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Abstract—In this paper, we develop a distributed intermit-
tent communication and task planning framework for mobile
robot teams. The goal of the robots is to accomplish com-
plex tasks, captured by local linear temporal logic formulas,
and share the collected information with all other robots
and possibly also with a user. Specifically, we consider sit-
uations where the robot communication capabilities are not
sufficient to form reliable and connected networks, while
the robots move to accomplish their tasks. In this case, in-
termittent communication protocols are necessary that al-
low the robots to temporarily disconnect from the network
in order to accomplish their tasks free of communication
constraints. We assume that the robots can only communi-
cate with each other when they meet at common locations
in space. Our distributed control framework jointly deter-
mines local plans that allow all robots to fulfill their assigned
temporal tasks, sequences of communication events that
guarantee information exchange infinitely often, and opti-
mal communication locations that minimize a desired dis-
tance metric. Simulation results verify the efficacy of the
proposed controllers.

Index Terms—Distributed linear temporal logic (LTL)-
based planning, intermittent communication, multirobot
networks.

I. INTRODUCTION

R ECENTLY, there has been a large amount of work focused
on designing controllers that ensure point-to-point or end-

to-end network connectivity of mobile robot networks for all
time. Such controllers either rely on graph theoretic approaches
[1]–[5] or employ more realistic communication models that
take into account path loss, shadowing, and multipath fading
as well as optimal routing decisions for desired information
rates [6]–[10]. However, due to the uncertainty in the wireless
channel, it is often impossible to ensure all-time connectivity
in practice. Moreover, such methods often prevent the robots
from accomplishing their tasks, as motion planning is always

Manuscript received December 10, 2017; revised June 21, 2018; ac-
cepted December 29, 2018. Date of publication January 15, 2019; date of
current version September 25, 2019. This work was supported in part by
the ONR under Grant #N000141812374. Recommended by Associate
Editor A. Girard. (Corresponding author: Yiannis Kantaros.)

The authors are with the Department of Mechanical Engineering
and Materials Science, Duke University, Durham, NC 27708 USA
(e-mail:, yiannis.kantaros@duke.edu; meng.guo@duke.edu; michael.
zavlanos@duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2893161

restricted by connectivity constraints on the network. Therefore,
a much preferred solution is to allow robots to communicate in
an intermittent fashion and operate in disconnect mode the rest
of the time.

Intermittent communication in multiagent systems has been
studied in consensus problems [11], coverage problems [12],
and in delay-tolerant networks [13], [14]. The common assump-
tion in these works is that the communication network is con-
nected over time, infinitely often. Relevant is also the work on
event-based network control [15], [16], where although the net-
work is assumed to be connected for all time, messages between
the agents are exchanged intermittently when certain events take
place. In this paper, we lift all connectivity assumptions and, in-
stead, control the communication network itself so that it is
guaranteed to be intermittently connected, infinitely often.

Specifically, we assume that robots can only communicate
when they are physically close to each other. The intermittent
connectivity requirement is captured by a global linear temporal
logic (LTL) statement that forces small groups of robots, also
called teams, to meet infinitely often at locations in space that
are common for each team, but possibly different across teams.
We assume that every robot belongs to at least one team and
that there is a path, i.e., a sequence of teams where consecutive
teams have nonempty intersections, connecting every two teams
of robots, so that information can propagate in the network.

In addition to the intermittent communication requirement,
we also assume that the robots are responsible for accomplish-
ing independent tasks that are specified by local LTL formulas.
These tasks can be, e.g., gathering of information in the en-
vironment that needs to reach all other robots and possibly a
user through the proposed intermittently connected network.
Given the global LTL statement comprised of the intermittent
communication requirement and the local LTL tasks, existing
control synthesis approaches for global LTL specifications [17]–
[19] that rely on transition systems to abstract robot mobility
can be used to obtain correct-by-construction controllers. Nev-
ertheless, such approaches do not optimize task performance.
Optimal control synthesis algorithms for mobile robot networks
under global LTL specifications are proposed in [20]–[23]. Com-
mon in [20], [21] is that they rely on the construction of a
synchronous product automaton among all robots and the ap-
plication of graph search methods to synthesize optimal plans.
Therefore, these approaches are resource demanding and scale
poorly with the number of robots. Sampling-based optimal con-
trol synthesis methods under global LTL specifications have also
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been proposed by the authors in [22] that scale better than the
methods in [20], [21]. The methods proposed in [20]–[22] are all
centralized and offline and, therefore, not reactive to new tasks.
Moreover, they require as an input the Bü chi automaton that
corresponds to the global LTL formula, which is generated by
a computationally expensive process. A distributed implemen-
tation of [22] that can optimize feasible motion plans online is
presented in [23]. However, [23] requires an all-time connected
communication network which is not the case here. A new logic,
called counting LTL, is proposed in [24] that can be used for
coordination of large collections of agents. However, this ap-
proach is centralized, offline, and assumes that the identity of
the agents is not important for the successful accomplishment
of the task, which is not the case here due to the intermittent
connectivity requirement.

In this paper, our goal is to synthesize motion plans for all
robots so that both the local LTL tasks and the global LTL
formula capturing the intermittent connectivity requirement are
satisfied while minimizing a desired distance metric. To achieve
that, we avoid the construction of the product automaton alto-
gether and instead propose an online and distributed framework
to design correct-by-construction controllers for the robots. In
particular, we first focus on the intermittent connectivity re-
quirement and propose a new distributed framework to design
sequences of communication events, also called communica-
tion schedules, for all teams of robots. Then, we develop dis-
crete plans for the robots that satisfy the local LTL tasks while
ensuring that teams can communicate according to the prede-
termined schedules. The locations of the communication events
in these discrete plans are selected so that they optimize a de-
sired distance metric. The proposed controllers are synthesized
in a distributed and online fashion, and can be executed asyn-
chronously, which is not the case in most relevant literature as,
e.g., in [22]–[26].

To the best of our knowledge, the most relevant works to
the one proposed here are recent works by the authors [27]–
[30]. Specifically, [27] proposes an asynchronous distributed
intermittent communication framework that is a special case of
the one proposed here in that every robot belongs to exactly two
teams and the robots in every team can only meet at a single pre-
determined location. This framework is extended in [28], where
robots can belong to any number of teams and every team can
select among multiple locations to meet, same as in the work
considered here. Nevertheless, neither of the approaches in [27],
[28] consider concurrent task planning. Intermittent communi-
cation control and task planning is considered in [29] that relies
on the construction of a synchronous product automaton among
all robots and, therefore, this approach is centralized and does
not scale well with the number of robots. A distributed on-
line approach to this problem is proposed in [30]. The method
proposed here is more general in that it can handle the data
gathering tasks and the star communication topology in [30]
that considers information flow only to the root/user. In fact,
in the proposed method, information can flow intermittently
between any pair of robots and possibly a user in a multihop
fashion. Another fundamental difference with [30] is that here
the robots first decide how they want to communicate by con-
structing abstract schedules of communication events and then

decide where they want to communicate by embedding online
and optimally these schedules in the workspace so that the de-
sired tasks are also satisfied. In fact, this is a unique feature of
the proposed approach that differentiates it from existing litera-
ture on communication control where communication is always
state dependent. Other relevant methods that do not rely on LTL
for intermittent communication control are presented in [31],
[32]. However, these methods impose strong restrictions on the
communication pattern that can be achieved, while [31] also
does not consider concurrent task planning. We provide theo-
retical guarantees supporting the proposed framework, as well
as numerical simulations showing its ability to solve very large
and complex planning problems that existing model checking
techniques cannot solve. To the best of our knowledge, this is
the first distributed, online, and asynchronous framework for
temporal logic path planning and intermittent communication
control that can be applied to large-scale multirobot systems.

The rest of this paper is organized as follows. In Section II, we
present some preliminaries in LTL. The problem formulation is
described in Section III. In Section IV, we design a distributed
schedules of communication events that ensure intermittent con-
nectivity. In Section V, we design discrete motion plans that
satisfy the assigned local LTL tasks and the intermittent con-
nectivity requirement as per the communication schedules while
minimizing a distance metric. Theoretical guarantees of the pro-
posed algorithm are presented in Section VI. Simulation results
are included in Section VII.

II. PRELIMINARIES

The basic ingredients of LTL are a set of atomic proposi-
tions AP , the boolean operators, i.e., conjunction ∧, and nega-
tion ¬, and two temporal operators, next © and until U . LTL
formulas over a set AP can be constructed based on the fol-
lowing grammar: φ ::= true |π |φ1 ∧ φ2 | ¬φ | © φ |φ1 U φ2 ,
where π ∈ AP . For the sake of brevity, we abstain from pre-
senting the derivations of other Boolean and temporal opera-
tors, e.g., always �, eventually ♦, implication ⇒, which can be
found in [33]. An infinite word σ over the alphabet 2AP is de-
fined as an infinite sequence σ = π0π1π2 · · · ∈ (2AP)ω , where
ω denotes infinite repetition and πk ∈ 2AP , ∀k ∈ N. The lan-
guage Words(φ) =

{
σ ∈ (2AP)ω |σ |= φ

}
is defined as the set

of words that satisfy the LTL formula φ, where |=⊆ (2AP)ω × φ
is the satisfaction relation.

Any LTL formula φ can be translated into a Nondeterministic
Bü chi Automaton (NBA) over 2AP denoted by B, which is
defined as follows [34].

Definition 2.1 (NBA): An NBAB over 2AP is defined as a tu-
ple B =

(
QB ,Q0

B ,Σ,→B ,FB

)
, where QB is the set of states,

Q0
B ⊆ QB is a set of initial states, Σ = 2AP is an alphabet,

→B⊆ QB × Σ ×QB is the transition relation, and FB ⊆ QB

is a set of accepting/final states.
An infinite run ρB ofB over an infinite wordσ = π0π1π2 . . . ,

πk ∈ Σ = 2AP ∀k ∈ N is a sequence ρB = q0
B q

1
B q

2
B . . . such

that q0
B ∈ Q0

B and (qkB , πk , q
k+1
B ) ∈→B , ∀k ∈ N. An infi-

nite run ρB is called accepting if Inf(ρB ) ∩ FB 
= ∅, where
Inf(ρB ) represents the set of states that appear in ρB in-
finitely often. The words σ that result in an accepting run of B
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constitute the accepted language of B, denoted by LB . Then,
it is proven [33] that the accepted language of a NBA B, asso-
ciated with an LTL formula φ, is equivalent to the words of φ,
i.e., LB = Words(φ).

III. PROBLEM FORMULATION

Consider N ≥ 1 mobile robots operating in a workspace
W ⊂ Rd , d ∈ {2, 3}, containing W > 0 locations of inter-
est denoted by vj , j ∈ I := {1, . . . ,W}. Mobility of robot
i ∈ N := {1, . . . , N} in W is captured by a weighted Tran-
sition System (wTS) that is defined as follows:

Definition 3.1 (weighted Transition System): A wTS for
robot i, denoted by wTSi is a tuple wTSi = (Qi , q

0
i ,→i ,

wi,AP, Li), where the following conditions hold:
1) Qi = {qvj

i , j ∈ I} is the set of states, where a state qvj

i

indicates that robot i is at location vj ∈ W .
2) q0

i ∈ Qi is the initial state of robot i.
3) →i⊆ Qi ×Qi is a given transition relation such that

(qvj

i , qve
i ) ∈→i if there exists a controller that can drive

robot i from location vj to ve in finite time without going
through any other location vc .

