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The eight-tetrahedra longest-edge partition and Kuhn triangulations
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Abstract

The Kuhn triangulation of a cube is obtained by subdividing the cube into six right-type tetrahedra once a couple of opposite
vertices have been chosen. In this paper, we explicitly define the eight-tetrahedra longest-edge (8T-LE) partition of right-type
tetrahedra and prove that for any regular right-type tetrahedron t , the iterative 8T-LE partition of t yields a sequence of tetrahedra
similar to the former one. Furthermore, based on the Kuhn-type triangulations, the 8T-LE partition commutes with certain
refinements based on the canonical boxel partition of a cube and its Kuhn triangulation.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Triangles and tetrahedra have been widely used for local adaptive refinement, and several bisection-based
algorithms in two [1–3] and three [4–7] dimensions have been presented in recent years. The eight-tetrahedra longest-
edge (8T-LE) partition of a general tetrahedron has been introduced in [6]. We focus in this paper on the 8T-LE
partition of a special type of tetrahedra, called regular right-type tetrahedra. These tetrahedra have four right isosceles
triangles as faces. For any regular right-type initial tetrahedron t , we prove that the iterative 8T-LE partition of t yields
a sequence of regular right-type tetrahedra similar to t .

Definition 1 (Simplex). A closed subset T ⊂ Rn is called a (k)-simplex, 0 ≤ k ≤ n, if T is the convex linear hull of
k + 1 vertices x(0), x(1), . . . , x(k)

∈ Rn , and it will be denoted by T = [x(0), x(1), . . . , x(k)
].

If k = n then T is simply called simplex or triangle in Rn . In what follows, (2)-simplices and (3)-simplices are also
called triangles and tetrahedra respectively.

Definition 2 (Similarity Classes). Two simplices t, t ′ ∈ Rn are called similar or congruent to each other if there exists
a translation vector a ∈ Rn , a scaling factor c > 0, and an orthogonal matrix Q ∈ Rn×n such that

t ′ = a + cQt. (1)

In this case t and t ′ are elements of the same similarity class.
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Fig. 1. Kuhn triangulation of the unit cube into six tetrahedra (exploded view).

Symbol “ =” in Eq. (1) must be understood in the sense of sets, so the similarity class of a simplex is independent of
its vertex ordering.

Definition 3 (Conforming Triangulation). Let Ω be any bounded domain in R2, or R3 with non-empty interior
and polygonal boundary ∂Ω , and consider a partition of Ω into a set of simplices (triangles or tetrahedra) τ =

{t1, t2, t3, . . . , tn}, such that any adjacent simplex elements share an entire face or edge or a common vertex. Then we
say that τ is a conforming simplex mesh or a conforming triangulation for Ω .

In general, from an initial tetrahedral mesh τ0, by applying a bisection-based (local) refinement a sequence of finer
triangulations {τ0, τ1, . . . , τn} verifying the following conditions is obtained:

(1) Nestedness: Each element t ∈ τk, k > 0 is covered by exactly one element t ′ ∈ τk−1.
(2) Conformity: Each triangulation τk is conforming, which means that the intersection of any two tetrahedra in τk is

either empty, a common face, a common edge or a common vertex.
(3) Non-degeneracy: The interior angles of all the elements are uniformly bounded away from zero, for any

triangulations obtained by (local) refinement.

Note that in the case of (local) refinement based on edge-bisection, any corner of any element t ∈ τk, k > 0 is
either a corner or an edge mid-point of some element t ′ ∈ τk−1.

We define the Kuhn-type triangulation of the unit cube C = [0, 1]
3 with vertex x0 ∈ {0, 1}

3, according to [8].
Notice that since x0 ∈ {0, 1}

3, and the center of unit cube C is B = ( 1
2 , 1

2 , 1
2 )T, then the opposite vertex of x0 is

x1 = x0 + 2−−→x0 B. For example, if x0 = (0, 0, 0)T, then x1 = (1, 1, 1)T.

