
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304049303

Hybrid Controllers for Path Planning: A Temporal Logic Approach

Article · January 2005

CITATIONS

10
READS

63

3 authors:

Some of the authors of this publication are also working on these related projects:

Homomorphic Signal Processing View project

cqlVerifier: A Tool for Model Checking Clinical Knowledge Artifacts View project

Georgios Fainekos

Arizona State University

130 PUBLICATIONS 4,675 CITATIONS

SEE PROFILE

Hadas Kress-Gazit

Cornell University

110 PUBLICATIONS 3,297 CITATIONS

SEE PROFILE

George J. Pappas

University of Pennsylvania

702 PUBLICATIONS 29,052 CITATIONS

SEE PROFILE

All content following this page was uploaded by George J. Pappas on 08 July 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/304049303_Hybrid_Controllers_for_Path_Planning_A_Temporal_Logic_Approach?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/304049303_Hybrid_Controllers_for_Path_Planning_A_Temporal_Logic_Approach?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Homomorphic-Signal-Processing?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/cqlVerifier-A-Tool-for-Model-Checking-Clinical-Knowledge-Artifacts?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios-Fainekos?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios-Fainekos?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Arizona_State_University?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios-Fainekos?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hadas-Kress-Gazit?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hadas-Kress-Gazit?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cornell_University?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hadas-Kress-Gazit?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pennsylvania?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pappas-2?enrichId=rgreq-028c671477f353e9d9966cd7856f851e-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA0OTMwMztBUzozODE1MTU2NzEzMjY3MjdAMTQ2Nzk3MTgzMjc0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

University of Pennsylvania
ScholarlyCommons

Lab Papers (GRASP) General Robotics, Automation, Sensing and
Perception Laboratory

1-1-2005

Hybrid Controllers for Path Planning: A Temporal
Logic Approach
Geogios E. Fainekos
University of Pennsylvania, fainekos@grasp.upenn.edu

Hadas Kress-Gazit
University of Pennsylvania, hadaskg@grasp.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Suggested Citation:
Fainekos, G., H. Kress-Gazit and G. Pappas. (2005). "Hybrid Controllers for Path Planning: A Temporal Logic Approach." Proceedings of the 44th IEEE
Conference on Decision and Control and the European Control Conference 2005. Seville, Spain. December 12-15, 2005.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/grasp_papers/60
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/grasp_papers
http://repository.upenn.edu/grasp
http://repository.upenn.edu/grasp
http://repository.upenn.edu/grasp_papers/60
mailto:repository@pobox.upenn.edu

Hybrid Controllers for Path Planning: A Temporal Logic Approach

Abstract
Robot motion planning algorithms have focused on low-level reachability goals taking into account robot
kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an
integrated approach to the design of closed–loop hybrid controllers that guarantee by construction that the
resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so–called Linear
Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in
the presence of an adversary that may instantaneously reposition the robot within the environment a finite
number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic
specification, which supervises a finite family of continuous feedback controllers, ensuring consistency
between the discrete plan and the continuous execution.

Disciplines
Engineering

Comments
Suggested Citation:
Fainekos, G., H. Kress-Gazit and G. Pappas. (2005). "Hybrid Controllers for Path Planning: A Temporal
Logic Approach." Proceedings of the 44th IEEE Conference on Decision and Control and the European Control
Conference 2005. Seville, Spain. December 12-15, 2005.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/grasp_papers/60

http://repository.upenn.edu/grasp_papers/60

Hybrid Controllers for Path Planning: A Temporal Logic Approach

Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas

Abstract— Robot motion planning algorithms have focused
on low-level reachability goals taking into account robot kine-
matics, or on high level task planning while ignoring low-level
dynamics. In this paper, we present an integrated approach
to the design of closed–loop hybrid controllers that guarantee
by construction that the resulting continuous robot trajectories
satisfy sophisticated specifications expressed in the so–called
Linear Temporal Logic. In addition, our framework ensures
that the temporal logic specification is satisfied even in the
presence of an adversary that may instantaneously reposition
the robot within the environment a finite number of times. This
is achieved by obtaining a Büchi automaton realization of the
temporal logic specification, which supervises a finite family of
continuous feedback controllers, ensuring consistency between
the discrete plan and the continuous execution.

