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Abstract

We consider a set of probabilistic functions
of some input variables as a representation
of the inputs. We present bounds on how
informative a representation is about input
data. We extend these bounds to hierarchi-
cal representations so that we can quantify
the contribution of each layer towards cap-
turing the information in the original data.
The special form of these bounds leads to
a simple, bottom-up optimization procedure
to construct hierarchical representations that
are also maximally informative about the
data. This optimization has linear computa-
tional complexity and constant sample com-
plexity in the number of variables. These re-
sults establish a new approach to unsuper-
vised learning of deep representations that is
both principled and practical. We demon-
strate the usefulness of the approach on both
synthetic and real-world data.

This paper considers the problem of unsupervised
learning of hierarchical representations from high-
dimensional data. Deep representations are becoming
increasingly indispensable for solving the greatest chal-
lenges in machine learning including problems in im-
age recognition, speech, and language [1]. Theoretical
foundations have not kept pace, making it difficult to
understand why existing methods fail in some domains
and succeed in others. Here, we start from the ab-
stract point of view that any probabilistic functions of
some input variables constitute a representation. The
usefulness of a representation depends on (unknown)
details about the data distribution. Instead of mak-
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ing assumptions about the data-generating process or
directly minimizing some reconstruction error, we con-
sider the simple question of how informative a given
representation is about the data distribution. We give
rigorous upper and lower bounds characterizing the
informativeness of a representation. We show that we
can efficiently construct representations that optimize
these bounds. Moreover, we can add layers to our rep-
resentation from the bottom up to achieve a series of
successively tighter bounds on the information in the
data. The modular nature of our bounds even allows
us to separately quantify the information contributed
by each learned latent factor, leading to easier inter-
pretability than competing methods [2].

Maximizing informativeness of the representation is
an objective that is meaningful and well-defined re-
gardless of details about the data-generating process.
By maximizing an information measure instead of the
likelihood of the data under a model, our approach
could be compared to lossy compression [3] or coarse-
graining [4]. Lossy compression is usually defined in
terms of a distortion measure. Instead, we motivate
our approach as maximizing the multivariate mutual
information (or “total correlation” [5]) that is “ex-
plained” by the representation [6]. The resulting ob-
jective could also be interpreted as using a distor-
tion measure that preserves the most redundant in-
formation in a high dimensional system. Typically,
optimizing over all probabilistic functions in a high-
dimensional space would be intractable, but the spe-
cial structure of our objective leads to an elegant set of
self-consistent equations that can be solved iteratively.

The theorems we present here establish a foundation
to information-theoretically measure the quality of hi-
erarchical representations. This framework leads to
an innovative way to build hierarchical representa-
tions with theoretical guarantees in a computation-
ally scalable way. Recent results based on the method
of Correlation Explanation (CorEx) as a principle for
learning [6] appear as a special case of the frame-
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work introduced here. CorEx has demonstrated excel-
lent performance for unsupervised learning with data
from diverse sources including human behavior, biol-
ogy, and language [6] and was able to perfectly re-
construct synthetic latent trees orders of magnitude
larger than competing approaches [7]. After intro-
ducing some background in Sec. 1, we state the main
theorems in Sec. 2 and how to optimize the resulting
bounds in Sec. 3. We show how to construct maximally
informative representations in practice in Sec. 4. We
demonstrate these ideas on synthetic data and real-
world financial data in Sec. 5 and conclude in Sec. 6.

1 Background

Using standard notation [8], capital Xi denotes a
random variable taking values in some domain Xi
and whose instances are denoted in lowercase, xi.
We abbreviate multivariate random variables, X ≡
X1, . . . , Xn, with an associated probability distribu-
tion, pX(X1 = x1, . . . , Xn = xn), which is typically
abbreviated to p(x). We will index different groups of
multivariate random variables with superscripts and
each multivariate group, Y k, may consist of a different
number of variables, mk, with Y k ≡ Y k1 , . . . , Y

k
mk

(see
Fig. 1). The group of groups is written, Y 1:r ≡
Y 1, . . . , Y r. Latent factors, Yj , will be considered dis-
crete but the domain of the Xi’s is not restricted.

Entropy is defined in the usual way as H(X) ≡
EX [log 1/p(x)]. We use natural logarithms so that
the unit of information is nats. Higher-order entropies
can be constructed in various ways from this standard
definition. For instance, the mutual information be-
tween two random variables, X1 and X2 can be written
I(X1 : X2) = H(X1) + H(X2) −H(X1, X2). Mutual
information can also be seen as the reduction of un-
certainty in one variable, given information about the
other, I(X1 : X2) = H(X1)−H(X1|X2).

The following measure of mutual information among
many variables was first introduced as “total corre-
lation” [5] and is also called multi-information [9] or
multivariate mutual information [10].

TC(X) ≡
n∑
i=1

H(Xi)−H(X)

= DKL

(
p(x)||

n∏
i=1

p(xi)

) (1)

Clearly, TC(X) is non-negative since it can be written
as a KL divergence. For n = 2, TC(X) corresponds to
the mutual information, I(X1 : X2). While we use the
original terminology of “total correlation”, in modern
terms it would be better described as a measure of
total dependence. TC(X) is zero if and only if all the
Xi’s are independent.

