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Preface 

Linear Optimization^ (LO) is one of the most widely taught and apphed mathematical 
techniques. Due to revolutionary developments both in computer technology and 
algorithms for linear optimization, 'the last ten years have seen an estimated six orders 
of magnitude speed improvement'.^ This means that problems that could not be solved 
10 years ago, due to a required computational time of one year, say, can now be solved 
within some minutes. For example, linear models of airline crew scheduling problems 
with as many as 13 million variables have recently been solved within three minutes 
on a four-processor Silicon Graphics Power Challenge workstation. The achieved 
acceleration is due partly to advances in computer technology and for a significant 
part also to the developments in the field of so-called interior-point methods for linear 
optimization. 

Until very recently, the method of choice for solving linear optimization problems 
was the Simplex Method of Dantzig [59]. Since the initial formulation in 1947, this 
method has been constantly improved. It is generally recognized to be very robust and 
efficient and it is routinely used to solve problems in Operations Research, Business, 
Economics and Engineering. In an effort to explain the remarkable efficiency of the 
Simplex Method, people strived to prove, using the theory of complexity, that the 
computational effort to solve a linear optimization problem via the Simplex Method 
is polynomially bounded with the size of the problem instance. This question is still 
unsettled today, but it stimulated two important proposals of new algorithms for LO. 
The ffrst one is due to Khachiyan in 1979 [167]: it is based on the ellipsoid technique 
for nonlinear optimization of Shor [255]. With this technique, Khachiyan proved that 
LO belongs to the class of polynomially solvable problems. Although this result has 
had a great theoretical impact, the new algorithm failed to deliver its promises in 
actual computational efficiency. The second proposal was made in 1984 by Karmar-
kar [165]. Karmarkar's algorithm is also polynomial, with a better complexity bound 

^ The field of Linear Optimization has been given the name Linear Programming in the past. The 
origin of this name goes back to the Dutch Nobel prize winner Koopmans. See Dantzig [60]. 
Nowadays the word 'programming' usually refers to the activity of writing computer programs, 
and as a consequence its use instead of the more natural word 'optimization' gives rise to confusion. 
Following others, like Padberg [230], we prefer to use the name Linear Optimization in the 
book. It may be noted that in the nonlinear branches of the field of Mathematical Programming 
(like Combinatorial Optimization, Discrete Optimization, SemideRnite Optimization, etc.) this 
terminology has already become generally accepted. 

^ This claim is due to R.E. Bixby, professor of Computational and Applied Mathematics at Rice 
University, and director of CPLEX Optimization, Inc., a company that markets algorithms for 
linear and mixed-integer optimization. See the news bulletin of the Center For Research on Parallel 
Computation, Volume 4, Issue 1, Winter 1996. Bixby adds that parallelization may lead to 'at least 
eight orders of magnitude improvement—the difference between a year and a fraction of a second!' 
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than Khachiyan, but it has the further advantage of being highly efficient in practice. 
After an initial controversy it has been established tha t for very large, sparse problems, 
subsequent variants of Karmarkar 's method often outperform the Simplex Method. 

Though the field of LO was considered more or less mature some ten years ago, after 
Karmarkar 's paper it suddenly surfaced as one of the most active areas of research in 
optimization. In the period 1984-1989 more than 1300 papers were published on the 
subject, which became known as Interior Point Methods (IPMs) for LO.^ Originally 
the aim of the research was to get a bet ter understanding of the so-called Projective 
Method of Karmarkar. Soon it became apparent tha t this method was related to 
classical methods like the Affine Scaling Method of Dikin [63, 64, 65], the Logarithmic 
Barrier Method of Frisch [86, 87, 88] and the Center Method of Huard [148, 149], 
and tha t the last two methods could also be proved to be polynomial. Moreover, it 
turned out tha t the IPM approach to LO has a natural generalization to the related 
field of convex nonlinear optimization, which resulted in a new stream of research 
and an excellent monograph of Nesterov and Nemirovski [226]. Promising numerical 
performances of IPMs for convex optimization were recently reported by Breitfeld 
and Shanno [50] and Jarre, Kocvara and Zowe [162]. The monograph of Nesterov 
and Nemirovski opened the way into another new subfield of optimization, called 
Semidefinite Optimization, with important applications in System Theory, Discrete 
Optimization, and many other areas. For a survey of these developments the reader 
may consult Vandenberghe and Boyd [48]. 

As a consequence of the above developments, there are now profound reasons why 
people may want to learn about IPMs. We hope tha t this book answers the need of 
professors who want to teach their students the principles of IPMs, of colleagues who 
need a unified presentation of a desperately burgeoning field, of users of LO who want 
to understand what is behind the new IPM solvers in commercial codes (CPLEX, OSL, 
. . . ) and how to interpret results from those codes, and of other users who want to 
exploit the new algorithms as part of a more general software toolbox in optimization. 

Let us briefiy indicate here what the book offers, and what does it not. Par t I 
contains a small but complete and self-contained introduction to LO. We deal with 
the duality theory for LO and we present a first polynomial method for solving an LO 
problem. We also present an elegant method for the initialization of the method, 
using the so-called self-dual embedding technique. Then in Par t II we present a 
comprehensive t reatment of Logarithmic Barrier Methods. These methods are applied 
to the LO problem in s tandard format, the format tha t has become most popular in 
the field because the Simplex Method was originally devised for tha t format. This 
part contains the basic elements for the design of efficient algorithms for LO. Several 
types of algorithm are considered and analyzed. Very often the analysis improves the 
existing analysis and leads to sharper complexity bounds than known in the literature. 
In Par t III we deal with the so-called Target-following Approach to IPMs. This is a 
unifying framework tha t enables us to t reat many other IPMs, like the Center Method, 
in an easy way. Par t IV covers some additional topics. It s tarts with the description 
and analysis of the Projective Method of Karmarkar. Then we discuss some more 

^ We refer the reader to the extensive bibUography of Kranich [179, 180] for a survey of the 
hterature on the subject until 1989. A more recent (annotated) bibliography was given by Roos 
and Terlaky [242]. A valuable source of information is the World Wide Web interior point archive: 
h t tp : / /www.mcs .anl .gov/home/otc / In ter iorPoin t .a rchive .h tml . 

http://www.mcs
http://anl.gov/home/otc/InteriorPoint
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interesting theoretical properties of the central path. We also discuss two interesting 
methods to enhance the efficiency of IPMs, namely Part ial Updating, and so-called 
Higher-Order Methods. This part also contains chapters on parametric and sensitivity 
analysis and on computational aspects of IPMs. 

It may be clear from this description tha t we restrict ourselves to Linear Optim­
ization in this book. We do not dwell on such interesting subjects as Convex Optim­
ization and Semidefinite Optimization, but we consider the book as a preparation for 
the study of IPMs for these types of optimization problem, and refer the reader to the 
existing literature.^ 

Some popular topics in IPMs for LO are not covered by the book. For example, 
we do not t reat the (Primal) Affine Scaling Method of Dikin.^ The reason for this 
is tha t we restrict ourselves in this book to polynomial methods and until now the 
polynomiality question for the (Primal) Affine Scaling Method is unsettled. Instead 
we describe in Appendix E a primal-dual version of Dikin's affine-scaling method 
tha t is polynomial. Chapter 18 describes a higher-order version of this primal-dual 
affine-scaling method tha t has the best possible complexity bound known until now 
for interior-point methods. 

Another topic not touched in the book is (Primal-Dual) Infeasible Start Methods. 
These methods, which have drawn a lot of at tention in the last years, deal with the 
situation when no feasible start ing point is available.^ In fact. Par t I of the book 
provides a much more elegant solution to this problem; there we show tha t any given 
LO problem can be embedded in a self-dual problem for which a feasible interior 
start ing point is known. Further, the approach in Par t I is theoretically more efficient 
than using an Infeasible Start Method, and from a computational point of view is not 
more involved, as we show in Chapter 20. 

We hope tha t the book will be useful to students, users and researchers, inside and 
outside the field, in offering them, under a single cover, a presentation of the most 
successful ideas in interior-point methods. 

Kees Roos 
Tamas Terlaky 
Jean-Philippe Vial 

Preface to the 2005 edition 

Twenty years after Karmarkar 's [165] epoch making paper interior point methods 
(IPMs) made their way to all areas of optimization theory and practice. The theory of 
IPMs matured, their professional software implementations significantly pushed the 
boundary of efficiently solvable problems. Eight years passed since the first edition 
of this book was published. In these years the theory of IPMs further crystallized. 
One of the notable developments is tha t the significance of the self-dual embedding 

^ For Convex Optimization the reader may consult den Hertog [140], Nesterov and Nemirovski [226] 
and Jarre [161]. For Semidefinite Optimization we refer to Nesterov and Nemirovski [226], 
Vandenberghe and Boyd [48] and Ramana and Pardalos [236]. We also mention Shanno and 
Breitfeld and Simantiraki [252] for the related topic of barrier methods for nonlinear programming. 

^ A recent survey on affine scaling methods was given by Tsuchiya [272]. 

^ We refer the reader to, e.g., Potra [235], Bonnans and Potra [45], Wright [295, 297], Wright and 
Ralph [296] and the recent book of Wright [298]. 
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model - t h a t is a distinctive feature of this book- got fully recognized. Leading linear 
and conic-linear optimization software packages, such as MOSEK^ and SeDuMi^ are 
developed on the bedrock of the self-dual model, and the leading commercial linear 
optimization package CPLEX^ includes the embedding model as a proposed option to 
solve difficult practical problems. 

This new edition of this book features a completely rewritten first part . While 
keeping the simplicity of the presentation and accessibility of complexity analysis, 
the featured IPM in Par t I is now a standard, primal-dual path-following Newton 
algorithm. This choice allows us to reach the so-far best known complexity result in 
an elementary way, immediately in the first part of the book. 

As always, the authors had to make choices when and how to cut the expansion of 
the material of the book, and which new results to include in this edition. We cannot 
resist mentioning two developments after the publication of the first edition. 

The first development can be considered as a direct consequence of the approach 
taken in the book. In our approach properties of the univariate function '0(t), as defined 
in Section 5.5 (page 92), play a key role. The book makes clear tha t the primal-, dual-
and primal-dual logarithmic barrier function can be defined in terms of '0(t), and 
as such '0(t) is at the heart of all logarithmic barrier functions; we call it now the 
kernel function of the logarithmic barrier function. After the completion of the book 
it became clear tha t more efficient large-update IPMs than those considered in this 
book, which are all based on the logarithmic barrier function, can be obtained simply 
by replacing '0(t) by other kernel functions. A large class of such kernel functions, 
tha t allowed to improve the worst case complexity of large-update IPMs, is the family 
of self-regular functions, which is the subject of the monograph [233]; more kernel 
functions were considered in [32]. 

A second, more recent development, deals with the complexity of IPMs. Until now, 
the best iteration bound for IPMs is 0{^/nL)^ where n denotes the dimension of the 
problem (in s tandard from), and L the binary input size of the problem. In 1996, Todd 
and Ye showed tha t 0{^/nL) is a lower bound for the iteration complexity of IPMs 
[267]. It is well known tha t the iteration complexity highly depends on the curliness 
of the central path, and tha t the presence of redundancy may severely affect this 
curliness. Deza et al. [61] showed tha t by adding enough redundant constraints to the 
Klee-Minty example of dimension n, the central pa th may be forced to visit all 2^ 
vertices of the Klee-Minty cube. An enhanced version of the same example, where the 
number of inequalities is Â  = 0(2^^n^) , yields an 0{'\fN/\ogN) lower bound for the 
iteration complexity, thus almost closing (up to a factor of log N) the gap with the 
best worst case iteration bound for IPMs [62]. 

Instructors adapting the book as textbook in a course may contact the authors at 
<terlaky@mcmaster .ca> for obtaining the "Solution Manual" for the exercises and 
getting access to a user forum. 

March 2005 Kees Roos 
Tamds Terlaky 
Jean-Philippe Vial 

^ MOSEK: http://www.mosek.com 

^ SeDuMi: h t tp : / / sedumi .mcmaster .ca 

9 CPLEX: h t tp : / / cp l ex . com 
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Introduction 

1.1 Subject of the book 

This book deals with linear optimization (LO). The object of LO is to find the optimal 
(minimal or maximal) value of a linear function subject to linear constraints on the 
variables. The constraints may be either equality or inequality constraints.^ From 
the point of view of applications, LO possesses many nice features. Linear models are 
relatively simple to create. They can be realistic enough to give a proper account of the 
problems at hand. As a consequence, LO models have found applications in different 
areas such as engineering, management, logistics, statistics, pattern recognition, etc. 
LO is also very relevant to economic theory. It underlies the analysis of linear activity 
models and provides, through duality theory, a nice insight into the price mechanism. 