I. INTRODUCTION

One of the main challenges in robotics is the development

of mathematical frameworks that formally and verifiably

integrate high level planning with continuous control prim-

itives. Traditionally, the path planning problem for mobile

robots has considered reachability specifications of the form

“move from the Initial position I to the Goal position

G while staying within region R”. The solutions to this

well-studied problem span a wide variety of methods, from

continuous (like potential or navigation functions [1]) to

discrete (like Canny’s algorithm, Voronoi diagrams, cell

decompositions and probabilistic road maps [1], [2]).

Whereas these methods solve basic path planning prob-

lems, they do not address high level planning issues that arise

when considering a number of goals or a particular ordering

of them. In order to manage such constraints, one should

either employ an existing high level planning method [2]

or attack the problem using optimization techniques like

mixed integer linear programming [3]. Even though the

aforementioned methods can handle partial ordering of goals,

they cannot deal with temporally extended goals. For such

specifications, planning techniques [4], [5] that are based on

model checking [6] seem more natural choices.

Using temporally extended goals, one would sacrifice

some of the efficiency of the standard planning methods

for expressiveness in the specifications. Temporal logics [6]

such as the Linear Temporal Logic (LTL) and computation

tree logic (CTL) have the expressive power to describe a

conditional sequencing of goals under a well defined formal

framework. Such a formal framework can provide us with the

tools for automated controller synthesis and code generation.

Research is partially supported by the Army Research Office MURI Grant
DAAD 19-02-01-0383 and NSF EHS 0311123

The authors are with the GRASP Laboratory, University
of Pennsylvania, Philadelphia, PA 19104, USA. E-mail:
{fainekos,hadaskg,pappasg}@grasp.cis.upenn.edu

The applicability of temporal logics in robotics was ad-

vocated as far back as [7]. In more recent works, the

authors in [8] design controllers that satisfy LTL formulas

by composing controllers using navigation functions. In [9],

the UPPAAL model checking toolbox for timed automata has

been applied to the multi-robot motion planning using CTL

formulas, but without taking into account the dynamics of

the robots. In our previous work [10], we have presented a

framework for the design of an open–loop hybrid controller

that generates continuous trajectories that satisfy temporal

specifications in LTL. Related approaches to motion planning

using hybrid or symbolic methods include the design of

controllers that satisfy temporal logic specifications [11], the

maneuver automata [12], the motion description language

[13], the control and computation language [14] and the

control quanta [15].

In this paper, we extend our previous work by designing

closed-loop hybrid controllers that guarantee the generation

of continuous robot trajectories that satisfy temporal spec-

ifications in an adversarial environment under reasonable

assumptions. Our approach first lifts the problem to the

discrete level by partitioning the environment into a finite

number of equivalence classes. A variety of partitions are

applicable [16], but we focus on triangular decompositions

and general cellular partitions as these have been successfully

applied to the basic path planning problem in [17] and

[18] respectively. The partition results in a natural discrete

abstraction of the robot motion which is used then for

planning with automata theoretic methods [5].

In particular, we use the automaton, which captures the

temporal specification (LTL formula), to enforce a sequenc-

ing on the possible moves of the robot in the discrete

abstraction of the environment. Out of all the possible

discrete trajectories that satisfy the specification, we choose

the shortest one. In order to ensure that the discrete plan

is feasible at the continuous level, the decomposition must

satisfy the so-called bisimulation property [19]. The feedback

controllers that are presented in [17] and [18] satisfy this

property. Bisimulations allow us to prove that if the abstract,

discrete robot model satisfies the LTL formula, then the

continuous robot model also satisfies the same formula.

In real-life applications, the sequential composition of

controllers (open-loop hybrid controller) might fail due to

localization errors. This is especially true when the environ-

ment is partitioned into cells. The main contribution of this

paper is the design of a closed-loop (at the specification level)

hybrid controller that generates a new sequence of controllers

every time the system moves out of the operational range of

the initial open-loop hybrid controller.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB01.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 4885

II. PROBLEM FORMULATION

We consider a fully actuated, planar model of robot motion

operating in a polygonal environment P . The environment

P may have holes, but these must be enclosed by a single

polygonal chain that does not intersect itself. The motion of

the robot is expressed as:

ẋ(t) = u(t) x(t) ∈ P ⊆ R
2 u(t) ∈ U ⊆ R

2 (1)

where x(t) is the position of the robot at time t, and u(t)
is the control input. The goal of this paper is to construct

a closed-loop hybrid controller that generates control inputs

u(t) for system (1) so that the resulting trajectory x(t) for a

set of initial conditions X0 satisfies a formula–specification

φ in the linear temporal logic LTL−X [6] in an adversarial

environment. By saying adversarial environment, we mean

the following:

Definition 1 (Adversary): We assume the existence of an

adversary with the following properties. The adversary is

allowed to reposition the robot only: (i) a finite number of

times, (ii) within the connected workspace P and (iii) to

positions that do not falsify the specification φ.