X1 X2 X... Xn

Y 1
m1

Y 1
1 Y 1

...

Y 2
1 Y 2

m2

...
k=r

k=2

k=1

k=0

Figure 1: In this graphical model, the variables on the
bottom layer (Xi’s) represent observed variables. The
variables in each subsequent layer represent coarse-
grained descriptions that explain the correlations in
the layer below. Thm. 2.3 quantifies how each layer
contributes to successively tighter bounds on TC(X).

The total correlation among a group of variables, X,
after conditioning on some other variable, Y , can be
defined in a straightforward way.

TC(X|Y ) ≡
∑
i

H(Xi|Y )−H(X|Y )

= DKL

(
p(x|y)||

n∏
i=1

p(xi|y)

)
We can measure the extent to which Y (approxi-
mately) explains the correlations in X by looking at
how much the total correlation is reduced,

TC(X;Y ) ≡ TC(X)− TC(X|Y )

=

n∑
i=1

I(Xi : Y )− I(X : Y ).
(2)

We use semicolons as a reminder that TC(X;Y ) is
not symmetric in the arguments, unlike mutual infor-
mation. TC(X|Y ) is zero (and TC(X;Y ) maximized)
if and only if the distribution of X’s conditioned on
Y factorizes. This would be the case if Y contained
full information about all the common causes among
Xi’s in which case we recover the standard statement,
an exact version of the one we made above, that Y
explains all the correlation in X. TC(X|Y ) = 0 can
also be seen as encoding conditional independence re-
lations and is therefore relevant for constructing graph-
ical models [11]. This quantity has appeared as a mea-
sure of the redundant information that the Xi’s carry
about Y [12] and this interpretation has been explored
in depth [13, 14].

2 Representations and Information

Definition The random variables Y ≡ Y1, . . . , Ym
constitute a representation of X if the joint distri-
bution factorizes, p(x, y) =

∏m
j=1 p(yj |x)p(x),∀x ∈

X ,∀j ∈ {1, . . . ,m},∀yj ∈ Yj . A representation is com-
pletely defined by the domains of the variables and the
conditional probability tables, p(yj |x).
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Definition The random variables Y 1:r ≡ Y 1, . . . , Y r

consitute a hierarchical representation of X if Y 1 is
a representation of X and Y k is a representation of
Y k−1 for k = 2, . . . , r. (See Fig. 1.)

We will be particularly interested in bounds quantify-
ing how informative Y 1:r is about X. These bounds
will be used to search for representations that are max-
imally informative. These definitions of representa-
tions are quite general and include (two-layer) RBMs
and deterministic representations like auto-encoders as
a special case. Note that this definition only describes
a prescription for generating coarse-grained variables
(Y ’s) and does not specify a generative model for X.

Theorem 2.1. Basic Decomposition of Information
If Y is a representation of X and we define,

TCL(X;Y ) ≡
n∑
i=1

I(Y : Xi)−
m∑
j=1

I(Yj : X), (3)

then the following bound and decomposition holds.

TC(X) ≥ TC(X;Y ) = TC(Y ) + TCL(X;Y ) (4)

Proof. A proof is provided in Sec. A.

Corollary 2.2. TC(X;Y ) ≥ TCL(X;Y )

This follows from Eq. 4 due to the non-negativity of
total correlation. Note that this lower bound is zero
if Y contains no information about X, i.e., if ∀x ∈
X , p(yj |x) = p(yj).

Theorem 2.3. Hierarchical Lower Bound on TC(X)
If Y 1:r is a hierarchical representation of X and we
define Y 0 ≡ X,

TC(X) ≥
r∑

k=1

TCL(Y k−1;Y k). (5)

Proof. This follows from writing down Thm. 2.1,
TC(X) ≥ TC(Y 1) + TCL(X;Y 1). Next we repeat-
edly invoke Thm. 2.1 to replace TC(Y k−1) with its
lower bound in terms of Y k. The final term, TC(Y r),
is non-negative and can be discarded. Alternately, if
mr is small enough it could be estimated directly or if
mr = 1 this implies TC(Y r) = 0.

Theorem 2.4. Upper Bounds on TC(X)

If Y 1:r is a hierarchical representation of X and we
define Y 0 ≡ X, and additionally mr = 1 and all vari-
ables are discrete, then,

TC(X) ≤
r∑

k=1

(
TCL(Y k−1;Y k) +

mk−1∑
i=1

H(Y k−1
i |Y k)

)
.

Proof. A proof is provided in Sec. B.

The reason for stating this upper bound is to
show it is equal to the lower bound plus the term∑
k

∑mk−1

i=1 H(Y k−1
i |Y k). If each variable is perfectly

predictable from the layer above it we have a guaran-
tee that our bounds are tight and our representation
provably contains all the information in X. Thm. 2.4
is stated for discrete variables for simplicity but a sim-
ilar bound holds if Xi are not discrete.