4) wi : Qi ×Qi → R+ is a weight function that captures
the distance that robot i needs to travel to move from vj
to ve .1

5) AP = {{πvj

i }Ni=1}j∈I is the set of atomic propositions
associated with each state.

6) Li : Qi → AP is defined as Li(q
vj

i ) = π
vj

i , for all i ∈
N and j ∈ I.

Every robot i ∈ N is responsible for accomplishing high-
level tasks associated with some of the locations vj , j ∈ I.
Hereafter, we assume that the tasks assigned to the robots are
independent from each other. Specifically, we assume that the
task assigned to robot i is captured by a local LTL−© for-
mula φi [35] specified over the set of atomic propositions
AP = {{πvj

i }Ni=1}j∈I , where πvj

i = 1 if ‖xi − vj‖ ≤ ε, for
a sufficiently small ε > 0, and 0 otherwise, for all i ∈ N and
j ∈ I.2 Namely, the atomic proposition πvj

i is true if robot i is
sufficiently close to location vj . For example, an LTL−© task
for robot i can be φi = (�♦πv4

i ) ∧ ((¬πv4
i )Uπv8

i ) ∧ (♦πv5
i ) ∧

(�¬πv3
i ) ∧ (�♦πv1

i ), which requires robot i to the following
conditions:

1) Visit location v4 infinitely often.
2) Never visit location v4 until location v8 is visited.
3) Eventually visit location v5 .
4) Always avoid an obstacle located at v3 .
5) Visit location at v1 infinitely often.

Together with accomplishing local tasks, robots are also re-
sponsible for communicating with each other so that any infor-
mation that is collected as part of these tasks is propagated in
the network and, possibly, eventually reaches a user.

1Note that alternative weights can be assigned to the transitions of the wTSs
that can capture, e.g., the time or energy required for robot i to move from vj
to ve .

2The syntax of LTL−© is the same as the syntax of LTL excluding the “next”
operator. The choice of LTL−© over LTL is motivated by the fact that we are
interested in the continuous time execution of the synthesized plans, in which
case the next operator is not meaningful. This choice is common in relevant
works, see, e.g., [36] and the references therein.

To define a communication network among the robots, we
first partition the robot team intoM ≥ 1 robot subgroups, called
also teams, and require that every robot belongs to at least one
subgroup. The indices i of the robots that belong to the mth
subgroup are collected in a set denoted by Tm , for all m ∈
M := {1, 2, . . . ,M}. We define the set that collects the indices
of teams that robot i belongs to asMi = {m|i ∈ Tm , m ∈ M}.
Also, for robot i, we define the set that collects the indices of
all other robots that belong to common teams with robot i as
Ni = {j|j ∈ Tm ,∀m ∈ Mi} \ {i}, ∀i ∈ N . Given the robot
teams Tm , for all m ∈ M, we can define the graph over these
teams as follows.

Definition 3.2 (Team membership graph GT ): The graph
over the teams Tm ,m ∈ M is defined as GT = (VT , ET ), where
the set of nodes VT = M is indexed by the teams Tm and set
of edges ET is defined as ET = {(m,n)|Tm ∩ Tn 
= ∅,∀m,n ∈
M,m 
= n}.

Given the team membership graph GT , we can also define
the set NTm := {e ∈ VT |(m, e) ∈ ET } that collects all neigh-
boring teams of team Tm in GT . Since the robots have lim-
ited communication capabilities, we assume that the robots in
every subgroup Tm can only communicate if all of them are
simultaneously present at a common location vj ∈ W , here-
after called a communication point. We assume that there are
R ≥ 1 available communication points in the workspace at loca-
tions vj ∈ W , where j ∈ C ⊂ I. Among those communication
points, the ones that are specifically available to the robotic team
Tm are collected in a finite set Cm ⊆ C, where the sets Cm are
not necessarily disjoint. When all robots in a team Tm have
arrived at a communication location, we assume that commu-
nication happens and the robots leave to accomplish their tasks
or communicate with other teams. This way, a dynamic robot
communication network is constructed, defined as follows:

Definition 3.3 (Communication network Gc(t)): The com-
munication network among the robots is defined as a dy-
namic undirected graph Gc(t) = (Vc , Ec(t)), where the set
of nodes Vc is indexed by the robots, i.e., Vc = N , and
Ec(t) ⊆ Vc × Vc is the set of communication links that emerge
among robots in every team Tm , when they all meet at a
common communication point vj , for some j ∈ Cm simul-
taneously, i.e., Ec(t) = {(e, i),∀ i, e ∈ Tm , ∀m ∈ M|xi(t) =
xe(t) = vj , for some j ∈ Cm}.

To ensure that information is continuously transmitted across
the network of robots, we require that the communication graph
Gc(t) is connected over time infinitely often, i.e., that all robots
in every team Tm meet infinitely often at a common communi-
cation point vj , j ∈ Cm , that does not need to be fixed over time.
For this, it is necessary to assume that the graph of teams GT
is connected. Specifically, if GT is connected, then information
can be propagated intermittently across teams through robots
that are common to these teams and, in this way, information
can reach all robots in the network. Connectivity of GT and the
fact that robots can be members of only a few teams means that
information can be transferred over long distances, possibly to
reach a remote user, without requiring that the robots leave their
assigned regions of interest defined by their assigned tasks and
communication points corresponding to the teams they belong
to. Moreover, we assume that the teams Tm are a priori known
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and can be selected arbitrarily as long as the graph of teams GT
is connected.

Intermittent connectivity of the communication network
Gc(t) can be captured by the global LTL formula

φcom = ∧m∈M
(
�♦

(
∨j∈Cm (∧i∈Tm π

vj

i )
))

(1)

specified over the set of atomic propositions {{πvj

i }Ni=1}j∈C .
Composing φcom with the local LTL−© formulas φi , yields the
following global LTL statement:

φ = (∧i∈Nφi) ∧ φcom (2)

that captures the local tasks assigned to every robot and inter-
mittent connectivity of the communication network Gc .

Given the wTSi , for all robots i ∈ N , and the global LTL for-
mula (2), the goal is to synthesize motion plans τi , for all i ∈ N ,
whose execution satisfies the global LTL formula (2). Typically,
such motion plans are infinite paths in wTSi [35], i.e., infinite
sequences of states in wTSi , such that τi(1) = q0

i , τi(κ) ∈ Qi ,
and (τi(κ), τi(κ+ 1)) ∈→i , ∀κ ∈ N+ . In this form, they can-
not be manipulated in practice. This issue can be resolved
by representing these plans in a prefix–suffix form [34], i.e.,
τi = τ pre

i

[
τ suf
i

]ω
, where the prefix part τ pre

i and suffix part τ suf
i

are both finite paths in wTSi , for all robots i ∈ N . The prefix
τ pre
i is executed once and the suffix τ suf

i is repeated indefinitely.
The cost associated with a plan τi = τ pre

i

[
τ suf
i

]ω
is defined as

Jp(τi) = αJ(τ pre
i ) + (1 − α)J(τ suf

i ) (3)

where J(τ pre
i ) and J(τ suf

i ) represent the cost of the prefix and
the suffix part, respectively, and α ∈ [0, 1] is a user-specified
parameter. The cost J(τ suf

i ) of the suffix part is defined as

J(τ suf
i ) =

|τ suf
i |∑

κ=1

wi(τ suf
i (κ), τ suf

i (κ+ 1)) (4)

where |τ suf
i | stands for the number of states in the finite path

τ suf
i , τ suf

i (κ) denotes the κth state in τ suf
i , and wi are the weights

defined in Definition 3.1. The cost J(τ pre
i ) of the prefix part is

defined accordingly. In other words, Jp(τi) captures the distance
that robot i needs to travel during a single execution of the prefix
and suffix part weighted by a user-specified parameter α > 0.

The problem that is addressed in this paper can be summarized
as follows:

Problem 1: Consider any initial configuration of a network
ofN mobile robots in their respective wTSs, and any partition of
the network inM subgroups Tm ,m ∈ M so that the associated
graph GT is connected. Determine discrete motion plans τi ,
i.e., sequences of states qvj

i ∈ Qi , in prefix–suffix structure, for
all robots such that the LTL specification φ defined in (2) is
satisfied.

1) The local LTL−© tasks φi are satisfied, for all i ∈ N .
2) Intermittent communication among robots captured by
φcom is ensured infinitely often.

3) The distance metric
∑

i∈N Jp(τi) is minimized.
To solve Problem 1, we propose a distributed algorithm that

consists of two main parts. First, we design offline schedules
of communication events for all robots, independently of their
assigned tasks, that ensure intermittent communication among

robots in every team infinitely often, see Section IV. These
communication events depend on the structure of the graph GT
and are not associated with specific locations in space. Then, in
Section V, we design online discrete plans for the robots that
satisfy their local tasks while ensuring that the robots in each
team communicate as per the schedules defined in Section IV.
The location of these communication events are selected so that
the distance metric

∑
i∈N Jp(τi) is minimized.

IV. INTERMITTENT COMMUNICATION CONTROL

In this section, we construct infinite sequences of communi-
cation events (also called communication schedules) so that in-
termittent connectivity infinitely often as per (1) is guaranteed.
Construction of the communication schedules occurs offline,
i.e., before the robots are deployed in the workspace to satisfy
the assigned LTL−© tasks φi , and requires that the robots are
connected so that they can share information with each other.
Then, in Section V, these schedules are integrated online with
task planning to synthesize discrete motion plans that ensure
that the local tasks are satisfied, the network is intermittently
connected as per the designed schedules, and the cost function
defined in Section III is minimized.

Since every robot can be a member of more than one team, the
objective in designing the proposed communication schedules
is that no teams that share common robots communicate at
the same time, as this would require that the shared robots
are present at more than one possibly different communication
points at the same time. We call such schedules conflict free. To
construct such conflict-free schedules of communication events,
we define a sequence S of teams that determines the order in
which the robots construct their schedules.

Definition 4.1 (Sequence S): The finite sequence S is a se-
quence of teams defined as S = Tn , Tm , . . . . The sequence S
satisfies two requirements: 1) all teams Tm , m ∈ M appear
in S; and 2) consecutive teams Tn and Tm that appear in
S are neighboring nodes in the graph GT , i.e., m ∈ NTn :=
{e ∈ VT |(n, e) ∈ ET }.

In what follows, we assume that the sequence S is user de-
fined and known by all robots. Moreover, we denote by S(k)
the kth team in S, ∀k ∈ {1, . . . , |S|}, where |S| stands for the
length of S. Using the sequence S, we construct communica-
tion schedules schedi for all robots i that determine the order
in which those robots participate in communication events for
teams Tm , ∀m ∈ Mi and are defined as follows.

Definition 4.2 (Schedule of communication events): The
schedule schedi of communication events of robot i is defined
as an infinite repetition of the finite sequence

si = X, . . . ,X,Mi(1),X, . . . ,X,Mi(2),X, . . . ,X,

Mi(|Mi |),X, . . . ,X (5)

i.e., schedi = si, si , · · · = sωi , where ω stands for the infinite
repetition of si .