In our framework, temporal formulas are built upon a finite

number of atomic propositions which label areas of interest

in the environment (rooms, obstacles, buildings, etc). Let

Π = {π1, π2, . . . , πn} be a set of such propositions. For

system (1) we then associate an observation map

hC : P → Π (2)

which maps the continuous states of the robot to the finite

set of propositions. Note that regions of the state space of no

interest to the user are mapped to a dummy proposition. Even

though one can easily consider overlapping propositions

resulting in non-deterministic observation maps, here we

consider only sets of disjoint atomic propositions. Each

proposition πi ∈ Π represents an area of interest in the

environment which can be characterised by a convex set of

the form:

Pi = {x ∈ R
2 |

∧

1≤k≤m

aT
ikx + bik ≤ 0, aik ∈ R

2, bik ∈ R}

In other words, the observation map hC : P −→ Π has the

form hC(x) = πi iff x belongs in the associated set Pi.

In order to make more apparent the use of LTL−X for the

composition of temporal specifications, we first give an in-

formal description of the traditional and temporal operators.

The formal syntax and semantics of LTL−X are presented in

Section IV. LTL−X contains the traditional logic operators

of conjunction (∧), disjunction (∨), negation (¬), implication
(⇒), and equivalence (⇔). The main temporal operators are

usually eventually (�), always (�) and until (U). Some LTL

formulas that express interesting properties in the context

of robot motion planning are the following. Recurrence:
the formula �(�π1 ∧ �π2 ∧ · · · ∧ �πm) requires that the

robot visits the areas π1 to πm infinitely often without

any particular ordering. Fairness properties: “whenever the
robot visits π1, it should also eventually visit area π2”

as �(π1 → �π2). Some further examples can be found

in [10]. For such temporal logic formulas, we provide a

computational solution to the following problem.

Problem 1 (Temporal Logic Motion Planning): Given
robot model (1), observation map (2), a set of initial
conditions X0 ⊆ P and an LTL−X temporal logic formula
φ, construct a hybrid controller H(x, t, φ) so that the
control input is u(t) = H(x, t, φ) and the resulting robot
trajectory x(t) satisfies the formula φ in the adversarial
environment of Definition 1.

III. DISCRETE ABSTRACTION OF ROBOT MOTION

In order to use discrete logics to reason about continu-

ous systems, we need a finite partition of the continuous

state space P . Clearly, we can use many efficient cell

decomposition methods for polygonal environments [1]. In

this paper, we follow the approach presented in [17] and

[10], that is we chose to triangulate P and create a finite

number of equivalence classes (each triangle). This choice

was mainly made for two reasons. First, there exist several

efficient triangulation algorithms which can partition com-

plicated polygonal environments [16]. Second, the choice

of controllers used in Section V is proven to exist and be

efficiently computable on triangles [17]. Despite this choice,

the results in this paper can be easily adapted to similar

decompositions, such as the decomposition described in [18].

In the following paragraphs, we present how the undi-

rected graph resulting from the triangulation of the polygonal

environment can be converted to a finite transition system

that serves as an abstract model of the robot motion. Let

T : P −→ Q denote the map which sends each state x ∈ P
to the finite set Q = {q1, . . . , qn} of all equivalence classes

(triangles in this paper). In other words, T−1(q) contains all

states x ∈ P which are contained in the cell labelled by

q, and {T−1(q) | q ∈ Q} is a partition of the state space.

Given such a partition of P , we can naturally abstract the

robot motion by defining a finite transition system.