However, we will not deal with applications and modeling. Many existing textbooks 
teach more about this.^ 

Our interest will be mainly in methods for solving LO problems, especially Interior 
Point Methods (IPM's). Renewed interest in these methods for solving LO problems 
arose after the seminal paper of Karmarkar [165] in 1984. The overwhelming amount 
of research of the last ten years has been tremendously prolific. Many new algorithms 
were proposed and almost all of these algorithms have been shown to be efficient, at 
least from a theoretical point of view. Our first aim is to present a comprehensive and 
unified treatment of many of these new methods. 

It may not be surprising that exploring a new method for LO should lead to a new 
view of the theory of LO. In fact, a similar interaction between method and theory 
is well known for the Simplex Method; in the past the theory of LO and the Simplex 
Method were intimately related. The fundamental results of the theory of LO concern 
strong duality and the existence of a strictly complementary solution. Our second aim 
will be to derive these results from limiting properties of the so-called central path of 
an LO problem. 

Thus the very theory of LO is revisited. The central path appears to play a key role 
both in the development of the theory and in the design of algorithms. 

The more general optimization problem arising when the objective function and/or the constraints 
are nonlinear is not considered. It may be pointed out that LO is the first building block in the 
development of the theory of nonlinear optimization. Algorithmically, LO is also widely used in 
nonlinear and integer optimization, either as a subroutine in a more complicated algorithm or as 
a starting point of a specialized algorithm. 

The book of Williams [293] is completely devoted to the design of mathematical models, including 
linear models. 
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As a consequence, the book can be considered a self-contained treatment of LO. 
The reader familiar with the subject of LO will easily recognize the difference from 
the classical approach to the theory. The Simplex Method in essence explores the 
polyhedral structure of the domain (or feasible region) of an LO problem. Accordingly, 
the classical approach to the theory of LO concentrates on the polyhedral structure of 
the domain. On the other hand, the IPM approach uses the central path as a guide to 
the set of optimal solutions, and the theory follows by studying the limiting properties 
of this path.^ As we will see, the limit of the central path is a strictly complementary 
solution. Strictly complementary solutions play a crucial role in the theory as presented 
in Part I of the book. Also, in general, the output of a well-designed IPM for LO is a 
strictly complementary solution. Recall that the Simplex Method generates a so-called 
basic solution and that such solutions are fundamental in the classical theory of LO. 

From the practical point of view it is most important to study the sensitivity of 
an optimal solution under perturbations in the data of an LO problem. This is the 
subject of Sensitivity (or Parametric or Postoptimal) Analysis. Our third aim will be 
to present some new results in this respect, which will make clear the well-known fact 
that the classical approach has some inherent weaknesses. These weaknesses can be 
overcome by exploring the concept of the optimal partition of an LO problem which 
is closely related to a strictly complementary solution. 

1.2 More detailed description of the contents 

As stated in the previous section, we intend to present an interior point approach 
to both the theory of LO and algorithms for LO (design, convergence, complexity 
and asymptotic behavior). The common thread through the various parts of the book 
will be the prominent role of strictly complementary solutions; this notion plays a 
crucial role in the IPM approach and distinguishes the new approach from the classical 
Simplex based approach. 

Part I of the book consists of Chapters 2, 3 and 4. This part is a self-contained 
treatment of LO. It provides the main theoretical results for LO, as well as a 
polynomial method for solving the LO problem. The theory of LO is developed in 
Chapter 2. This is done in a way that is probably new for most readers, even for those 
who are familiar with LO. As indicated before, in IPM's a fundamental element is 
the central path of a problem. This path is introduced in Chapter 2 and the duality 
theory for LO is derived from its properties. The general theory turns out to follow 
easily when considering first the relatively small class of so-called self-dual problems. 
The results for self-dual problems are extended to general problems by embedding 
any given LO problem in an appropriate self-dual problem. Chapter 3 presents an 
algorithm that solves self-dual problems in polynomial time. It may be emphasized 
that this algorithm yields a so-called strictly complementary solution of the given 
problem. Such a solution, in general, provides much more information on the set of 

^ Most of the fundamental duality results for LO will be well known to many of the readers; they can 
be found in any textbook on LO. Probably the existence of a strictly complementary solution is 
less well known. This result has been shown first by Goldman and Tucker [111] and will be referred 
to as the Goldman-Tucker theorem. It plays a crucial role in this book. We get it as a byproduct 
of the limiting behavior of the central path. 
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optimal solutions than an optimal basic solution as provided by the Simplex Method. 
The strictly complementary solution is obtained by applying a rounding procedure to 
a sufficiently accurate approximate solution. Chapter 4 is devoted to LO problems in 
canonical format, with (only) nonnegative variables and (only) inequality constraints. 
A thorough discussion of the special structure of the canonical format provides some 
specialized embeddings in self-dual problems. As a byproduct we find the central 
path for canonical LO problems. We also discuss how an approximate solution for the 
canonical problem can be obtained from an approximate solution of the embedding 
problem. 

The two main components in an iterative step of an IPM are the search direction 
and the step-length along that direction. The algorithm in Part I is a rather simple 
primal-dual algorithm based on the primal-dual Newton direction and uses a very 
simple step-length rule: the step length is always 1. The resulting Full-Newton Step 
Algorithm is polynomial and straightforward to implement. However, the theoretical 
iteration bound derived for this algorithm, although polynomial, is relatively poor 
when compared with algorithms based on other search strategies. Therefore, more 
efficient methods are considered in Part II of the book; they are so-called Logarithmic 
Barrier Methods. For reasons of compatibility with the existing literature, on both 
the Simplex Method and IPM's, we abandon the canonical format (with nonnegative 
variables and inequality constraints) in Part II and use the so-called standard format 
(with nonnegative variables and equality constraints). 

In order to make Part II independent of Part I, in Chapter 5 we revisit duality 
theory and discuss the relevant results for the standard format from an interior point 
of view. This includes, of course, the definition and existence of the central paths for 
the (primal) problem in standard form and its dual problem (which has free variables 
and inequality constraints). Using a symmetric formulation of both problems we see 
that any method for the primal problem induces in a natural way a method for the dual 
problem and vice versa. Then, in Chapter 6, we focus on the Dual Logarithmic Barrier 
Method; according to the previous remark the analysis can be naturally, and easily, 
transformed to the primal case. The search direction here is the Newton direction for 
minimizing the (classical) dual logarithmic barrier function with barrier parameter /i. 
Three types of method are considered. First we analyze a method that uses full Newton 
steps and small updates of the barrier parameter /i. This gives another central-path-
following method that admits the best possible iteration bound. Secondly, we discuss 
the use of adaptive updates of /i; this leaves the iteration bound unchanged, but 
enhances the practical behavior. Finally, we consider methods that use large updates 
of /i and a bounded number of damped Newton steps between each pair of successive 
barrier updates. The (theoretical worst-case) iteration bound is worse than for the 
full Newton step method, but this seems to be due to the poor analysis of this type 
of method. In practice large-update methods are much more efficient than the full 
Newton step method. This is demonstrated by some (small) examples. Chapter 7, 
deals with the Primal-Dual Logarithmic Barrier Method. It has basically the same 
structure as Chapter 6. Having defined the primal-dual Newton direction, we deal 
first with a full primal-dual Newton step method that allows small updates in the 
barrier parameter /i. Then we consider a method with adaptive updates of /i, and 
finally methods that use large updates of /i and a bounded number of damped primal-
dual Newton steps between each pair of successive barrier updates. In-between we 
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also deal with the Predictor-Corrector Method. The nice feature of this method is 
its asymptotic quadratic convergence rate. Some small computational examples are 
included that highlight the better performance of the primal-dual Newton method 
compared with the dual (or primal) Newton method. The methods used in Part II 
need to be initialized with a strictly feasible solution.^ Therefore, in Chapter 8 we 
discuss how to meet this condition. This concludes the description of Part II. 

At this stage of the book, the reader will have encountered the main theoretical 
ideas underlying efficient implementations of IPM's for LO. He will have been exposed 
to many variants of IPM's, dual and primal-dual methods with either full or damped 
Newton steps.^ The search directions in these methods are Newton directions. All these 
methods, in one way or another, use the central path as a guideline to optimality. Part 
III is devoted to a broader class of IPM's, some of which also follow the central path but 
others do not. In Chapter 9 we introduce the unifying concepts of target sequence and 
Target-following Methods. In the Logarithmic Barrier Methods of Part II the target 
sequence always consists of points on the central path. Other IPM's can be simply 
characterized by their target sequence. We present some examples in Chapter 11, 
where we deal with weighted-path-following methods, a Dikin-path-following method, 
and also with a centering method that can be used to compute the so-called weighted-
analytic center of a polytope. Chapters 10, 12 and 13 present respectively primal-dual, 
dual and primal versions of Newton's method for following a given target sequence. 
Finally, concluding Part III, in Chapter 14 we describe a famous interior-point method, 
due to Renegar and based on the center method of Huard; we show that it nicely fits 
in the framework of target-following methods, with the targets on the central path. 

Part IV is entitled Miscellaneous Topics: it contains material that deserves a place 
in the book but did not fit well in any of the previous three parts. The reader will 
have noticed that until now we have not discussed the very first polynomial IPM, 
the Projective Method of Karmarkar. This is because the mainstream of research into 
IPM's diverged from this method soon after 1984.^ Because of the big infiuence this 
algorithm had on the field of LO, and also because there is still a small ongoing stream 
of research in this direction, it deserves a place in this book. We describe and analyze 
Karmarkar's method in Chapter 15. Surprisingly enough, and in contrast with all 
other methods discussed in this book, both in the description and the analysis of Kar­
markar's method we do not refer to the central path; also, the search direction differs 
from the Newton directions used in the other methods. In Chapter 16 we return to the 
central path. We show that the central path is differentiable and study the asymptotic 

^ A feasible solution is called strictly feasible if no variable or inequality constraint is at (one of) its 
bound(s). 

^ In the literature, full-step methods are often called short-step methods and damped Newton step 
methods long-step methods or large-step methods. In damped-step methods a line search is made in 
each iteration that aims to (approximately) minimize a barrier (or potential) function. Therefore, 
these methods are also known as potential reduction methods. 

^ There are still many textbooks on LO that do not deal with IPM's. Moreover, in some other 
textbooks that pay attention to IPM's, the authors only discuss the Projective Method of Kar­
markar, thereby neglecting the important developments after 1984 that gave rise to the efficient 
methods used in the well-known commercial codes, such as CPLEX and OSL. Exceptions, in this 
respect, are Bazaraa, Sherali and Shetty [37], Padberg [230] and Fang and Puthenpura [74], who 
discuss the existence of other IPM's in a separate section or chapter. We also mention Saigal [249], 
who gives a large chapter (of 150 pages) on a topic not covered in this book, namely (primal) 
affine-scaling methods. A recent survey on these methods is given by Tsuchiya [272]. 
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behavior of the derivatives when the optimal set is approached. We also show that we 
can associate with each point on the central path two homothetic ellipsoids centered at 
this point so that one ellipsoid is contained in the feasible region and the other ellipsoid 
contains the optimal set. The next two chapters deal with methods for accelerating 
IPM's. Chapter 17 deals with a technique called partial updating, already proposed in 
Karmarkar's original paper. In Chapter 18 we consider so-called higher-order methods. 
The Newton methods used before are considered to be first-order methods. It is shown 
that more advanced search directions improve the iteration bound for several first order 
methods. The complexity bound achieves the best value known for IPM's nowadays. 
We also apply the higher-order-technique to the Logarithmic Barrier Method. 

Chapter 19 deals with Parametric and Sensitivity Analysis. This classical subject 
in LO is of great importance in the analysis of practical linear models. Almost any 
textbook includes a section about it and many commercial optimization packages offer 
an option to perform post-optimal analysis. Unfortunately, the classical approach, 
based on the use of an optimal basic solution, has some inherent weaknesses. These 
weaknesses are discussed and demonstrated. We follow a new approach in this chapter, 
leading to a better understanding of the subject and avoiding the shortcomings of 
the classical approach. The notions of optimal partition and strictly complementary 
solution play an important role, but to avoid any misunderstanding, it should be 
emphasized that the new approach can also be performed when only an optimal basic 
solution is available. 