In (5), Mi(e), e ∈ {1, . . . , |Mi |} stands for the eth entry
of Mi and represents a communication event for team with
index Mi(e), and the discrete states X indicate that there is no
communication event for robot i. The length of the sequence si is
� = max {dTm }Mm=1 + 1 for all i ∈ N , where dTm is the degree
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of nodem ∈ VT . It is shown in Proposition 4.4 that this length �
is sufficient for the construction of conflict-free communication
schedules as per the algorithm described bellow. The schedule
schedi defines the order in which robot i participates in the
communication events for the teams m ∈ Mi , for all robots
i ∈ N . Specifically, at a discrete time step z ∈ N+ , robot i
either communicates with all robots that belong to team Tm , for
m ∈ Mi if schedi(z) = m, or does not need to participate in
any communication event if schedi(z) = X .

In what follows, we present a distributed process that re-
lies on two rules that the robots execute in order to construct the
schedules schedi . These schedules are constructed sequentially
across the teams Tm , m ∈ M, in an order that is determined
by the sequence S. In other words, robots in team S(k) will
construct their respective schedules, only if all robots in team
S(k − 1) have already designed their schedules. Assume that ac-
cording to the sequence S, robots in team S(k) = Tm , for some
k ≥ 1 are due to construct their schedules. By construction of
the sequence S, consecutive teams in S are always neighboring
teams, which means that there exists a team Tn with n ∈ NTm
such thatS(k − 1) = Tn and Tm ∩ Tn 
= ∅. Consequently, there
exist also robots j ∈ Tm ∩ Tn that previously constructed their
sequences sj . These robots j never reconstruct their schedules.
Instead, one of the robots j ∈ S(k) ∩ S(k − 1) is tasked with
providing information to the other robots i ∈ S(k) = Tm that is
necessary to construct their sequences si .

Specifically, this robot j ∈ S(k) ∩ S(k − 1) first notifies the
robots in team S(k) = Tm that it is their turn to construct their
communication schedules.3 Second, robot j transmits to robots
i ∈ Tm all sequences sb that have been constructed so far by the
robots in teamsS(1), . . . , S(k − 1). Among all those sequences
sb , robots i ∈ Tm use only the sequences of robots b ∈ Ni to
construct their sequences si .4 As a result, all robots i ∈ Tm
that have not constructed si yet, are aware of the indices nTgb
that point to entries in sb associated with some communication
events g. These indices satisfy sb(n

Tg
b ) = g, b ∈ Ni .5 Notice

that this means that robots i ∈ Tm are also aware of the indices
nTmb . Using this information, every robot i ∈ Tm constructs the
sequence si based on the following two rules that determine the
indices nTgi that point to entries in si where the communication

event g will be placed, i.e., si(n
Tg
i ) = g, for all g ∈ Mi .

1) First rule: Let nTgi denote the index of the entry at which
the communication event g ∈ Mi will be placed into
si . If there exists a robot b ∈ Ni that has selected nTgb
so that sb(n

Tg
b ) = g, then n

Tg
i = n

Tg
b . In this way, all

robots b ∈ Tg , including robot i ∈ Tm ∩ Tg will select

the same index n
Tg
b and will participate in the same

3Note that if the teams inS were not necessarily neighboring teams, then robot
j ∈ S(k − 1) = Tn would have to know who the members of team S(k) =
Tm , m /∈ Mj , are in order to notify them that it is their turn to construct the
communication schedules. Due to the fact that S connects neighboring teams,
every robot j needs to know only the structure of teams Tm , m ∈ Mj .

4Note that robot j is not aware of the sets Ni and, therefore, it transmits all
the sequences sb that have already been constructed to robots i ∈ Tm .

5Note that the discrete time instants at which the communication event g ∈
Mi will take place are n

Tg
i + z�, where z ∈ N, by definition of schedi .

communication event g at the same discrete time instant,
see line 3, Algorithm 1.

2) Second rule: If there do not exist robots b ∈ Ni that have
selected indices nTgb , for communication event g ∈ Mi ,
then the communication event g can be placed at any
available entry nTgi of si that satisfies the following re-

quirement. The entry nTgi in all sequences sj of robots
j ∈ Ni that have already been constructed should not
contain communication events h such that h ∈ NTg , see
line 2, Algorithm 1.

Note that the index nTmi will always be determined by the first
rule, since robot j ∈ S(k) ∩ S(k − 1) has already constructed
its sequence sj by placing the event m at an entry of sj with
index nTmj . To highlight the role of the second rule, assume
that h ∈ NTg . Then, this means that there exists at least one
robot r ∈ Th ∩ Tg . Notice that without the second rule, at a
subsequent iteration of this procedure, robot r ∈ Th ∩ Tg would
have to place communication events for teams Tg and Th at

a common entry of sr , i.e., nTgr = nThr , due to the first rule
and, therefore, a conflicting communication event in schedule
schedr would occur. In all the remaining entries of si , X’s are
placed; see line 7, Algorithm 1. By construction of si , there are
�− |Mi | X’s in si .

Once all robots i in teamS(k) have constructed the sequences
si , a robot j ∈ S(k) ∩ S(k + 1) will notify all robots in team
S(k + 1) that it is their turn to compute their respective sched-
ules. The procedure is repeated sequentially over the teams in
S until all robots have computed their respective schedules of
meeting events. This process is summarized in Algorithm 1 and
it is also illustrated in Example 4.3.

Example 4.3 (Algorithm 1): To illustrate Algorithm 1, con-
sider the network of N = 3 robots shown in Fig. 1, where the
teams of robots are designed as T1 = {1, 2}, T2 = {2, 3}, and
T3 = {3, 1}. Let the sequence S be S = T1 , T2 , T3 . Hence, ini-
tially the robots 1 and 2 in team T1 coordinate to construct their
respective sequences si . Assume that initially robot 1 constructs
the sequence s1 of length equal to � = max {dTm }3

m=1 + 1 = 3.
Robot 1 belongs to teams T1 and T2 and it arbitrarily constructs
s1 as follows: s1 = 1, 3,X . Then, the sequence s1 is transmitted
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Fig. 1. Graphical illustration of the problem formulation. A network of
N = 3 robots (black dots) divided into M = 3 teams is depicted. The
robot teams are selected to be T1 = {1, 2}, T2 = {2, 3}, and T3 = {3, 1}.
The set I consists of locations represented by red and green squares.
Red squares comprise set C and represent communication points. Black
dashed lines stand for paths in the workspace W that connect locations
ve and vj . The sets of communications points for each team are defined
as C1 = {v9 , v10}, C2 = {v10 , v11}, and C3 = {v12}.

to robot 2 that belongs to teams T1 and T2 . Now, robot 2 is re-
sponsible for constructing the sequence s2 . To construct s2 ,
according to the first rule, team T1 is placed at the first entry of
s2 , i.e., nT1

2 = nT1
1 = 1. Next, the index nT2

2 is determined by
the second rule. Specifically, notice that among the two avail-
able entries in s2 for team T3 the entry nT3

2 = 2 is invalid, since
robot 1 ∈ T1 has already constructed its sequence s1 so that
nT3

1 = 2 and for teams T3 and T2 it holds that 3 ∈ NT2 . There-
fore, robot 2 selects nT2

2 = 2 and constructs the sequence
s2 = 1,X, 2. At the next iteration of Algorithm 1, the robots
2 and 3 in team T2 coordinate to construct their sequences si .
Robot 2 has already constructed the sequence s2 at the previ-
ous iteration and it transmits its constructed sequence s2 and
the previously constructed sequence s1 to robot 3. Thus, robot
3 has now access to all already constructed sequences se , for
e ∈ N3 = {1, 2}. Robot 3 constructs s3 = X, 3, 2 using the first
rule. Finally, the robots in the third team T3 = {3, 1} have al-
ready constructed their finite paths at previous iterations.

In the following proposition, we show that Algorithm 1 can
always construct sequences si if the length � of si is selected as
� = max {dTm }Mm=1 + 1.

Proposition 4.4: Algorithm 1 can always construct se-
quences si , for all i ∈ N , if the length � of si is selected as
� = max {dTm }Mm=1 + 1.

Proof: The proof is based on contradiction. Assume that
a robot i requires a sequence si of length greater than � =
max {dTe }

M
e=1 + 1 when Algorithm 1 is applied. This means

that there is team Tm , m ∈ Mi , which cannot be placed at any
of the first � entries of si . By construction of Algorithm 1, this
means that the team Tm has at least � neighbors in graph GT ,
i.e., dTm ≥ �, which can never happen. �

Remark 4.5 (Repeated teams in S and initialization): Due
to the requirement that consecutive teams in S need to be
neighbors in GT , it is possible that a team Tm may appear more
than once in S, depending on the structure of the graph GT .
In this case, robots i ∈ Tm construct the sequences si only the
first time that team Tm appears in S. Also, at the first iteration
of Algorithm 1, robots of team S(1) have to construct their

sequences si , i ∈ S(1). In this case, a randomly selected robot
j ∈ S(1) creates arbitrarily its sequence sj by placing the
teams m ∈ Mj at the nTmj th entry of sj . Then, the procedure
described in Algorithm 1 follows.

Remark 4.6 (Discrete states X): In the schedules schedi ,
defined in Definition 4.2 and constructed using Algorithm 1, the
states X indicate that no communication events occur for robot
i at the corresponding discrete time instants. These states are
used to synchronize the communication events over the discrete
time instants c ∈ N+ , i.e., to ensure that the discrete time instant
z at which communication happens for team Tm , m ∈ M, is
the same for all robots i ∈ Tm , see also Example 4.3. Never-
theless, as it will be shown in Theorem 6.5, in Section VI, it
is the order of communication events in schedi that is critical
to ensure intermittent communication, not the time instants that
they take place. This is due to a communication policy proposed
in Section V-C.

V. INTEGRATED TASK PLANNING AND INTERMITTENT

COMMUNICATION CONTROL

In this section, we propose a distributed and online algorithm
to synthesize motion plans for all robots i so that the global LTL
formula (1) is satisfied, i.e., the assigned local LTL−© tasks
are accomplished, and the network is intermittently connected.
These plans are generated iteratively and have the following
prefix–suffix structure:

τnii = path0
i |path1

i | . . . |[pathnii ]ω (6)

where ni ∈ N is the iteration index associated with robot i,
pathnii is a finite sequence of states in wTSi , | denotes the con-
catenation of discrete paths pathnii , and ω denotes the infinite
repetition. Each path pathnii is constructed so that 1) execution
of pathnii , for a every given ni ensures that robot iwill commu-
nicate exactly once with all teams Tm ,m ∈ Mi in an order that
respects the schedules schedi designed in Section IV, and 2)
execution of τnii guarantees that the assigned local LTL−© tasks
φi are satisfied. In Section V-A, we discuss the distributed con-
struction of the initial paths path0

i given the communication
schedules schedi . In Section V-B, we present the distributed
construction of all subsequent paths pathnii that occurs online
as the robots navigate the worskpace.