Definition 2 (FTS): A Finite Transition System is a tuple

D = (Q,Q0,→D, hD,Π) where:

• Q is the finite set of states

• Q0 ⊆ Q is the set of the possible initial robot states in

the planar environment

• →D⊆ Q×Q captures the dynamics of the system and it

is defined as qi →D qj iff the cells labelled by qi, qj are

topologically adjacent, i.e. cells T−1(qi) and T−1(qj)
share a common edge

• hD : Q −→ Π is the observation map defined as

hD(q) = π, if there exists x ∈ T−1(q) such that

hC(x) = π
• Π is the set of propositions defined in Section II

An infinite sequence of states p = p0, p1, p2, . . . such

that p0 ∈ Q0, ∀k.pk ∈ Q and pi →D pi+1 is

called an execution, whereas the infinite sequence tr(p) =
hD(p0), hD(p1), hD(p2), . . . is called a trace of the transi-

tion system D. Let p[i] denote the suffix of the execution

p that starts from state pi, i.e. p[i] = pi, pi+1, pi+2, . . . and

4886

p = p[0]. The language of D, i.e. L(D), is the set of all

possible traces.

In order to ensure that the observation map hD is well

defined, we must impose the requirement that the decompo-

sition is proposition or observation preserving, that is for all

xi, xj ∈ P ,

T (xi) = T (xj) ⇒ hC(xi) = hC(xj)

In other words, states that belong in the same equivalence

class or cell, map to the same observations.

IV. THE LINEAR TEMPORAL LOGIC LTL−X

Logic can be a powerful tool for describing concretely

formal statements and, more importantly, for reasoning over

them. Temporal logics can provide us with even more

flexibility as they allow reasoning over time. In the context

of path planning for a single robot, we present and use

a subclass of temporal logics commonly known as linear

temporal logic LTL−X [6].

A. LTL−X Syntax

LTL is a temporal logic whose syntax contains path

formulas, i.e. the specification that the temporal formula

describes is validated over a trajectory (or trace) of the robot

(discrete system). Usually, these traces have infinite length as

temporal formulas may describe non–terminating properties.

As mentioned earlier, the atomic propositions Π of the logic

are labels representing cells in the environment. The LTL−X

formulas are defined according to the following grammar:

φ ::= π | ¬φ | φ ∨ φ | φUφ

where φ is a path formula, π ∈ Π and U is the (strong)

until operator. As usual, the boolean constants
 and ⊥ are

defined as
 = π ∨ ¬π and ⊥ = ¬
 respectively. Given

negation (¬) and disjunction (∨), we can define conjunction

(∧), implication (⇒), and equivalence (⇔). Furthermore, we

can also derive additional temporal operators such as

• Eventuality �φ =
Uφ
• Safety �φ = φU⊥

B. LTL−X Continuous Semantics

We define the continuous semantics of LTL−X formulas

over the robot continuous trajectories. Let x(t) for t ≥ 0
denote the state of the system (robot) at time t. Let x[t]
denote the flow of x(s) under the input u(s) for s ≥ t and

x[t, t′] denote the flow of x(s) under the input u(s) for t ≤
s ≤ t′.

The formulas φ are interpreted over a trajectory x[t] of the

system. x[t] |=C φ denotes the satisfaction of the formula φ
over the trajectory x[t]. The semantics of any formula can

be recursively defined as:

• x[t] |=C π iff hC(x(t)) = π
• x[t] |=C ¬φ if x[t]
|=C φ
• x[t] |=C φ1 ∨ φ2 if x[t] |=C φ1 or x[t] |=C φ2

• x[t] |=C φ1Uφ2 if there exists s ≥ t such that x[s] |=C

φ2 and for all s′ with t ≤ s′ < s we have x[s′] |=C φ1

Therefore, the path formula φ1Uφ2 intuitively expresses

the property that over the trajectory x[t], φ1 is true until

φ2 becomes true. The formula �φ indicates that over the

trajectory x[t] the subformula φ becomes eventually true,

whereas �φ indicates that φ is always true over x[t].

C. LTL−X Discrete Semantics

Let p[i] be an execution of the discrete transition system

D starting from state pi ∈ Q. Hence, p[0] is an execution of

D starting at state p0 ∈ Q0. Path formulas φ are interpreted

over an execution p[i], denoted as p[i] |=D φ. The semantics

of any path formula can be recursively defined as:

• p[i] |=D π iff hD(pi) = π
• p[i] |=D ¬φ if p[i]
|=D φ
• p[i] |=D φ1 ∨ φ2 if p[i] |=D φ1 or p[i] |=D φ2

• p[i] |=D φ1Uφ2 if there exists j ≥ i such that p[j] |=D

φ2, and for all j′ with i ≤ j′ < j we have p[j′] |=D φ1

The relationship between the continuous LTL semantics

(x[0] |=C φ) and the discrete LTL semantics (p[0] |=D φ
for p0 = T (x(0))) was discussed in Section IV-C of our

previous work [10].

