
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338170168

Optimal Temporal Logic Planning for Multi-Robot Systems in Uncertain

Semantic Maps

Conference Paper · November 2019

DOI: 10.1109/IROS40897.2019.8968547

CITATIONS

10
READS

628

2 authors:

Some of the authors of this publication are also working on these related projects:

Analysis and Control of Networked Epidemic Processes View project

Reachability Analysis of Closed-Loop Systems with Neural Network Controllers View project

Yiannis Kantaros

Washington University in St. Louis

59 PUBLICATIONS 789 CITATIONS

SEE PROFILE

George J. Pappas

University of Pennsylvania

745 PUBLICATIONS 31,059 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yiannis Kantaros on 26 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338170168_Optimal_Temporal_Logic_Planning_for_Multi-Robot_Systems_in_Uncertain_Semantic_Maps?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338170168_Optimal_Temporal_Logic_Planning_for_Multi-Robot_Systems_in_Uncertain_Semantic_Maps?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Analysis-and-Control-of-Networked-Epidemic-Processes?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reachability-Analysis-of-Closed-Loop-Systems-with-Neural-Network-Controllers?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yiannis-Kantaros?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yiannis-Kantaros?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Washington_University_in_St_Louis?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yiannis-Kantaros?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pennsylvania?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yiannis-Kantaros?enrichId=rgreq-0681afc34d90903bc749d5d9e06522cc-XXX&enrichSource=Y292ZXJQYWdlOzMzODE3MDE2ODtBUzo4NDAzMDU1ODY3MzMwNTlAMTU3NzM1NTg3Mjk3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Optimal Temporal Logic Planning for Multi-Robot Systems in
Uncertain Semantic Maps

Yiannis Kantaros, and George J. Pappas

Abstract— This paper addresses a multi-robot motion plan-
ning problem in probabilistic maps obtained by semantic
simultaneous localization and mapping (SLAM). The goal of the
robots is to accomplish complex collaborative high level tasks
captured by global temporal logic specifications in the presence
of uncertainty in the workspace. Specifically, the robots operate
in an unknown environment modeled as a semantic map
determined by Gaussian distributions over landmark positions
and arbitrary discrete distributions over landmark classes.
We extend Linear Temporal Logic by including information-
based predicates allowing us to incorporate uncertainty and
probabilistic satisfaction requirements directly into the task
specification. We propose a new highly scalable sampling-
based approach that synthesizes paths that satisfy the assigned
task specification while minimizing a user-specified motion cost
function. Finally, we show that the proposed algorithm is prob-
abilistically complete, asymptotically optimal and supported
by convergence rate bounds. We provide extensive simulation
results that corroborate the theoretical analysis and show that
the proposed algorithm can address large-scale planning tasks.

I. INTRODUCTION

This paper addresses a multi-robot motion planning prob-
lem in uncertain environments with collaborative tasks spec-
ified by global temporal logic formulas. The uncertain envi-
ronment is modeled as a map distribution, obtained from a
semantic simultaneous localization and mapping (SLAM) al-
gorithm [1], while the task is specified over the uncertain map
in terms of landmark positions and labels. Given a semantic
map distribution, the goal of this paper is to design multi-
robot control policies that accomplish collaborative tasks
with user-specified probabilistic satisfaction requirements in
the presence of uncertainty in the environment.

Control in the presence of mapping or localization un-
certainty typically gives rise to stochastic optimal control
problems with partial observability. To avoid the need of
computationally expensive approaches that allow for control
in belief space [2]–[5], we extend Linear Temporal Logic
(LTL) by including information-based predicates which al-
lows us to incorporate uncertainty and probabilistic sat-
isfaction requirements directly into the task specification.
This gives rise to a deterministic optimal control problem
with temporal logic constraints. To solve this problem, we
propose a sampling-based approach that explores both the
robot motion space and the state space of an automaton that

The authors are with the Department of Electrical and Systems En-
gineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
{kantaros,pappasg}@seas.upenn.edu. This material is based upon work
supported by the AFRL and DARPA under Contract No. FA8750-18-C-
0090. This work was supported in part by the ARL RCTA under Contract
No. W911NF-10-2-0016.

corresponds to the temporal logic (TL) specification. Build-
ing upon our previous work [6], we design biased sampling
functions that allow us to address large-scale planning tasks,
as shown by extensive numerical experiments. Finally, we
show that the proposed algorithm is probabilistically com-
plete, asymptotically optimal, and supported by convergence
rate bounds. Sampling-based approaches for temporal logic
planning are presented in [6]–[9], as well, but they consider
known environments.