Definition 4 (Kuhn-Type Triangulation). Given cube C = [0, 1]
3, and vertex x0 ∈ C, with opposite vertex x1, the

Kuhn triangulation of C is given by the six tetrahedra all sharing edges of vertices x0 and x1, obtained as follows.
For each permutation π ∈ S3, tetrahedron tπ = [x(0)

π , x(1)
π , x(2)

π , x(3)
π ] is defined to be the closed convex hull of the

vertices:

x(0)
π = x0, xi

π = xi−1
π + (−1)

x0
π(i)eπ(i), i = 1, 2, 3, (2)

where e j denotes the j-th standard unit vector in R3, x0
j the coordinate j of the initial vertex x0. This triangulation

will be denoted by Kx0(C) := {tπ/π ∈ S3}.

The definition of the convex hull implies the representation

tπ = {x ∈ C/0 ≤ xπ(3) ≤ xπ(2) ≤ xπ(1) ≤ 1} π ∈ S3. (3)

Let x0 be a vertex of the unit cube C, and Kx0(C) the associated Kuhn triangulation. One may easily verify that
for π 6= π ′ the intersection of tπ and tπ ′ is a common lower dimensional sub-simplex, and thus the triangulation is
conforming. Fig. 1 shows the triangulation with vertex x0

= (0, 0, 0)T at the front left corner.
Note that the Kuhn triangulation of a cube is determined by the interior edge, of vertices x0 and x1 defined before,

and the orthogonal projections of this edge over the faces of the cube. In fact the set of the edges of the unit cube,
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Fig. 2. Initial orthohedron P and construction of right-type tetrahedron t = [ABC D] = t (a, b, c).

the interior edge x0x1, and the orthogonal projections on the faces constitute the set of one-dimensional simplices
of the three-dimensional triangulation, and the one-dimensional simplicial complex determines the three-dimensional
triangulation [9].

2. The 8T-LE partition of right-type tetrahedra

The 8T-LE partition of a general tetrahedron is obtained by successive mid-point bisection: first, the initial
tetrahedron is divided by its longest edge, then the two tetrahedra obtained are bisected by the longest edges of
the two faces of the initial tetrahedron not sharing the primary edge. Finally, the four tetrahedra are bisected by the
mid-point of the common edge with the initial tetrahedron. A detailed explanation of the 8T-LE partition, and the
associated local tetrahedral refinement can be found in [6].

A tetrahedron t is said to be a right-type tetrahedron if its four faces are right triangles. In such a tetrahedron t ,
there are three mutually perpendicular edges which do not pass through the same vertex, and are called legs of t .
One of them has one vertex in common with each of the other legs. This leg is called the central leg and the others
are the extreme legs. If the three legs are of the same length, the right-type tetrahedron will be called a regular right
tetrahedron. The legs define, by parallelism, a unique orthohedron P that we call the orthohedron-hull of t , such that
t ⊂ P , the vertices of t are also vertices of P , and the longest edge of t is an internal diagonal of P . An example
of a right-type tetrahedron t is shown in Fig. 2. The four faces of t are right-angled triangles, where the legs are
highlighted in bold in Fig. 2(a). The edges out of the legs are called hypotenuses because they are the hypotenuses of
the respective right triangular faces (in bold in Fig. 2(d)).

Note that the legs of a right-type tetrahedron are also the legs of the four faces of the tetrahedron. Moreover,
the length and relative position of the legs determine the shape of any right-type tetrahedron. Let t be a right-type
tetrahedron with legs a, b, and c, such that b is between a and c; then t = t (a, b, c) will denote the tetrahedron t and
at the same time the class of the tetrahedra similar to t .

Theorem 5. Two right-type tetrahedra t (a, b, c) and t ′(a′, b′, c′) are similar to each other if and only if their extreme
legs are in the same ratio as the central legs. That is, either b

b′ =
a
a′ =

c
c′ , or b

b′ =
a
c′ =

c
a′ . �

Since the longest edges of the faces of any right-type tetrahedron are the hypotenuses, the 8T-LE partition of a
right-type tetrahedron t can be described as an explicit function of its vertices. To this end, consider tetrahedron
t = [x(0), x(1), x(2), x(3)

], such that x(0)x(1), x(1)x(2), and x(2)x(3) are the legs of t . Observe that the primary edge of t
is x(0)x(3), and the secondary edges are x(1)x(3) and x(0)x(2). For 0 ≤ i, j ≤ 3, i 6= j we define x(i j)

:= (x(i)
+x( j))/2,

the edge mid-point of x(i) and x( j). The 8T-LE partition of a right tetrahedron t can be formulated as follows:
Algorithm 8T-LE partition of right tet (t)

{

divide t = [x(0), x(1), x(2), x(3)
] into the subtetrahedra ti , 1 ≤ i ≤ 8, given by

t1 := [x(0), x(01), x(02), x(03)
], t5 := [x(2), x(02), x(12), x(03)

],
t2 := [x(1), x(01), x(02), x(03)

], t6 := [x(2), x(12), x(03), x(13)
],
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t3 := [x(1), x(02), x(12), x(03)
], t7 := [x(2), x(03), x(13), x(23)

],
t4 := [x(1), x(12), x(13), x(03)

], t8 := [x(3), x(03), x(13), x(23)
].