Bounds on H(X) We focus above on total correla-
tion as a measure of information. One intuition for
this choice is that uncorrelated subspaces are, in a
sense, not truly high-dimensional and can be charac-
terized separately. On the other hand, the entropy
of X, H(X), can naively be considered the appropri-
ate measure of the “information.”1 Estimating the
multivariate mutual information is really the hard
part of estimating H(X). We can write H(X) =∑n
i=1H(Xi)−TC(X). The marginal entropies, H(Xi)

are typically easy to estimate so that our bounds on
TC(X) in Thm. 2.3 and Thm. 2.4 directly translate
into bounds on the entropy as well.

The theorems above provide useful bounds on infor-
mation in high-dimensional systems for three reasons.
First, they show how to additively decompose informa-
tion. Second, in Sec. 3 we show that TCL(Y k−1;Y k)
can be efficiently optimized over, leading to progres-
sively tighter bounds. Finally, TCL(Y k−1;Y k) can be
efficiently estimated even using small amounts of data,
as described in Sec. 4.

3 Optimized Representations

Thm. 2.3 suggests a way to build optimally informa-
tive hierarchical representation from the bottom up.
Each layer can be optimized to maximally explain the
correlations in the layer below. The contributions from
each layer can be simply summed to provide a progres-
sively tighter lower bound on the total correlation in
the data itself.

max
∀j,p(y1j |x)

TCL(X;Y 1) (6)

After performing this optimization, in principle one
can continue to maximize TCL(Y 1;Y 2) and so forth
up the hierarchy. As a bonus, representations with dif-
ferent numbers of layers and different numbers of vari-
ables in each layer can be easily and objectively com-
pared according to the tightness of the lower bound on
TC(X) that they provide using Thm. 2.3.

1The InfoMax principle [15] constructs representations
to directly maximize the (instinctive but misleading quan-
tity [16]) mutual information, I(X : Y ). Because InfoMax
ignores the multivariate structure of the input space, it
cannot take advantage of our hierarchical decompositions.
The efficiency of our method and the ability to progres-
sively bound information rely on this decomposition.
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While solving this optimization and obtaining accom-
panying bounds on the information in X would be con-
venient, it does not appear practical because the op-
timization is over all possible probabilistic functions
of X. We now demonstrate the surprising fact that
the solution to this optimization implies a solution for
p(yj |x) with a special form in terms of a set of self-
consistent equations that can be solved iteratively.

3.1 A Single Latent Factor

First, we consider the simple representation for which
Y 1 ≡ Y 1

1 consists of a single random variable taking
values in some discrete space. In this special case,
TC(X;Y 1) = TCL(X;Y 1) =

∑
i I(Y 1

1 : Xi) − I(Y 1
1 :

X). Optimizing Eq. 6 in this case leads to

max
p(y1|x)

n∑
i=1

I(Y 1
1 : Xi)− I(Y 1

1 : X). (7)

Instead of looking for the optimum of this expres-
sion, we consider the optimum of a slightly more gen-
eral expression whose solution we will be able to re-
use later. Below, we omit the superscripts and sub-
scripts on Y for readability. Define the “α-Ancestral
Information” that Y contains about X as follows,
AIα(X;Y ) ≡

∑n
i=1 αiI(Y : Xi) − I(Y : X), where

αi ∈ [0, 1]. The name is motivated by results that show
that if AIα(X;Y ) is positive for some α, it implies the
existence of common ancestors for some (α-dependent)
set of Xi’s in any DAG that describes X [17]. We do
not make use of those results, but the overlap in ex-
pressions is suggestive. We consider optimizing the an-
cestral information where αi ∈ [0, 1] keeping in mind
that the special case of ∀i, αi = 1 reproduces Eq. 7.

max
p(y|x)

n∑
i=1

αiI(Y : Xi)− I(Y : X) (8)

We use Lagrangian optimization (detailed derivation
is in Sec. C) to find the solution.

p(y|x) =
1

Z(x)
p(y)

n∏
i=1

(
p(y|xi)
p(y)

)αi

(9)

Normalization is guaranteed by Z(x). While Eq. 9
appears as a formal solution to the problem, we must
remember that it is defined in terms of quantities that
themselves depend on p(y|x).

p(y|xi) =
∑
x̄∈X

p(y|x̄)p(x̄)δx̄i,xi/p(xi)

p(y) =
∑
x̄∈X

p(y|x̄)p(x̄)
(10)

Eq. 10 simply states that the marginals are consistent
with the labels p(y|x) for a given distribution, p(x).

This solution has a remarkable property. Although
our optimization problem was over all possible proba-
bilistic functions, p(y|x), Eq. 9 says that this function
can be written in terms of a linear (in n, the num-

ber of variables) number of parameters which are just
marginals involving the hidden variable Y and eachXi.
We show how to exploit this fact to solve optimization
problems in practice using limited data in Sec. 4.

3.2 Iterative Solution

The basic idea is to iterate between the self-consistent
equations to converge on a fixed-point solution. Imag-
ine that we start with a particular representation at
time t, pt(y|x) (ignoring the difficulty of this for now).
Then, we estimate the marginals, pt(y|xi), pt(y) using
Eq. 10. Next, we update pt+1(y|x) according to the
rule implied by Eq. 9,

pt+1(y|x) =
1

Zt+1(x)
pt(y)

n∏
i=1

(
pt(y|xi)
pt(y)

)αi

. (11)

Note that Zt+1(x) is a partition function that can be
easily calculated for each x (by summing over the la-
tent factor, Y , which is typically taken to be binary).