D. From LTL to Büchi Automata

It has been proven that any LTL formula can be converted

to an equivalent Büchi automaton (for a discussion see [6]).

A Büchi automaton differs from the usual notion of automata

in that it accepts infinite traces. The conversion from LTL

formulas to Büchi automata is a well studied problem that

has resulted in many efficient algorithms.

Definition 3 (Büchi automaton): A Büchi automaton is a

tuple B = (S, S0,Σ,→B , F) where:

• S is a finite set of states

• S0 is the set of the possible initial states

• Σ is the input alphabet of the automaton

• →B⊆ S × Σ × 2S is a nondeterministic transition

function

• F ⊆ S is the set of accepting states

In our case, the input alphabet Σ of the automaton B is

the same as the set of propositions Π of the finite transition

system D (Σ = Π). An infinite word w is a member of

Σω, which means that we concatenate an infinite number of

symbols from Σ (i.e. w = w0, w1, w2, . . . with wi ∈ Σ). A

run r of B is the sequence of states r = r0, r1, r2, . . . with

ri ∈ S that occurs under the input word w. Let lim(·) be

the function that returns the set of states that are encountered

infinitely often in the run r of B. The language of B, i.e.

L(B), consists of all the input words that have a run that is

accepted by B.

Definition 4 (Büchi acceptance): A Büchi automaton B
accepts an infinite input word w iff the run r = r0, r1, r2, . . .
such that ri

wi−→B ri+1 with r0 ∈ S0, ri ∈ S and wi ∈ Σ,

satisfies the relationship lim(r) ∩ F
= ∅.

Finding the existence of accepting runs is an easy problem.

First, we convert the Büchi automaton to a directed graph

and, then, we find the strongly connected components (SCC)

in the graph. If at least one SCC that contains a final state

(s ∈ F) is reachable from some state in the set of initial

4887

states S0, then the language L(B) of B is non-empty (for

more details see [20]).

V. OPEN-LOOP HYBRID CONTROLLER

The design of the open-loop hybrid controller consists of

two parts. First, the creation of a trajectory on the discrete

abstraction of the robot workspace (presented in this section),

and second, the conversion of the latter trajectory to a

continuous path for the robot (see Section IV-C in [10]).

First, we extend the finite transition system D, which

models the basic structure of the environment, with a dummy

state labelled as “Start” that has a transition to every other

state in the set of initial states Q0. The addition of this

dummy state is necessary in the case that some initial state

of D already satisfies partially the temporal specification.

Let D′ be the extended finite transition system, then D′ =
(Q′, Q′

0,→D′ , hD′ ,Π) where:

• Q′ = Q ∪ {Start}
• Q′

0 = {Start}
• →D′=→D ∪ →d where →d is defined as Start →d qj

for all qj ∈ Q0

• hD′ : Q′ −→ Π is the same observation map as hD but

extended by mapping the “Start” state to the dummy

observation

In the context of formula satisfiability, we can use the

finite transition systems D and D′ interchangeably.

Proposition 1: p is an execution of D iff p′ = {Start}, p
is an execution of D′. Also, p[0] |=D φ iff p′[1] |=D′ φ.

Now, consider the automaton A that derives from the

product of the finite transition system D′ that describes the

dynamics of our system and the Büchi automaton B that

represents the temporal logic specification (formula φ). The

design of an open-loop hybrid controller for motion planning

using temporal logic specifications reduces to the problem

of finding the accepting executions of the automaton A.

Informally, the Büchi automaton B restricts the behaviour

of the system D′ by permitting only certain acceptable

transitions.

Definition 5 (Product automaton): The product automa-

ton A of D′ and B (A = D′ × B) that accepts finite

executions is a tuple A = (SA, SA0, Q,→A, FA) where:

• SA = Q′ × S
• SA0 = Q′

0 × S0

• →A⊆ SA × Q × 2SA such that (qi, sj)
qi′−→A (qi′ , sj′)

iff qi →D′ qi′ and sj
hD′ (qi′)−→ B sj′

• FA = Q′ × F is the set of accepting states

The automaton A permits a transition to a state (qi′ , sj′)
iff the finite transition system D′ can take a transition to

state qi′ and the automaton B has a transition with an input

symbol that is the observation of state qi′ . That is, we allow

a transition if and only if we can observe an acceptable

proposition hD′(qi′) at the next state.