}

3. Main result

Theorem 6. Let t be a right-type tetrahedron with equal length legs. Then, after applying the 8T-LE partition to t we
obtain eight tetrahedra also of right type which constitute a conforming and non-degenerate triangulation. Moreover,
in this case, all the elements are similar to the initial tetrahedron t.

Proof. Non-degenerate triangulation follows from the last statement. We follow an argument similar to that of Bey
in [10, Theorem 1, pages 373–375]. The proof is based on dissections of the unit cube C = [0, 1]

3 in six tetrahedra
passing into each other by permutation of their coordinates.

Let τ0 = Kx0(C) be the Kuhn triangulation of the unit cube C = [0, 1]
3 with vertex x0

= (0, 0, 0)T. Another
triangulation τ1 of C can be defined in the following way: Let B be the canonical subdivision of C into eight sub-cubes
of edge length 1

2 , that is

B = {Cx/x ∈ {0, 1}
3
} (4)

where, for each x ∈ {0, 1}
3, Cx is given by

Cx := x +
1
2
σx(C) :=

{
x +

1
2
σx(x′)/x′

∈ C
}

(5)

where σx is the composition of mirror reflections by the coordinate planes given by the diagonal matrix
Diag ((−1)x1 , (−1)x2 , (−1)x3). The Kuhn triangulation of any sub-cube Cx is given by selecting the pivot vertex
of the triangulation. If we select as pivot vertex in each sub-cube Cx, vertex x, or, equivalently, the vertex opposite to
x in the sub-cube, which is precisely B = ( 1

2 , 1
2 , 1

2 )T, we obtain a triangulation of the unit cube C,

τ1 =

7⋃
i=0

Kxi (Cxi ).

We shall prove that triangulation τ1 is precisely the 8T-LE global refinement of triangulation τ0 = Kx0(C). Since
the projections of triangulation τ1 on the faces of the sub-cubes are always conforming the triangulation obtained is
conforming.

We now show that τ1 is a refinement of τ0 in the sense of nestedness. So, for any given element t1 ∈ τ1 we should
find an element t0 ∈ τ0 such that t1 ⊂ t0.

Let element t1 ∈ KB(Cx), for a fixed vertex x ∈ C. Then element t1 = x + σx(tπ ) for the corresponding mirror
reflection σx determined by vertex x ∈ C, and π ∈ S3; we are looking for a permutation π?

= π?(x, π) such that
t1 = x + σx(tπ ) ⊂ tπ? = t0 ∈ τ0.

Let 0 ≤ k ≤ 3 be the number of entries xi of x with xi = 1. Then there are k unique indices i1, . . . , ik ∈ {1, 2, 3}

satisfying

1 ≤ i1 < · · · < ik ≤ 3, xπ(i1) = · · · = xπ(ik ) = 1. (6)

Here and in the following, for the case k = 0 and k = 3 we skip over those parts of the corresponding (in)equalities
that make no sense. We now define π?, taking into account the number of mirror reflections which are necessary to
take point (0, 0, 0) to the vertex x. Namely, there are the following instances:

(a) If x = (0, 0, 0), then k = 0 and π?
= π .

(b) If k = 1, there is an index i1 such that xπ(i1) = 1. We define π?(1) = π(i1).
(c) If k = 2, there are two indices i1, and i2 such that i1 < i2 and xπ(i1) = xπ(i2) = 1. We define π?(1) = π(i2), and

π?(2) = π(i1).
(d) Finally, if k = 3, x = (1, 1, 1), then we define π?(1) = π(i3), π?(2) = π(i2), and π?(3) = π(i1).
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Table 1
Explicit definition of permutations π?

