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Abstract—1In this paper we propose a methodology for
automatically synthesizing motion task controllers based on
Linear Temporal Logic (LTL) specifications. The proposed
design of the underlying multi-agent controllers possess a
special structure that allows for implicit satisfaction of basic
liveness and safety specifications. The resulting closed loop
system is of hybrid nature combining the continuous dynamics
of the underlying system with the automatically synthesized
switching logic that enforces the LTL specification. The effec-
tiveness of the proposed scheme is verified through non-trivial
computer simulations.

I. INTRODUCTION

Automatic controller synthesis has recently gained in-
creasing attention from system and control theorists, mainly
due to the need for an automated methodology to build
controllers satisfying a desired complex behavior. Formal
specification of the desired complex behavior is a key issue
in this effort. Our main motivation comes from the field
of micro robotics, where a team of micro-robotic agents
must cooperate to perform various tasks. In [1] the author
proposes a methodology to automatically synthesize local
controllers achieving a formation with specifications given
in terms of graphs. In [2] the authors consider automatic
controller synthesis based on Linear Temporal Logic spec-
ifications for linear systems.

Several motion description languages have been proposed
for specifying motion tasks. In [3] the use of motion
description languages for multi-modal control is described
and in [4] a general framework is presented for using an
extended motion description language in motion control.
The reason we chose LTL for describing the behavior of the
system, is that it provides a formal specification mechanism
with the capability to define desired behaviors quantitatively
and due to it’s similarity to natural languages, it provides
an intuitive and succinct way to express complex behaviors.

Formally, we consider a multi-agent motion task as con-
sisting of one primary objective, like “navigate the agents
to the specified positions” , and a number of secondary
objectives, like “agent 7 tracks agent j until agents j, k&,
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form a specific formation”, that are carried out during the
execution of the primary objective.

Our approach is to have a global convergent controller
that handles the primary motion task and a set of controllers
that lie in it’s range of convergence, as intuitively shown in
figure 1. Since the range of convergence of the secondary
controllers is a subset of the range of the primary, the
system is guaranteed to satisfy basic safety specifications,
i.e. the robots will never collide and moreover basic liveness
specifications, i.e. the robots will eventually converge to the
configuration dictated by the global controller.

Fig. 1. Secondary controllers C; in the range of convergence of controller
G

The rest of the paper is organized as follows: Section
II presents the LTL framework used for specifying motion
tasks. Section IIT discusses a way extract controller se-
quences from Buchi automata corresponding to LTL speci-
fications. Section IV presents a motion controller suitable to
handle the synthesized task and outlines the general system
architecture. Section V presents simulation results and the
paper concludes with section VI.



II. USING LTL TO SPECIFY MOTION TASKS

Linear Temporal logic is an extension of propositional
logic suitable for reasoning about infinite sequences of
states. We use a fragment of LTL, equipped with the
usual propositional connectives (A,V,—) extended with
two temporal operators: ”()” (next) and "I (unless). The
formulas of the logic are built from atomic propositions
using propositional connectives and temporal operators.The
sequences considered are isomorphic to natural numbers
and each state is a propositional interpretation. Purely
propositional formulas are interpreted in a single state and
the temporal operators indicate in which state of a sequence
their arguments must be evaluated. We denote by P the
set of atomic propositions and recursively define the well
formed formulas (wff) as follows:

o true, false, p, —p are wif for all p € P;
o if 1 and o are wff, then ¢1 A g and 1 V o are
wif;
o if 1 and po are wff, then 1, and Uy, are wit
formulas;
Implication ¢; = 2 is defined as the abbreviation of
-1 V @2. From the unless operator, another commonly
used operator can be defined:

Op = plfalse

which is read “always” and requires that its arguments be
true at all future points. WAf are interpreted over sequences
of states o : N — 2¥. For a sequence o, o(i) denotes
the i’th state, o[i] represents the prefix of o obtained from
the first i elements of o and o represents the suffix of o
obtained by removing the i first states, i.e. o*(j) = o (i+7).
The truth value of a formula on a sequence o, is taken to
be the truth value obtained by starting the interpretation of
the formula in the first state of the sequence, and is given
by the following rules:

For any p € P, wit formulas ¢;, 2 and 7 € N:

o For all o, we have o |= true and o ¥ false

o« o piff peoa(0)

e o= —piff p € o(0)

e o E I Npyiff 0 =1 and o | o

e 01 Vs iff o E oy or o= o

o 0= Qyp iff ol = ¢y

e 0 = o1l iff either 0 = 1 or 0 = g or 30 > 0

such that o[i] = ¢ and o? = o

Let us consider a simple example to illustrate the use of
LTL. This example attempts to model a fragment of a pos-
sible behavior we expect from a micro-robotic multi-agent
system during a biological cell transportation task. Assume
robot 1 is carrying the cell and robot 2 is monitoring the
procedure by tracking robot 1. If a fault occurs to robot 2 the
system must slow down or stop until robot 3 replaces robot
2 and then continue execution of the task. Let predicate
G be active when a state feedback global controller taking
the robots from an initial to a final configuration avoiding
collisions and deadlocks (existence of such controller is

discussed in section IV) is active. Let T5; and T3, predicates
be active when state feedback controllers for robot 2 and
3 respectively to track robot 1 are active and St; predicate
be active when a stalling controller for robot 1 is active.
Moreover let predicate 5 be active when an error occurs
to robot 2 and r73; be active when robot 3 assumes it’s
tracking position. The specification can now be defined as:

DG A (T21Z/l (E A O (Stﬂj (T’T31 A\ ODTgl))))
We define the set of predicates P to be the disjoint union:
P=0U"CU {G}

of the set of observation predicates O with controller
predicates C and the global controller predicate {G'}. We
assume that observation predicates and the global controller
predicate are uncontrollable events, but controller predicates
are controllable events, in the sense that we can turn
on and off the corresponding controllers. This has to do
with the fact that we consider a controller predicate to
be active if and only if a control law associated with
it,is active, i.e. we consider that robot 1 being tracked by
robot 2 is actually equivalent to controller 75; (which is
a tracking controller) being active. The global controller
predicate must be active throughout the task, hence every
formula ¢ should be equivalent to CJOG A ¢. This will
guarantee basic liveness and safety specifications, i.e. the
multiagent team will eventually reach the specified target
configuration and they will never collide or get deadlocked.
The previously mentioned assumptions allows us to design
(hybrid) controllers correct by construction, avoiding the
need for formal verification.

III. FROM LTL SPECIFICATIONS TO BUCHI AUTOMATA

There are established results about converting LTL spec-
ifications to Buchi automata. Given an LTL formula ¢, it
is possible to construct a Buchi automaton A, accepting
every string satisfying formula (. This fact was first shown
by Buchi [5]. The resulting automata are in the worst case
, exponential in the length of the translated formula. The
interested reader is referred to [6] for a detailed description
of the translation process.

A Buchi automaton that resulted from the translation of
the LTL formula ¢, is a tuple A, = {%, S, 6, Sy, F'}, where

o X = 2% is the alphabet

o S is the set of states, which is the set of all possible

labels, i.e. the subsets s of 2¢1¥) where cl(-) is the
closure operator, that satisfy:

— false ¢ s

- if o1 Ay € sthen ) € s and w3 € 5

— if o1 Vo € sthen o1 € s0r g €5

e §:5x X — S a transition function

e SO Sy={se€ S|y ¢€ s} the set of initial states

o F C S a set of accepting states

After the translation, we calculate the largest non-
blocking sub-automaton Ag B oof A,. If Af;’ B is empty



then we must refine the LTL specification. Using Ag B as
a model, we create a driving function

A:Sx0—{0,1}/°

as follows: For every state s € S let X(s) denote the
set of labels defined at state s and let label [ € X(s).
Each label can be evaluated to true or false. Since the
resulting automaton is deterministic, only one label can
evaluate to true. If given the current state of the predicates,
such a label exists, say lyctive, then C(lgetive) € {0, 1}\C|
is the truth vector of controller predicates. We define the
A(s,0) function with O € {0, 1}‘0‘ the truth vector of
observation predicates, to be A(s,0) = C(laetive). If N0
label [ is active then define by A(s,O) the set of labels
that can be activated at state s given observations O and
for every I, € A(s,0), T(l,s,0) € {0, 1}|C\ is the
truth vector of controller predicates that activates [,. Then
A(s,0) = T(la,s,0). Since AY? is non-blocking, at least
one label can be activated. Let Sy  C Sy be the set of initial
states for which A (sq, ¢, O) # (). The first member of initial
states found to belong to S, ¢ is chosen to be the initial state
s0. Define P; = [O; A(s;,0;) G] to be the predicate truth
vector.