Notice however that the strongly connected components of

automaton A can be singletons with nodes without outgoing

transitions, for example in the case where the temporal

formula is ��π. In order to use the Büchi acceptance

definition for automaton A, we need to extend the definition

of automaton A so as its language consists only of infinite

accepting executions. For this reason, we use the stutter

extension rule [20], that is, we add on the blocking states a

self transition. Let r be a run of automaton A, then we define

the projection functions pr1 : 2SA −→ 2Q and pr2 : 2SA −→
2S such that if r = (qi0 , sj0)(qi1 , sj1)(qi2 , sj2) . . . then

pr1(r) = qi0qi1qi2 . . . and similarly for function pr2(r) =
sj0sj1sj2

Definition 6 (Stutter Extension): For all the states s ∈
SA, if there do not exist some s′ ∈ SA and q ∈ Q such

that s
q−→A s′, then →A=→A ∪(s

pr1(s)−→ A s).
By construction, the following theorem is satisfied.

Theorem 1 (Adapted from [5]): An execution p of FTS

D′ that satisfies the specification φ exists iff the language

of A is non-empty (L(A)
= ∅).

The non-emptiness problem of the language L(A) can be

solved as described in Section IV-D. Due to the fact that

the robot is fully actuated, the structure of the FTS D′ is

such that all the states in D′ are reachable (as long as there

do not exist any disconnected areas). Hence, the language

L(A) can only be empty in the case that there exist logical

inconsistencies in the temporal logic formula φ.

Corollary 1: A word w in the language L(A) is an

execution of D that satisfies the temporal specification φ,

that is, w[0] |=D φ.

For theoretical bounds on the complexity of the above

problem as well as for extensions on planning under partial

observability see the work of Giacomo and Vardi [5].

Algorithm 1 The Open-Loop Hybrid Controller

1: procedure OPENLOOPCONTROLLER(P, φ, x0)

2: ∆ ← Triangulate(P)
3: D′ ← TriangulationToFTS(∆)
4: B ← LTLtoBuechi(φ)
5: A ← Product(D′, B)
6: SCCA ← StronglyConnectedComponents(A)
7: return Controllers(A,SCCA,∆, (T (x0), s0))
8: end procedure

Algorithm 2 Subroutine called by the Open-Loop and

Closed-Loop Hybrid Controller Algorithms

1: procedure CONTROLLERS(A,SCCA,∆, (q0, s0)))
2: Plans ← BreadthF irstSearch(A, (q0, s0))
3: r ← ShortestPathToF inalSCC(Plans, SCCA)
4: if r is empty then return false

5: else return GenerateControllers(r, ∆, q0)
6: end if
7: end procedure

VI. CLOSED-LOOP HYBRID CONTROLLER

In real life situations, though, an open-loop hybrid con-

troller at the level of specification cannot guarantee the

completion of the task. For example, we could have in-

sufficient sampling frequency which leads to unobservable

4888

events (missed triangle transitions) and sensor and actuation

noise. In this, paper we are not interested in the low level

issues involved in the previous examples, but in the high level

planning. Hence, we consider the existence of an adversary

with the properties described in Section II.

Even though there exist general planners based on sym-

bolic methods [4] and on the manipulation of the temporal

formulas explicitly [21], they are not well suited for the spe-

cific structure of our problem. The typical planners generate

plans that are either a sequence of actions (if there do not

exist any observable predicates) or a tree of actions (in the

case of conditional planning) that guarantee the achievement

of the goal. They can also model non–determinism, in the

sense that the outcome of an action may result in many

different states, and/or partial observability, which occurs

when the high-level controller cannot distinguish between

different states of the system unless it performs a set of

“sensing” actions. The nature of the planning problem that

we consider here cannot be handled by the aforementioned

planning methods. We do not care about partial observability

and, also, the fact that the adversary can teleport the robot to

any position cannot be modeled by adding non-determinism

in the discrete model of the robot motion.

The answer to Problem 1 lies in the automata construc-

tion of Section V. The only additional mechanism that is

required is tracking which parts of the temporal specification

have been completed. This is an easy thing to do on the

product automaton A by monitoring the current state of the

Büchi automaton B. The supervisory controller monitors the

continuous trajectory of the robot and verifies whether it

follows the proper execution of the discrete path. In case it

doesn’t, it halts the robot and checks whether the trajectory

has violated the temporal logic specification. If it has not

done any violation, it generates a new discrete trajectory

and monitors the resulting continuous path. The high level

description of the closed-loop hybrid controller is presented

in Algorithm 3. The Algorithms 1 and 2 need to be modified

so as to return the run r of automaton A and additional data

structures in order to be used in Algorithm 3. The Proposition

2 below is a straightforward corollary of Proposition 1 in

[10], the if-check at line 6 in Algorithm 3 and the if-check at

line 4 in Algorithm 2 under the following set of assumptions.