Zt+1(x) =
∑
y∈Y

pt(y)

n∏
i=1

(
pt(y|xi)
pt(y)

)αi

Theorem 3.1. Assuming α1, . . . , αn ∈ [0, 1], iterating
over the update equations given by Eq. 11 and Eq. 10
never decreases the value of the objective in Eq. 8 and
is guaranteed to converge to a stationary fixed point.

Proof is provided in Sec. D.

At this point, notice a surprising fact about this par-
tition function. Rearranging Eq. 9 and taking the log
and expectation value,

E [logZ(x)] = E

[
log

p(y)

p(y|x)

n∏
i=1

(
p(y|xi)
p(y)

)αi
]

=

n∑
i=1

αiI(Y : Xi)− I(Y : X)

(12)

The expected log partition function (sometimes called
the free energy) is just the value of the objective we
are optimizing. We can estimate it at each time step
and it will converge as we approach the fixed point.

3.3 Multiple Latent Factors

Directly maximizing TCL(X;Y ), which in turn
bounds TC(X), with m > 1 is intractable for large
m. Instead we construct a lower bound that shares
the form of Eq. 8 and therefore is tractable.

TCL(X;Y ) ≡
n∑
i=1

I(Y : Xi)−
m∑
j=1

I(Yj : X)

=

n∑
i=1

m∑
j=1

I(Yj : Xi|Y1:j−1)−
m∑
j=1

I(Yj : X)

≥
m∑
j=1

(
n∑
i=1

αi,jI(Yj : Xi)− I(Yj : X)

) (13)
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In the second line, we used the chain rule for mutual
information [8]. Note that in principle the chain rule
can be applied for any ordering of the Yj ’s. In the
final line, we rearranged summations to highlight the
decomposition as a sum of terms for each hidden unit,
j. Then, we simply define αi,j so that,

I(Yj : Xi|Y1:j−1) ≥ αi,jI(Yj : Xi). (14)

An intuitive way to interpret I(Yj : Xi|Y1:j−1)/I(Yj :
Xi) is as the fraction of Yj ’s information about Xi that
is unique (i.e. not already present in Y1:j−1). Cor. 2.2
implies that αi,j ≤ 1 and it is also clearly non-negative.

Now, instead of maximizing TCL(X;Y ) over all hid-
den units, Yj , we maximize this lower bound over both
p(yj |x) and α, subject to some constraint, ci,j(αi,j) =
0 that guarantees that α obeys Eq. 14.

max
αi,j ,p(yj |x)
ci,j(αi,j)=0

m∑
j=1

(
n∑
i=1

αi,jI(Yj : Xi)− I(Yj : X)

)
(15)

We solve this optimization problem iteratively, re-
using our previous results. First, we fix α so that
this optimization is equivalent to solving j problems
of the form in Eq. 8 in parallel by adding indices to
our previous solution,

p(yj |x) =
1

Zj(x)
p(yj)

n∏
i=1

(
p(yj |xi)
p(yj)

)αi,j

. (16)

The results in Sec. 3.2 define an incremental update
scheme that is guaranteed to increase the value of the
objective. Next, we fix p(yj |x) and update α so that
it obeys Eq. 14. Updating p(yj |x) never decreases the
objective and as long as αi,j ∈ [0, 1], the total value
of the objective is upper bounded. Unfortunately, the
α-update scheme is not guaranteed to increase the ob-
jective. Therefore, we stop iterating if changes in α
have not increased the objective over a time window
including the past ten iterations. In practice we find
that convergence is obtained quickly with few itera-
tions as shown in Sec. 5. Specific choices for updating
α are discussed next.

Optimizing the Structure Looking at Eq. 16, we
see that αi,j really defines the input variables, Xi, that
Yj depends on. If αi,j = 0, then Yj is independent of
Xi conditioned on the remaining X’s. Therefore, we
say that α defines the structure of the representation.
For α to satisfy the inequality in the last line of Eq. 13,
we can use the fact that ∀j, I(Yj : Xi) ≤ I(Y : Xi).
Therefore, we can lower bound I(Y : Xi) using any
convex combination of I(Yj : Xi) by demanding that
∀i,
∑
j αi,j = 1. A particular choice is as follows:

αi,j = I[j = arg max
j̄
I(Xi : Yj̄)]. (17)

This leads to a tree structure in which each Xi is con-
nected to only a single (most informative) hidden unit
in the next layer. This strategy reproduces the latent
tree learning method previously introduced [6].

Based on Eq. 14, we propose a heuristic method to es-
timate α that does not restrict solutions to trees. For
each data sample l = 1, . . . , N and variable Xi, we
check if Xi correctly predicts Yj (by counting dli,j ≡
I[arg maxyj log p(Yj = yj |x(l)) = arg maxyj log p(Yj =

yj |x(l)
i )/p(Yj = yj)]. For each i, we sort the j’s accord-

ing to which ones have the most correct predictions
(summing over l). Then we set αi,j as the percent-
age of samples for which dli,j = 1 while dli,1 = · · · =

dli,j−1 = 0 . How well this approximates the fraction
of unique information in Eq. 14 has not been deter-
mined, but empirically it gives good results. Choosing
the best way for efficiently lower-bounding the fraction
of unique information is a question for further research.