Proposition 1: Automaton A, recognizes the sequence
of predicates Py, P;,..P;,i € N defined as above.

Proof: Since we have defined the U/ operator to not
require it’s second argument to become true at some future
time, eventualities can be avoided, in the sense that @1l @2
can be true without (o ever becoming active. Now the
sequence is correct by construction, since for every ¢, and
automaton state s;, P; will activate one of the transitions
available at this state. [ ]

Corollary 1: LTL formula ¢ is trivially satisfied through
the sequence P;, since A, accepts all and only the infinite
traces represented by the LTL formula .

IV. MULTI-AGENT MOTION CONTROLLERS

As stated before, basic liveness and safety specifica-
tions are fulfilled through the use of a global convergent
Multiagent-Navigation controller. This is achieved through
the use of Multi-Robot Navigation Functions [7], [8].

Navigation functions are real valued maps realized
through cost functions, whose negated gradient field is
attractive towards the goal configuration and repulsive wrt
obstacles. It has been shown (Koditschek and Rimon [9])
that strict global navigation (i.e. with a globally attracting
equilibrium state) is not possible and a smooth vector field
on any sphere world, which has a unique attractor, must
have at least as many saddles as obstacles. Our assumption
that we have spherical robots and spherical obstacles does
not constrain the generality of this work since it has
been proven [9] that navigation properties are invariant
under diffeomorphisms. Arbitrarily shaped robots and ob-
stacles, diffeomorphic to spheres, can be handled. Methods
for constructing analytic diffeomorphisms are discussed in
([101,[11]) for point robots and in [12] for rigid body robots.

Let us assume the following situation: We have m mobile
robots, and their workspace W C R2. (The methodology
can be applied as well to higher dimensional workspaces.)
Each robot R;, ¢+ = 1...m occupies a disk in the
workspace: R; = {q € R? : ||¢ — ;|| < r;} where z; € R?
is the center of the disk and r; is the radius of the robot.
The configuration of each robot is represented by x; and the
configuration space C' is spanned by z = [z .. xﬂT

We assume that the robot kinematics are trivially de-
scribed through a first order kinematic model:

t=u ey

Let ¢ (x,x0, ;) be a Multi-Robot Navigation Function
and xo and x; feasible (i.e. robots do not overlap)initial
and final states resp. Then

Proposition 2: [7] The control law

u=—-Vo¢ ()
where Vo = [ 3%1 % Bz?m
robot navigation function, navigates the robotic team from
almost all' feasible initial configurations o € W to any
feasible final states =y € W, avoiding collisions.

The constructive process for multirobot navigation func-
tions is described in detail in [8].

In this work we are interested in being able to perform
secondary objectives while the team of robotic agents is
navigating, while being able at any time to guarantee that
our system will be collision free, deadlock free and will
eventually converge to it’s target. The architecture of the
proposed methodology is depicted in the information flow
diagram of figure 2.

} o and ¢ a multi-
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Fig. 2. Information flow diagram for the proposed architecture

liie. all except a set of initial conditions of measure zero.



Before specifying such a controller, let us introduce some
preliminary definitions: We define the saturation function:

-1 r< -1
sat (x) = r —-l<z<l1 3)
1 r>1

Based on the previous we define the continuous switch
function

sk (v,a) = % (sat (%(az—a)—l) +1) %)

We can now define the following

v =seps (R IVOI* = 5. %)
& = 52 (~uz - V6,0)
Cot+ = S, (uz - V,0)

k|| Ve|* -
c3 =51 (Wvo

B =c1-(ca- +cor - c3)

We can now state the following:

Proposition 3: Let ¢ : W — [0,1] be a Multirobot
Navigation Function [7] and us € R?™ a continuous control
signal. Then system (1) under the control law

u=—kiVo+[-up &)

where ki a positive constant (gain) and (3 as defined above,
is globally asymptotically stable almost everywhere 2.