A. Construction of Initial Paths

Once robot i constructs its schedule schedi , it locally de-
signs the initial path path0

i . To do this, feasible initial commu-
nication points for all teams Tm , m ∈ M, need to be selected
first, that do not violate the local tasks φi . These can be found
by exhaustively searching through the set of possible combi-
nations of communication points for all teams. Specifically,
let combb denote any candidate combination of communica-
tion points that can be assigned to all teams Tm ,m ∈ M, where
b ∈

{
1, . . . ,

∏
m∈M |Cm |

}
. Given the communication points vj ,

j ∈ Cm , in the candidate combination combb , every robot con-
structs the NBA Bi that corresponds to the following LTL
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formula:

ψi = φi︸︷︷︸
task

∧ φcom,i︸ ︷︷ ︸
communication

(7)

where

φcom,i = ∧m∈Mi
(�♦vj∈Cm ). (8)

In other words, the LTL formula φcom,i requires robot i to visit
infinitely often the candidate communication points vj , j ∈ Cm ,
of all teams Tm , m ∈ Mi , that are specified in combb . Then,
given the wTSi and the NBA Bi , every robot can synthesize a
motion plan τ̃ 0

i |= ψi , if it exists, which will be used to con-
struct the initial path path0

i . This process is repeated for all
b ∈

{
1, . . . ,

∏
m∈M |Cm |

}
until feasible plans τ̃ 0

i |= ψi can be
constructed for all robots i ∈ N . Later, in Lemma 5.2, we show
that the robots can search locally over the combinations combb
reducing in this way the computational cost of finding a feasible
plan τ̃ 0

i .
Specifically, given candidate initial communication points for

all teams Tm , m ∈ Mi , the motion plan τ̃ 0
i can be constructed

by checking the nonemptiness of the language of the Product Bü
chi Automaton (PBA)Pi = wTSi ⊗Bi , defined as follows [33]:

Definition 5.1 (Product Bü chi automaton): Given the
wTSi =

(
Qi , q

0
i ,→i , wPi ,AP, Li

)
and the NBA Bi =(

QBi
,Q0

Bi
, 2AP ,→Bi

,FBi

)
, the Product Büchi Automaton

Pi = wTSi ⊗Bi is a tuple
(
QPi ,Q0

Pi
,−→Pi , wPi ,FPi

)
, where

the following conditions hold:
1) QPi = Qi ×QBi

is the set of states.
2) Q0

Pi
= q0

i ×Q0
Bi

is a set of initial states.
3) −→Pi⊆ QPi ×QPi is the transition relation. Transi-

tion (qP , q′P ) ∈→Pi , where qP = (qvj

i , qB ) ∈ QPi and
q′P = (qve

i , q′B ) ∈ QPi , exists if (qvj

i , qve
i ) ∈→i and

(qB , Li(q
vj

i ), q′B ) ∈→B .
4) wPi : QPi ×QPi → R+ is the weight function, defined

as wPi ((q
vj

i , qB ), (qve
i , q′B )) = wi(q

vj

i , qve
i ).

5) FPi = Qi ×FBi
is a set of accepting/final states.

More precisely, a motion plan τ̃ 0
i that satisfies ψi can be de-

rived using graph search techniques on Pi , which can be viewed
as a weighted graph GPi = {VPi , EPi , wPi }, where VPi = QPi ,
the set of edges EPi is determined by the transition relation
−→Pi , and the weight function wPi is defined in Definition 5.1,
see e.g., [20]–[23], [37], [38]. Then, a path from an initial state
to an accepting state in GPi (the prefix path) followed by a cycle
around this accepting state (the suffix path), which is repeated
indefinitely, results in an accepting run of the PBA that has the
following prefix–suffix structure:

ρ0
Pi = ρ

pre,0
Pi

[
ρ

suf,0
Pi

]ω
= (q0

wTSi , q
0
Bi

)
︸ ︷︷ ︸

∈Q0
P i

(q1
wTSi , q

1
Bi

) . . . (qFwTSi , q
F
Bi

)
︸ ︷︷ ︸

=qFP i ∈FP i

×
[
(qFwTSi , q

F
Bi

) . . . (qLwTSi , q
L
Bi

)
]ω

(9)

where with slight abuse of notation, qβwTSi
and qβBi

denote a state
of wTSi and Bi , respectively, for all β ∈ {0, . . . , F, . . . , L}.
The projection of ρ0

Pi
onto the state space of wTSi , denoted by

Π|wTSi ρ
0
Pi

, results in the desired prefix–suffix motion plan.

τ̃ 0
i = Π|wTSi ρ

0
Pi

= τ̃ pre,0
i

[
τ̃ suf,0
i

]ω

=
[
q0

wTSi . . . q
F
wTSi

] [
qFwTSi . . . q

L
wTSi

]ω
(10)

that satisfies ψi provided feasible initial communication points
have been selected [34]. To reduce the computational cost of
synthesizing τ̃ 0

i , we only require a feasible plan τ̃ 0
i and not

the optimal one that minimizes (3), especially since subsequent
paths pathnii will get optimized online.

Given the motion plans τ̃ 0
i = τ̃ pre,0

i [τ̃ suf,0
i ]ω , we design the

discrete paths path0
i as follows. First, we initialize path0

i

as path0
i = τ̃ pre,0

i |τ̃ suf,0
i . Recall that all paths path0

i are de-
signed so that if executed, then robot i will communicate
once with all teams Tm , m ∈ Mi , in an order that respects
the schedules schedi . Therefore, the state qvj

i corresponding
to the candidate communication point vj , j ∈ Cm , appears at
least once in the suffix part of τ̃ 0

i , by definition of ψi , for all
m ∈ Mi . However, these communication states may not appear
in path0

i = τ̃ pre,0
i |τ̃ suf,0

i in an order that respects the schedules
schedi , as this is not required by the LTL formula ψi in (7).
Therefore, we append at the end of path0

i the suffix part τ̃ suf,0
i

enough times so that path0
i = τ̃ pre,0

i |τ̃ suf,0
i | . . . |τ̃ suf,0

i respects
the schedule schedi , i.e., there exists a sequence of indices
κmi that point to entries in path0

i corresponding to states qvj

i

with vj , j ∈ Cm , that satisfy κmi < κhi , if the communication
event for team Tm appears before the communication event for
team Th in schedi , for all teams Tm , Th , m,h ∈ Mi , see also
Example 5.3. Note that since the state qvj

i , j ∈ Cm , appears at
least once in the suffix part of τ̃ 0

i , for all m ∈ Mi , the suffix
part τ̃ suf,0

i will be appended to path0
i at most |Mi | − 1 times.

With slight abuse of notation, the initial path τ 0
i in (6) is defined

using only path0
i as follows:

τ 0
i = τ̃ pre,0

i [τ̃ suf,0
i | . . . |τ̃ suf,0

i ]ω . (11)

In what follows, we show that to find a feasible initial com-
bination of communication points combb that is needed to de-
termine initial plans τ̃ 0

i , the robots can search locally in the
set of

∏
m∈M |Cm | possible combinations of communication

points by solving at most
∏

m∈Mi
|Cm | control synthesis prob-

lems each, instead of
∏

m∈M |Cm |. To see this, observe that,
for any robot i ∈ N , there exist multiple combinations combb
that share the same communication points for all teams Tm ,
m ∈ Mi , and only differ in the communication points for
teams Tm , m ∈ M \Mi . All these combinations, correspond
to the same formula ψi , which means that that robot i needs
to solve a single control synthesis problem to determine if they
are feasible. Motivated by this observation, in the following
lemma, we show that if every robot i ∈ N solves locally at
most

∏
m∈Mi

|Cm | control synthesis problems, then all com-
binations combb will be exhaustively explored. By combin-
ing the feasible local combinations of communication points
combibi that can be assigned to teams Tm , m ∈ Mi , where
bi ∈ {1, ...,

∏
m∈Mi

|Cm |}, that are identified by all robots i, it
it easy to obtain feasible global combinations combb . Note that,
in general, it holds that

∏
m∈Mi

|Cm | ≤
∏

m∈M |Cm |, where the
equality holds ifMi = M or if |Cm | = 1, for allm ∈ M \Mi .
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Moreover,
∏

m∈Mi
|Cm | is smaller for sparse graphs GT , given

a fixed number of teams and fixed sets Cm .
Lemma 5.2 (Complexity of initialization): Let combibi with

bi ∈
{
1, . . . ,

∏
m∈Mi

|Cm |
}

denote a combination of commu-
nication points that can be assigned to teams Tm , m ∈ Mi .
Moreover, assume that every robot i ∈ N solves

∏
m∈Mi

|Cm |
control synthesis problems using the LTL formula (7), one for
every combination combibi . Then, the robots can collectively de-
tect any feasible combination of communication points combb ,
b ∈

{
1, . . . ,

∏
m∈M |Cm |

}
, if it exists, that can be assigned to

all teams Tm , m ∈ M.
Proof: In what follows, we show by contradiction that un-

der this local construction of combb , the robots can detect all
feasible combinations combb . Assume that there exists a fea-
sible combination combb , that cannot be detected if all robots
solve their respective

∏
m∈Mi

|Cm | control synthesis problems.
Also, let Π|Mi

combb denote the combination of communication
points in combb that correspond to all teams Tm ,m ∈ Mi . Since
combb cannot be detected by the robots, this means that there
exists at least one robot i that either could not find a feasible
solution to the control synthesis problem that corresponds to
the combination Π|Mi

combb or did not consider the combina-
tion Π|Mi

combb . The first case contradicts the assumption that
combb is a feasible combination of communication points that
can be assigned to all teams Tm ,m ∈ M, while the second case
contradicts the assumption that every robot i ∈ N searches over
all combinations combibi . �

Example 5.3 (Construction of path0
i ): Consider a robot i

with Mi = {2, 3, 4, 5} and communication schedule
schedi = [2, 3,X, 4, 5]ω . Consider also the motion plan τ̃ 0

i =
τ̃ pre,0
i [τ̃ suf,0

i ]ω = qv1
i qv6

i qv4
i qv5

i qv2
i qv3

i [qv3
i qv5

i qv4
i qv6

i qv2
i ]ω ,

where v2 , v3 , v4 are the candidate communication points
for teams T2 , T3 , T4 , respectively. The path path0

i is
initialized as path0

i = τ̃ pre,0
i |τ̃ suf,0

i . To ensure the exis-
tence of indices κmi in path0

i for all teams Tm , m ∈ Mi ,
that respect the schedule schedi , the suffix part needs
to be appended to path0

i once more, i.e., path0
i =

qv1
i qv6

i qv4
i qv5

i qv2
i qv3

i [qv3
i qv5

i qv4
i qv6

i qv2
i ][qv3

i qv5
i qv4

i qv6
i qv2

i ],
where the sequence of states in brackets stands for the suffix
part τ suf,0

i . Observe that in path0
i , there exists indices κ2

i = 5,
κ3
i = 6, κ4

i = 9, and κ5
i = 13, so that κ2

i < κ3
i < κ4

i < κ5
i

as dictated by schedi .
Remark 5.4 (Initialization): Note that there are cases where

feasible initial communication points can be easily identified by
inspection, e.g., if there exists a communication point vj , j ∈
Cm that 1) does not appear in the atomic propositions πve

i that
capture the tasks φi assigned to robots i ∈ Tm and 2) is directly
connected to all locations ve , e ∈ I, that robots i ∈ Tm should
visit to accomplish their tasks, i.e., the atomic propositions πve

i

appear in the tasks φi , i ∈ Tm . Then, vj , j ∈ Cm , is a feasible
communication point for team Tm , since it does not violate the
tasks φi for all i ∈ Tm and it does not affect the communication
points the other teams can select due to 1). Also, due to 2),
robots i ∈ Tm can visit vj directly from any location ve without
passing through locations that may violate φi . Finally, if the
negation operator does not appear in the tasks φi of all robots

Fig. 2. Illustration of Algorithm 2 for network of N = 3 robots (colored
dots) with schedules sched1 = [X, 2]ω , sched2 = [1, 2]ω , and sched3 =
[1, X ]ω . All robots currently execute paths path

n i
i constructed by Algo-

rithm 2. (a) Communication events within team T1 . (b) Corresponding
paths path

n i +1 ,c i
i constructed at this communication event. Observe

in (b) that robot 3 has finalized the construction of the paths path
n 3 +1
3

since |M3 | = 1. The gray square denotes the state Π|wTSi q
F
P i

.

i ∈ Tm , then any communication point vj , j ∈ Cm , assigned to
team Tm is feasible.