Temporal logic control synthesis in the presence of un-
certainty has recently received increasing research attention.
Uncertainty in sensing and actuation has been studied, see
e.g., [10]–[13] while the proposed approaches typically rely
on probabilistic model checking methods to synthesize con-
trollers that maximize the satisfaction probability. Uncer-
tainty in the workspace in terms of incomplete (or dynamic)
environment models is also considered in [14]–[16]. In these
works, the environment and robot mobility are captured by
transition systems and nominal controllers are revised as the
environments, i.e., the transition systems, are updated. To
the contrary in this work, we propose an abstraction-free
approach for temporal logic planning in uncertain environ-
ments that are modeled using probabilistic semantic maps
obtained by available SLAM algorithms. Semantic maps
consist of Gaussian distributions over the landmark positions
and discrete distributions over the landmark labels. Motion
planning in probabilistic semantic maps is also considered in
[17]. In particular, [17] considers sequencing tasks captured
by co-safe LTL formulas under the assumption that the labels
of the landmarks are known. In contrast, this work considers
task specifications captured by arbitrary co-safe temporal
logic formulas with uncertain landmark labels. Moreover,
we show that the proposed sampling-based algorithm can
be applied to large-scale planning tasks that involve large
workspaces and number of robots. Finally, we provide formal
optimality and convergence rate guarantees that do not exist
in [17].

Contribution: The contribution of this paper can be
summarized as follows. First, we propose an abstraction-
free sampling-based approach for complex tasks specified
by co-safe TL formulas for multi-robot systems that reside
in unknown environments modeled as probabilistic semantic
maps. Second, the proposed algorithm is highly scalable, i.e.,
it can quickly design control policies which satisfy desired
task specifications for large-scale planning tasks that involve
large robot teams and large workspaces. Third, we show
that the proposed algorithm is probabilistically complete,
asymptotically optimal, and converges exponentially fast to

the optimal solution.

II. PROBLEM DEFINITION

Consider N mobile robots governed by the following
dynamics: pj(t + 1) = fj(pj(t),uj(t)), for all j ∈ N :=
{1, . . . , N}, where pj(t) ∈ Ω ⊆ Rn stands for the state
(e.g., position and orientation) of robot j in an environment
Ω at discrete time t, uj(t) ∈ Uj stands for a control input
in a finite space of admissible controls Uj . Hereafter, we
compactly denote the dynamics of all robots as p(t + 1) =
f(p(t),u(t)), where p(t) ∈ ΩN , ∀t ≥ 0, and u(t) ∈ U :=
U1 × · · · × UN .

The robots operate in a environment modeled by a seman-
tic map M = {`1, `2, . . . , `M} consisting of M landmarks.
Each landmark `i = {xi, ci} ∈ M is defined by its position
xi ∈ Ω and its class ci ∈ C, where C is a finite set of
classes. The robots do not know the true landmark positions
but instead they have access to a probability distribution P
over the space of all possible maps. Such a distribution can
be produced by a semantic SLAM algorithm and typically
consists of a Gaussian distribution over the landmark posi-
tions and a discrete distribution over the landmark classes.
Specifically, we assume that P is determined by parameters
(x̂i,Σi, dci), for all landmarks `i, such that xi ∼ N (x̂i,Σi)
and the class ci is determined by a discrete distribution dci .
Hereafter, we compactly denote by (x̂,Σ, dc) the parameters
that determine P .

The goal of the robots is to accomplish a complex
collaborative task captured by a global temporal logic
specification φ. To define tasks in probabilistic semantic
maps we extend Linear Temporal Logic (LTL) by including
information/uncertainty-based predicates. The syntax of this
specification language can be defined follows.

φ ::= true | π | g ≥ 0 | φ1 ∧ φ2 | ¬φ | φ1 U φ2 (1)

where π is a predicate over the robot state x(t) and/or the
information space of the landmarks, and g ≥ 0 is a predicate
over the robot state x(t) and the map distribution P , where
g : ΩN × P → R.

The operators disjunction ∨, eventually ♦, and always �,
are defined as in [18]. Examples of atomic predicates π
defined over the robot states p(t) and the information space
include

πj(R) : pj ∈ R ⊆ Ω, (2a)
π`i(Σi, ζ) : det Σi ≤ ζ. (2b)

In (2a), πj(R) is true only if robot j is within a region R of
the workspace Ω. Similarly, in (2b), π`i(Σi, ζ) is true if the
uncertainty of the position of landmark `i, captured by the
determinant of the covariance matrix Σi, denoted by det Σi,
is less than a user-specified parameter ζ ≥ 0.