After all the efforts spent in the book to develop beautiful theorems and convergence 
results the reader may want to get some more evidence that IPM's work well in 
practice. Therefore the final chapter is devoted to the implementation of IPM's. 
Though most implementations more or less follow the scheme prescribed by the 
theory, there is still a large stretch between the theory and an efficient implementation. 
Chapter 20 discusses some of the important implementation issues. 

1.3 What is new in this book? 

The book offers an approach to LO and to IPM's that is new in many aspects.^ First, 
the derivation of the main theoretical results for LO, like the duality theory and the 
existence of a strictly complementary solution from properties of the central path, is 
new. The primal-dual algorithm for solving self-dual problems is also new; equipped 
with the rounding procedure it yields an exact strictly complementary solution. The 
derivation of the polynomial complexity of the whole procedure is surprisingly simple.^ 
The algorithms in Part II, based on the logarithmic barrier method, are known 
from the literature, but their analysis contains many new elements, often resulting 
in much sharper bounds than those in the literature. In this respect an important 
(and new) tool is the function tjj, first introduced in Section 5.5 and used through 
the rest of the book. We present a comprehensive discussion of all possible variants 
of these algorithms (like dual, primal and primal-dual full-step, adaptive-update and 

^ Of course, the book is inspired by many papers and results of many colleagues. Thinking over these 
results often led to new insights, new algorithms and new ways to analyze these algorithms. 

^ The approach in Part I, based on the embedding of a given LO problem in a self-dual problem, 
suggests some new and promising implementation strategies. 
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large-update methods). We also deal with the — from the practical point of view 
very important — predictor-corrector method, and show that this method has an 
asymptotically quadratic convergent rate. We also discuss the techniques of partial 
updating and the use of higher-order methods. Finally, we present a new approach to 
sensitivity analysis and discuss many computationally aspects which are crucial for 
efficient implementation of IPM's. 

1.4 Required knowledge and skills 

We wanted to write a book that presents the most prominent results on IPM's in a 
unified and comprehensive way, with a full development of the most important items. 
Especially Part I can be considered as an elementary introduction to LO, contai­
ning both a complete derivation of the duality theory as well as an easy-to-analyze 
polynomial algorithm. 

The mathematical tools that are used do not go beyond standard calculus and linear 
algebra. Nevertheless, people educated in the Simplex based approach to LO will need 
some effort to get acquainted with the formalism and the mathematical manipulations. 
They have struggled with the algebra of pivoting, the new methods do not refer to 
pivoting.^ However, the tools used are not much more advanced than those that were 
required to master the Simplex Method. We therefore expect that people will quickly 
get acquainted with the new tools, just as many generations of students have become 
familiar with pivoting. 

In general, the level of the book will be accessible to any student in Operations 
Research and Mathematics, with 2 to 3 years of basic training in calculus and linear 
algebra. 

1.5 How to use the book for courses 

Owing to the importance of LO in theory and in practice, it must be expected that 
IPM's will soon become a popular topic in Operations Research and other fields where 
LO is used, such as Business, Economics and Engineering. More and more institutions 
will open courses dedicated to IPM's for LO. It has been one of our purposes to collect 
in this book all relevant material from research papers, survey papers, etc. and to strive 
for a cohesive and easily accessible source for such courses. 

The dependence between the chapters is demonstrated in Figure LL This figure 
indicates some possible reading paths through the book. For newcomers in the field 
we recommend starting with Part I, consisting of Chapters 2, 3 and 4. This part of 
the book can be used for a basic course in LO, covering duality theory and offering 
a first and easy-to-analyze polynomial algorithm: the Full-Newton Step Algorithm. 
Part II deals with LO problems in standard format. Chapter 5 covers the duality 
theory and Chapters 6 and 7 deal with several interesting variants of the Logarithmic 

^ However, numerical analysts who want to perform the actual implementation really need to 
master advanced sparse linear algebra, including pivoting strategies in matrix factorization. See 
Chapter 20. 
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~ v ^ J V ^ J V ̂  

Figure 1.1 Dependence between the chapters. 

Barrier Method tha t underly the efficient solvers in existing commercial optimization 
packages. For readers who know the Simplex Method and who are familiar with the 
LO problem in s tandard format, we made Par t II independent of Par t I; they might 
wish to start their reading with Par t II and then proceed with Par t I. 

Par t III, on the target-following approach, offers much new understanding of the 
principles of IPM's , as well as a unifying and easily accessible t reatment of other 
IPM's , such as the method of Renegar (Chapter 14). This part could be part of a 
more advanced course on IPM's . 

Chapter 15 contains a relatively simple description and analysis of Karmarkar 's 
Projective Method. This chapter is almost independent of the previous chapters and 
hence can be read at any stage. 

Chapters 16, 17 and 18 could find a place in an advanced course. The value of 
Chapter 16 is purely theoretical and is recommended to readers who want to delve 
more deeply into properties of the central path. The other two chapters, on the other 
hand, have more practical value. They describe and apply two techniques (partial 
updat ing and higher-order methods) tha t can be used to enhance the efficiency of 
some methods. 

We consider Chapter 19 to be extremely important for users of LO who are interested 
in the sensitivity of their models to perturbations in the input data. This chapter is 
independent of almost all the previous chapters. 

Finally, Chapter 20 is relevant for readers who are interested in implementation 
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issues. It assumes a basic understanding of many theoretical concepts for IPM's and 
of advanced numerical algebra. 

1.6 Footnotes and exercises 

It may be worthwhile to devote some words to the positioning of footnotes and 
exercises in this book. The footnotes are used to refer to related references, or to 
make a small digression from the main thrust of the reasoning. We preferred to place 
the footnotes not at the end of each chapter but at the bottom of the page they refer 
to. We have treated exercises in the same way. They often have a goal similar to 
footnotes, namely to highlight a result closely related to results discussed in the book. 

1.7 Preliminaries 

We assume that the reader is familiar with the basic concepts of linear algebra, such as 
linear (sub-)space, linear (in-)dependence of vectors, determinant of a (square) matrix, 
nonsingularity of a matrix, inverse of a matrix, etc. We recall some basic concepts and 
results in this section.^^ 

1.7.1 Positive definite matrices 

The space of all square n x n matrices is denoted by K^ 
is called a positive deGnite matrix if A is symmetric and each of its eigenvalues is 
positive.^^ The following statements are equivalent for any symmetric matrix A: 

(i) A is positive definite; 
(n) A = C^C for some nonsingular matrix C; 

(Hi) x^Ax > 0 for each nonzero vector x. 

A matrix A G K^^^ is called a positive semi-definite matrix if A is symmetric 
and its eigenvalues are nonnegative. The following statements are equivalent for any 
symmetric matrix A: 

(i) A is positive semi-definite; 
(n) A = C^C for some matrix C; 

(Hi) x^Ax > 0 for each vector x. 

1.7.2 Norms of vectors and matrices 

In this book a vector x is always an n-tuple (xi,X2,. . . ,Xn) in K^. The numbers 
^^ (1 ^ ^ ^ ^) are called the coordinates or entries of x. Usually we think of x as a 

^^ For a more detailed treatment we refer the reader to books like Bellman [38], BirkhoflF and 
MacLane [41], Golub and Van Loan [112], Horn and Johnson [147], Lancester and Tismenets-
ky [181], Ben-Israel and Greville [39], Strang [259] and Watkins [289]. 

^̂  Some authors do not include symmetry as part of the definition. For example, Golub and Van 
Loan [112] call A positive definite if (Hi) holds without requiring symmetry of A. 
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column vector and of its transpose, denoted by x^, as a row vector. If all entries of x 
are zero we simply write x = 0. A special vector is the all-one vector, denoted by e, 
whose coordinates are all equal to 1. The scalar product of x and s G K^ is given by 

T X S / ^ ^i^i-
i=l 

We recall the following properties of norms for vectors and matrices. A norm (or 
vector norm) on K^ is a function that assigns to each x G IR^ a nonnegative number 
||x|| such that for all x, 5 G K^ and ô  G IR: 

||x|| > 0, if x ^ O 

\\ax\\ = \a\\\x\\ 

\\x^s\\<\\x\\^\\s\\. 

The Euclidean norm is defined by 

When the norm is not further specified, ||x|| will always refer to the Euclidean norm. 
The Cauchy-Schwarz inequality states that for x,s G K^: 

x^s<\\x\\\\s\\. 

The inequality holds with equality if and only if x and s are linearly dependent. 
For any positive number p we also have the p-norm, defined by 

m\p E\^^\' 

The Euclidean norm is the special case where p = 2 and is therefore also called the 
2-norm. Another important special case is the 1-norm: 

Nli = E \Xi\. 

1 

Letting p go to infinity we get the so-called inGnity norm: 

^ p ^ o o " "^* 
| |x||_ = lim \\x 

We have 
ll^lloo = , ^ a x \Xi\. 

l<i<n 

For any positive definite n x n matrix A we have a vector norm ||.||^ according to 

||x||^ = Vx^Ax. 
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For any norm the unit hall in K^ is the set 

{ X G K ^ : ||x|| = 1 } . 

By concatenating the columns of an n x n matrix A (in the natural order), A can be 
considered a vector in IR^ . A function assigning to each A G K^^^ a real number Ĥ H 
is called a matrix norm if it satisfies the conditions for a vector norm and moreover 

\\AB\\<\\A\\\\B\\, 

for all A,BG K ^ ^ ^ . A well-known matrix norm is the Frohenius norm ||.||^, which is 
simply the vector 2-norm applied to the matrix: 

\Ah 

Every vector norm induces a matrix norm according to 

\\A\\ = max \\Ax\\ . 
\\x\\ = l 

This matrix norm satisfies 

\\Ax\\ < \\A\\ \\x\\, Vx e M". 

The vector 1-norm induces the matrix norm 

Pill = max J2\Aij\, 
l<j<n^—' 

i=l 

and the vector oo-norm induces the matrix norm 

l^lloo= max V | A , , | . 
l<i<r. 

\\A\\-^ is also called the column sum norm and ||^||oo the row sum norm. Note that 

P l l o o = l l ^ ^ l l l -

Hence, if A is symmetric then \\A\\^ = \\A\\-^. The matrix norm induced by the vector 
2-norm is, by definition, 

P l l 2 = max P x | | 2 . 
Ikll2=i 

This norm is also called the spectral matrix norm. Observe that it differs from the 
Frobenius norm (consider both norms for A = I, where / = diag (e)). In general, 

P I I 2 < P I I F -
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1.7.3 Hadamard inequality for the determinant 

For an n X n matrix A with columns ai, a 2 , . . . , a^ its determinant satisfies 

det{A) = volume of the parallelepiped spanned by ai, a 2 , . . . , a^. 

This interpretation of the determinant implies the inequality 

det(A)< ||ai| |2||a2||2... | |an|l2, 

which is known as the Hadamard inequality.^'^ 

1.7.4 Order estimates 

Let / and g be functions from the positive reals to the positive reals. In many estimates 
the following definitions will be helpful. 

• We write f{x) = 0{g{x)) if there exists a positive constant c such that f{x) < cg{x), 
for all X > 0. 

• We write f{x) = ft{g{x)) if there exists a positive constant c such that f{x) > cg{x), 
for all X > 0. 

• We write f{x) = S{g{x)) if there exist positive constants ci and C2 such that 
cig{x) < f{x) < C2^(x), for all x > 0. 

1.7.5 Notational conventions 

The identity matrix usually is denoted as / ; if the size of / is not clear from the 
context we use a subscript like in /^ to specify that it is the n x n identity matrix. 
Similarly, zero matrices and zero vectors usually are denoted simply as 0; but if the 
size is ambiguous, we use subscripts like in O^xn to specify the size. The all-one vector 
is always denoted as e, and if necessary the size is specified by a subscript. 

For any x G K^ we often denote the diagonal matrix diag (x) by the corresponding 
capital X. For example, D = diag((i). The componentwise product of two vectors 
X, 5 G K^, known as the Hadamard product of x and s is denoted compactly by xs.^^ 
The i-th entry of xs is XiSi. In other words, xs = Xs = Sx. As a consequence we have 
for the scalar product of x and 5, 

T T / \ 
X 8 = e [XS), 

which will be used repeatedly later on. Similarly we use x/s for the componentwise 
quotient of x and s. This kind of notation is also used for unitary operations. For 
example, the i-th entry of x~^ is x~^ and the i-th entry of y ^ is -^/xi. This notation 
is consistent as long as componentwise operations are given precedence over matrix 
operations. Thus, if A is a matrix then Axs = A{xs). 