Remark 5.5 (Formula φcom,i): An alternative selection for
φcom,i , defined in (8), is φ′com,i = �(♦vj∈Cm ∧ (♦ve∈Ch ∧
(♦vd∈Cg ∧ . . . ))) that requires robot i to visit communication
points for all teams Tm , m ∈ Mi in a given order that respects
the schedules schedi . However, using this formula, there is still
no guarantee that all communication points will appear in the
suffix part τ̃ suf,0

i in an order that respects schedi , as this depends
on the structure of the LTL formula φi and the wTSi . Therefore,
we have chosen (8), instead of φ′com,i , since (8) corresponds to
a much smaller NBA that makes the proposed algorithm more
computationally efficient.

B. Online Construction of Paths

The construction of the paths pathnii occurs online and in
an iterative fashion, for all ni ∈ N+ , as the robots navigate the
workspace. Specifically, pathni +1

i is constructed and updated
every time robot i participates at communication events, as it
executes pathnii . Hereafter, we denote by pathni +1,ci

i the path
constructed when robot i participates at the ci th communication
event in pathnii . The iteration index ci is initialized as ci =
1 at the beginning of execution of pathnii and is updated as
ci = ci + 1 when the path pathni +1,ci

i is constructed. Once
robot i has participated in |Mi | communication events, i.e.,
ci = |Mi |, then the next path pathni +1

i = path
ni +1,|Mi |
i has

been constructed and will be executed after the execution of
pathnii .

In what follows, we present the distributed construction of
pathni +1

i , which is also summarized in Algorithm 2 and illus-
trated in Fig. 2. Also, in Algorithm 2, for simplicity of nota-
tions, we assume that the indices of the teams in the sets Mi

are ordered as per the respective schedules schedi . This means
that if the robots in team Tm , m = Mi(ci), communicate then
the next communication event that robot i needs to partici-
pate during the execution of pathnii is Mi(ci + 1). Assume
that the robots i ∈ Tm , m = Mi(ci), communicate during the
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execution of the paths pathnii . To design the paths pathni +1,ci
i ,

the robots i ∈ Tm need to select a new communication point
vj , j ∈ Cm and possibly update the waypoints vj , j ∈ I so that
the LTL−© tasks φi are satisfied. The paths pathni +1,ci

i are
constructed in a similar way as the paths path0

i in Section V-A.
The only difference lies in the definition of the LTL formula ψi
in (7), since now the robots need to autonomously select a new
optimal communication point for team Tm given the already
selected communication points for all other teams. Specifically,
all robots i ∈ Tm perform in parallel the following two steps for
all candidate new communication points vj , j ∈ Cm , for team
Tm (lines 2–4, Algorithm 2). First, every robot i ∈ Tm con-
structs the LTL formula ψi , defined in (7), for every candidate
new communication point vj , j ∈ Cm for team Tm , and given
the already selected communication points for all other teams
Th , h ∈ Mi \ {m}, see (7) (line 5, Algorithm 2). Second, given
the wTSi and the NBA Bi that corresponds to ψi , every robot
i ∈ Tm constructs the corresponding PBAPi = wTSi ⊗Bi and
computes the optimal suffix loop, denoted by ρsuf,j

Pi
, around the

same PBA final state qFPi = (qFwTSi , q
F
B ) that was used to con-

struct the initial suffix loop of ρ0
Pi

in (9). Note that by opti-

mal suffix loop ρsuf,j
Pi

, we refer to the path that minimizes the

cost J(Π|wTSi ρ
suf,j
Pi

). The projection of this optimal suffix loop

ρsuf,j
Pi

on the state space of wTSi is denoted by τ̃ suf,j
i (lines 6–7,

Algorithm 2).
Once all robots i ∈ Tm have constructed the suffix parts

τ̃ suf,j
i for all j ∈ Cm , they compute the total cost Costj =∑
i∈Tm J(τ̃ suf,j

i ) (line 8, Algorithm 2). This cost captures the
distance that all robots i ∈ Tm need to travel during a sin-
gle execution of the suffix parts τ̃ suf,j

i if the new communi-
cation point for team Tm is vj , j ∈ Cm . Among all the suffix

parts τ̃ suf,j
i , all robots i ∈ Tm select the suffix part τ̃ suf,j ∗

i , with
j∗ = argminj{Costj}j∈Cm (line 9, Algorithm 2).

Given the optimal suffix part τ̃ suf,j ∗

i , we construct pathni +1,ci
i

exactly as the initial paths path0
i . Specifically, first, the paths

pathni +1,ci
i are initialized as pathni +1,ci

i = τ̃ suf,j ∗

i (line 10, Al-
gorithm 2]. Then, we append τ̃ suf,j ∗

i to pathni +1,ci
i as many

times as needed to satisfy the schedules schedi (line 11,
Algorithm 2). Note that since the state qvj

i , j ∈ Cm appears
at least once in the suffix part of τ̃ suf,j ∗

i , for all m ∈ Mi , the
suffix part τ̃ suf,j ∗

i will be appended at most |Mi | − 1 times to
pathni +1,ci

i . After the construction of pathni +1,ci
i , the iteration

index ci is updated as ci = ci + 1 and points to the next path
pathni +1,ci

i that will be constructed when robot i communicates
with the robots in team Th , h = Mi(ci) (line 11, Algorithm 2).6

If ci = |Mi |, then this corresponds to the last communication
event that robot i needs to participate during the execution of
pathnii and, therefore, the construction of pathni +1

i is final-

ized, i.e., pathni +1
i = path

ni +1,|Mi |
i (line 14, Algorithm 2). In

this case, ci is reinitialized as ci = 1 (line 1, Algorithm 2).
Remark 5.6 (Implicit synchronization across robots): While

the robots transition from pathnii to pathni +1
i asynchronously,

there is an implicit synchronization in the system since, for any
iteration n ∈ N+ , the robots that finish the execution of pathni ,
first cannot finish the execution of pathn+1

i until all other robots
r have finished the execution of their paths pathnr . The reason
is that every robot i has to participate in |Mi | communication
events during the execution of pathni and the graph of teams GT
is connected by construction of the teams. Therefore, if there
exist robots i and r where robot i executes the path pathn+2

i

and robot r executes the path pathnr , it must be the case that
robot i has skipped at least one communication event during the
execution of pathn+1

i , which cannot happen by construction of
the proposed algorithm. Therefore, there exist time instants tn
so that pathnii = pathni , for every n ∈ N+ and for all i ∈ N .

Remark 5.7 (Computational cost): Note that to design the
path pathni +1,ci

i , every robot i needs to solve |Cm | optimal
control synthesis problems. Therefore, the computational cost
of Algorithm 2 increases with |Cm |. To reduce the computational
burden, Algorithm 2 can be executed over subsets C̄m ⊆ Cm
that can change with iterations ni but always include the cur-
rent communication point for team Tm . The latter is required
to ensure that paths pathnii can be synthesized for all ni > 0,
if a solution to Problem 1 exists, see Proposition 6.1. More-
over, sampling-based approaches can be used to synthesize the
suffix parts τ̃ suf,j

i that do not require the explicit construction
of the PBA or the application of computationally expensive
graph search methods [22]. Finally, in Proposition 6.8, we show
that Algorithm 2 terminates after a finite number of iterations,
i.e., a repetitive pattern in the paths pathnii is eventually de-
tected, for all i ∈ N . This means that the computational cost is
bounded.

Remark 5.8 (Fixed final state qFPi ): Recall that the fixed
PBA final state qFPi , defined in (9), is used to construct the

6Note that the next communication event Mi (ci ) respects the schedules
schedi , by construction of Mi .
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paths pathni +1
i , for all ni ∈ N and for all i ∈ N , This re-

quirement can be relaxed by defining the paths pathni +1,ci
i as

pathni +1,ci
i = ΠwTSi ρci , where ρci = ρci ,1 |ρci ,2 | . . . , |ρci ,K is

a feasible path in the state space of Pi , ρci ,k a feasible path
in the state space of Pi that connects two possibly different
PBA final states, for all k ∈ {1, . . . ,K}, and K < |Mi | is de-
termined so that execution of pathni +1,ci

i , for any ci , ensures
that robot i will communicate exactly once with all teams Tm ,
m ∈ Mi .7 In this case, pathni +1

i is not a periodic path that
can be executed infinitely and, therefore, (6) cannot be used
to model the solution of Algorithm 2, which will now be an
infinite aperiodic sequence of states. Also, allowing the paths
pathni +1

i to be associated with multiple PBA final states would
increase the computational burden of Algorithm 2, as it requires
the computation of K paths in the PBA Pi .

C. Asynchronous Execution

In the majority of global LTL-based motion planning, robots
are assumed to execute their assigned motion plans syn-
chronously, i.e., all the robots pick synchronously their next
states, see e.g., [25], [29]. However, assuming that robot motion
is performed in a synchronous way is conservative due to, e.g.,
uncertainty and exogenous disturbances in the arrival times of
the robots at their next locations as per the discrete path pathnii .
To the contrary, here the discrete plans pathnii are executed
asynchronously across the robots, as per Algorithm 3.

In Algorithm 3, pathnii (κi) stands for the κi th state of the
discrete path pathnii . The different indices κi for the robots’s
states in the plans pathnii allow us to model the situation where
the robots pick asynchronously their next states in wTSi . Also,
in Algorithm 3, the set Kni

i collects an index κmi for all teams
Tm , m ∈ Mi that satisfy pathnii (κmi ) = q

vj

i , where qvj

i is as-
sociated with a communication point vj , j ∈ Cm , m ∈ Mi and
respect the schedules as described in Section V-A. Note that such
indices κmi exist by construction of the paths pathnii . According
to Algorithm 3, when the state of robot i is pathnii (κi) = q

vj

i ,
j ∈ I i.e., when robot i arrives at a location vj in the workspace,
it checks if κi ∈ Kni

i (lines 3–4, Algorithm 3). If so, then robot
i performs the following control policy (line 5, Algorithm 3).

7Observe that if all paths ρci ,k are defined as the shortest loops around qFP i ,

then ρci ,k coincides with the ρsuf,j
P i

, for all k ∈ {1, . . . , K}.