Assumptions 1: (i) The system (1) is operating within a

connected workspace P . (ii) The specification φ is not a

tautology or unsatisfiable. (iii) {Ci}m = C1, C2, . . . , Cm is

the finite sequence of controllers (open-loop hybrid controller

H(x, t, φ)) that was generated using the open-loop algorithm

for the temporal specification φ. Without loss of generality,

Cm is a controller that halts the robot at the centroid of the

triangle.

Proposition 2 (Main Loop Invariance): If the set of As-

sumptions 1 holds, then at line 3 of Algorithm 3 the temporal

specification φ is not false.

Remark 1: In terms of implementation, the check that the

temporal specification φ has been violated can be easily done

by maintaining a list for each state s′ of the Büchi automaton

Algorithm 3 The Closed-Loop Hybrid Controller

1: procedure CLOSEDLOOPCONTROLLER(P, φ, x0)

2: [{Ci}, r, . . .] ← OpenLoopController(P, φ, x0)
3: i ← 1 and m ← |r|
4: while i ≤ m do
5: while T (x) = pr1(ri) do
6: x ← ApplyController(Ci, x)
7: end while
8: if T (x) = pr1(ri+1) then i ← i + 1
9: else

10: if φ is violated then return false

11: else
12: if pr2(ri)
= pr2(ri+1) and hC(x) =

hD(pr1(ri+1)) then s ← pr2(ri+1)
13: else s ← pr2(ri)
14: end if
15: [{Ci}, r] ← Controllers(. . . , (T (x), s))
16: i ← 1 and m ← |r|
17: end if
18: end if
19: end while
20: end procedure

B with the states q of the FTS D′ for which

s
¬hD′ (q)−→ B s′

The following proposition is the main result of this paper

(the proof is omitted due to space limitations, but it is a

straightforward case by case analysis):

Proposition 3 (Termination): If the set Assumptions 1 and

Definition 1 hold, then Algorithm 3 terminates with a trajec-

tory xf =
⋃

k
j=1xj−1[tj−1, tj] ∪ xk[tk] for some k ∈ N and

for xj = Hj(xj , t, φ) such that xf [0] |=C φ.

VII. IMPLEMENTATION AND SIMULATIONS

For the conversion of the LTL formulas to Büchi

automata we use the algorithm that is available at

[http://www.liafa.jussieu.fr/˜oddoux/], and for the triangu-

lation of the environment we use the code available at

[http://www.cs.unc.edu/˜dm/CODE/GEM/chapter.html]. The

rest of the code was developed in house using the MATLAB

programming platform.

Example 1 (Simulation results): In this simulation, a

polygonal environment with holes was created, as depicted

in Fig. 1. This environment contains 4 areas, highlighted in

the figure, that are to be visited by the robot. The formula

specifying the coverage requirement of visiting all areas is

φ = �area1 ∧ �area2 ∧ �area3 ∧ �area4.

In order to create the hybrid controller, first the environ-

ment was triangulated and abstracted to a finite transition

system (FTS) containing 98 states (triangles). Next, the

specification formula was translated into a Büchi automaton

containing 16 states, and finally, the supervisory controller

was created by taking the product of the FTS and the Büchi

automaton (1569 states).

4889

Fig. 1. Trajectory created by the close-loop hybrid controller. Each
divergence from the planned discrete path is circled.

Fig. 1 shows the trajectory generated for the specifica-

tion φ by the close-loop hybrid controller. In this case,

the sampling interval has been intentionally set too long

allowing many discrete transitions to be missed. For each

such divergence, which is circled in the figure, the close-loop

hybrid controller generates a new continuous trajectory that

completes the temporally extended goal without repeating

the whole specification. We would like to point out that

each such re-planning usually takes place in the areas of the

workspace where there is a high number of triangles (not

visible in this figure).