^^ See, e.g., Horn and Johnson [147], page 477. 

^^ In the hterature this product is known as the Hadamard product of x and s. It is often denoted by 
x»s. Throughout the book we will use the shorter notation xs. Note that if x and s are nonnegative 
then xs = 0 holds if and only if x ^ s = 0. 
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Introduction: Theory and 
Complexity 



Duality Theory for Linear 
Optimization 

2.1 Introduction 

This chapter introduces the reader to the main theoretical results in the field of linear 
optimization (LO). These results concern the notion of duality in LO. An LO problem 
consists of optimizing (i.e., minimizing or maximizing) a linear objective function 
subject to a finite set of linear constraints. The constraints may be equality constraints 
or inequality constraints. If the constraints are inconsistent, so that they do not allow 
any feasible solution, then the problem is called infeasible, otherwise feasible. In the 
latter case the feasible set (or domain) of the problem is not empty; then there are two 
possibilities: the objective function is either unbounded or bounded on the domain. In 
the first case, the problem is called unbounded and in the second case bounded. The 
set of optimal solutions of a problem is referred to as the optimal set; the optimal set 
is empty if and only if the problem is infeasible or unbounded. 

For any LO problem we may construct a second LO problem, called its dual problem, 
or shortly its dual. A problem and its dual are closely related. The relation can be 
expressed nicely in terms of the optimal sets of both problems. If the optimal set of one 
of the two problems is nonempty, then neither is the optimal set of the other problem; 
moreover, the optimal values of the objective functions for both problems are equal. 
These nontrivial results are the basic ingredients of the so-called duality theory for 
LO. 

The duality theory for LO can be derived in many ways.^ A popular approach in 
textbooks to this theory is constructive. It is based on the Simplex Method. While 
solving a problem by this method, at each iterative step the method generates so-

^ The first duality results in LO were obtained in a nonconstructive way. They can be derived from 
some variants of Farkas' lemma [75], or from more general separation theorems for convex sets. See, 
e.g., Osborne [229] and Saigal [249]. An alternative approach is based on direct inductive proofs 
of theorems of Farkas, Weyl and Minkowski and derives the duality results for LO as a corollary 
of these theorems. See, e.g.. Gale [91]. Constructive proofs are based on finite termination of a 
suitable algorithm for solving either linear inequality systems or LO problems. A classical method 
for solving linear inequality systems in a finite number of steps is Fourier-Motzkin elimination. 
By this method we can decide in finite time if the system admits a feasible solution or not. See, 
e.g., Dantzig [59]. This can be used to proof Farkas' lemma from which the duality results for 
LO then easily follow. For the LO problem there exist several finite termination methods. One 
of them, the Simplex Method, is sketched in this paragraph. Many authors use such a method to 
derive the duality results for LO. See, e.g., Chvatal [55], Dantzig [59], Nemhauser and Wolsey [224], 
Papadimitriou and Steiglitz [231], Schrijver [250] and Walsh [287]. 
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called multipliers associated with the constraints. The method terminates when the 
multipliers tu rn out to be feasible for the dual problem; then it yields an optimal 
solution both for the primal and the dual problem.^ 

Interior point methods are also intimately linked with duality theory The key 
concept is the so-called central path, an analytic curve in the interior of the domain of 
the problem tha t s tarts somewhere in the 'middle' of the domain and ends somewhere 
in the 'middle' of the optimal set of the problem. The term 'middle' in this context will 
be made precise later. Interior point methods follow the central path (approximately) 
as a guideline to the optimal set.^ One of the aims of this chapter is to show tha t the 
aforementioned duality results can be derived from properties of the central path.^ 
Not every problem has a central path. Therefore, it is important in this framework to 
determine under which condition the central pa th exists. It happens tha t this condition 
implies the existence of the central pa th for the dual problem and the points on the 
dual central pa th are closely related to the points on the primal central path. As a 
consequence, following the primal central pa th (approximately) to the primal optimal 
set goes always together with following the dual central pa th (approximately) to the 
dual optimal set. Thus, when the primal and dual central paths exist, the interior-
point approach yields in a natural way the duality theory for LO, just as in the case of 
the Simplex Method. When the central paths do not exist the duality results can be 
obtained by a little trick, namely by embedding the given problem in a larger problem 
which has a central path. Below this approach will be discussed in more detail. 

We start the whole analysis, in the next section, by considering the LO problem in 
the so-called canonical form. So the objective is to minimize a linear function over a 
set of inequality constraints of greater-than-or-equal type with nonnegative variables. 

Since every LO problem admits a canonical representation, the validity of the 
duality results in this chapter naturally extend to arbitrary LO problems. Usually 
the canonical form of an LO problem is obtained by introducing new variables and /or 
constraints. As a result, the number of variables and/or constraints may be doubled. 
In Appendix D. l we present a specific scheme tha t transforms any LO problem tha t is 
not in the canonical form to a canonical problem in such a way tha t the total number 
of variables and constraints does not increase, and even decreases in many cases. 

We show tha t solving the canonical LO problem can be reduced to finding a solution 
of an appropriate system of inequalities. In Section 2.4 we impose a condition on the 
system—the interior-point condition— and we show tha t this condition is not satisfied 
by our system of inequalities. By expanding the given system slightly however we get 
an equivalent system tha t satisfies the interior-point condition. Then we construct a 
self-dual problem^ whose domain is defined by the last system. We further show tha t 
a solution of the system, and hence of the given LO problem, can easily be obtained 

The Simplex Method was proposed first by Dantzig [59]. In fact, this method has many variants 
due to various strategies for choosing the pivot element. When we refer to the Simplex Method 
we always assume that a pivot strategy is used that prevents cycling and thus guarantees finite 
termination of the method. 
This interpretation of recent interior-point methods for LO was proposed first by Megiddo [200]. 
The notion of central path originates from nonlinear (convex) optimization; see Fiacco and 
McCormick [77]. 

This approach to the duality theory has been worked out by Giiler et al. [133, 134]. 

Problems of this special type were considered first by Tucker [274], in 1956. 
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from a so-called strictly complementary solution of the self-dual problem. 
Thus the canonical problem can be embedded in a natural way into a self-

dual problem and using the existence of a strictly complementary solution for the 
embedding self-dual problem we derive the classical duality results for the canonical 
problem. This is achieved in Section 2.9. 

The self-dual problem in itself is a trivial LO problem. In this problem all variables 
are nonnegative. The problem is trivial in the sense tha t the zero vector is feasible 
and also optimal. In general the zero vector will not be the only optimal solution. 
If the optimal set contains nonzero vectors, then some of the variables must occur 
with positive value in an optimal solution. Thus we may divide the variables into two 
groups: one group contains the variables tha t are zero in each optimal solution, and 
the second group contains the other variables tha t may occur with positive sign in an 
optimal solution. Let us call for the moment the variables in the first group 'good' 
variables and those in the second group 'bad' variables. 

We proceed by showing tha t the interior-point condition guarantees the existence 
of the central path. The proof of this fact in Section 2.7 is constructive. From the 
limiting behavior of the central pa th when it approaches the optimal set, we derive 
the existence of a strictly complementary solution of the self-dual problem. In such 
an optimal solution all 'good' variables are positive, whereas the 'bad' variables are 
zero, of course. Next we prove the same result for the case where the interior-point 
condition does not hold. From this we derive tha t every (canonical) LO problem tha t 
has an optimal solution, also has a strictly complementary optimal solution. 

It may be clear tha t the nontrivial part of the above analysis concerns the existence 
of a strictly complementary solution for the self-dual problem. Such solutions play 
a crucial role in the approach of this book. Obviously a strictly complementary 
solution provides much more information on the optimal set of the problem than 
just one optimal solution, because variables tha t occur with zero value in a strictly 
complementary solution will be zero in any optimal solution.^ 

One of the surprises of this chapter is tha t the above results for the self-dual problem 
immediately imply all basic duality results for the general LO problem. This is shown 
first for the canonical problem in Section 2.9 and then for general LO problems in 
Section 2.10; in this section we present an easy-to-remember scheme for writing down 
the dual problem of any given LO problem. This involves first transforming the given 
problem to a canonical form, then taking the dual of this problem and reformulating 
the canonical dual so tha t its relation to the given problem becomes more apparent. 
The scheme is such tha t applying it twice returns the original problem. Finally, 
although the result is not used explicitly in this chapter, but because it is interesting 
in itself, we conclude this chapter with Section 2.11 where we show tha t the central 
pa th converges to an optimal solution. 

^ The existence of strictly complementary optimal solutions was shown first by Goldman and 
Tucker [111] in 1956. Balinski and Tucker [33], in 1969, gave a constructive proof. 
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2.2 The canonical LO-problem and its dual 

We say that a hnear optimization problem is in canonical form if it is written in the 
following way: 

(P) min {c^x : Ax>b,x>0}, (2.1) 

where the matrix A is of size m x n, the vectors c and x are in K^ and b in IR" .̂ 
Note that all the constraints in (P) are inequality constraints and the variables 
are nonnegative. Each LO-problem can be transformed to an equivalent canonical 
problem/ Given the above canonical problem (P), we consider a second problem, 
denoted by (D) and called the dual problem of (P), given by 

(D) max {b^y : A^y < c, y > O} . (2.2) 

The two problems (P) and (D) share the matrix A and the vectors b and c in their 
description. But the role of b and c has been interchanged: the objective vector c of 
(P) is the right-hand side vector of (D), and, similarly, the right-hand side vector b 
of (P) is the objective vector of (D). Moreover, the constraint matrix in (D) is the 
transposed matrix A^, where A is the constraint matrix in (P). In both problems the 
variables are nonnegative. The problems differ in that (P) is a minimization problem 
whereas (D) is a maximization problem, and, moreover, the inequality symbols in the 
constraints have opposite direction.^'^ 

At this stage we make a crucial observation. 

Lemma 1.1 (Weak duality) Let x be feasible for (P) and y for (D). Then 

b^y < c^x. (2.3) 

Proof: If X is feasible for (P) and y for (P)), then x > 0,7/ > 0, Ax > b and A^y < c. 
As a consequence we may write 

b^y < {Axfy = x^ (A^y) < Jx. 

This proves the lemma. • 

Hence, any y that is feasible for (D) provides a lower bound b^y for the value of c^x, 
whenever x is feasible for (P). Conversely, any x that is feasible for (P) provides an 
upper bound c^x for the value of b^y, whenever y is feasible for (D). This phenomenon 
is known as the weak duality property. We have as an immediate consequence the 
following. 

Corollary 1.2 Ifx is feasible for (P) and y for (D), and c^x = b^y, then x is optimal 
for (P) and y is optimal for (D). 

For this we refer to any text book on LO. In Appendix D it is shown that this can be achieved 
without increasing the numbers of constraints and variables. 

Exercise 1 The dual problem (D) can be transformed into canonical form by replacing the 
constraint A^y < c by —A^y > —c and the objective maxb^y by mm—b^y. Verify that the 
dual of the resulting problem is exactly (P) . 

Exercise 2 Let the matrix A be skew-symmetric, i.e., A^ = —A, and let b = —c. Verify that then 
(D) is essentially the same problem as (P) . 

7 
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The (nonnegative) difference 

T 
c X iF y (2.4) 

between the primal objective value at a primal feasible x and the dual objective value 
at a dual feasible y is called the duality gap for the pair (x^y). We just established 
tha t if the duality gap vanishes then x is optimal for (P) and y is optimal for (D). 
Quite surprisingly, the converse statement is also true: if x is an optimal solution of 
(P) and y is an optimal solution of (D) then the duality gap vanishes at the pair 
(x, y). This result is known as the strong duality property in LO. One of the aims of 
this chapter is to prove this most important result. So, in this chapter we will not use 
this property, but prove it! 

Thus our starting point is the question under which conditions an optimal pair (x, y) 
exists with vanishing duality gap. In the next section we reduce this question to the 
question if some system of linear inequalities is solvable. 

2 . 3 R e d u c t i o n t o i n e q u a l i t y s y s t e m 

In this section we consider the question whether (P) and (D) have optimal solutions 
with vanishing duality gap. This will be t rue if and only if the inequality system 

Ax > 6, X > 0, 

-A^y > - c , y> 0, 

b^y — c^x > 0 

(2.5) 

has a solution. This follows by noting tha t x and y satisfy the inequalities in the first 
two lines if and only if they are feasible for (P) and (D) respectively. By Lemma I.l 
this implies c^x — b^y > 0. Hence, if we also have b^y — c^x > 0 we get b^y = c^x, 
proving the claim. 