Moreover, given a map distribution P , examples of atomic
predicates g ≥ 0 include

gx(pj , `i, r, δ) ≥ 0 : P(||pj − xi|| ≤ r) ≥ 1− δ, (3a)

gc(pj , r, δ, C̄) ≥ 0 : P(||pj − xi|| ≤ r) ≥ 1− δ, ci ∈ C̄ ⊆ C (3b)

The atomic proposition in (3a) is true if the probability
of robot j being within distance less than r from landmark
`i is greater than 1 − δ, for some user-specified parameters
r, δ > 0. Similarly, the atomic predicate in (3b) is true if
the probability of robot j being within distance less than r
from at least one landmark `i with class ci ∈ C̄ is greater
than 1− δ, for some user-specified parameters r, δ > 0 and
subset of classes C̄ ⊆ C. Given an infinite sequence of robot
states p = [p(0),P][p(1),P] . . . and a semantic map P , the
semantics is

p |= true, p |= π ⇔ p(0) |= π,

p |= g ≥ 0⇔ g(p(0)) ≥ 0, p |= ¬φ⇔ ¬(p |= φ),

p |= φ1 ∧ φ2 ⇔ (p |= φ1) ∧ (p |= φ2),

p |= φ1Uφ2 ⇔ ∃ t ≥ 0 s.t. (p(t)p(t+ 1) . . . |= φ2),

∧ (p(t′)p(t′ + 1) . . . |= φ1), ∀0 ≤ t′ < t.

Hereafter we assume that the assigned task φ is expressed
as a co-safe Temporal Logic (TL) formula defined over a set
of atomic propositions AP , which is satisfied by a finite-
length robot trajectory. In order to interpret a temporal logic
formula over the trajectories of the robot system, we use a
labeling function L : ΩN ×P → 2AP that determines which
atomic propositions are true given the current robot system
state p(t) ∈ ΩN and the distribution of maps P .

Given a task specification φ, our goal is to select a stopping
time H and a sequence u0:H of control inputs u(t), for all
t ∈ {0, . . . ,H}, that maximizes the probability of satisfying
φ while minimizing a motion cost. This gives rise to the
following optimal control problem:

min
H,u0:H

[
J(H,u0:H) =

H∑
t=0

w(p(t),p(t+ 1))

]
(4a)

p0:H |= φ (4b)
p(t+ 1) = f(p(t),u(t)). (4c)

where w(p(t),p(t + 1)) ≥ 0 is a motion cost function
that captures e.g., the energy consumption or the distance
required to travel from p(t) to p(t+ 1). Then, the problem
addressed in this paper can be summarized as follows:

Problem 1: Given an initial robot configuration p(0), a
distribution of maps P , and a co-safe TL task φ, select
a horizon H and compute control inputs u(t) for all time
instants t ∈ {0, . . . ,H} as per (4).

III. PLANNING IN PROBABILISTIC SEMANTIC MAPS

We propose a sampling-based algorithm to solve Problem
1, which is summarized in Algorithm 1. First, we translate
the specification φ constructed using a set of atomic predi-
cates AP into Deterministic Finite state Automaton (DFA),
defined as follows [18] [line 1, Alg. 1].

Definition 3.1 (DFA): A Deterministic Finite state Au-
tomaton (DFA) D over Σ = 2AP is defined as a tuple
D =

(
QD, q

0
D, δD, qF

)
, where QD is the set of states,

q0
D ∈ QD is the initial state, δD : QD × Σ → QD is

Algorithm 1: Mission Planning in Probabilistic Maps
Input: (i) maximum number of iterations nmax, (ii) robot dynamics,

(iii) map distribution P , (iv) initial robot configuration p(0),
(v) TL formula φ

Output: Terminal horizon H , and control inputs u0:H

1 Convert φ into a DFA;
2 Initialize V = {q(0)}, E = ∅, V1 = {q(0)}, K1 = 1, and Xg = ∅;

for n = 1, . . . , nmax do
3 Sample a subset Vkrand from fV ;
4 for qrand(t) = [prand(t), qrand

D] ∈ Vkrand do
5 Sample a control input unew ∈ U from fU ;
6 Compute pnew(t+ 1) = f(prand(t),unew);
7 Compute qnew

D = δD(qrand
D , L([prand(t),P]));

8 if ∃qnew
D then

9 Construct qnew(t+ 1) = [pnew(t+ 1), qnew
D];

10 Update set of nodes: V = V ∪ {qnew};
11 Update set of edges: E = E ∪ {(qrand,qnew)};
12 Compute cost of new state:

JG(qnew) = JG(qrand) + w(prand,pnew);
13 if qnew

D = qF then
14 Xg = Xg ∪ {qnew};
15 Update the sets Vk;
16 Among all nodes in Xg , find qend(tend) ;
17 H = tend and recover u0:H by computing the path

q0:tend = q(0), . . . ,q(tend);

a deterministic transition relation, and qF ∈ QD is the
accepting/final state.

Next, we define the accepting run of a DFA that will be
used in Algorithm 1. A run of ρD of D over a finite word
σ = σ(1)σ(2) . . . σ(K) ∈ (2AP)∗, is a sequence ρD =
q0
Dq

1
Dq

2
D . . . , q

K
D , where δD(qkD, σ(k)) = qk+1

D , ∀k ∈ N.
A run ρD is called accepting if qK = qF . A sequence of
robot states p0:H satisfies φ, i.e., p0:H |= φ, if the word
σ = L([p(0),P])L([p(1),P]) . . . L([p(H),P]) yields an
accepting DFA run.