4 Complexity and Implementation

Multivariate measures of information have been used
to capture diverse concepts such as redundancy, syn-
ergy, ancestral information, common information, and
complexity. Interest in these quantities remains some-
what academic since they typically cannot be esti-
mated from data except for toy problems. Consider
a simple problem in which X1, . . . , Xn represent n bi-
nary random variables. The size of the state space
for X is 2n. The information-theoretic quantities we
are interested in are functionals of the full probability
distribution. Even for relatively small problems with a
few hundred variables, the number of samples required
to estimate the full distribution is impossibly large.

Imagine that we are given N iid samples,
x(1), . . . , x(l), . . . , x(N), from the unknown distri-
bution p(x). A naive estimate of the probability

distribution is given by p̂(x) ≡ 1
N

∑N
l=1 I[x = x(l)].

Since N is typically much smaller than the size of
the state space, N � 2n, this would seem to be
a terrible estimate. On the other hand, if we are
just estimating a marginal like p(xi), then a simple
Chernoff bound guarantees that our estimation error
decreases exponentially with N .

Our optimization seemed intractable because it is de-
fined over p(yj |x). If we approximate the data distri-
bution with p̂(x), then instead of specifying p(yj |x) for
all possible values of x, we can just specify p(yj |x(l))
for the l = 1, . . . , N samples that have been seen.
The next step in optimizing our objective (Sec. 3.2)
is to calculate the marginals p(yj |xi). To calculate
these marginals with fixed error only requires a con-
stant number of samples (constant w.r.t. the number
of variables). Finally, updating the labels, p(yj |x(l)),
amounts to calculating a log-linear function of the
marginals (Eq. 16).

Similarly, logZj(x
(l)), is just a random variable that

can be calculated easily for each sample and the sam-
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ple mean provides an estimate of the true mean. But
we saw in Eq. 12 that the average of this quantity
is just (the j-th component of) the objective we are
optimizing. This allows us to estimate successively
tighter bounds for TC(X;Y ) and TC(X) for very
high-dimensional data. In particular, we have,

TC(X) ≥ TCL(X;Y ) ≈
m∑
j=1

1

N

N∑
l=1

logZj(x
(l)). (18)

Algorithm and computational complexity The
pseudo-code of the algorithm is laid out in detail in
[6] with the procedure to update α altered according
to the previous discussion. Consider a dataset with n
variables and N samples for which we want to learn
a representation with m latent factors. At each itera-
tion, we have to update the marginals p(yj |xi), p(yj),
the structure αi,j , and re-calculate the labels for each
sample, p(yj |x(l)). These steps each require O(m·n·N)
calculations. Note that instead of using N samples, we
could use a mini-batch of fixed size at each update to
obtain fixed error estimates of the marginals. We can
stop iterating after convergence or some fixed number
of iterations. Typically a very small number of itera-
tions suffices, see Sec. 5.

Hierarchical Representation To build the next
layer of the representation, we need samples from
pY 1(y1). In practice, for each sample, x(l), we con-
struct the maximum likelihood label for each y1

j from

p(y1
j |x(l)), the solution to Eq. 15. Empirically, most

learned representations are nearly deterministic so this
approximation is quite good.

Quantifying contributions of hidden factors
The benefit of adding layers of representations is
clearly quantified by Thm. 2.3. If the contribution
at layer k is smaller than some threshold (indicating
that the total correlation among variables at layer k
is small) we can set a stopping criteria. Intuitively,
this means that we stop learning once we have a set of
nearly independent factors that explain correlations in
the data. Thus, a criteria similar to independent com-
ponent analysis (ICA) [18] appears as a byproduct of
correlation explanation. Similarly, the contribution to
the objective for each latent factor, j, is quantified by∑
i αi,jI(Yj : Xi) − I(Yj : X) = E[logZj(x)]. Adding

more latent factors beyond a certain point leads to
diminishing returns. This measure also allows us to
do component analysis, ranking the most informative
signals in the data.

Continuous-valued data The update equations in
Eq. 11 depend on ratios of the form p(yj |xi)/p(yj).
For discrete data, this can be estimated directly. For
continuous data, we can use Bayes’ rule to write this
as p(xi|yj)/p(xi). Next, we parametrize each marginal

so that Xi|Yj = k ∼ N (µi,j,k, σi,j,k). Now to estimate
these ratios, we first estimate the parameters (this is
easy to do from samples) and then calculate the ratio
using the parametric formula for the distributions. Al-
ternately, we could estimate these density ratios non-
parametrically [16] or using other prior knowledge.

5 Experiments

We now present experiments constructing hierarchical
representations from data by optimizing Eq. 15. The
only change necessary to implement this optimization
using available code and pseudo-code [6, 19] is to alter
the α-update rule according to the discussion in the
previous section. We consider experiments on syn-
thetic and real-world data. We take the domain of
latent factors to be binary and we must also specify
the number of hidden units in each layer.