If K. = 1, the following inequality system is equivalent to (2.5), as easily can be 
verified. 

^mxm A b 

— A U^xn C 

5^ - c ^ 0 

y 
X 

n 

> 
' Om' 

On 

0 

x>0,y>0, K>0. (2.6) 

The new variable n is called the homogenizing variable. Since the right-hand side 
in (2.6) is the zero vector, this system is homogeneous: whenever {y^x^n) solves the 
system then \{y^x^n) also solves the system, for any positive A. Now, given any 
solution {x,y,Hi) of (2.6) with n > 0, {x/n^y/tv,!) yields a solution of (2.5). This 
makes clear tha t , in fact, the two systems are completely equivalent unless every 
solution of (2.6) has n = 0. But if ĉ = 0 for every solution of (2.6), then it follows tha t 
no solution exists with n = 1, and therefore the system (2.5) cannot have a solution in 
tha t case. Evidently, we can work with the second system without loss of information 
about the solution set of the first system. 



20 I Theory and Complexity 

Hence, defining the matrix M and the vector z by 

M :--

0 

-A^ 
b^ 

A 

0 
T 

-b 

c 

0 

, z := 
y 
X 

n 

(2.7) 

where we omitted the size indices of the zero blocks, we have reduced the problem 
of finding optimal solutions for (P) and {D) with vanishing duality gap to finding a 
solution of the inequality system 

Mz > 0, z > 0, n>{). (2.8) 

If this system has a solution then it gives optimal solutions for (P) and {D) with 
vanishing duality gap; otherwise such optimal solutions do not exist. Thus we have 
proved the following result. 

Theorem 1.3 The problems (P) and (D) have optimal solutions with vanishing 
duality gap if and only if system (2.8), with M and z as defined in (2.7), has a 
solution. 

Thus our task has been reduced to finding a solution of (2.8), or to prove that such 
a solution does not exists. In the sequel we will deal with this problem. In doing so, 
we will strongly use the fact that the matrix M is skew-symmetric, i.e., M^ = —M.̂ ^ 
Note that the order of M equals m + n + 1. 

2.4 Interior-point condition 

The method we are going to use in the next chapter for solving (2.8) is an interior-
point method (IPM), and for this we need the system to satisfy the interior-point 
condition. 

Definition 1.4 (IPC) We say that any system of (linear) equalities and (linear) 
inequalities satisfies the interior-point condition (IPC) if there exists a feasible solution 
that strictly satisfies all inequality constraints in the system. 

Unfortunately the system (2.8) does not satisfy the IPC. Because if z = {x^y^n) 
is a solution then x/n is feasible for (P) and y/n is feasible for {D). But then 

b^y) /n > 0, by weak duality. Since /̂  > 0, this implies b^y — 
On the other hand, after substitution of (2.7), the last constraint in (2.̂  
(c^x T C X < 0. 

requires 
b^y — c^x > 0. It follows that b^y — c^x = 0, and hence no feasible solution of (2.8) 
satisfies the last inequality in (2.8) strictly. 

To overcome this shortcoming of the system (2.8) we increase the dimension by 
adding one more nonnegative variable i^ to the vector z, and by extending M with 
one extra column and row, according to 

M 
M r 

(2.9) 

Exercise 3 If S* is an n x n skew-symmetric matrix and z G R^ , then z^Sz = 0. Prove this. 
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where 

with em-\-n-\-i denoting an all-one vector of length m-\-n- 1. So we have 

M 

0 
-A^ 
b^ 

A 
0 

T 

-I 
C 

0 

— AP 

T 
C Cr, 

(2.10) 

(2.11) 

The order of the matr ix M is TTI + 

this chapter we denote this number as n: 

n = 771 + n ^ 

Letting g' be the vector of length n given by 

On-l 

n 

2. To simplify the presentation, in the rest of 

Q '-- (2.12) 

we consider the system 
Mz >-q, z> 0. (2.13) 

We make two important observations. First we observe tha t the matr ix M is skew-
symmetric. Secondly, the system (2.13) satisfies the IPC. The all-one vector does the 
work, because taking z = e^_i and î  = 1, we have 

Mz-
u 
^1 

r 

0 

en-i 

1 
+ "o" 

n 

Men-
T 1 

The last equality is due to the definition of r , which implies Me^-i + r 

T 
-r Cn-i 

(en- Men. -i) en-i ^n—1^71—1 

• (2.14) 

en-1 and 

= 1, 

where we used e^_iMen-i = 0 (cf. Exercise 3, page 20). 
The usefulness of system (2.13) stems from two facts. First, it satisfies the IPC 

and hence can be t reated by an interior-point method. Wha t this implies will 
become apparent in the next chapter. Another crucial property is tha t there is a 
correspondence between the solutions of (2.8) and the solutions of (2.13) with i} = 0. 
To see this it is useful to write (2.13) in terms of z and i^: 

> 0, z > 0, î  > 0. 

Obviously, if z = (^,0) satisfies (2.13), this implies Mz > 0 and ^ > 0, and hence z 
satisfies (2.8). On the other hand, if z satisfies (2.8) then Mz > 0 and z > 0; as a 
consequence z = (z, 0) satisfies (2.13) if and only if —r^z + n > 0, i.e., if and only if 

r^z < n. 

If r^z < 0 this certainly holds. Otherwise, if r^z > 0, the positive multiple nz/r^z of 
z satisfies r^z < n. Since a positive multiple preserves signs, this is sufficient for our 
goal. We summarize the above discussion in the following theorem. 

M r 

- r ^ 0 

Z 

1^ 
+ 0 

n 
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Theorem 1.5 The following three statements are equivalent: 

(i) Problems (P) and (D) have optimal solutions with vanishing duality gap; 
(ii) If M and z are given by (2.7) then (2.8) has a solution; 

{Hi) If M and z are given by (2.11) then (2.13) has a solution with î  = 0 and n> {). 

Moreover, system (2.13) satisfies the IPC. 

2.5 E m b e d d i n g into a self-dual LO-problem 

Obviously, solving (2.8) is equivalent to finding a solution of the minimization problem 

(6'Po) minjO^z : Mz > 0, z > O} (2.15) 

with /T: > 0. In fact, this is the way we are going to follow: our aim will be to find 
out whether this problem has a(n optimal) solution with /T: > 0 or not. Note that 
the latter condition makes our task nontrivial. Because finding an optimal solution of 
{SPQ) is trivial: the zero vector is feasible and hence optimal. Also note that {SP^) is 
in the canonical form. However, it has a very special structure: its feasible domain is 
homogeneous and since M is skew-symmetric, the problem (SPQ) is a self-dual problem 
(cf. Exercise 2, page 18). We say that (SPQ) is a self-dual embedding of the canonical 
problem (P) and its dual problem (D). 

If the constraints in an LO problem satisfy the IPC, then we simply say that the 
problem itself satisfies the IPC. As we established in the previous section, the self-dual 
embedding (SPQ) does not satisfy the IPC, and therefore, from an algorithmic point 
of view this problem is not useful. 

In the previous section we reduced the problem of finding optimal solutions (P) and 
(D) with vanishing duality gap to finding a solution of (2.13) with 1^ = 0 and K. > 0. 
For that purpose we consider another self-dual embedding of (P) and (D), namely 

(SP) min {q^z : Mz>-q,z>0}. (2.16) 

The following theorem shows that we can achieve our goal by solving this problem. 

Theorem 1.6 The system (2.13) has a solution with 1^ = 0 and K. > 0 if and only if 
the problem (SP) has an optimal solution with n = Zn-i > 0-

Proof: Since q>0 and z > 0, we have q^z > 0, and hence the optimal value of (SP) 
is certainly nonnegative. On the other hand, since q > 0 the zero vector {z = 0) is 
feasible, and yields zero as objective value, which is therefore the optimal value. Since 
q^z = ni^, we conclude that the optimal solutions of (2.16) are precisely the vectors z 
satisfying (2.13) with 1^ = 0. This proves the theorem. • 

We associate to any vector z G K^ its slack vector s{z) as follows. 

s{z) :=Mz^q. (2.17) 

Then we have 

z is a feasible for (SP) <^^ z > 0, s{z) > 0. 
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As we established in the previous section, the inequalities defining the feasible domain 
of (SP) satisfy the IPC. To be more specific, we found in (2.14) that the all-one vector 
e is feasible and its slack vector is the all-one vector. In other words. 

sie) e. (2.18) 

We proceed by giving a small example. 

Example 1.7 By way of example we consider the case where the problems (P) and 
(D) are determined by the following constraint matrix A, and vectors b and c:̂ ^ 

A [2 

0 
-A^ 
h^ 

A 
0 

T — & 

-h 
c 
0 

r 0 

u 
- 1 

1 

0 

u 
u 

- 1 

1 

u 
u 

- 2 

- 1 

1 
2 
U 

According to (2.7) the matrix M is then equal to 

M 

and according to (2.10), the vector r becomes 

Me 

Thus, by (2.11) and (2.12), we obtain 

r 11 
1 
1 
1 

r 0 1 
1 
1 

- 2 

r 1 1 
0 
0 
3 

M 

1" 
0 
0 
3 
0 

, Q = 

"o" 
0 
0 
0 
5 

Hence, the self-dual problem (SP), as given by (2.16), gets the form 

mm < 5̂ ^ 

1" 
0 
0 
3 
0 

Zl 

Z2 

Z3 

Z4 

_^5_ 

+ 

"o" 
0 
0 
0 
5 

> 0 , 

Zl 

Z2 

Z3 

Z4 = K, 

_zs = ^_ 

\ 

> 0 

> 

> . (2.19) 

Note that the all-one vector is feasible for this problem and that its surplus vector 
also is the all-one vector. This is in accordance with (2.18). As we shall see later on, 
it means that the all-one vector is the point on the central path for /i = 1. (} 

cf. Example D.5 (page 449) in Appendix D. 
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Remark 1.8 In the rest of this chapter, and the next chapter, we deal with the problem 
(SP). In fact, our analysis does not only apply to the case that M and q have the 
special form of (2.11) and (2.12). Therefore we extend the applicability of our analysis 
by weakening the assumptions on M and q. Unless stated otherwise below we only 
assume the following: 

M^ = - M , ^ > 0, 5(e) = e. (2.20) 

The last two variables in the vector z play a special role. They are the homogenizing 
variable K. = Zn-i, and i^ = z^. The variable i^ is called the normalizing variable, 
because of the following important property. 

Lemma 1.9 One has 
e^z + e^s{z) = n + q^z. (2.21) 

Proof: The identity in the lemma is a consequence of the orthogonality property (cf. 
Exercise 3, page 20) 

u^Mu = 0, \/ue le. (2.22) 

First we deduce that for every z one has 

q^z = z^ {s{z) - Mz) = z^s{z) - z^Mz = z^s{z). (2.23) 

Taking u = e — z in (2.22) we obtain 

{z-ef{s{z)-s{e)) = 0. 

Since 5(e) = e, e^e = n and z^s{z) = q^z, the relation (2.21) follows. • 

It follows from Lemma L9 that the sum of the positive coordinates in z and s{z) 
is bounded above by n + q^z. Note that this is especially interesting if z is optimal, 
because then q^z = 0. Hence, if z is optimal then 

e^z + e^s{z) = n. (2.24) 

Since z and s{z) are nonnegative this implies that the set of optimal solutions is 
bounded. 

Another interesting feature of the LO-problem (2.16) is that it is self-dual: the dual 
problem is 

{DSP) max {-q^u : M^u <q,u>{)]] 

since M is skew-symmetric, M^u < q is equivalent to —Mu < q, or Mu > —q, 
and maximizing —q^u is equivalent to minimizing q^u, and thus the dual problem is 
essential the same problem as (2.16). 

The rest of the chapter is devoted to our main task, namely to find an optimal 
solution of (2.16) with ẑ: > 0 or to establish that such a solution does not exist. 

2.6 T h e classes B and N 

We introduce the index sets B and N according to 

B := {i : ẑ  > 0 for some optimal z} 

N := {i : Si{z) > 0 for some optimal z} . 
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So, B contains all indices i for which an optimal solution z with positive Zi exists. We 
also write Zi e B if i e B. Note tha t we certainly have i^ ^ B, because i^ is zero in 
any optimal solution of (SP). The main question we have to answer is whether n G B 
holds or not. Because if n G B then there exists an optimal solution z with n > 0, 
in which case (P) and (D) have optimal solutions with vanishing duality gap, and 
otherwise not. 