Definition 5.9 (Control policy at communication locations):
Every robot i that arrives at a communication location vj ,
j ∈ Cm , m ∈ Mi , selected by Algorithm 2 waits there
indefinitely, or until all other robots in the team arrive.

When all the other robots of team Tm arrive at the com-
munication location vj , j ∈ Cm , communication for team Tm
occurs and Algorithm 2 is executed to synthesize pathni +1,ci

i

(lines 6–7, Algorithm 3). After that, robot i moves toward the
next state pathnii (κi + 1) (line 2, Algorithm 3). In line 2 of
Algorithm 3, Kni

i denotes the number of waypoints/states in
pathnii . This process is repeated until robot i visits all loca-
tions in pathnii . Once robot i visit all waypoints of pathnii ,
it starts executing the path pathni +1

i (line 8, Algorithm 3). If
ni is the last iteration of Algorithm 2, then pathnii is executed
indefinitely.

VI. ALGORITHM ANALYSIS

In this section, we present results pertaining to completeness
and optimality of the proposed distributed control framework.
Specifically, in Section VI-A, we show that if there exists a solu-
tion to Problem 1, then the proposed distributed framework will
generate prefix–suffix plans τnii , defined in (6), that can be exe-
cuted asynchronously according to Algorithm 3, and satisfy the
assigned LTL tasks and the intermittent connectivity require-
ment, for every iteration ni ≥ 0. Then, in Section VI-B, we
show that the cost of the suffix part of the plans in (6) decreases
with every iteration of Algorithm 2, while in Section VI-C we
show that these plans converge in a finite number of iterations.
Note that since the proposed algorithm is online, synthesis and
execution take place concurrently and this is reflected in the
subsequent results.

A. Completeness

First, we show that if there exists a feasible solution to
Problem 1, then feasible paths pathnii i.e., feasible loops ρniPi
defined over the state space of the corresponding PBAPi , can be
designed, for all ni ∈ N. This implies that Algorithm 2 can gen-
erate plans τnii , for any ni ≥ 0 and that robots i in any team Tm ,
for m ∈ Mi , can stop executing Algorithm 2 at any iteration
nmi ≥ 0.

Proposition 6.1 (Feasibility): Assume that there exists a so-
lution to Problem 1. Then, feasible plans pathnii can be con-
structed for all ni ≥ 0.

Proof: First, observe that if there exists a solution to Problem
1, then feasible initial paths τ̃ 0

i that satisfyψi in (7), for all robots
i ∈ N , will be detected since at initialization we exhaustively
search through all available communication points assigned to
the teams Tm , m ∈ M, as shown in Lemma 5.2. Therefore,
initial feasible paths path0

i can be constructed. Then, to prove
this result, it suffices to show that if there exists a feasible
path pathnii , then Algorithm 2 can construct a feasible path
pathni +1

i for all ni ≥ 0. This means that Algorithm 2 will
not deadlock. Note that Algorithm 2 does not search over all
combinations of communication points assigned to the teams.

In what follows, we show by induction that if there exists a
feasible path pathnii , then Algorithm 2 will construct feasible
paths pathni +1,ci

i for all ci ∈ {1, . . . , |Mi |}, and consequently,
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it will construct a feasible path path
ni +1,|Mi |
i = pathni +1

i for
all ni ≥ 0. To show this, we first define the sets Fni +1

ci
that

collect the suffix parts τ̃ suf,j
i constructed by Algorithm 2 dur-

ing the construction of pathni +1,ci
i , for all ci ∈ {1, . . . , |Mi |}.

Now, assume that there exists a feasible path pathnii . This means
that Fni +1

0 := {τ̃ suf,j ∗,n i
i } 
= ∅, where τ̃ suf,j ∗,n i

i is the suffix part
used for the construction of the path pathnii . First, we show that
Fni +1

1 
= ∅, i.e., that Algorithm 2 will construct a feasible plan
pathni +1,1

i . Note that the only difference between the paths

pathni +1,1
i and pathnii = path

ni ,|Mi |
i , in terms of the selected

communication points for teams Tm , m ∈ Mi , lies in the se-
lected communication point of exactly one team Tm , m ∈ Mi .
Also, recall that Algorithm 2 searches over all communication
points j ∈ Cm , including the current communication point of
Tm that appears in pathnii , to select the new communication
point for team Tm . Therefore, there exists an optimal control
synthesis problem that is solved by Algorithm 2 during the
computation of pathni +1,1

i such that the LTL formula ψi is

defined over the communication points selected in path
ni ,|Mi |
i .

Since this optimal control synthesis problem is feasible, by the
assumption that pathnii is a feasible path, the generated suffix

part, which was also used to construct pathni ,|Mi |
i , belongs to

Fni +1
1 , i.e.,Fni +1

1 
= ∅. The inductive step follows. Assume that
Fni +1
ci


= ∅. Then, following the same logic as before we can
show that the feasible suffix path used to construct pathni +1,ci

i

belongs to Fni +1
ci +1 , i.e., Fni +1

ci +1 
= ∅. By induction, we conclude
that if Fni +1

0 
= ∅, i.e., if there exists a feasible path pathnii ,
then Fni +1

ci

= ∅ for all ci ∈ {1, . . . , |Mi |} and all ni ≥ 0. �

To prove task satisfaction and intermittent communication,
we also need to show that the network is deadlock free when the
paths pathnii are executed according to Algorithm 3. Specifi-
cally, we assume that there is a deadlock, if there are robots of
any team Tm that are waiting forever at a communication point,
selected by Algorithm 2, for the arrival of all other robots of
team Tm due to the control policy in Definition 5.9.

Proposition 6.2 (Deadlock free): The mobile robot network
is deadlock free when the paths τnii in (6) are executed according
to Algorithm 3.

Proof: Let Wve
⊂ Tm denote the set of robots that are

waiting at communication point ve , e ∈ Cm , selected by
Algorithm 2, for the arrival of the other robots that belong to
team Tm . Assume that the robots in Tm\Wve

never arrive at
that node so that communication at node ve for team Tm never
occurs. This means that the robots in Tm\Wve

are waiting in-
definitely at communication locations vj ∈ Cn , j 
= e, n 
= m,
n ∈ NTm , selected by Algorithm 2, to communicate with robots
in team Tn . The fact that there are robots that remain indefinitely
at node vj ∈ Cn means that a communication within team Tn
never occurs by construction of Algorithm 3. Following an ar-
gument similar to the above, we conclude that the robots in
Tn\Wvj

are waiting indefinitely at nodes vk 
=j ∈ Cf to com-
municate with robots that belong to a team Tf , f ∈ NTn . There-
fore, if a communication event never occurs for team Tm , then
all robots i ∈ N need to be waiting at communication locations
selected by Algorithm 2 and, consequently, there is no commu-
nication location where all robots are present, i.e., there is no

team within which communication will ever occur. Throughout
the rest of the proof, we will refer to this network configuration
as a stationary configuration.

In what follows, we show by contradiction that the net-
work can never reach a stationary configuration when the paths
in (6) are executed asynchronously as per Algorithm 3. To
show this result, we first model the asynchronous execution
of the schedules schedi , constructed by Algorithm 1, as per
Algorithm 3. Specifically, we introduce discrete time steps zi
that are initialized as zi = 1 and are updated as zi = zi + 1
asynchronously across the robots as follows. If at the current dis-
crete time step zi robot i participates in the communication event
schedi(zi) = m, for some zi ∈ N+ and m ∈ Mi , then robot
i ∈ Tm waits until all the other robots in team Tm are available
to communicate. Once all robots in Tm are available, the dis-
crete time step zi is updated as zi = zi + 1. If schedi(zi) = X ,
then robot i updates zi = zi + 1 without waiting.

Using this model to describe asynchronous execution of the
schedules, we now show by contradiction that if the network
gets trapped at a stationary configuration, then there exist robots
of some team Tm that missed a communication event at node ve ,
e ∈ Cm , at a previous time instant, which cannot happen by con-
struction of Algorithm 3. Consider that there is an arbitrary time
instant t0 at which the network is at a stationary configuration
and let the current communication event for all robots i ∈ Tm
be schedi(nTmi (t0)) = m for somem ∈ Mi , where the indices
nTmi were defined in Algorithm 1. Define also the setNmin(t0) =
{
nTmi (t0)|nTmi (t0) = min{nTge (t0)

}N

e=1
, g ∈ Me} that col-

lects the smallest indices nTmi (t0) among all robots. Also,

let nTge (t0) be an index such that nTge (t0) ∈ Nmin(t0). By
assumption, there are robots e ∈ Tg and r ∈ Tz , g ∈ NTz ,
such that e ∈ Wvf

(t0), vf ∈ Tg , and r ∈ Wvd
(t0), vd ∈ Tz ,

and, therefore, the events that are taking place for these
two robots according to their assigned schedules of meet-
ing events are schede(n

Tg
e (t0)) = g and schedr (nTzr (t0)) = z.

Since n
Tg
e (t0) ∈ Nmin(t0), we have that nTge (t0) ≥ nTzr (t0),

which along with the fact that g ∈ NTz results in n
Tg
e (t0) >

nTzr (t0) by construction of Algorithm 1. This leads to the fol-
lowing contradiction. The fact that nTge (t0) > nTzr (t0) means
that there exists a time instant t < t0 at which the event that
took place for robots a ∈ Tg ∩ Tz was scheda(n

Tg
r (t)) = g and

at least one of these robots did not wait for the arrival of all
other robots in team Tg , since at the current time instant t0 ,
there are still robots in team Tg waiting for the arrival of other
robots. However, such a scenario is precluded by construction of
Algorithm 3. Consequently, the asynchronous execution of the
schedules schedi as per Algorithm 3 is deadlock free. Recall
now that the paths (6) respect the schedules schedi and that it
is not possible that there exist robots in any team Tm that wait
for other robots in the same team at different communication
points vj , j ∈ Cm . Thus, we conclude that the network is dead-
lock free when the plans (6) are executed asynchronously, as
per Algorithm 3. �

Remark 6.3 (Bounded waiting times): Proposition 6.2 shows
also that the waiting times introduced by Algorithm 3
are bounded.

Authorized licensed use limited to: The University of Utah. Downloaded on May 03,2022 at 13:38:26 UTC from IEEE Xplore.  Restrictions apply. 



4116 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019

In Theorems 6.4–6.5, we show that the assigned local tasks
φi and the intermittent connectivity requirement captured by (1)
are satisfied.

Theorem 6.4 (Task satisfaction): The asynchronous execu-
tion of the motion plans τnii in (6) as per Algorithm 3 satisfies
the LTL−© statements φi , i.e., τnii |= φi , for any ni ≥ 0 and all
robots i ∈ N .

Proof: First observe that Algorithm 2 can design feasible
paths pathnii , for any ni ≥ 0 as long as there exists a solution
to Problem 1, due to Proposition 6.1. Moreover, the waiting
times at the communication points in the plans τnii are bounded
by Proposition 6.2. Therefore, the infinite paths τnii will be
executed without any deadlocks. This is necessary to satisfy φi ,
as LTL formulas are satisfied by infinite sequences of states in
wTSi .