The proposed algorithm relies on incrementally construct-
ing a directed tree that explores both the robot motion space
and the state-space of the DFA that corresponds to φ. In what
follows, we denote the constructed tree by G = {V, E , JG},
where V is the set of nodes and E ⊆ V × V denotes the
set of edges. The set of nodes V contains states of the
form q(t) = [p(t), qD], where p(t) ∈ Ω and qD ∈ QD.1

The function JG : V → R+ assigns the cost of reaching
node q ∈ V from the root of the tree. The root of the
tree, denoted by q(0), is constructed so that it matches the
initial state of the robots p(0) and the initial state of the
DFA D, i.e., q(0) = [p(0), q0

D]. By convention the cost
of the root q(0) is JG(q(0)) = 0, while the cost of a
node q(t + 1) = [p(t + 1), qD] ∈ V , given its parent node
q(t) = [p(t), q′D] ∈ V , is computed as JG(q(t + 1)) =
JG(q(t)) +w(p(t),p(t+ 1)). Observe that by applying this
equation recursively, we get that JG(q(t+1)) = J(t,u0:t+1)
which is the objective function in (4).

The tree G is initialized so that V = {q(0)}, E = ∅,
and JG(q(0)) = 0 [line 2, Alg. 1]. Also, the tree is
built incrementally by adding new states qnew to V and
corresponding edges to E , at every iteration n of Algorithm 1,

1Throughout the paper, when it is clear from the context, we drop the
dependence of q(t) on t.

based on a sampling [lines 3-5, Alg. 1] and extending-the-tree
operation [lines 6-15, Alg. 1]. After taking nmax ≥ 0 samples,
where nmax is user-specified, Algorithm 1 terminates and
returns a solution to Problem 1, i.e., a terminal horizon H
and a sequence of control inputs u0:H .

To extract such a solution, we need first to define the set
Xg ⊆ V that collects all states q(t) = [p(t), qD] ∈ V of the
tree that satisfy qD = qF , which captures the constraint (4b)
[lines 13-14, Alg. 1]. Then, among all nodes Xg , we select
the node q(t) ∈ Xg , with the smallest cost JG(q(t)), denoted
by q(tend) [line 16, Alg. 1]. Then, the terminal horizon is
H = tend, and the control inputs u0:H are recovered by
computing the path q0:tend in G that connects q(tend) to the
root q(0), i.e., q0:tend = q(0), . . . ,q(tend) [line 17, Alg. 1].
Note that satisfaction of the constraint (4c) is guaranteed by
construction of G; see Section III-A. In what follows, we
describe the core operations of Algorithm 1, ‘sample’ and
‘extend’ that are used to construct the tree G.

A. Incremental Construction of Trees

At every iteration n of Algorithm 1, a new state qnew(t+
1) = [pnew(t+ 1), qnew

D] is sampled. The construction of the
state qnew(t + 1) relies on two steps. Specifically, first we
sample a state pnew(t+ 1); see Section III-A.1. Second, we
append to pnew(t+1), a DFA state qnew

D giving rise to qnew(t+
1) which is then added to the tree structure, if possible; see
Section III-A.2.

1) Sampling Strategy: To construct the state pnew, we first
divide the set of nodes V into a finite number of sets, denoted
by Vk ⊆ V , based on the DFA component of the states
q ∈ V . Specifically, Vk collects all states q ∈ V that share
the same DFA state qD, for some given qD ∈ QD. By
construction of Vk, we get that V = ∪Kn

k=1Vk, where Kn is
the number of subsets Vk at iteration n. Also, notice that
Kn is finite for all iterations n by construction of the DFA.
At iteration n = 1 of Algorithm 1, it holds that K1 = 1,
V1 = V [line 2, Alg. 1].

Second, given the sets Vk, we first sample from a given
discrete distribution fV(k|V) : {1, . . . ,Kn} → [0, 1] an
index k ∈ {1, . . . ,Kn} that points to the set Vk [line 3, Alg.
1]. The density function fV(k|V) defines the probability of
selecting the set Vk at iteration n of Algorithm 1 given the
set V . Any density function fV can be used to draw samples
krand as long as it satisfies the following assumption.

Assumption 3.2 (Density function fV): (i) The probabil-
ity density function fV(k|V) satisfies fV(k|V) ≥ ε, ∀ k ∈
{1, . . . ,Kn} and for all n ≥ 0, for some ε > 0 that remains
constant across all iterations n. (ii) Independent samples krand
can be drawn from fV .

Next, given the set Vkrand sampled from fV and for each
state qrand ∈ Vkrand , we sample a control input unew ∈ U from
a discrete distribution fU (u) : U → [0, 1] [line 5, Alg. 1].
Given a control input unew sampled from fU , we construct
the state pnew as pnew = f(prand,unew) [line 6, Alg. 1]. Any
density function fU can be used to draw samples unew as
long as it satisfies the following assumption.