The next lemma implies tha t the sets B and N are disjoint. In this lemma, and 
further on, we use the following notation. To any vector î  G IR , we associate the 
diagonal matr ix U whose diagonal entries are the elements of u, in the same order. If 
also 'U G IR , then Uv will be denoted shortly as uv. Thus uv is a vector whose entries 
are obtained by multiplying u and v componentwise. 

L e m m a 1.10 Let z^ and z'^ be feasible for {SP). Then z^ and z'^ are optimal solutions 
of{SP) if and only if zh{z'^) = z'^s{z^) = 0. 

Proof: According to (2.23) we have for any feasible z: 

q^z = z^s{z). (2.25) 

As a consequence, z > 0 is optimal if and only if s{z) > 0 and z^s{z) = 0. Since, by 
(2.22), 

{Z'-ZYM{Z'-Z^)=0, 

we have 

{z^-zYis{z^)-s{z^))=0. 

Expanding the product on the left and rearranging the terms we get 

(zYsiz^) + {zYs{z') = {zYs{z') + {zYs{z^). 

Now z^ is optimal if and only if (z^)^s{z^) = 0, by (2.25), and similarly for z'^. Hence, 
since z^, z'^, s{z^) and s{z'^) are all nonnegative, z^ and z'^ are optimal if and only if 

{zYs{z^) + {zYs{z') = 0, 

which is equivalent to 

z^s{z'^) =z'^s{z^) = 0 , 

proving the lemma. • 

Corol lary 1.11 The sets B and N are disjoint. 

Proof: If i G B n N then there exist optimal solutions z^ and z'^ of (SP) such tha t 
zj > 0 and Si{z'^) > 0. This would imply zlsi{z'^) > 0, a contradiction with Lemma 
1.10. Hence B n N is the empty set. • 

By way of example we determine the classes B and N for the problem considered 
in Example 1.7. 
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E x a m p l e 1.12 Consider the self-dual problem (SP) in Example 1.7, as given by 
(2.19): 

mm < 5̂ ^ 

0 
0 
1 
1 
1 

0 
0 
0 

- 1 
0 

1 
0 
0 

- 2 
0 

- 1 
1 
2 
0 

- 3 

1 " 
0 
0 
3 
0 

zi 

Z2 

Z3 

Z4 

_^5_ 

+ 

"o" 
0 
0 
0 
5 

> 0 , 

zi 

Z2 

Z3 

Z4 = K. 

_Z6=^_ 

\ 

> 0 

^ 

> . 

For any z G IR we have 

s{z) 

Z3 • Zs Z4 

Z4 

2^4 — Zi 

Zi - Z2- 2zs + 3^5 

5 — zi — 3^4 

Z3 - K 

2K, — z\ 

Z i - Z2- 2Z3 

b — Zi 

M 
?>K 

Now z is feasible if z > 0 and s{z) > 0, and optimal if moreover zs{z) 
z = {zi, Z2, zs, K, i}) is optimal if and only if 

0. So 

Zl 

Z2 

zs 
tv 
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> 0 , 

Zs - K^'d 

n 

2K — Zl 

z \ - Z2- 2zs + 3^^ 

5 — Zl — 3K 

> 0 , < 

Zi{z3-K^l9)=0 

Z2K = 0 

Zs {2K — ^i) = 0 . 

K {Zi - Z2- 2zs + 31 )̂ = 0 

î  (5 - Zl - 3/^) = 0 

Adding the equalities at the right we obtain 5̂ ^ = 0, which gives î  = 0, as it should. 
Substitution gives 

Zl 

Z2 

Zs 

K 

0 

>o, 

Zs- K 

K 

2K — Zl 

Zl — Z2 — 2zs 

b — Zl — 3K 

> 0 , < 

Zl {zs - K) =^ 

Z2K = 0 

Zs {2K — Zl) = 0 

K{ZI - Z2 - 2zs) = 0 

i9 = 0 

Note tha t if ĉ = 0 then the inequality 2K — zi > 0 implies zi = 0, and then the 
inequality zi — Z2 — 2zs > 0 gives also Z2 = 0 and zs = 0. Hence, z = 0 is the only 
optimal solution for which /T: = 0. So, let us assume K > 0. Then we deduce from the 
second and fourth equality tha t Z2 = 0 and Zi — Z2 — 2zs = 0. This reduces our system 
to 

Zl = 2zs 

0 

Zs 

K 

0 

> 0 , 

Zs- K 

K 

2K - 2zs 

0 

5 — 2zs — 3K 

> 0, < 

2^3 {zs - K) = 0 

Z2=0 

Zs {2K - 2zs) = 0 . 

0 = 0 
1̂  = 0 

The equations at the right make clear tha t either zs = 0 or zs = K. However, the 
inequality zs — K > 0 forces ^3 > 0 since K > 0. Thus we find tha t any optimal solution 
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has the form 
2n 
0 
n 
n 
0 

s{z) 

0 

0 

0 
5 — 5̂ c 

0 < /^< 1. 

This imphes that in this example the sets B and N are given by 

27 

(2.26) 

5 = {1, 3, 4} , iV = {2, 5}. 0 

In the above example the union of B and N is the full index set. This is not an 
incident. Our next aim is to prove that this always holds. 12,13,14,15 ^g ^ consequence 
these sets form a partition of the full index set {1, 2 , . . . , n}; it is the so-called optimal 
partition of (SP). This important and nontrivial result is fundamental to our purpose 
but its proof requires some effort. It highly depends on properties of the central path 
of (SP), which is introduced in the next section. 

2.7 T h e central pa th 

2.7.1 Definition of the central path 

Recall from (2.14) that 5(e) = e, where e (as always) denotes the all-one vector of 
appropriate length (in this case, n). As a consequence, we have a vector z such that 
ZiSi{z) = 1 (1 < i < n), which, using our shorthand notation can also be expressed as 

zs{z) (2.27) 

Now we come to a very fundamental notion, both from a theoretical and algorithmic 
point of view, namely the central path of the LO-problem at hand. The underlying 

^2 Exercise 4 Following the same approach as in Example 1.7 construct the embedding problem for 
the case where the problems (P) and (D) are determined by 

2] 

and, following the approach of Example 1.12, find the set of all optimal solutions and the optimal 
partition. 

^^ Exercise 5 Same as in Exercise 4, but now with 

1 1 h \ ^ 

^^ Exercise 6 Same as in Exercise 4, but now with 

2] 

^^ Exercise 7 Same as in Exercise 4, but now with 

[2 

[2 

/3>0 . 

/3<0 . 
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theoretical property is tha t for every positive number fi there exist a nonnegative 
vector z such tha t 

zs{z) = lie, z> 0, s{z) > 0, (2.28) 

and moreover, this vector is unique. If /i = 1, the existence of such a vector is 
guaranteed by (2.27). Also note tha t if we put /i = 0 in (2.28) then the solutions 
are just the optimal solutions of (SP). As we have seen in Example 1.12 there may 
more than one optimal solution. Therefore, if /i = 0 the system (2.28) may have 
multiple solutions. The following lemma is of much interest. It makes clear tha t for 
/i > 0 the system (2.28) has at most one solution. 

L e m m a 1.13 If fi > 0, then there exists at most one nonnegative vector z such that 
(2.28) holds. 

Proof: Let z^ and z'^ to nonnegative vectors satisfying (2.28), and let s^ = s{z^) 
and 5^ = s{z'^). Since /i > 0, z^ ,z^,5^,5^ are all positive. Define Az := z'^ — z^, and 
similarly As := 5^ — 5^. Then we may easily verify tha t 

MAz = As (2.29) 

z^As + s^Az + AsAz = 0. (2.30) 

Using tha t M is skew-symmetric, (2.22) implies tha t Az^As = 0, or, equivalently, 

e^ (AzAs) = 0. (2.31) 

Rewriting (2.30) gives 
(z^ ^Az)As^s^Az = 0. 

Since z'^ -\- Az = z^ > 0 and 5^ > 0, this implies tha t no two corresponding entries in 
Az and As have the same sign. So it follows tha t 

AzAs < 0. (2.32) 

Combining (2.31) and (2.32), we obtain AzAs = 0. Hence either {Az)i = 0 or 
{As)i = 0, for each i. Using (2.30) once more, we conclude tha t {Az)i = 0 and 
{As)i = 0, for each i. Hence Az = A s = 0, whence z^ = z'^ and 5^ = 5^. This proves 
the lemma. • 

To prove the existence of a solution to (2.28) requires much more effort. We postpone 
this to the next section. For the moment, let us take the existence of a solution to 
(2.28) for granted and denote it as z{fi). We call it the /i-center of (SP). The set 

{z(/i) : /i > 0} 

of all /i-centers represents a parametric curve in the feasible region of (SP). This curve 
is called the central path of (SP). Note tha t 

q z{fi) = s{fi) z{fi) = fin. (2.33) 

This proves tha t along the central path, when fi approaches zero, the objective value 
q^z{ii) monotonically decreases to zero, at a linear rate. 
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2.7.2 Existence of the central path 

In this section we give an algorithmic proof of the existence of a solution to (2.28). 
Starting at z = e we construct the /i-center for any /i > 0. This is done by using the 
so-called Newton direction as a search direction. The results in this section will also 
be used later when dealing with a polynomial-time method for solving (SP). 

Newton direction 

Assume that z is a positive solution of (SP) such that its slack vector s = s{z) is 
positive, and let Az denote a displacement in the z-space. Our aim is to find Az such 
that z + Az is the /i-center. We denote 

z+ := z^ Az, 

and the new slack vector as 5+: 

5+ := s{z^) = M{z + Az) + ^ = 5 + MA z. 

Thus, the displacement As in the 5-space is simply given by 

As = 5+ - 5 = MAz. 

Observe that Az and As are orthogonal, since by (2.22): 

{^Azf As = {Azf MAz = 0. (2.34) 

We want Az to be such that z+ becomes the /i-center, which means {z -\- Az) 
{s -\- As) = /ie, or 

zs -\- zAs -\- sAz -\- AzAs = /ie. 

This equation is nonlinear, due to the quadratic term AzAs. Applying Newton's 
method, we omit this nonlinear term, leaving us with the following linear system 
in the unknown vectors Az and As: 

MAz - As = 0, (2.35) 

zAs -\- sAz = fie — zs. (2.36) 

This system has a unique solution, as easily may be verified, by using that M is 
skew-symmetric and z > 0 and s > 0.^ '̂̂ ^ The solution Az is called the Newton 
direction. Since we omitted the quadratic term AzAs in our calculation of the Newton 

^^ Exercise 8 The coefficient matrix of the system (2.35-2.36) of linear equations in Az and As is 

M -I 
S Z 

As usual, Z = diag (z) and S = diag (s), with 2; > 0 and s > 0, and / denotes the identity matrix. 
Show that this matrix is nonsingular. 

'̂̂  Exercise 9 Let M be a skew-symmetric matrix of size n x n and Z and S positive diagonal 
matrices of the same size as M. Then the matrix S + ZM is nonsingular. Prove this. 
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direction, z + Az will (in general) not be the /i-center, but hopefully it will be a good 
approximation. In fact, using (2.36), after the Newton step one has 

z+5(z+) = (^ + Az)(5 + As) = Z5 + (zAs + sAz) + AzAs = /ie + AzAs. (2.37) 

Comparing this with our desire, namely z+5(z+) = /ie, we see that the 'error' is 
precisely the quadratic term AzAs. Using (2.22), we deduce from (2.37) that 

( z+)^5 (z+)= / i e^e : ^n, (2.38) 

showing that after the Newton step the duality gap already has the desired value. 

Example 1.14 Let us compute the Newton step at z = e for the self-dual problem 
{SP) in Example 1.7, as given by (2.19), with respect to some /i > 0. Since 
z = s{z) = e, the equation (2.36) reduces to 

As + Az = /ie — e = (/i — l)e. 

Hence, by substitution into (2.35) we obtain 

(M + / ) A z = ( / i - l ) e . 