Synthetic data The special case where α is set ac-
cording to Eq. 17 creates tree-like representations re-
covering the method of previous work [6]. That pa-
per demonstrated the ability to perfectly reconstruct
synthetic latent trees in time O(n) while state-of-the-
art techniques are at least O(n2) [7]. It was also
shown that for high-dimensional, highly correlated
data, CorEx outperformed all competitors on a clus-
tering task including ICA, NMF, RBMs, k-means, and
spectral clustering. Here we focus on synthetic tests
that gauge our ability to measure the information in
high-dimensional data and to show that we can do this
for data generated according to non-tree-like models.

To start with a simple example, imagine that we have
four independent Bernoulli variables, Z0, Z1, Z2, Z3

taking values 0, 1 with probability one half. Now
for j = 0, 1, 2, 3 we define random variables Xi ∼
N (Zj , 0.1), for i = 100j + 1, . . . , 100j + 100. We draw
100 samples from this distribution and then shuffle
the columns. The raw data is shown in Fig. 2(a),
along with the data columns and rows sorted accord-
ing to learned structure, α, and the learned factors,
Yj , which perfectly recovers structure and Zj ’s for this
simple case (Fig. 2(b)). More interestingly, we see in
Fig. 2(c) that only three iterations are required for our
lower bound (Eq. 18) to come within a percent of the
true value of TC(X). This provides a useful signal for
learning: increasing the size of the representation by
increasing the number of hidden factors or the size of
the state space of Y cannot increase the lower bound
because it is already saturated.

For the next example, we repeat the same setup ex-
cept Z3 = Z0 + Z1. If we learn a representation with
three binary latent factors, then variables in the group
X301, . . . , X400 should belong in overlapping clusters.
Again we take 100 samples from this distribution. For
this example, there is no analytic form to estimate
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Figure 2: (a) Randomly generated data with permuted
variables. (b) Data with columns and rows sorted ac-
cording to α and Yj values. (c) Starting with a random
representation, we show the lower bound on total cor-
relation at each iteration. It comes within a percent
of the true value after only three iterations.

TC(X) but we see in Fig. 3(a) that we quickly con-
verge on a lower bound (Sec. E shows similar conver-
gence for real-world data). Looking at Eq. 16, we see
that Yj is a function of Xi if and only if αi,j > 0.
Fig. 3(b) shows that Y1 alone is a function of the first
100 variables, etc., and that Y1 and Y2 both depend on
the last group of variables, while Y3 does not. In other
words, the overlapping structure is correctly learned
and we still get fast convergence in this case. When
we increase the size of the synthetic problems, we get
the same results and empirically observe the expected
linear scaling in computational complexity.2

Finance data For a real-world example, we consider
financial time series. We took the monthly returns for
companies on the S&P 500 from 1998-20133. We in-
cluded only the 388 companies which were on the S&P
500 for the entire period. We treated each month’s re-
turns as an iid sample (a naive approximation [20])
from this 388 dimensional space. We use a represen-
tation with m1 = 20,m2 = 3,m3 = 1 and Yj were
discrete trinary variables.

Fig. 4 shows the overall structure of the learned hi-

2With an unoptimized implementation, it takes about
12 minutes to run this experiment with 20,000 variables on
a 2012 Macbook Pro.

3Data is freely available at www.quantquote.com.
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Figure 3: (a) Convergence rates for the overlapping
clusters example. (b) Adjacency matrix representing
αi,j . CorEx correctly clusters variables including over-
lapping clusters.

erarchical model. Edge thickness is determined by
αi,jI(Xi : Yj). We thresholded edges with weight
less than 0.16 for legibility. The size of each node
is proportional to the total correlation that a latent
factor explains about its children, as estimated using
E(logZj(x)). Stock tickers are color coded according
to the Global Industry Classification Standard (GICS)
sector. Clearly, the discovered structure captures sev-
eral significant sector-wide relationships. A larger ver-
sion is shown in Fig. E.2. For comparison, in Fig. E.3
we construct a similar graph using restricted Boltz-
mann machines. No useful structure is apparent.

We interpret T̂CL(X = x(l);Y ) ≡
∑
j logZj(x

(l)) as
the point-wise total correlation because its mean over
all samples is our estimate of TCL(X;Y ) (Eq. 18). We
interpret deviation from the mean as a kind of surprise.
In Fig. 5, we compare the time series of the S&P 500
to this point-wise total correlation. This measure of
anomalous behavior captures the market crash in 2008
as the most unusual event of the decade.

CorEx naturally produces sparse graphs because a
connection with a new latent factor is formed only
if it contains unique information. While the thresh-
olded graph in Fig. 4 is tree-like, the full hierarchi-
cal structure is not, as shown in Fig. E.2. The stock
with the largest overlap in two groups was TGT, or
Target, which was strongly connected to a group con-
taining department stores like Macy’s and Nordstrom’s
and was also strongly connected to a group containing
home improvement retailers Lowe’s, Home Depot, and
Bed, Bath, and Beyond. The next two stocks with
large overlaps in two groups were Conoco-Phillips and
Marathon Oil Corp. which were both connected to a

www.quantquote.com
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Figure 4: A thresholded graph showing the overall structure of the representation learned from monthly returns
of S&P 500 companies. Stock tickers are colored (online) according to their GICS sector. Edge thickness is
proportional to mutual information and node size represents multivariate mutual information among children.