Assumption 3.3 (Density function fU): (i) The distribu-
tion fU (u) satisfies fU (u) ≥ ζ, for all u ∈ U , for some
ζ > 0 that remains constant across all iterations n. (ii)
Independent samples unew can be drawn from the probability
density function fU .

Remark 3.4 (Density functions fV and fU): An example
of a distribution fV that satisfies Assumption 3.2 is the
discrete uniform distribution 1

k , for all k ∈ {1, . . . ,Kn}. Ob-
serve that the uniform function trivially satisfies Assumption
3.2(ii). Also, observe that Assumption 3.2(i) is also satisfied,
since there exists an ε > 0 that satisfies Assumption 3.2(i),
which is ε = 1

|QD| . Similarly, uniform density functions fU
satisfy Assumption 3.3. Note that any functions fV and fU
can be employed as long as they satisfy Assumptions 3.2
and 3.3. Nevertheless, the selection of fV and fU affects the
performance of Algorithm 1; see Theorem 4.3.

2) Extending the tree: To build incrementally a tree
that explores both the robot motion space and the DFA
state space, we append to pnew(t + 1) the DFA state
qnew
D = δD(qrand

D , L([prand(t),P])). If such a state does
not exist, then this means the path connecting the root
to (qrand

D , L([prand(t),P])) violates φ. Otherwise, the state
qnew = (pnew, q

new
D) is constructed [line 9, Alg. 1] which

is then added to the tree. Particularly, we update the set
of nodes and edges of the tree as V = V ∪ {qnew(t + 1)}
and E = E ∪ {(qrand(t),qnew(t + 1))}, respectively [lines
10-11, Alg. 1]. The cost of the new node qnew(t + 1)
is computed as discussed before, i.e., JG(qnew(t + 1)) =
JG(qrand(t)) + w(prand(t),pnew(t + 1)) [line 12, Alg. 1].
Finally, the sets Vk are updated, so that if there already
exists a subset Vk associated with the DFA state qnew

D , then
Vk = Vk ∪ {qnew(t+ 1)}. Otherwise, a new set Vk is
created, i.e., Kn = Kn + 1 and VKn

= {qnew} [line 15,
Alg. 1]. Recall that this process is repeated for all states
qrand(t) ∈ Vkrand [line 4, Alg. 1].

IV. COMPLETENESS, OPTIMALITY & CONVERGENCE

In this section, we examine the correctness, optimality, and
convergence rate of Algorithm 1. The proofs are omitted due
to space limitations.

Theorem 4.1 (Probabilistic Completeness): If there exists
a feasible solution to (4), then Algorithm 1 is probabilis-
tically complete, i.e., it will find with probability 1 a path
q0:H , defined as a sequence of states in V , i.e., q0:H =
q(0),q(1),q(2), . . . ,q(H), that satisfies the constraints of
(4), where q(h) ∈ V , for all h ∈ {0, . . . ,H}.

Theorem 4.2 (Asymptotic Optimality): Assume that there
exists an optimal solution to (4). Then, Algorithm 1 is
asymptotically optimal, i.e., the optimal path q∗0:H =
q(0),q(1),q(2), . . . ,q(H), will be found with probability 1,
as n→∞. In other words, the path generated by Algorithm
1 satisfies P ({limn→∞ J(H,u0:H) = J∗}) = 1, where J is
the objective function of (4) and J∗ is the optimal cost.2

Theorem 4.3 (Convergence rate bounds): Let q∗0:H de-
note the optimal solution to (4). Then, there exist parameters

2Note that the horizon H and u0:H returned by Algorithm 1 depend on
n. For simplicity of notation, we drop this dependence.

αn(q∗0:H) ∈ (0, 1], which depend on the selected density
functions fV and fU , for every iteration n of Algorithm 1,
such that 1 ≥ P(An(q∗0:H)) ≥ 1 − e−

∑n
k=1 αn(q∗0:H)

2 k+H , if
n > H , where An(q∗0:H) denotes the event that Algorithm
1 constructs the path q∗0:H within n iterations.

V. DESIGNING BIASED SAMPLING FUNCTIONS

As discussed in Section III, any density functions fV and
fU that satisfy Assumptions 3.2 and 3.3, respectively, can be
employed. In what follows, we design density functions that
allow us to address large-scale planning tasks that involve
large teams of robots and workspaces.