It suffices to know the solution of the equation (M + / ) C = 5̂ because then Az = 
(/i — 1)C. Thus we need to solve C from 

1 
0 

-1 
1 -

-1 

which gives the unique solution 

c = 

Hence 

0 0 

1" 
0 
0 
3 
1 

C = 

" i" 
1 
1 
1 
1 

1 8 4 1 
3 ' 9' 9' 9' 

Az = (/i - 1) 
1 4 1 
3 ' 9' 9' 9' 

and 

As = MAz 

After the Newton step we thus have 

(/i-l)(e-C) = ( / i - l ) (^ ,^44'^ 

(2.39) 

(2.40) 

Z+5+ = (^ + Az) (5 + As) = Z5 + (Az + As) + AzAs 

= e + (/i - l)e + AzAs = /i e + AzAs 

( / . - l ) ^ 
/ i e 

81 
( -36, 8, 20, 8, 0) ' . 0 
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Proximity measure 

To measure the quahty of any approximation z of ^(/i), we introduce a proximity 
measure 5{z, fi) that vanishes if z = z(/i) and is positive otherwise. To this end we 
introduce the variance vector of z with respect to /i as fohows: 

'"^(") (2.41) 
V /̂  

where ah operations are componentwise. Note that 

zs{z) = fie <^ V = e. 

The proximity measure S{z, ji) is now defined by^^ 

5{z,iJi) := ^ | | ^ - ^ " ^ | | . (2.42) 

Note that if z = z(/i) then v = e and hence 6{z^ fi) = 0, and otherwise 6{z^ fi) > 0. We 
show below that if 5{z, /i) < 1 then the Newton process quadratically fast converges to 
z(/i). For this we need the following lemma, which estimates the error term in terms 
of the proximity measure. In this lemma ||.|| denotes the Eucledian norm (or 2-norm) 
and 11.1 loo the Chebychev norm (or infinity norm) of a vector. 

Lemma 1.15 If S := S{z,fi), then | |AzA5||^ < fiS'^ and ||A^A5|| < fiS'^V^. 

Proof: Componentwise division of (2.36) by y^v = y ^ yields 

y^As+y^Az = VM («"'-«)• 

The terms at the left represent orthogonal vectors whose componentwise product 
is AzAs. Applying Lemma C.4 in Appendix C to these vectors, and using that 
ll'U"^—'u||=2(5, the result immediately follows. • 

Quadratic convergence of the Newton process 

We are now ready for the main result on the Newton direction. 

Theorem 1.16 If S := S{z,fi) < 1, then the Newton step is strictly feasible, i.e., 
z+ > 0 and 5+ > 0. Moreover, 

5{z+,fi)< 
N / 2 ( 1 - . ^ 2 ) ' 

^^ In the analysis of interior-point methods we always need to introduce a quantity that measures the 
'distance' of a feasible vector z to the central path or to the /x-center. This can be done in many 
ways as becomes apparent in the course of this book. In the coming chapters we make use of a 
variety of so-called proximity measures. Most of these measures are based on the simple observation 
that z is equal to the /x-center if and only ii v = e and z is on the central path if and only if the 
vector zs(z) is a scalar multiple of the all-one vector. 
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Proof: Let 0<a<l, z^ = z-\- aAz and s^ = s-\- a As. We then have, using (2.36), 

z'^s'^ = (^ + aAz){s + a As) = zs ^ a {zAs + sAz) + a'^AzAs 

= zs -\- a {fie — zs) -\- a'^AzAs = (1 — a)zs -\- a {fie -\- aAzAs) 

By Lemma L15, 

fie -\- aAz As > fie — a \\AzAs\\^ e>fi{l- aS'^) e > 0. 

Hence, since (1 — a)zs > 0, we have z^s^ > 0, for all a G [0,1]. Therefore, the 
components of z^ and 5^ cannot vanish when a G [0,1]. Hence, since z > 0 and 5 > 0, 
by continuity, z^ and 5^ must be positive for any such a, especially for ô  = L This 
proves the first statement in the lemma. 

Now let us turn to the proof of the second statement. Let 5~^ := 5{z~^, fi) and let v~^ 
be the variance vector of z~^ with respect to fi: 

+ .Q + I Z^S' 

V /̂  
Then, by definition, 

2(5+ = | | ( ^ + ) " ^ - ^ + | | = \\{v^)-^ {e - {v^f) 

Recall from (2.37) that z+5+ = fie-\- AzAs. In other words. 

(2.43) 

(.+) 

Substitution into (2.43) gives 

25+ 
AzAs 

A z A s 

AzAs 
fi 

AzAs 

< < 
AzAs 

^V2_ 

The last inequality follows by using Lemma L15 twice. Thus the proof is complete. • 

Theorem L16 implies that when 5 < l / \ /2 , then after a Newton step the proximity to 
the /i-center satisfies S{z~^,fi) < S'^. In other words, Newton's method is quadratically 
convergent. 

Example 1.17 Using the self-dual problem {SP) in Example 1.7 again, we consider 
in this example feasibility of the Newton step, and the proximity measure before and 
after Newton step at z = e for several values of /i, to be specified below. We will see 
that the Newton step performs much better than Theorem 1.16 predicts! In Example 
1.14 we found the values of Az and As. Using these values we find for the new iterate: 

e + ( / i - l ) 
1 4 1 
3 ' 9' 9' 9' 
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and since s = s{e) = e, 

+ / .N / 4 1 5 8 ^ 
s^ =e^{fi-l) - , - , - , - , 0 ^ 3 ' 9 ' 9 ' 9 ' 

Hence the Newton step is feasible, i.e., z~^ and 5+ are nonnegative, if and only if 

0.25 < /i < 4, 

as easily may be verified. For any such /i we have 

S{z,fi) 
1 

y^e 
V ^ 

v^-
1 V^ 

v^-
1 

Note tha t Theorem 1.16 guarantees feasibility only if S{z,fi) < 1. This holds if 
5/i^ — 14/i + 5 < 0, which is equivalent to 

0.4202 ^ 7 (7 - 2V6) < /i < - (7 + 2A/6') ^ 2.3798. 

The same theorem guarantees quadratically convergence if S{z,fi) < 1 / A / 2 , which 
holds if and only if 

0.5367 ; - (6 - A/TT) < /i < - (6 + A/TT) P̂  1. 8633. 

By way of example, consider the case where /i = 0.5. Then we have S{z, ji) = ^\/T0 '^ 

0.7906 and, by Theorem 1.16, (5(z+,/i) < ^ \ / 3 '^ 0.7217. Let us compute the actual 

value of (5(z+, /i). For /i = 0.5 we have 

2 I 3' 9' 9' 9' 

and since s = s{e) = e, 

1 / 4 1 5 
1 pw 5 pw 5 pw 5 

2 V3 ' 9 ' 9 ' 9 

7 5 7 17 1 

1 17 13 5 

3 ' 18 ' 18 ' 9 ' 

Therefore, 

(.+) 2 Z+5+ 

/ i 

7 85 91 85 

9 ' 8 1 ' 8 1 ' 8 1 ' 

Finally, we compute (5(z+,/i) by using 

10. 
^=1 

Note tha t the first sum equals (z+) 5+/ / i = 2n/i = 5. The second sum equals 5.0817. 
Thus we obtain 4(5(z+,/i)2 = 0.0817, which gives (^(^+,/i) = 0.1429. 0 
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E x i s t e n c e of t h e central p a t h 

Now suppose tha t we know the /i-center for /i = /i^ > 0 and let us denote z^ = z{fi^). 
Note tha t this is t rue for /i^ = 1, with z^ = e, because es{e) = e. So e is the /i-center 
for /i = 1. 

Since z^s{z^) = /i^e, the 'U-vector for z^ with respect to an arbitrary /i > 0 is given 

by 

V /i y fi y fi 

Hence we have 5{z^ ^ fi) < -y= if and only if 

W l < ^ . 
/i y / i -

Using ||e|| = y^? oiie may easily verify tha t this holds if and only if 

^ < 4 < / ? , /?:=l + 4 + J ^ + ?. (2.44) 

Now start ing the Newton process at z^, with fi fixed, and such tha t fi satisfies (2.44), 
we can generate an infinite sequence z^, z^, • • • z^, • • • such tha t 

Hence 
lim S(z'',ij) = 0 . 

The generated sequence has at least one accumulation point z*, since the iterates 
z^, • • • z^, • • • lie in the compact set 

e^z + e^s{z) = n (1 + / i ) , z > 0, s{z) > 0, 

due to (2.21) and (2.38). Since 5 (^*,/i) = 0, we obtain z^s (z*) = fie. Due to Lemma 
1.13, z* is unique. This proves tha t the /i-center exists if /i satisfies (2.44) with /i^ = 1, 
i.e., if 

By redefining /i^ as one of the endpoints of the above interval we can repeat the above 
procedure, and extend the interval where the /i-center exists to 

and so on. After applying the procedure k times the interval where the /i-center 
certainly exists is given by 
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For arbitrary /i > 0, we have to apply the above procedure at most 

|lQg/̂ l 
log/3 

times, to prove the existence of the /i-center. This completes the proof of the existence 
of the central path. 

It may be worth noting that, using n > 2 and log(l -\-t) > -r^ for t > 0,̂ ^ 

log/3 = log ( 1 + 3 + J ^ + 3 I > log ( 1 
n 

V2 
x/2 

> 
/2n 

Hence the number of times that we have to apply the above described procedure to 
obtain the /i-center is bounded above by 

/2n |log/i|. (2.45) 

We have just shown that the system (2.28) has a unique solution for every positive /i. 
The solution is called the /i-center, and denoted as z{fi). The set of all /i-centers is a 
curve in the interior of the feasible region of (SP). The definition of the /i-center, as 
given by (2.28), can be equivalently given as the unique solution of the system 

Mz^q = s, z > 0, 5 > 0 

zs = /ie, 

with M and z as defined in (2.11), and s = s{z), as in (2.17).20'2i,22 

(2.46) 

2.8 Existence of a strictly complementary solution 

Now that we have proven the existence of the central path we can use it as a guide 
to the optimal set, by letting the parameter /i approach to zero. As we show in this 
section, in this way we obtain an optimal solution z such that z -\- s{z) > 0. 

Definition 1.18 Two nonnegative vectors a and b in K^ are said to be complementary 
vectors if ab = 0. If moreover a-\-b > 0 then a and b are called strictly complementary 
vectors. 

^^ See, e.g., Exercise 39, page 133. 

^° Exercise 10 Using the definitions of z and q, according to (2.11) and (2.12), show that 7?(/i) = /x. 

Exercise 11 In this exercise a skew-symmetric M and four vectors q^'^\ i = 1, 2, 3, 4 are given as 
follows: 

M • 

21 

0 
- 1 

1 

0 , q^'^ = 
0 

0 , <1^'^ = 
1 

0 
, g(3) ^ 0 

1 , <1^'^ = 
1 
1 

For each of the four cases q - n(i) 1, 2, 3, 4, one is asked to verify (1) if the system (2.46) has 
a solution if /x > 0 and (2) if the first equation in (2.46) satisfies the IPC, i.e., has a solution with 
2; > 0 and s > 0. 

^^ Exercise 12 Show that 2;(/i) is continuous (and differentiable) at any positive /x. (Hint: Apply 
the implicit function theorem (cf. Proposition A.2 in Appendix A) to the system (2.46)). 
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Recall tha t optimality of z means tha t zs{z) = 0, which means tha t z and s{z^ are 
complementary vectors. We are going to show tha t there exists an optimal vector z 
such tha t z and s{z) are strictly complementary vectors. Then for every index z, either 
ẑ  > 0 or 5^(z) > 0. This implies tha t the index sets B and N^ introduced in Section 
2.5 form a parti t ion of the index set, the so-called optimal parti t ion of (SP). 

It is convenient to introduce some more notation. 

Def in i t ion 1.19 If z is a nonnegative vector, we define its support, denoted by CF{Z), 
as the set of indices i for which Zi > 0.* 

cr{z) = {i : ẑ  > 0} . 

Note tha t if z is feasible then zs{z) = 0 holds if and only if CF{Z) H CF{S{Z)) = 0. 
Furthermore, z is a strictly complementary optimal solution if and only if it is optimal 
and (j{z) U (j{s) = { 1 , 2 , . . . , n } . 

T h e o r e m 1.20 {SP) has an optimal solution z* with z* + ^(z*) > 0. 

Proof: Let {iJLk]^=i be a monotonically decreasing sequence of positive numbers 
fjLk such tha t fjLk ^ 0 if A: ^ oo, and let 5(/i/c) := s{z{jiik))- Due to Lemma L9 
the set {(z(/i/c), 5(/i/c))} lies in a compact set, and hence it contains a subsequence 
converging to a point (z*,5*), with 5* = 5(z*). Since z{fik)^s{fik) = ^l-^k -^ 0, we 
have (z*)^5* = 0. Hence, from (2.25), q^z* = 0. So z* is an optimal solution. 