= π?(x, π)

π(1, 2, 3) π(1, 3, 2) π(2, 1, 3) π(2, 3, 1) π(3, 1, 2) π(3, 2, 1)

x0(0, 0, 0) π?(1, 2, 3) π?(1, 3, 2) π?(2, 1, 3) π?(2, 3, 1) π?(3, 1, 2) π?(3, 2, 1)

x1(1, 0, 0) π?(1, 2, 3) π?(1, 3, 2) π?(1, 2, 3) π?(1, 2, 3) π?(1, 3, 2) π?(1, 3, 2)

x2(0, 1, 0) π?(2, 1, 3) π?(2, 1, 3) π?(2, 1, 3) π?(2, 3, 1) π?(2, 3, 1) π?(2, 3, 1)

x3(1, 1, 0) π?(2, 1, 3) π?(2, 1, 3) π?(1, 2, 3) π?(1, 2, 3) π?(2, 1, 3) π?(1, 2, 3)

x4(0, 0, 1) π?(3, 1, 2) π?(3, 1, 2) π?(3, 2, 1) π?(3, 2, 1) π?(3, 1, 2) π?(3, 2, 1)

x5(0, 1, 1) π?(3, 2, 1) π?(2, 3, 1) π?(3, 2, 1) π?(3, 2, 1) π?(2, 3, 1) π?(2, 3, 1)

x6(1, 0, 1) π?(3, 1, 2) π?(3, 1, 2) π?(3, 1, 2) π?(1, 3, 2) π?(1, 3, 2) π?(1, 3, 2)

x7(1, 1, 1) π?(3, 2, 1) π?(2, 3, 1) π?(3, 1, 2) π?(1, 3, 2) π?(2, 1, 3) π?(1, 2, 3)

Fig. 3. Two ways of generating triangulation τ1.

However the remaining 3 − k indices ik+1, . . . , i3 ∈ {1, 2, 3} can be ordered such that

1 ≤ ik+1 < · · · < i3 ≤ 3, xπ(ik+1) = · · · = xπ(i3) = 0. (7)

For these remaining 3 − k indices, if any, we define π?( j) = π(i j ), 3 − k ≤ j ≤ 3. From the right hand sides of (6)
and (7), we conclude that

xπ?(1) = · · · = xπ?(k) = 1, xπ?(k+1) = · · · = xπ?(3) = 0. (8)

The previously established relation between permutation π? and permutation π and pivot vertex x is explicitly
shown in Table 1.

Further, consider any ξ = (ξ1, ξ2, ξ3)
T

∈ tπ ∈ Kx0( 1
2C), the Kuhn triangulation of the half-unit cube 1

2C = [0, 1
2 ]

3

with vertex x0
= (0, 0, 0)T. We have 0 ≤ ξπ(3) ≤ ξπ(2) ≤ ξπ(1) ≤ 1/2. Using the left hand sides of (6) and (7), we

obtain

−1
2

≤ ξπ?(k) ≤ · · · ≤ ξπ?(1) ≤ 0, 0 ≤ ξπ?(3) ≤ · · · ≤ ξπ?(k+1) ≤
1
2
. (9)

Then, combining (8) and (9) with (3), for any vertex of the initial cube x ∈ {0, 1}
3 and the corresponding

composition of mirror reflections σx(ξ), we get x + σx(ξ) ∈ tπ? which proves x + σ(tπ ) = tx,π ⊂ tπ? . Of course,
by construction, any corner of tx,π corresponds to either a corner or an edge mid-point of tπ? and thus τ1 is in fact a
refinement of τ0 in the sense of condition (1).

At this point we have shown the existence of a refinement method for the elements of the Kuhn triangulation τ0
of C. This method yields the same triangulation τ1 as is obtained if we first subdivide C into eight sub-cubes B ∈ C
and these again by a Kuhn-type triangulation with vertex the center of the initial cube. Fig. 3 shows a commutative
diagram illustrating these equivalent ways of generating triangulation τ1.