Proof: See Appendix A [ ]
The significance of this controller is that it allows for per-
forming secondary tasks while navigating, while ensuring
that the system will eventually converge to it’s target, that
no collisions will occur and that it will never become
deadlocked, with the moderate requirement of uy being
continuous. We name this controller as “G” as this is the one
that is going to be used as the global controller predicate
used in our LTL task specification.

Secondary controllers used as predicates in the task
definition, are defined based on the task they are about to
perform. They can be defined in a multitude of ways, linear
or non-linear, as long as they are continuous. This is because
if we allowed for discontinuous controller then we should
have to take account of the Filippov sets created during
the discontinuities and hence limit very much the available
control amplitude to maintain the convergence properties.
To avoid discontinuities between controller switching we
use a fading function which ensures a continuous transition
of the exiting signal of the previous controller to the current
signal level:

uy (1) = u” (trr)-Sey (€3 — T,63) +ua (T) 8¢, (1,0) (6)

where 7 = t — tp,, t7, 1s time instant the transition was
performed and u~ (¢7,) the control vector of the previous
controller at the time the transition was performed. This

2j.e. everywhere except a set of initial conditions of measure zero

function takes the current controller value in €3 > 0 time
units. Equation (3) can now be written as

u = —1{31V¢+ﬁ'U2* (7)

To demonstrate the effectiveness of our methodology,
we will proceed with construction of linear controllers and
linear observing functions. Non-linear controllers and/or
observing functions could also be used if required. Note
that we can also augment the original system with virtual
states and use them as timers e.g. Setting Zyirt, = Uyirt,
with w,ir¢, = 1 whenever a controller on x .+, is activated,
and then use observer functions to get their values.

Let us consider the following simple task: assume we
have four robots. Robots should navigate from their initial
to their final configuration, while robot 1 and robot 2 create
triangular formation with robot 3. Robot 4 is stabilized
somewhere in the middle of the route and acts as an obstacle
(i.e. it has a controller trying to immobilize it). After robot
1 goes a certain distance ahead of robot 4, a new formation
is formed and 4 is a part of it. Predicates needed to specify
the task:

o G(g): The global controller with g the target configu-

ration of the system

e py, € C: Triangular formation controller for robots

1,2,3

e psi, € C: Stall controller for robot 4

e py, € C: Diamond formation controller for robots

1,2,3,4

e p4,, € O: Distance observer of robot 1 from robot 4
The LTL specification formula can now be stated as:

©=0GA ((pg, Apst,) Upa,a A OOpy,) ®)

Note here that if two controllers (except from the global)
are active at the same time, their signals are added in us.

After translating the LTL formula ¢ we get the Buchi
automaton A, shown in figure 3

With initial conditions G and —pq,,, only state A can
be activated by setting {py,,pse,,pr} = {1,1,0}. So we
choose sg = A. The matrix below shows the values of
A (s,0) for all the states and observations.

A | Pdy, “Pdiy

A 0 {1,1,0}
B | {0,0,1} {0,0,1}
C {0,0,1} {0,0,1}

We now proceed with constructing the controllers corre-
sponding to predicates. For the linear case we use con-
trollers of the form u = —k(Ax + B) where the main
diagonal of matrix A has non-negative elements. The zero
level set of Ax + B represents the geometric relation we
wish to achieve between the agents or between agents and
workspace. k is a positive gain. Controller whose predicates
are active at the same time, will have their control signals
added. In the linear case, this operation can be performed
on their respective matrices. Following is the definition of
the controller for each predicate




G,p; A Pg,»Pa,

A

Fig. 3. Buchi Automaton A,

e G(g) with g =1[0.9,0.1,1.1,0.1,0.9, —0.1,1.1, 0.1
e P APs, :B=[-1 10 -2 1 1 0 0]