Pruning the DFA: We first prune the DFA by removing
transitions that are unlikely to be enabled. Particularly,
these are DFA transitions that are enabled when a robot
j has to satisfy atomic propositions that require it to be
present in more than one location simultaneously. Hereafter,
these DFA transitions are called infeasible. For instance,
a DFA transition that is enabled if πj(R1) ∧ πj(R2) is
true, is classified as infeasible if the regions R1 and R2

are disjoint, and feasible otherwise. Hereafter, for simplicity,
we assume that all regions Re are disjoint. Consider also
the following example of infeasible transitions. Assume that
transition from qD to q′D is enabled when the following
condition is true: gx(pj , `i, r1, δ1) ∧ gx(pj , `e, r2, δ2), e 6= i
which requires robot j to be close to landmarks `i and `e,
simultaneously. Note that existence of a robot position pj

that satisfies gx(pj , `i, r1, δ1)∧gx(pj , `e, r2, δ2) depends on
the distribution of the position of landmarks `e and `j and the
parameters r1, δ1, r2, δ2. Hereafter, for simplicity, we classify
such DFA transitions as infeasible.3 Second, we define a
distance function d : QD ×QD → N between any two DFA
states, which captures the minimum number of transitions in
the pruned DFA to reach a state q′D from a state qD. This
function is defined as follows

d(qD, q
′
D) =

{
|SPqD,q′D

|, if SPqD,q′D
exists,

∞, otherwise,
(5)

where SPqD,q′D
denotes the shortest path (in terms of hops)

in the pruned DFA from qD to q′D and |SPqD,q′D
| stands for

its cost (number of hops).
Density function fV : First, we define the set Dmin that

collects the nodes q = (p, qD) ∈ V that have the minimum
distance d(qD, qF), denoted by dmin, among all nodes in V ,
i.e., Dmin = {q = (p, qD) ∈ V | d(qD, qF) = dmin}. The
set Dmin initially collects only the root and is updated (along
with dmin) as new states are added to the tree. Given the set
Dmin, we define the set Kmin that collects the indices k of the
subsets Vk that satisfy Vk ∩ Dmin 6= ∅. Given the set Kmin,
the probability density function frand(k|V) is defined so that

3Note that this is a conservative approach as transitions that are in fact
feasible may be classified as infeasible. Nevertheless, this does not affect the
correctness of the proposed algorithm, since the constructed biased sampling
functions satisfy Assumptions (3.2) and (3.3); see [6]. If the pruned DFA is
disconnected then this means that either the specification is infeasible or the
task is feasible but the pruning was very conservative. In this case, either
uniform distributions or the proposed biased distributions can be employed
but using the original (and not the pruned) DFA.

it is biased to select more often subsets Vk ⊆ V that satisfy
k ∈ Kmin. Specifically, frand(k|V) is defined as follows

frand(k|V) =

{
prand

1
|Kmin|

, if k ∈ Kmin

(1− prand) 1
|V\Kmin|

, otherwise,
(6)

where prand ∈ (0.5, 1) stands for the probability of selecting
any subset Vk that satisfies k ∈ Kmin. Note that prand can
change with iterations n but it should always satisfy prand ∈
(0.5, 1) to ensure that subsets Vk with k ∈ Kmin are selected
more often.

Density function fU : The sampling function fU (u|krand)
is designed so that a state q = (p, qF) is reached by
following the shortest path (in terms of hops) in the pruned
DFA that connects q0

D to qF . First, given a state qrand =
(prand, q

rand
D), we compute the next DFA state defined as

qnext
D = δD(qrand

D , L([prand),P]). Next, we construct the reach-
able set RD(qnext

D) that collects all states qD ∈ QD that can
be reached in one hop in the pruned DFA from qrand

D , defined
as RD(qnext

D) = {qD ∈ QD|∃σ ∈ 2AP s.t. δD(qnext
D , σ) =

qD}. Among all states in RD(qnext
D) we select the state,

denoted by qmin
D , with the minimum distance from qF .

Given qnext
D and qmin

D , we select a symbol σ ∈ 2AP

that enables a transition from qnext
D to qmin

D in the pruned
DFA. Given the symbol σ, we select locations that if
every robot visits, then σ is generated and transition from
qnext
D to qmin

D is achieved. To this end, first we select the
atomic proposition that appears in σ and is associated with
robot j. Note that by definition of the feasible transitions
and by construction of the pruned DFA, there is only one
(if any) atomic proposition in σ related to robot j. With
slight abuse of notation, we denote this atomic proposition
by πj ∈ AP . For instance, the atomic proposition πj
corresponding to the symbol σ = gc(pj , r, δ, C̄)gc(pz, r, δ, C̄)
is πj = gc(pj , r, δ, C̄). Also, observe that πs = ∅ for all
robots s 6= j, z. Next, given πj , we compute all possible
landmarks (or regions) that if robot j visits, then πj may be
satisfied. These landmarks/regions are collected in a set Lj .
For instance, if πj = gc(pj , r, δ, C̄), then all landmarks that
have a non-zero probability of having a class that belongs to
C̄ are collected in a set Lj . Among all landmarks (or regions)
in the set Lj , we select one landmark/region, denoted by tj .
This landmark/region is used to design fnew,i(ui|k) so that
control inputs that drive robot j toward tj are selected more
often than others. Next, we discuss how we select tj from
Lj for robot j. If the atomic proposition πj is in the form
of (3a), i.e., πj = gx(pj , `i, r, δ), then it trivially holds that
Lj = {`i} and, therefore, tj = `i. If the atomic proposition
πj is in the form of (3b), i.e., πj = gc(pj , r, δ, C̄), then
we select as tj from Lj the landmark `i with maximum
value dci (ci∈C̄)