S&P 500

Point-wise TC

Figure 5: The S&P 500 over time is compared to the
point-wise estimate of total correlation described in
the text.

group containing oil companies and another group con-
taining property-related businesses.

6 Conclusions

We have demonstrated a method for constructing hi-
erarchical representations that are maximally infor-
mative about the data. Each latent factor and layer
contributes to tighter bounds on the information in
the data in a quantifiable way. The optimization we
presented to construct these representations has lin-
ear computational complexity and constant sample
complexity which makes it attractive for real-world,
high-dimensional data. Previous results on the special
case of tree-like representations outperformed state-of-
the-art methods on synthetic data and demonstrated
promising results for unsupervised learning on diverse

data from human behavior, biology, and language [6].
By introducing this theoretical foundation for hierar-
chical decomposition of information, we were able to
extend previous results to enable discovery of overlap-
ping structure in data and to provide bounds on the
information contained in data.

Specifying the number and cardinality of latent factors
to use in a representation is an inconvenience shared
with other deep learning approaches. Unlike other ap-
proaches, the bounds in Sec. 2 quantify the trade-off
between representation size and tightness of bounds
on information in the data. Methods to automatically
size representations to optimize this trade-off will be
explored in future work. Other intriguing directions
include using the bounds presented to characterize
RBMs and auto-encoders [1], and exploring connec-
tions to the information bottleneck [21, 22], multivari-
ate information measures [13, 14, 17], EM [23, 24], and
“recognition models” [25].

The combination of a domain-agnostic theoretical
foundation with rigorous, information-theoretic guar-
antees suggests compelling applications in domains
with complex, heterogeneous, and highly correlated
data such as gene expression and neuroscience [26].
Preliminary experiments have produced intriguing re-
sults in these domains and will appear in future work.
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[7] Raphaël Mourad, Christine Sinoquet, Nevin L
Zhang, Tengfei Liu, Philippe Leray, et al. A sur-
vey on latent tree models and applications. J.
Artif. Intell. Res.(JAIR), 47:157–203, 2013.

[8] Thomas M Cover and Joy A Thomas. Elements
of information theory. Wiley-Interscience, 2006.
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A Proof of Theorem 2.2

Theorem. Basic Decomposition of Information

If Y is a representation of X and we define,

TCL(X;Y ) ≡
n∑
i=1

I(Y : Xi)−
m∑
j=1

I(Yj : X),

then the following bound and decomposition holds.

TC(X) ≥ TC(X;Y ) = TC(Y ) + TCL(X;Y )

Proof. The first inequality trivially follows from Eq. 2
since we subtract a non-negative quantity (a KL di-
vergence) from TC(X). For the second equality, we
begin by using the definition of TC(X;Y ), expanding
the entropies in terms of their definitions as expec-
tation values. We will use the symmetry of mutual
information, I(A : B) = I(B : A), and the iden-
tity I(A : B) = EA,B log(p(a|b)/p(a)). By definition,
the full joint probability distribution can be written as
p(x, y) = p(y|x)p(x) =

∏
j p(yj |x)p(x).

I(X : Y ) = EX,Y
[
log

p(y|x)

p(y)

]
= EX,Y

[
log

∏m
j=1 p(yj)

p(y)

∏m
j=1 p(yj |x)∏m
j=1 p(yj)

]

= −TC(Y ) +

m∑
j=1

I(Yj : X) (19)

Replacing I(X : Y ) in Eq. 2 completes the proof.

B Proof of Theorem 2.4

Theorem. Upper Bounds on TC(X)

If Y 1:r is a hierarchical representation of X and we
define Y 0 ≡ X, and additionally mr = 1 and all vari-
ables are discrete, then,

TC(X) ≤ TC(Y 1) + TCL(X;Y 1) +

n∑
i=1

H(Xi|Y 1)

TC(X) ≤
r∑

k=1

(
TCL(Y k−1;Y k) +

mk−1∑
i=1

H(Y k−1
i |Y k)

)
.

Proof. We begin by re-writing Eq. 4 as TC(X) =
TC(X|Y 1) + TC(Y 1) + TCL(X;Y 1). Next, for dis-
crete variables, TC(X|Y 1) ≤

∑
iH(Xi|Y ), giving the

inequality in the first line. The next inequality fol-
lows from iteratively applying the first inequality as
in the proof of Thm. 2.3. Because mr = 1, we have
TC(Y r) = 0.

C Derivation of Eqs. 9 and 10

We want to optimize the objective in Eq. 8.

max
p(y|x)

n∑
i=1

αiI(Y : Xi)− I(Y : X)

s.t.
∑
y

p(y|x) = 1
(20)

For simplicity, we consider only a single Yj and drop
the j index. Here we explicitly include the condi-
tion that the conditional probability distribution for
Y should be normalized. We consider α to be a fixed
constant in what follows.

We proceed using Lagrangian optimization. We intro-
duce a Lagrange multiplier λ(x) for each value of x to
enforce the normalization constraint and then reduce
the constrained optimization problem to the uncon-
strained optimization of the objective L.

