is about 3.77 · 10−33, so again the naive Monte Carlo approach counting hits from uniformly

distributed samples in the unit hypercube is not applicable.

In many applications, such as the estimation of the evidence of a model or the evidence against a hypothesis,

it is sufficient to estimate the order of magnitude of the results. If we regard the method (somewhat arbitrarily) as

applicable if it gives the correct order of magnitude, i.e. a logarithmic (log10) difference between the exact result and

the estimator less than 1/2 and a corresponding confidence interval, within a computation time of about 1 hour on a

single core of a 2GHz PC, the algorithm seems to work up to d ≈ 35 . . . 45 for the simplex, with much better accuracy

of course for lower dimensions. The volume of a 10-dimensional standard simplex (volΔ9 ≈ 2.76 · 10−7), for instance,

can be computed with two correct decimal places within a few minutes. These results were consistent with the results

for the Birkhoff polytope: The order of magnitude is correct for B6 (25 dimensions) after a few minutes, while

the algorithm needs hours for B7 (36 dimensions). These results can be improved of course by variance reduction

techniques. Nevertheless it is worthwhile to note that already this simple method gives good results for moderately

high dimensions, at least in applications that don’t require too many computations on varying domains. In general,

however, for more than 20 dimensions, one would certainly wish for lower variance estimators, which we shall focus

on in the following section.
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2.7. Importance sampling

For polytopes, the weight td of the integrand is obviously sharply peaked at the vertices. Therefore, importance

sampling methods can be tailored to the polytope that sample preferably around the vertices of the polytope. For the

Birkhoff polytope this is particularly easy since its vertices are many, but known, and all have the same distance to

the matrix ai j = 1/n ∀1 ≤ i, j ≤ n. However, in order to generalize the method also for higher-dimensional domains

that are not bounded by hyperplanes (such as level sets of a convex function), we will focus on a Markov Chain Monte

Carlo variant.

3. A generalization based on Markov Chain Monte Carlo methods

If the domain does not have an almost circular shape, the values of the integrand, that contains a factor proportional

to td will fluctuate over many orders of magnitude for high dimensions, and will be sharply peaked around its maxima.

If the vector field is chosen such that F · x is non-negative, as it is the case e.g. in the Fok-Crevier estimator in Eq. (4),

we can interpret the integrand normalized to the volume

p(x) :=
1

V
F · n
e · n td−1

k (5)

as a probability density. Expectations under this density can be estimated using Markov Chain Monte Carlo meth-

ods such as the Metropolis-Hastings algorithm in which the density has to be known only up to a constant factor.

The problem now is that the normalization constant is the volume that we wish to compute, and therefore remains

unknown. Several approaches to the problem of estimating normalization constants, such as nested sampling or bridg-

ing or annealing techniques, have been suggested in different disciplines ([11], [12]). For the purpose of this paper,

we choose a method called thermodynamic integration due to its interpretation in statistical physics. The method is

equivalent to bridge sampling.

3.1. Thermodynamic integration

In order to express the volume as an expectation under the density in Eq. (5), we introduce a family of densities

pβ(x) :=
1

Z(β)
f (x)β =

1

Z(β)
exp (β ln f (x)) , (6)

where

Z(β) =

∫
S d−1

exp (β ln f (x(ω))) dω, (7)

where S d−1 is the d-dimensional unit sphere. In statistical physics, β is interpreted as an inverse temperature. Obvi-

ously, for β = 0, the integrand is 1, and Z(0) is the surface hypervolume of S d−1, such that

Z(0) = Ad =
2Γ(d/2)

πd/2

Z(1) = V (8)

On the other hand,

ln
Z(1)

Z(0)
=

∫ 1

0

d

dβ
ln Z(β) dβ

=

∫ 1

0

1

Z(β)

∫
S d−1

ln f (x(ω)) exp (β ln f (x)) dβ

=

∫ 1

0

∫
S d−1

ln f (x(ω))pβ(x(ω)) dω dβ

=

∫ 1

0

Epβ
[
ln f
]

dβ (9)
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where Epβ
[
ln f
]

is the expectation value of ln f under the density pβ. The integrand can be estimated using the

Metropolis-Hastings algorithm for any given value of β, such that the integral can be computed numerically. A simple

choice for the proposal distribution is a random walk step on the unit sphere, such that for any given β, a simple

algorithm for the evaluation of the integrand in a fixed number K of steps starting with a search direction e0 with a

value f0 = f (x0) of the integrand is as follows:

1. fork = 1 . . .K
2. Draw a direction vector e′ uniformly distributed on the unit sphere.

3. Set e′′ = (ek−1 + δξe′) where 0 < δ < 1 is a fixed constant, and ξ ∈ U(0, 1) is a uniformly distributed random num

4. Set e′′′ = e′′/||e′′||.
5. Set f ′ to the value of f in direction e′′′.
6. Accept e′′′ as new search direction ek with probability min(1, f ′β/ f βk−1

),

otherwise let the search direction remain unchanged, i.e. ek = ek−1.

7. Set fk to the value of f in direction ek.

8. end for.
9. Let ÎK(β) = 1

K
∑K

k=1 f βk .