det Σi
, where recall that det Σi is the determinant

of the covariance matrix Σi. In words, the larger the value
of dci (ci∈C̄)

det Σi
is, the smaller the uncertainty about the position

and the class of landmark `i. Similarly, we construct tj for
atomic propositions πj in the form of (2a). Note that for
robots j for which it holds that πj = ∅, we have that
tj = ∅, as well. In other words, the location of such robots

j does not play any role in generating the symbol σ. Given
the assigned landmark/region denoted by tj , we construct
the density function fnew,j(uj |k) from which we sample a
control input uj as follows:

fnew,j(uj |k) =



1
|Uj |

, if tj = ∅,
pnew, if (tj 6= ∅) ∧ (uj = u∗j)

(1− pnew) 1

|Uj\
{
u∗j

}
|
, if (tj 6= ∅)

∧ (uj 6= u∗j),

(7)

where u∗j ∈ Uj is the control input that minimizes the
geodesic distance between pj(t+ 1) and the location of tj ;
see [19]. To compute the geodesic distance between pj(t+1)
and the location of tj , we first treat as ‘virtual/temporal’
obstacles all landmarks/regions that if visited, the Boolean
condition under which transition from qmin

D to qdecr
D is enabled,

is false. For example, assume that transition from qmin
D to

qdecr
D is possible if the following Boolean condition is true
πj(R1) ∧ πz(R2) ∧ (¬gx(pj , `i, r, δ)), which is satisfied by
the following symbol σ = πj(R1)πz(R2) and is violated if
gx(pj , `i, r, δ) is observed. For such ‘virtual’ obstacles, we
first compute the δ-confidence interval around the mean posi-
tion of landmark `i. This δ-confidence interval is then treated
as a (known) physical obstacle in the workspace. Then, we
compute the geodesic distance between pj(t+1) and tj given
such virtual obstacles. Also, note that these obstacles may
depend on the global state p(t). For instance, consider the
Boolean condition πj(R1)∧πz(R2)∧(¬πj(R1)∧¬πz(R1)).
This is violated only if both robots j and z are present in
region R1. Such ‘virtual’ obstacles are ignored, i.e., R1 is
not treated as an obstacle.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that
Algorithm 1 can solve large-scale planning tasks in uncer-
tain environments. All case studies have been implemented
using MATLAB 2016b on a computer with Intel Core i7
3.1GHz and 16Gb RAM. Hereafter, we employ the density
functions fV and fU designed in Section V and we select
a distance-based motion cost function: w(p(t),p(t + 1)) =∑N

j=1 ||pj(t) − pj(t + 1)||. Also, we consider robots with
differential drive dynamics where the robot state captures
both the position and the orientation of the robots. The
available motion primitives are u ∈ {0, 0.15}m/s and ω ∈
{0,±π/4,±π/2,±π/1.33,±π} rad/s.

We examine the performance of Algorithm 1 with respect
to the number N of robots and number M of landmarks.
The results are summarized in Table I. The third column
in Table I shows the runtime to compute the first feasible
path. The robot paths for the cases N = 2,M = 10
and N = 2,M = 20 are shown in Figure 1. In all case
studies, we assume that the set of classes is C = {1, 2, 3, 4}
and that the robots have to accomplish a collaborative task
captured by the following TL formula. φ = ♦(φ1 ∧ ♦(φ2 ∧
♦φ3)) ∧ (¬φ1Uφ4) ∧ ♦(φ5) ∧�(¬φ6) ∧�(¬φ7). In words,
this specification requires that (i) the formulas φ1, φ2, and
φ3 should be satisfied sequentially in this order; (ii) φ1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

1

2
3

4

5

6

7

8

9

10

1
2 3

4

5

6

7

8

9

10

(a) N = 2,M = 10 (b) N = 2,M = 20

Fig. 1. The contours of the Gaussian distributions for each landmark
N (x̂i,Σi) are shown. The locations x̂i are depicted by red squares. The
green squares represent the true landmark locations. The initial (final)
locations of the robots are depicted with blue circles (black diamonds).