To prove this result, first we need to show that all transitions in
wTSi that are generated by the plans in (6) respect the transition
rule →i , see Definition 3.1. Next, we need to show that the
infinite run ρBi

of the NBA Bi that corresponds to φi over the
words σnii generated during the execution of τnii is accepting,
i.e.,8

Inf(ρBi
) ∩ FBi


= ∅. (12)

First, we show that all transitions in wTSi that are due to the
plans in (6) respect the transition rule →i . Notice that all tran-
sitions incurred by the finite path pathnii respect the transition
rule →i , for all ni ∈ N, by construction, see Algorithm 2. Next,
we show that the transition from the last state in pathnii to the
first state in pathni +1

i also respects the transition rule →i , for
all ni ∈ N. To show this, observe that the last state in pathnii is
the last state in the suffix part τ̃ suf,j ∗

i used to construct pathnii ,
for all ni ∈ N. Also, notice that the first state in pathni +1

i is the
state Π|wTSi q

F
Pi

, for all ni ∈ N, which is also the first state in

τ̃ suf,j ∗

i . Therefore, by construction of τ̃ suf,j ∗

i , the transition from
the last state in pathnii to the first state in pathni +1

i respects
→i , for all ni ∈ N. Consequently, the plans in (6) respect →i .

Next, we show that (12) holds for the plans τnii in (6),
for all ni ≥ 1. The same logic also applies to the plans τ 0

i

in (11). To show this result, recall that the paths pathnii , for
all ni ≥ 1 are designed by 1) constructing a suffix path ρsuf,j ∗

Pi
that lives in the state space QPi around the fixed PBA final
state qFPi defined in (9), and initializing pathnii = Π|wTSi ρ

suf,j ∗

Pi
,

2) appending the path Π|wTSi ρ
suf,j ∗

Pi
as many times as needed

so that pathnii respects the schedule schedi . Thus, pathnii
can be written as the projection onto wTSi of the finite path
pnii = ρsuf,j ∗

Pi
|ρsuf,j ∗

Pi
| . . . |ρsuf,j ∗

Pi
, which means that pnii visits the

fixed PBA final state qFPi a finite number of times. Consequently,
since the plans in (6) are defined as infinite sequences of paths
pathnii , we get that qFPi is visited infinitely often, i.e., (12)
holds. �

Theorem 6.5 (Intermittent communication): The asyn-
chronous execution of the motion plans τnii in (6) as
per Algorithm 3, satisfies the intermittent communication

8The generated word σ
n i
i , also called trace of τi [35] and denoted by

trace(τi ), is defined as σn ii = trace(τ n ii ) := Li (τ
n i
i (1))Li (τ

n i
i (2)) . . . ,

where Li is the labeling function defined in Definition 3.1.

requirement captured by the global LTL statement φcom,
for all ni ≥ 0.

Proof: By construction of the paths pathnii , every robot
i will communicate once with all teams Tm , m ∈ Mi , dur-
ing a single execution of the path pathnii . Moreover, by
Proposition 6.2, there are no deadlocks during the execution of
the plans τnii . Consequently, all robots i communicate infinitely
often with all teams Tm , m ∈ Mi . �

Combining the previous results, we can show that the pro-
posed control scheme is complete.

Theorem 6.6 (Completeness): If there exists a solution to
Problem 1, Algorithm 2 will find motion plans τnii as in (6)
that when executed asynchronously as per Algorithm 3, sat-
isfy the local LTL−© tasks φi and the global LTL intermittent
connectivity requirement φcom.

Proof: By Proposition 6.1, we get that if there exists a so-
lution to Problem 1, then prefix–suffix motion plans as in (6)
will be generated for any ni ≥ 0. Due to Theorems 6.4 and 6.5,
the asynchronous execution of these plans as per Algorithm 3
satisfies the local LTL−© tasks φi and the intermittent com-
munication requirement captured by the global LTL statement
φcom. �

B. Optimality

As discussed in Remark 5.6, execution of the plans in (6)
is synchronized implicitly so that there exists a time instant
tn when all robots execute the path pathni . In the following
proposition, we examine the optimality of the paths pathni in
terms of the total cost

∑
i∈N J(pathni ), for any n ∈ N.

Proposition 6.7 (Optimality): Algorithm 2 generates dis-
crete paths pathn+1

i so that

∑

i∈N
J(pathni ) ≤

∑

i∈N
J(pathn+1

i ) (13)

for all n ≥ 0.
Proof: Consider the discrete paths pathni , for some fixed

n ≥ 0. Recall that the robots may start executing the paths
pathni asynchronously, i.e., at different time instants. There-
fore, given a time instant t, we divide the robots i ∈ N in
the following five disjoint sets. First, we collect in the set
Rn−1(t) the robots that execute the paths pathn−1

i at a time
t. Next, we collect in the set Rn

new(t) the robots that are new
to executing the path pathni and have not participated in any
communication event contained in pathni yet. Notice that the
robots in Rn−1(t) and Rn

new(t) have not constructed yet any
path pathn+1,ci

i . Also, we collect in the set Rn
com(t) the robots

of all teams Tm , m ∈ M, that communicate at time t while
executing the paths pathni . All other robots that at time t ex-
ecute the path pathni but they do not participate in any com-
munication event are collected in the set Rn

com(t). Finally, the
robots that have already finished the execution of the paths
pathni at time t are collected in the set Rn+1(t). Observe that
N = Rn−1(t) ∪Rn

new(t) ∪Rn
com(t) ∪Rn

com(t) ∪Rn+1(t), for
all t ≥ 0, for some n ≥ 0. Also, observe that if Rn+1(t) 
= ∅,
then Rn−1(t) = ∅, as discussed in Remark 5.6.
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To prove the inequality (13), we need to define the following
cost function:

cost(t) =
∑

i∈Rn
new(t)∪Rn −1 (t)

J(pathni )

+
∑

i∈Rn
com(t)

J(pathn+1,ci (t)
i )

+
∑

i∈Rn
com(t)

J(pathn+1,ci (t)
i ) +

∑

i∈Rn + 1 (t)

J(pathn+1
i )

(14)

where pathn+1,ci (t)
i denotes the path that has been constructed

by Algorithm 2 by the time instant t. Also, note that the robots
i ∈ Rn−1(t) may not have completed the construction of the
paths pathni yet. Therefore, in the first summation in (14), the
paths pathni for i ∈ Rn−1(t), are the ones that these robots will
create once they complete their construction.

Moreover, we define the finite sequence of time instants{
tn0 , t

n
1 , . . . , t

n
F −1 , t

n
F

}
, where tn0 < · · · < tnF , tn0 is an arbitrar-

ily selected time instant such that Rn
new(t) ∪Rn−1(t) = N ,

tnF is the time instant when all robots have completed con-
struction of the paths pathn+1

i , i.e., Rn+1(tnF ) = N , and
tn1 < · · · < tnF −1 are the time instants corresponding to commu-
nication events during the execution of any of the paths pathni .9

To prove (13), we need to show that

cost(tnk+1) ≤ cost(tnk ) (15)

for all k ∈ {0, . . . , F}.
Since the robots i ∈ Rn

new(tnk+1) ∪Rn−1(tnk+1) have not con-

structed yet any path pathni +1,ci
i , these robots cannot af-

fect the cost cost(tnk ). Also, notice that path
n+1,ci (tnk + 1 )
i =

path
n+1,ci (tnk )
i , for all robots i ∈ Rn

com(tnk+1), since these
robots do not communicate and, therefore, they do
not execute Algorithm 2 at tnk+1 . Thus, the robots
i ∈ Rn

com(tnk+1) cannot affect the cost cost(tnk ) either.
The same holds for the robots i ∈ Rn+1(tnk+1). There-
fore, for all robots that do not communicate at time

tnk+1 , it holds that
∑

i∈N\Rn
com(tnk + 1 ) J(path

n+1,ci (tnk + 1 )
i ) =

∑
i∈N\Rn

com(tnk + 1 ) J(pathn+1,ci (tnk )
i ). In fact, only the robots

i ∈ Rn
com(tnk+1) that communicate at time tnk+1 design new

paths such that path
n+1,ci (tnk + 1 )
i 
= path

n+1,ci (tnk )
i . Since

Rn
com(tnk+1) contains all robots that communicate at tnk+1 , the

expression
∑

i∈Rn
com(tnk + 1 ) J(path

n+1,ci (tnk + 1 )
i ) can be rewritten

9Note that the time instant tn0 exists, since it corresponds to a time when

the robots either execute paths path
n i −1
i or paths path

n i
i without having

participated in any communication events yet, see also Remark 5.6. Also, the
sequence

{
tn1 , . . . , t

n
F −1 , t

n
F

}
for any n ≥ 0 exists because the network is

deadlock free, as shown in Proposition 6.2.

as follows:10

∑

i∈Rn
com(tnk + 1 )

J(path
n+1,ci (tnk + 1 )
i )

=
∑

m∈A(tnk + 1 )

∑

i∈Tm

J(path
n+1,ci (tnk + 1 )
i ) (16)

where A(t) ⊆ M is the set of the teams that communi-
cate at time t. By the proof of Proposition 6.1, we get that

path
n+1,ci (tnk )
i is a feasible path returned by Algorithm 2

as a candidate path for path
n+1,ci (tnk + 1 )
i ; it will become

path
n+1,ci (tnk + 1 )
i if it also the optimal one.

Therefore, we get that
∑

i∈Tm J(path
n+1,ci (tnk + 1 )
i ) ≤

∑
i∈Tm J(pathn+1,ci (tnk )

i ), for all m ∈ A(tnk+1), which

implies
∑

i∈Rn
com(tnk + 1 ) J(path

n+1,ci (tnk + 1 )
i ) ≤

∑
i∈Rn

com(tnk + 1 )

J(pathn+1,ci (tnk )
i ), due to (16). Therefore, we get that (15)

holds. �

C. Complexity

In the following proposition, we show that Algorithm 2 ter-
minates after a finite number of iterations and, therefore, the
computational cost is bounded.