As usual, one should perform a bigger number of Metropolis steps (2-6) before ÎK is sampled, in order to make sure

that the starting direction e0 is not too far away from a peak. The volume can then be estimated from

V = Z(1) = Ad exp

(∫ 1

0

Epβ
[
ln f
]

dβ

)
, (10)

and the MCMC estimator for V is

V̂MCMC
K = Ad exp

(∫ 1

0

ÎK(β) dβ

)
(11)

where the integral
∫ 1

0
ÎK(β) dβ is evaluated numerically.

For a general high-dimensional polytope, the distribution will be highly multimodal, and so sharply peaked that

transitions of the Markov chains from one peak to another are very unlikely. Therefore, if one wants to use the

simple algorithm above, it is necessary to restart the algorithm with different random start directions e0 repeatedly,

and average over the resulting values of ÎK . A much better alternative is to evaluate the integral using path sampling

techniques that elegantly combine transitions between the peaks at lower values of β and exploration of the details of

f at β ≈ 1 ([11], [12]).

3.2. Parallel tempering

Parallel tempering [13] is a technique to keep Markov chains from getting caught in local modes. Not necessarily

related to thermodynamic integration, the idea is to run Markov chains at different “inverse temperatures” β, with

densities defined as in the previous section, and allow the exchange states between different temperatures 0 = β1 <
β2 < . . . < βM = 1. The MCMC method described above is augmented by additional “replica exchange” steps that

accept a proposed swap of the state e( j) at inverse temperature β j and the state e(i) at another βi (usually i = j− 1) with

probability

min
(
1, exp

(
(β j − βi)

(
H(e(i)) − H(e( j))

)))
where H = ln f . This rule guarantees detailed balance and therefore under mild restrictions convergence of the

Markov chains at all temperatures. Markov chains that would otherwise be trapped for large values of β close to a

local maximum of the density f , are released by parallel tempering, since transitions between local modes are very

likely for sufficiently small values of β. Often, one is interested only in the distribution for β = 1, but for the case of

thermodynamic integration, all copies at all temperatures are contributing to the evaluation of the integral.
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3.3. Numerical results

Table 1 shows the results for a straightforward MATLAB implementation of the parallel tempering MCMC method

described above, applied to the Birkhoff polytopes B5 . . .B10, on a single core of a 2.67 GHz workstation. 100 Copies

of a Markov chain at different temperatures were used, equally spaced between 0 and 1. The integral in Eq. (11) was

estimated using the midpoint rule. Parameters of the method, such as δ in the proposal distribution or the length of

the chain were the same for all dimensions and not optimized. The Markov chains were restarted repeatedly, and the

length of the chains just made large enough to ensure convergence for B10. 95% confidence intervals for the volumes

were computed from the values between restarts. In all cases, the exact value was located inside the confidence

interval, and a relative error of better than 5% was achieved, if we define this as ratio of the half length of the 95%

confidence interval and the exact value. Fig. 1 visualizes the good agreement of exact and Monte Carlo values with

results varying over many orders of magnitude.

The estimation for B10 with an error of 5% in this implementation (not tuned for efficiency) took about 12 hours.

An exact result is of much higher value of course, but for comparison, it is interesting to note that [8] reports that the

total computation time needed to find the exact value of volB10 on a workstation farm – scaled down to a single 1GHz

processor – was almost 17 years.

Fig. 2 shows how the computation time required to get a relative error of 5% depends on the number of dimensions.

A double logarithmic fit indicates a that the computation time increases with a power law dν with an exponent ν ≈ 2.92.

This dependence has to be investigated for a larger class of polytopes and higher dimensions, but it provides some

evidence that the algorithm proposed can compete with the best available algorithm that requires O∗(d4) oracle calls.

Table 1: MCMC volume estimation of the Birkhoff polytopes.

Polytope Dimensions Exact value MCMC value 95% confidence interval Computation time [sec]

B5 16 1.40937 · 10−4 1.404 · 10−4 [1.398, 1.410] · 10−4 31251

B6 25 7.35257 · 10−9 7.357 · 10−9 [7.304, 7.411] · 10−9 33679

B7 36 5.63984 · 10−15 5.669 · 10−15 [5.604, 5.735] · 10−15 35640

B8 49 4.41855 · 10−23 4.463 · 10−23 [4.392, 4.535] · 10−23 36822

B9 64 2.59833 · 10−33 2.611 · 10−33 [2.549, 2.673] · 10−33 42107

B10 81 8.78201 · 10−46 8.860 · 10−46 [8.490, 9.247] · 10−46 44649

4. Summary and conclusions

In this work, a direct Monte Carlo method for high-dimensional volume estimation based on the representation of

the volume as a surface integral over the unit sphere was developed as well as an MCMC variant. The direct method

is related to a method developed by Fok and Crevier, and already can give good results for interesting cases with a

moderate number dimensions. For high dimensions, d � 10, the representation usually leads to a sharply peaked

and multimodal integrand that requires the usage of importance sampling techniques. Markov Chain Monte Carlo

methods for the computation of normalizing factors were used to derive an algorithm that also works in much higher

dimensions. The methods were tested successfully for up to 81 dimensions, for an estimation of the volume of the

Birkhoff polytope B10.

For the Birkhoff polytopes investigated, the computation time shows a O(dν)-dependence on the number d of

dimensions, with a comparatively small value ν ≈ 3. Since the best available algorithm for volume computation [2]

has a running time of O∗(d4), it is interesting to study the behaviour of the method for a larger class of polytopes and

higher dimensions. The method proposed can be further improved using more sophisticated path sampling techniques

([11], [12]) and adaptive MCMC methods ([14], [15]).
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