L =
∑
x̄,ȳ

p(x̄)p(ȳ|x̄)
(∑

i

αi(log p(ȳ|x̄i)− log p(ȳ))

−(log p(ȳ|x̄)− log p(ȳ))
)

+
∑
x̄

λ(x̄)(
∑
ȳ

p(ȳ|x̄)− 1)

Note that we are optimizing over p(y|x) and so the
marginals p(y|xi), p(y) are actually linear functions of
p(y|x). Next we take the functional derivatives with
respect to p(y|x) and set them equal to 0. We re-use
a few identities. Unfortunately, δ on the left indicates
a functional derivative while on the right it indicates
a Kronecker delta.

δp(ȳ|x̄)

δp(y|x)
= δy,ȳδx,x̄

δp(ȳ)

δp(y|x)
= δy,ȳp(x)

δp(ȳ|x̄i)
δp(y|x)

= δy,ȳδxi,x̄ip(x)/p(xi)

Taking the derivative and using these identities, we
obtain the following.

δL
δp(y|x)

= λ(x)+

p(x) log

∏
i(p(y|xi)/p(y))αi

p(y|x)/p(y)
+∑

x̄,ȳ

p(x̄)p(ȳ|x̄)
(∑

i

αi(
δy,ȳδxi,x̄i

p(x)

p(xi)p(ȳ|x̄i)

− δy,ȳp(x)/p(ȳ))

− (
δy,ȳδx,x̄
p(ȳ|x̄)

− δy,ȳp(x)/p(ȳ))
)

Performing the sums over x̄, ȳ leads to cancellation
of the last three lines. Then we set the remaining
quantity equal to zero.

δL
δp(y|x)

= λ(x) + p(x) log

∏
i p(y|xi)/p(y)

p(y|x)/p(y)
= 0
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This leads to the following condition in which we have
absorbed constants like λ(x) in to the partition func-
tion, Z(x).

p(y|x) =
1

Z(x)
p(y)

n∏
i=1

(
p(y|xi)
p(y)

)αi

We recall that this is only a formal solution since the
marginals themselves are defined in terms of p(y|x).

p(y) =
∑
x̄

p(x̄)p(y|x̄)

p(y|xi) =
∑
x̄

p(y|x̄)p(x̄)δxi,x̄i
/p(xi)

If we have a sum over independent objectives like
Eq. 15 for j = 1, . . . ,m, we just place subscripts appro-
priately. The partition constant, Zj(x) can be easily
calculated by summing over just |Yj | terms.

D Updates Do Not Decrease the
Objective

The detailed proof of this largely follows the conver-
gence proof for the iterative updating of the informa-
tion bottleneck [3].

Theorem D.1. Assuming α1, . . . , αn ∈ [0, 1], iter-
ating over the update equations given by Eq. 11 and
Eq. 10 never decreases the value of the objective in
Eq. 8 and is guaranteed to converge to a stationary
fixed point.

Proof. First, we define a functional of the objective
with the marginals considered as separate arguments.

F [p(xi|y), p(y), p(y|x)] ≡∑
x,y

p(x)p(y|x)

(∑
i

αi log
p(xi|y)

p(xi)
− log

p(y|x)

p(y)

)
As long as αi ≤ 1, this objective is upper bounded
by TCL(X;Y ) and Thm. 2.3 therefore guarantees
that the objective is upper bounded by the constant
TC(X). Next, we show that optimizing over each ar-
gument separately leads to the update equations given.
We skip re-calculation of terms appearing in Sec. C.
Keep in mind that for each of these separate optimiza-
tion problems, we should introduce a Lagrange multi-
plier to ensure normalization.

δF
δp(y)

= λ+
∑
x̄

p(y|x̄)p(x̄)/p(y)

δF
δp(xi|y)

= λi +
∑
x̄

p(y|x̄)p(x̄)αiδx̄i,xi/p(xi|y)

δF
δp(y|x)

= λ(x) + p(x)

(∑
i

αi log
p(xi|y)

p(xi)
− log

p(y|x)

p(y)
− 1

)
Setting each of these equations equal to zero recovers

the corresponding update equation. Therefore, each
update corresponds to finding a local optimum. Next,

note that the objective is (separately) concave in both
p(xi|y) and p(y), because log is concave. Furthermore,
the terms including p(y|x) correspond to the entropy
H(Y |X), which is concave. Therefore each update is
guaranteed to increase the value of the objective (or
leave it unchanged). Because the objective is upper
bounded this process must converge (though only to a
local optimum, not necessarily the global one).

E Convergence for S&P 500 Data

Fig. E.1 shows the convergence of the lower bound on
TC(X) as we step through the iterative procedure in
Sec. 3.2 to learn a representation for the finance data
in Sec. 5. As in the synthetic example in Fig. 3(a),
convergence occurs quickly. The iterative procedure
starts with a random initial state. Fig. E.1 compares
the convergence for 10 different random initializations.
In practice, we can always use multiple restarts and
pick the solution that gives the best lower bound.
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Figure E.1: Convergence of the lower bound on TC(X)
as we perform our iterative solution procedure, using
multiple random initializations.
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