1 0 -1 0 0 0 00
0 1 0 -1 0 0 00
0 0 1 0 -1 0 00
A_| 0 0 0 1 0 -100
-1 0 0 0 1 0 00
0 -1 0 0 0 1 00
0 0 0 0 0 0 10
0 0 0 0 0 0 01|
epn:B=[1 -1 111 -1 -2 0]"
1 0 -1 0 00 0 0]
0 1 0 -100 0 0
0 0 1 0 00 -1 0
4|0 0 0 1 00 0 -1
0 0 0 0 10 -1 0
0 0 0 0 01 0 -1
-1 0 0 0 00 1 0
0 -1 0 0 00 0 1

e Da,, T1 — x4 > 0.3

V. SIMULATION RESULTS

To demonstrate the efficiency of our methodology, we
have set up a simulation of the resulting system from the
task specification in formula (8) and the setup proposed
in the previous section. Disk shaped robots of radius .05
units were used and their initial configuration was set
at x=[-1.1,0.1,—-0.9,0.1,—-1.1,—-0.1, 0.9, —0.1]. Fig-
ure 4 depicts the evolution of the system. Fig. 4.a shows
the initial and final configurations of the system that are
applied to the global controller. Filled disks R through R4
represent current robot positions while 77 through 7 are the

Fig. 4. Simulation results




final positions. Fig. 4.b (state: A), shows the rearrangement
of robots 1, Ry, R3 in triangular formation (py, ), while 124
is stabilized at (0,0) (psz,). Fig. 4.c-4.e (state: A), shows the
formation approaching R, and then manoeuvering to avoid
collision. In fig. 4.f (state: A), pg,, is activated (transition
A — B followed by transition B — C) and in fig. 4.g-
4.h (state: C), all four robots start relocating to assume the
diamond formation (pg,,) . Fig. 4.i-4.j (state: C), shows
the robots navigating in diamond formation to their target,
until in fig. 4.k-4.1 (state: C) the signal from the global
controller dominates and the robots are guided to their
final configurations. As can be seen the system successfully
interpreted the LTL specification, while the global controller
established a collision free trajectory that converged to the
final destination.

VI. CONCLUSIONS - ISSUES FOR FURTHER RESEARCH

In this paper we have described a methodology for
automatically synthesizing motion tasks based on LTL
specifications. LTL provides an intuitive way of specifying
motion tasks due to it’s similarity with natural languages. A
controller with guaranteed global convergence and collision
avoidance properties was derived, which provided for con-
current execution of secondary controllers. The resulting
closed loop system satisfied the LTL specifications by
construction, ensuring correct design.

Further research issues include exploiting integer pro-
gramming methodologies to derive motion plans, i.e. se-
quences of motion tasks that achieve creation of a specified
end product, i.e. automated assembly.
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APPENDIX A
PROOF OF PROPOSITION 3

Since ¢ is a Multirobot Navigation Function, it serves as
a Lyapunov function candidate. Taking the derivative of ¢
along the trajectories of (1), we have: qS = % +x-Vo¢ =
Z - V¢ since ¢ = ¢ (x). Substituting we get:

¢=—ki|[Vo|* +c1- (ca- +cor - c3)us - Vo

We can discriminate the following cases:
L ki ||Vo|* < <. Then ¢ = 0 and ¢ =
—ky1 |[V|* <0. The equality holds at the origin and
at a set of measure zero of saddle points. Saddle
points for Multirobot Navigation Functions constitute
the positive limit set of a measure zero set of initial
conditions, since they possess the Morse property
[13], [14]. Hence for this case ¢ < 0.
I ki ||Vl > . Then 0 < ¢; < 1 and we can now
discriminate the following cases:
i ug-Vop<0thenp < -2 <0
ii. ug-Ve¢ > 0then co- =0and 0 < co+ < 1.
Then ¢ < —ki |[Vé|*+¢s-uz- V¢ and we have
the following cases:

2_g1 I .
% < 1 then substituting and sim-
o .
phfylng2 QSES -5 <0
N s

T > 1 then expanding the in-

equality we get uz - Vo — kg Vo> <
—S=¢< -5 <0