VIII. CONCLUSIONS – DISCUSSION

We believe that this direction of research is important for

at least three reasons. First, this work formally connects

high-level planning with low-level control, resulting in a

mathematically precise interface between discrete planning

and continuous motion planning. Second, the mapping from

temporal logic to physical motion is the first important step

in the mapping from natural language to physical motion in

a compositional manner. Finally, this work can be extended

to multi-agent environments where formal specifications and

computational solutions will result in verified coordination

logic for cooperating robots.

Most of the assumptions we have made in this paper (a

powerful adversary, the structure of the environment and

the terminal controller Cm) can be easily overcome (not

explained here due to space limitations). Note that the

approach presented here can be also used in the case where

obstacles enter dynamically in the environment making some

discrete transitions unavailable (similarly to the D∗ algorithm

[1]). Also, we would like to point out that the off-line design

of a single hybrid controller that can provide feedback both

at the low and the high (specification) levels is possible.

We are currently extending the results presented in this

paper in order to reason on how robustly is the temporal

formula satisfied by the continuous robot trajectory. Another

direction of on-going research is the implementation and

application of the above algorithms to our UGV experimen-

tal test–beds. Finally, we are investigating the concurrency

issues involved in the transition of the current framework to

the multi–agent case.

Acknowledgments: The first author would like to thank

Stanislav Angelov and Boulos Harb for the many useful

discussions.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms and Implementations. MIT Press, March 2005.

[2] S. M. LaValle, Planning Algorithms, 2005. [Online]. Available:
http://msl.cs.uiuc.edu/planning/

[3] A. Richards and J. P. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proceedings of
the 2002 IEEE American Control Conference, May 2002, pp. 1936–
1941.

[4] F. Giunchiglia and P. Traverso, “Planning as model checking,” in
Proceedings of the 5th European Conference on Planning, LNCS, vol.
1809, 1999, pp. 1–20.

[5] G. D. Giacomo and M. Y. Vardi, “Automata-theoretic approach to
planning for temporally extended goals,” in Proceedings of the 5th
European Conference on Planning, LNCS, vol. 1809, 1999, pp. 226–
238.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: MIT Press, 1999.

[7] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion con-
trollers,” in Proceedings of the 1995 IEEE International Conference
on Robotics and Automation, May 1995.

[8] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on ltl specifications,” in Proceedings of the
43rd IEEE Conference on Decision and Control, Dec. 2004.

[9] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
planning: A timed automata approach,” in Proceedings of the 2004
IEEE International Conference on Robotics and Automation, New
Orleasn, LA, April 2004, pp. 4417–4422.

[10] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005.

[11] P. Tabuada and G. J. Pappas, “From discrete specifications to hybrid
control,” in Proceedings of the 42nd IEEE Conference on Decision
and Control, December 2003.

[12] E. Frazzoli, “Robust hybrid control for autonomous vehicle motion
planning,” Ph.D. dissertation, Massachusetts Institute of Technology,
May 2001.

[13] D. Hristu-Varsakelis, M. Egerstedt, and P. S. Krishnaprasad, “On the
complexity of the motion description language mdle,” in Proceedings
of the 42nd IEEE Conference on Decision and Control, December
2003, pp. 3360–3365.

[14] E. Klavins, “A language for modeling and programming cooperative
control systems,” in Proceedings of the International Conference on
Robotics and Automation, New Orleasn, LA, April 2004.

[15] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi, “Motion
planning through symbols and lattices,” in Proceedings of the Inter-
national Conference on Robotics and Automation, New Orleasn, LA,
April 2004, pp. 3914–3919.

[16] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars, Com-
putational Geometry: Algorithms and Applications, 2nd ed. Springer-
Verlag, 2000.

[17] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control,” IEEE Transactions on Robotics, Ac-
cepted for publication.

[18] D. C. Conner, A. Rizzi, and H. Choset, “Construction and automated
deployment of local potential functions for global robot control and
navigation,” Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Rep. CMU-RI-TR-03-22, November 2003.

[19] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 2, pp. 971–984, 2000.

[20] G. Holzmann, The Spin Model Checker, Primer and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 2004.

[21] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artif. Intell., vol. 116, 2000.

4890

View publication statsView publication stats

https://www.researchgate.net/publication/304049303

	University of Pennsylvania
	ScholarlyCommons
	1-1-2005

	Hybrid Controllers for Path Planning: A Temporal Logic Approach
	Geogios E. Fainekos
	Hadas Kress-Gazit
	George J. Pappas
	Hybrid Controllers for Path Planning: A Temporal Logic Approach
	Abstract
	Disciplines
	Comments