Proposition 6.8 (Convergence): There exist itera-
tions P ≤ C in Algorithm 2 so that the sequence
pathPi , path

P +1
i , . . . , pathCi is repeated indefinitely for

all ni ≥ C and all i ∈ N .
Proof: To show this result, notice that the sets of commu-

nication points Cm are finite, for all m ∈ M and, therefore,
the number of possible combinations of communication points
that can be assigned to the teams is finite. Therefore, there
exists an index n where the paths pathni contain communi-
cation points that have appeared in a previous path n′ ≤ n,
as well, for all i ∈ N . Let C be the first index n when it
holds that the communication points that appear in the paths
pathCi have already appeared in a previous path pathP −1

i , for
some P ≤ C and for all i ∈ N . Since the selected communi-
cation points in the paths pathP −1

i and pathCi are the same,
we have that Algorithm 2 generates the same optimal suffix
path τ̃ suf,j ∗

i to synthesize both pathP −1
i and pathCi . There-

fore, we get that pathP −1
i = pathCi . Consequently, the path

pathC+1
i will be the same as the path constructed at iteration

P , i.e., pathC+1
i = pathPi , since the optimal control synthesis

problems that are solved to construct the path pathC+1
i and

pathPi are the same, for all robots i ∈ N . Similarly, we have
that pathC+2

i = pathP +1
i . By inspection of the repetitive pat-

tern, we conclude that for any n ∈ N, it holds that pathC+n
i =

path
C+n−(�(C+n)/(C−P +1)�−1)(C−P +1)
i , where �·� stands

10Note that it is possible that two teams Tm and Th that share at least a
robot may be present simultaneously at the same communication point. This
can happen, e.g., if the schedule of robot i ∈ Tm ∩ Th has a schedule has the
form schedi = [m, h,X ]ω and Cm ∩ Ch 
= ∅. In this case, we assume that
communication at the common communication point will happen sequentially
across the teams according to the schedules. This ensures that in the second

summation in (16), we never double count the cost of the paths pathn+1 ,c i (t)
i .
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for the floor function. We conclude that the sequence
pathPi , path

P +1
i , . . . , pathCi is repeated indefinitely for all it-

erations ni ≥ C of Algorithm 2 and for all robots i ∈ N com-
pleting the proof. �

Remark 6.9 (Optimality of Algorithm 2): Notice that
Propositions 6.7–6.8 do not guarantee that Algorithm 2 will
find the optimal prefix–suffix plan that minimizes the cost
Jp(τi) = α

∑
i∈N J(τ pre

i ) + (1 − α)
∑

i∈N J(τ suf
i ). Instead

they only ensure that the total cost
∑

i∈N J(pathni ) decreases
with every iteration n until n = P , when

∑
i∈N J(pathPi ) =∑

i∈N J(pathP +1
i ) = · · · =

∑
i∈N J(pathCi ), while

for all iterations ni ≥ C the sequence of paths
pathPi , path

P +1
i , . . . , pathCi is repeated indefinitely. There-

fore, the best plans τnii (6) are obtained for any ni ≥ P , for
all robots i ∈ N . Suboptimality is due to the decomposition of
Problem 1 into intermittent communication control (Section IV)
and task planning (Section V) that are solved independently.
The optimal plan can be found by translating the global LTL
formula (2) into an NBA, constructing a product automaton
across all robots in the network as, e.g., in [20], [21], and
using graph search methods to find the optimal plan. However,
such centralized methods are computationally expensive and
resource demanding as it is also discussed in the Introduction.
Moreover, recall that in this paper we assume that the teams
Tm are fixed and never change. Note that the total cost of the
plans τnii can be further minimized if the robots in every team
Tm update not only the communication point vj , j ∈ Cm , but
also the teams they belong to. Optimal design of the teams is
part of our future work.

VII. SIMULATION STUDIES

In this section, we present a simulation study, imple-
mented using MATLAB R2015b on a computer with Intel
Core i7 2.2 GHz and 4 Gb RAM that illustrates our ap-
proach for a network of N = 12 robots. Robots are cate-
gorized into M = 12 teams as follows: T1 = {1, 2, 9}, T2 =
{3, 4, 5}, T3 = {3, 6}, T4 = {1, 3}, T5 = {2, 5, 6, 11}, T6 =
{4, 12}, T7 = {5, 9}, T8 = {4, 9, 12}, T9 = {6, 7, 10}, T10 =
{7, 8, 11}, T11 = {8, 10, 11, 12}, and T12 = {7, 10}. Notice
that the construction of teams Tm results in a connected graph
GT with max{dTm }Mm=1 = 7, as discussed in Section III. Mo-
bility of each robot in the workspace is captured by a wTS with
|Qi | = 300 states that represent W = 300 locations of inter-
est and weights wi that capture the distance between its states.
Among the W = 300 locations of interest, R = 70 locations
correspond to possible communication points. Also, every team
has 4 ≤ |Cm | ≤ 6 communication points, while Cm ∩ Cn = ∅,
for all m,n ∈ M. Also, the parameter α in (3) is selected as
α = 0.5. To model uncertainty in robot mobility, caused by
exogenous disturbances that may affect the arrival times of
the robots at the communication locations, we assume that the
time required for robot i to travel from location ve to vj , with
(qve
i , q

vj

i ) ∈→i , is generated by a uniform distribution on [1,2],
at the moment when robot i arrives at location ve .

The LTL−© tasks for robots 1 and 3 are φ1 =
�♦(πv2 0

1 ∨ πv1 0
1 ∨ πv1 1

1 ) ∧ �♦(πv6 1
1 ) ∧ �♦(πv9 1

1 ∨ πv1 0 0
1 ∨

πv5
1 ∨ πv6 0

1 ) ∧ �(¬πv4 4
1 ) ∧ ♦(πv6

1 ∨ πv7
1 ∨ πv1 3 3

1 ) and φ3 =

�♦(ξ1
3 ∨ ξ2

3 ) ∧ [�♦(ξ3
3 )] ∧ ♦[ξ2

3 → �(¬ξ1
3 )] ∧ (¬ξ3

3Uξ1
3 ), re-

spectively, where ξ1
3 = πv8 1

3 ∨ πv9 1
3 , ξ2

3 = πv1 2 0
3 ∨ πv9 1

3 ∨ πv3 1
3 ,

and ξ3
3 = πv9 1

3 ∨ πv1 1 0
3 ∨ πv1 5

3 ∨ πv1 3 0
3 . All other robots are

responsible for similar LTL tasks. For instance, the LTL
formula in φ3 requires robot 3 to satisfy infinitely often either
the Boolean formula ξ1

3 or ξ2
3 , satisfy infinitely often the

Boolean formula ξ3
3 , never satisfy ξ1

3 if ξ2
3 is ever satisfied,

and never satisfy ξ3
3 until ξ1

3 is satisfied. The Boolean formula
ξ1
3 is satisfied if robot 3 visits either v81 or v91 . The Boolean

formulas ξ2
3 and ξ3

3 are interpreted similarly. Also, note that
robot 1 is responsible for visiting a user located at v61 infinitely
often to transmit all collected information.

The schedules of communication events constructed as per
Algorithm 1 have the following form with length � = 4 ≤
max{dTm }12

m=1 + 1 = 8:

sched1 = [1, 4, X, X]ω , sched7 = [9, 12, 10, X]ω

sched2 = [1, 5, X, X]ω , sched8 = [X, X, 10, 11]ω

sched3 = [2, 4, 3, X]ω , sched9 = [1, X, 8, 7]ω

sched4 = [2, 6, 8, X]ω , sched10 = [ 9, 12, X, 11]ω

sched5 = [2, 5, X, 7]ω , sched11 = [X, 5, 10, 11]ω

sched6 = [9, 5, 3, X]ω , sched12 = [X, 6, 8, 11]ω .

Then, given the above schedules, feasible initial paths path0
i

are constructed for all robots in 3 s approximately using [22].
Specifically, given communication points for all teams Tm ,
m ∈ Mi , [22] can synthesize a feasible plan τ̃ 0

i that satisfies
ψi in 0.35 s on average for all i ∈ N . Similar runtimes are re-
ported if off-the-shelf model checkers, such as NuSMV [39], are
employed for initialization. Moreover, Algorithm 2 constructs
online paths pathnii with P = C = 5. The size of the NBA Bi

that corresponds to ψi in (7) satisfies 7 ≤ |QBi
| ≤ 16, for all

i ∈ N , while the average runtime to solve a single optimal con-
trol synthesis problem to generate the optimal suffix path τ̃ suf,j

i

was 45 s. Since 4 ≤ |Cm | ≤ 6, for all m ∈ Cm , the average run-
time of Algorithm 2 per iteration ci is between 4 × 45 = 180 s
and 6 × 45 = 270 s. Note that this runtime depends only on the
size of the sets Cm and not on the size of the teams Tm . Note
also that this runtime is higher than the initialization runtime,
since during initialization only feasible plans are required, while
for the online construction of pathnii optimal suffix paths are
created. More computational efficient methods are discussed in
Remark 5.7 that can decrease the corresponding runtime.

To illustrate that the designed motion plans ensure intermit-
tent communication among the robots infinitely often, we im-
plement a consensus algorithm over the dynamic network Gc .
Specifically, we assume that initially all robots generate a ran-
dom number vi(t0) and when all robots i ∈ Tm meet at a com-
munication point j ∈ Cm they perform the following consensus
update vi(t) = 1

|Tm |
∑

e∈Tm ve(t). Fig. 3(a) shows that eventu-
ally all robots reach a consensus on the numbers vi(t), which
means that communication among robots takes place infinitely
often, as proven in Theorem 6.5. Moreover, Fig. 3(b) shows the
time instants when robots 1, 2, and 3 started executing the paths
pathni , for all n ∈ {1, . . . , 14}. Observe in Fig. 3(b) that there
exist time instants tn when all three robots are executing their
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Fig. 3. (a) Consensus of numbers vi (t). (b) Time instants when the
robots 1, 2, and 3 started executing the paths pathni . For instance, the
time between the second and the third red square denotes the time
required by robot 1 to travel along the path path2

1 .

Fig. 4. Graphical depiction of communication events for team T1
(a) and T4 (b) with respect to time. (a) Team 1, (b) Team 4.

Fig. 5. Evolution of the total cost
∑12

i=1 J (pathni ) with respect to itera-

tions n. Note that there is also a slight decrease in
∑12

i=1 J (pathni ) from
n = 4 to n = 5. After n = 5, a repetitive pattern in pathni is detected
giving rise to motion plans τi in a prefix–suffix form.

respective paths pathni for a commonn, for alln ∈ {1, . . . , 14},
as discussed in Remark 5.6. The communication events over
time for teams T1 and T5 are depicted in Fig. 4. Observe in
Fig. 4 that the communication time instances do not depend
linearly on time, which means that communication within these
teams is aperiodic. Fig. 5 shows that the total traveled distance∑N

i=1 J(pathni ) with respect to n ∈ N which decreases as ex-
pected due to Proposition 6.7. The corresponding simulation
video can be found in [40].

Note also that due to excessive memory requirements it would
be impossible to generate optimal motion plans τi by using ei-
ther the optimal control synthesis methods presented in [20],
[21], [29] that rely on the construction of a synchronous prod-
uct automaton or off-the-shelf model checkers [39], [41] that
can construct feasible but not optimal paths. Specifically, [20],
[21], [29] rely on the construction of a product transition system
(PTS), whose state space has dimension |QPTS| = ×∀i |Qi | =
W |N | = 30012 = 5.3144 × 1029 . This PTS is combined with
the Bü chi Automaton B that corresponds to the LTL statement
φ = (∧∀i∈Nφi) ∧ φcom to construct a Product Bü chi Automaton
whose state space has dimension |QPBA| = |QPTS| × |QB | =
5.3144 × 1029 × |QB | which is too large to manipulate in prac-
tice let alone searching for an optimal accepting infinite run.
Finally, we validated the efficacy of the proposed distributed
algorithm by experimental results that are omitted due to space
limitations. The video showing the conducted experiment along
with its description can be found in [42].

VIII. CONCLUSION

In this paper, we developed the first distributed and online
intermittent communication framework for networks of mo-
bile robots with limited communication capabilities that are
responsible for accomplishing temporal logic tasks. Our pro-
posed distributed online control framework jointly determines
local plans that allow all robots to fulfill their assigned LTL−©
tasks, schedules of communication events that guarantee infor-
mation exchange infinitely often, and optimal communication
locations that minimize a desired distance metric. We showed
that the proposed method can solve optimally very large-scale
problems that are impossible to solve using current off-the-shelf
model checkers.
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