TABLE I
SCALABILITY ANALYSIS

N M Time (mins) H Cost (m)
2 10 0.06 74 32.02
5 10 1.46 139 79.59
10 10 1.51 127 133.21
2 20 0.63 95 40.10
10 20 3.22 122 134.63
20 20 4.21 137 247.49
30 20 5.15 137 342.41

should not be satisfied until φ4 is satisfied; (iii) φ5 should
eventually be satisfied; and (iv) φ6 and φ7 should never be
satisfied. The definition of the subformulas φi depends on
the number of robots and landmarks. For example, for the
case N = 2,M = 20, the subformulas φ1, φ3, φ6 and φ7 are
defined as follows.
• φ1 = gx(p1, `17, 1, 0.85) ∧ gx(p2, `8, 1, 0.65),
• φ3 = [gc(p1, 1, 0.6, {3}) ∧ (∨ci=3π`i(Σi, 0.1))]
• φ6 = gc(p1, 1, 0.8, {4}) ∧ gc(p2, 1, 0.8, {4}),
• φ7 = gx(p1, `5, 1, 0.8) ∨ gx(p1, `10, 1, 0.8).
For instance, φ1 requires robot 1 to be within distance of

at most 1m from landmark `17 with probability at least 0.85
and robot 2 to be within distance of at most 1m from `8 with
probability at least 0.65, at the same time. Also, φ3 requires
both robots to eventually be within distance less than 1m
from a landmark with class ci = 3, simultaneously, with
probability greater than 0.6. The selected landmarks should
also satisfy det Σi ≤ 0.1. Also, �(¬φ6) captures an obstacle
avoidance constraint. Specifically, the landmarks with class
ci = 4 are considered obstacles and all robots should always
maintain a distance of at least 1m from them with probability
greater than 0.8. The discrete distribution dc over the labels
is designed by randomly selecting a probability within the
range [0.7, 1] that a landmark has the correct label, and by
randomly selecting probabilities for the remaining classes.

VII. CONCLUSION

In this paper, we proposed a new highly scalable temporal
logic planning approach in uncertain environments modeled
as probabilistic semantic maps. Finally, we show that the

proposed sampling-based algorithm is probabilistically com-
plete and asymptotically optimal.

REFERENCES

[1] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Prob-
abilistic data association for semantic SLAM,” in IEEE International
Conference on Robotics and Automation, Singapore, May-June 2017,
pp. 1722–1729.

[2] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 723–730.

[3] H. Kurniawati, T. Bandyopadhyay, and N. M. Patrikalakis, “Global
motion planning under uncertain motion, sensing, and environment
map,” Autonomous Robots, vol. 33, no. 3, pp. 255–272, 2012.

[4] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, vol. 33, no. 2, pp. 268–304, 2014.

[5] C.-I. Vasile, K. Leahy, E. Cristofalo, A. Jones, M. Schwager, and
C. Belta, “Control in belief space with temporal logic specifications,”
in IEEE 55th Conference on Decision and Control (CDC), Las Vegas,
NV, December 2016, pp. 7419–7424.

[6] Y. Kantaros and M. M. Zavlanos, “Temporal logic optimal control for
large-scale multi-robot systems: 10400 states and beyond,” in IEEE
Conference on Decision and Control (CDC), December 2018, pp.
2519–2524.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for opti-
mal motion planning with deterministic µ-calculus specifications,” in
American Control Conference (ACC), Montreal, Canada, June 2012,
pp. 735–742.

[8] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, November 2013, pp. 4817–4822.

[9] Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control
synthesis for multi-robot systems under global temporal tasks,” IEEE
Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1, 2018.

[10] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
markov decision processes with temporal logic specifications,” in
IEEE 51st Annual Conference on Decision and Control (CDC), Maui,
Hawaii, December 2012, pp. 3372–3379.

[11] B. Johnson and H. Kress-Gazit, “Analyzing and revising synthesized
controllers for robots with sensing and actuation errors,” The Inter-
national Journal of Robotics Research, vol. 34, no. 6, pp. 816–832,
2015.

[12] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
markov decision processes with linear temporal logic constraints,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1244–
1257, 2014.

[13] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under
temporal tasks and soft constraints,” IEEE Transactions on Automatic
Control, vol. 63, no. 12, pp. 4051–4066, 2018.

[14] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local ltl specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[15] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 583–599, 2016.

[16] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock resolu-
tion avoiding dynamic obstacles,” Autonomous Robots, vol. 42, no. 4,
pp. 801–824, 2018.

[17] J. Fu, N. Atanasov, U. Topcu, and G. J. Pappas, “Optimal temporal
logic planning in probabilistic semantic maps,” in IEEE International
Conference on Robotics and Automation, Stockholm, Sweden, 2016,
pp. 3690–3697.

[18] C. Baier and J.-P. Katoen, Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[19] Y. Kantaros and M. M. Zavlanos, “Global planning for multi-robot
communication networks in complex environments.” IEEE Transac-
tions on Robotics, vol. 32, no. 5, pp. 1045–1061, 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/338170168

	Introduction
	Problem Definition
	Planning In Probabilistic Semantic Maps
	Incremental Construction of Trees
	Sampling Strategy
	Extending the tree

	Completeness, Optimality & Convergence
	Designing Biased Sampling Functions
	Numerical Experiments
	Conclusion
	References