We now want to show that τ1 is exactly the triangulation which is generated if the partition 8T-LE is applied
to all the elements of tπ ∈ τ0, provided their vertices are numbered according to (1). Therefore we first consider
the reference element t0 := tπid = t{1,2,3} with corners x(0)

= (0, 0, 0)T, x(1)
= (1, 0, 0)T, x(2)

= (1, 1, 0)T, and
x(3)

= (1, 1, 1)T.
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Using the Algorithm 8T-LE partition to refine t0, it can be easily verified that the son elements t0, j , for 1 ≤ j ≤ 8,
can be represented by

t0, j = xi
+

1
2
σi, j (t0), 1 ≤ i, j ≤ 8 (10)

where σi, j is the mirror reflection determined by the non-zero coordinates of vertex xi . These mirror reflections are
given in the following:

If the subsequent order of son elements t0, j corresponds to the formulation of the 8T-LE partition algorithm in
Section 2, the start vertices xi and mirror reflections, or permutations σi, j , 1 ≤ i, j ≤ 8 are given by

x1
= (0, 0, 0)T

x2
= x3

= x4
= (1, 0, 0)T

x5
= x6

= x7
= (1, 1, 0)T

x8
= (1, 1, 1)T

(11)

and

σ1,1 = id = Diag(1, 1, 1); σ2,1 = Diag(−1, 1, 1);

σ3,2 = Diag(−1, 1, 1) ◦ (e2, e1, e3);

σ4,3 = Diag(−1, 1, 1) ◦ (e2, e3, e1);

σ5,1 = Diag(1, 1, 1) ◦ (e2, e1, e3);

σ6,2 = Diag(−1, 1, 1) ◦ (e2, e3, e1);

σ7,3 = Diag(−1, −1, 1); σ8,1 = Diag(−1, −1, −1)

(12)

respectively. Representation (10) implies t0, j ∈ τ1, for 1 ≤ j ≤ 8. For i 6= j , (11) and (12) respectively show that
either xi

6= x j or σi 6= σ j is true. Therefore, t0,i , t0, j correspond to different elements txi ,σi
, tx j ,σ j

, which are known
to have mutually disjoint interiors. Furthermore, we conclude from (10) that the volumes of all son elements sum up
to the volume of t0, and thus the convexity of t0 implies that the generated refinement of t0 coincides with the one
induced by τ1.

To obtain the same result for the other elements in τ0, we associate with each π ∈ S3 the corresponding permutation
matrix given by Pπ =

(
δi,π( j)

)3
i, j=1. We then have tπ = Pπ (t0) and in particular for the corners x j

π = Pπ (x j
id),

0 ≤ j ≤ 3. Applying algorithm 8T-LE partition to tπ yields the sons tπ,i = Pπ (t0,i ), 0 ≤ i ≤ 8. Denoting by
π ◦ πi the composition of π , πi within S3, and using the fact that the associated permutation matrix is given by
Pπ◦πi = Pπ ◦ Pπi , the analogue to (10) is the next equation:

tπ,i = Pπ (t0,i ) = Pπ (xi ) +
1
2

tπ◦πi . (13)

Now Pπ (xi ) ∈ {0, 1}
3 implies tπ,i ∈ τ1 for each 1 ≤ i ≤ 8, π ∈ S3. Using the argumentation from above, it follows

that the generated refinement of tπ coincides with the one induced by τ1 by algorithm 8T-LE partition.
In addition to (10), i.e. t0, j = xi

+
1
2 σi, j (t0), for 1 ≤ i, j ≤ 8, we observe that the vertex numbering assigned

to t0, j by the refinement of tπi , i.e. the i-th corner of t0,i , is given by xi
+ 1/2x j

πi . This property is preserved under
permutation and remains valid for any element of τ1. If now algorithm 8T-LE partition is recursively applied to the
elements of τ1, it follows by induction that the generated triangulations τk , k ≥ 0, of C are given by

τk = {tx,π = x + 2−k tπ | x ∈ {0, 1 · 2−k, . . . , (2k
− 1) · 2−k

}
3, π ∈ S3}, (14)

and, thus, it can also be obtained by first dividing C into 8k sub-cubes of edge length 2−k , which in turn are subdivided
by the corresponding Kuhn-type triangulation. These arguments complete the proof. �

4. Conclusions

In this paper we have proved that for any regular right-type tetrahedron t , the iterative eight-tetrahedra longest-edge
(8T-LE) partition of t yields a sequence of tetrahedra similar to the former one. Furthermore, based on the Kuhn-type
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triangulations, the 8T-LE partition commutes with certain refinements based on the canonical boxel partition of a cube
and its Kuhn triangulations.
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