We claim tha t (z*, 5*) is a strictly complementary pair. To prove this, we apply the 
orthogonality property (2.22) to the points z* and ^(/ife), which gives 

izi^,k)-z*fisi^k)-s*) = o. 

Rearranging the terms, and using z{iik)^s{iik) = /̂̂ fe and {z*)^s* = 0, we arrive at 

jecr{z*) jGcr(s*) 

Dividing both sides by /i^ and recalling tha t Zj{jiik)sj{jiik) = /ife, we obtain 

Letting A: ^ oo, the first sum on the left becomes equal to the number of positive 
coordinates in z*. Similarly, the second sum becomes equal to the number of positive 
coordinates in 5*. The sum of these numbers being n, we conclude tha t the optimal 
pair (z*,5*) is strictly complementary^^'^^ • 

^^ By using a similar proof technique it can be shown that the limit of z{ii) exists if /x goes to zero. 
In other words, the central path converges. The limit point is (of course) a uniquely determined 
optimal solution of (SP), which can further be characterized as the so-called analytic center of the 
set of optimal solutions (cf. Section 2.11). 

^^ Let us also mention that Theorem 1.20 is a special case of an old result of Goldman and Tucker 
which states that every feasible linear system of equalities and inequalities has a strictly feasible 
solution [111]. 
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By Theorem 1.20 there exists a strictly complementary solution z of (SP). Having 
such a solution, the classes B and N simply follow from 

B = {i : Zi>0}, N = {i : Si{z) > 0} . 

Now recall from Theorem 1.5 and Theorem 1.6 tha t the problems (P) and (D) have 
optimal solutions with vanishing duality gap if and only if (SP) has an optimal solution 
with K. > 0. Due to Theorem 1.20 this can be restated as follows. 

Corol lary 1.21 The problems (P) and (D) have optimal solutions with vanishing 
duality gap if and only if n ^ B. 

Let us consider more in detail the implications oi n ^ B for the problems {SP^)^ and 
more importantly, for (P) and {D). 

Theorem 1.20 implies the existence of a strictly complementary optimal solution z 
of {SP). Let z be such an optimal solution. Then we have 

Z 5 ( z ) = 0 , Z + 5 ( z ) > 0 , Z > 0 , 5 ( z ) > 0 . 

Now using s{z) = Mz + q and î  = 0, and also (2.11) and (2.12), we obtain 

> 0, s{z) 

Ax — tvb 

—A^y -\- hic 
T C^ X 

n — \y^^ x^ , n\ r 

> 0 . 

Neglecting the last entry in both vectors, it follows tha t 

> 0, s{z) := Mz = z := 

Ax — nh 

-A^y -\- hic 

b y — c X 

> 0 , 

and moreover, 
zs{z) = 0, z + s{z) > 0, z > 0, s{z) > 0. 

(2.47) 

(2.48) 

This shows tha t z is a strictly complementary optimal solution of (SPQ). Hence the 
next theorem requires no further proof. 

T h e o r e m 1.22 (SPQ) has an optimal solution z with z -\- s{z) > 0. 

Note tha t (2.47) and (2.48) are homogeneous in the variables x, y and K.. SO, assuming 
tv G B, without loss of generality we may put n = 1. Then we come to 

y >0, Ax-b>0, y{Ax-b) = 0, y ^ {Ax - b) > 0, 

X > 0, c- A^y > 0, x{c- A^y) = 0 , x + (c - A^y) > 0, 

1 > 0, b^y - c^x > 0, b^y - c^x = 0, 1 + (b^y - c^x) > 0. 
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This makes clear that x is feasible for (P) and y is feasible for (D), and because 
c^x = b^y these solutions are optimal with vanishing duality gap. We get a little 
more information from the above system, namely 

y {Ax - 6) = 0, y^ {Ax - 6) > 0, 

x{c- A^y) = 0 , X + (c - A^y) > 0. 

The upper two relations show that the dual vector y and the primal slack vector 
Ax — b are strictly complementary, whereas the lower two relations express that the 
primal vector x and the dual slack vector c — A^y are strictly complementary Thus 
the following is also true. 

Theorem 1.23 If n G B then the problems {P) and {D) have optimal solutions that 
are strictly complementary with the slack vector of the other problem. Moreover, the 
optimal values of {P) and {D) are equal. 

An intriguing question is of course what can be said about the problems (P) and {D) 
\i n ^ B^ i.e., \i n ^ N. This question is completely answered in the next section. 

2.9 Strong dual i ty t h e o r e m 

We start by proving the following lemma. 

Lemma 1.24 If n ^ N then there exist vectors x and y such that 

X > 0, 7/ > 0, Ax > 0, A^y < 0, b^y - c^x > 0. 

Proof: Let ne N. Substitution of /̂  = 0 in (2.47) and (2.48) yields 

y>o, 

X > 0, 

0 > 0, 

Ax > 0, 

-A^y > 0, 

b^y — c^x > 0, 

y {Ax) --

X {A^y) --

0 {b^y - c^x) --

= 0, 

= 0, 

= 0, 

7/ + Ax > 0, 

x-A^y > 0, 

0 + {b^y - c^x) > 0. 

It follows that the vectors x and y are as desired, thus the lemma is proved. • 

Let us call an LO-problem solvable if it has an optimal solution, and unsolvable 
otherwise. Note that an LO-problem can be unsolvable for two possible reasons: the 
domain of the problem is empty, or the domain is not empty but the objective function 
is unbounded on the domain. In the first case the problem is called infeasible and in 
the second case unbounded. 

Theorem 1.25 If n ^ N then neither {P) nor {D) has an optimal solution. 

Proof: Let n G N. By Lemma 1.24 we then have vectors x and y such that 

X > 0, 7/ > 0, Ax>0, A^y < 0, b^y - c^x > 0. (2.49) 
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By the last inequality we cannot have b^y < 0 and c^x > 0. Hence, 

either b^y > 0 or Jx < 0. (2.50) 

Suppose that (P) is not infeasible. Then there exists x* such that 

X* > 0 and Ax* > b. 

Using (2.49) we find that x* + x > 0 and A(x* + x) > 6. So x* + x is feasible for (P). 
We can not have b^y > 0, because this would lead to the contradiction 

0<b^y< {Ax*fy = x*^{A^y) < 0, 

since x* > 0 and A^y < 0. Hence we have b^y < 0. By (2.50) this implies c^x < 0. 
But then we have for any positive A that x* + Xx is feasible for (P) and 

c"^(x* + Xx) = c"̂ x* + Xc^x, 

showing that the objective value goes to minus infinity if A grows to infinity. Thus we 
have shown that (P) is either infeasible or unbounded, and hence (P) has no optimal 
solution. 

The other case can be handled in the same way. If (D) is feasible then there exists 
7/* such that ^* > 0 and A^y"" < c. Due to (2.49) we find that 7/* + 7/ > 0 and 
A^{y* -\- y) < c. So y* -\- y is feasible for (D). We then can not have c^x < 0, because 
this gives the contradiction 

0>c^x> ( A V ) ^ ^ = y'^^iAx) > 0, 

since y* > 0 and Ax > 0. Hence c^x > 0. By (2.50) this implies b^y > 0. But then we 
have for any positive A that y^ -\- Xy is feasible for (D) and 

b^{y* + Xy)=b^y*+Xb^y. 

If A grows to infinity then the last expression goes to infinity as well, so (D) is an 
unbounded problem. Thus we have shown that (D) is either infeasible or unbounded. 
This completes the proof. • 

The following theorem summarizes the above results. 

Theorem 1.26 (Strong duality theorem) For an LO problem (P) in canonical 
form and its dual problem (D) we have the following two alternatives: 

(i) Both (P) and (D) are solvable and there exist (strictly complementary) optimal 
solutions X for (P) and y for (D) such that c^x = b^y. 

(a) Neither (P) nor (D) is solvable. 

This theorem is known as the strong duality theorem. It is the result that we 
announced in Section 2.2. It implies that if one of the problems (P) and (D) is solvable 
then the other problem is solvable as well and in that case the duality gap vanishes 
at optimality So the optimal values of both problems are then equal. 
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If ( 5 , N) is the optimal parti t ion of the self-dual problem (SP) in which (P) and 
(D) are embedded, then case (i) occurs if K. e B and case (n) if K. e N. Also, by 
Theorem 1.25, case (ii) occurs if and only if there exist x and y such tha t (2.49) holds, 
and then at least one of the two problems is infeasible. 

Duality is a major topic in the theory of LO. At many places in the book, and in 
many ways, we explore duality properties. The above result concerns an LO problem 
(P) in canonical form and its dual problem (D). In the next section we will extend 
the applicability of Theorem 1.26 to any LO problem. 

We conclude the present section with an interesting observation. 

R e m a r k 1.27 In the classical approach to LO we have so-called theorems of the 
alternatives, also known as variants of Farkas' lemma. We want to establish here that the 
fact that (2.47) has a strictly complementary solution for each vector c G M^ implies Farkas' 
lemma. We show this below for the following variant of the lemma. 

Lemma 1.28 (Farkas' lemma [75]) For a given m x n matrix A and a vector b G K"^ 
either the system 

Ax > b, X > 0 

has a solution or the system 
A^y < 0, 6^^ > 0, ^ > 0 

" y ' 
X 

K _ 

>o, s{z) = 
Ax — Kb 

-A^y 

. b^y . 

has a solution but not both systems have a solution. 

Proof: The obvious part of the lemma is that not both systems can have a solution, because 
this would lead to the contradiction 

0<b'^y< {Ax)^y = x^A^y < 0. 

Taking c = 0 in (2.47), it follows that there exist x and y such that the two vectors 

> 0 

are strictly complementary. For K, there are two possibilities: either K, = 0 or K, > 0. In the 
first case we obtain A^y < 0, b^y > 0, y > 0. In the second case we may assume without 
loss of generality that K, = 1. Then x satisfies Ax > b, x > 0, proving the claim.^^ • 

2.10 T h e dual prob lem of an arbitrary LO prob lem 

Every LO problem can be transformed into a canonical form. In fact, this can be done 
in many ways. In its canonical form the problem has a dual problem. In this way we 
can obtain a dual problem for any LO problem. Unfortunately the transformation to 
canonical form is not unique, and as a consequence, the dual problem obtained in this 
way is not uniquely determined. 

^̂  Exercise 13 Derive Theorem 1.22 from Farkas' lemma. In other words, use Farkas' lemma to show 
that for any skew-symmetric matrix M there exists a vector x such that 

x>0, Mx > 0, X + Mx > 0. 
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The aim of this section is to show tha t we can find a dual problem for any given 
problem in a unique and simple way, so tha t when taking the dual of the dual problem 
we get the original problem, in its original description. 

Recall tha t three types of variables can be distinguished: nonnegative variables, free 
variables and nonpositive variables. Similarly, three types of constraints can occur 
in an LO problem: equality constraints, inequality constraints of the < type and 
inequality constraints of the > type. For our present purpose we need to consider the 
LO problem in its most general form, with all types of constraint and all types of 
variable. Therefore, we consider the following problem as the primal problem: 

(p) min < 

/ • 

[cO] 

c2 

T 
[xO] Aox^ + Aix^ + A2X^ = b^ 

Box^ + Bix^ + B2X^ > b^, 

Cox^ + Cix^ + C2X^ < 9 

r:̂  > 0, x^ < 0 > , 

where, for each i = 0 ,1 ,2 , Ai^Bi and Q are matrices and 6% ĉ  and x^ are vectors, 
and the sizes of these matrices and vectors, which we do not further specify, are such 
tha t all expressions in the problem are well defined. 

Now let us determine the dual of this problem. We first put it into canonical form.^^ 
To this end we replace the equality constraint by two inequality constraints and we 
multiply the < constraint by —1. Furthermore, we replace the nonpositive variable x^ 
by x^ ĉ  and the free variable x^ hy x'^ — x with x+ and x nonnegative. This 
yields the following equivalent problem: 

mmimize 

r ^°i 
- c O 

c i 

L-c^J 

T 
rx+1 

x~ 
x" 

. x^. 

subject to 

Ao -Ao Ai -A2 

-Ao Ao -Ai A2 

BQ —BQ Bi —B2 

-Co Co —Ci C2 

-l ~ x^~ 
x~ 
x^ 

x^ 

> 
\ ̂ "1 - 5 0 

51 

- 5 2 

1 

p+l 
x~ 
x^ 

x^ 

> 0 . 

In terms of vectors z^ ,z^ ,z^ ,z^ tha t contain the appropriate nonnegative dual 
variables, the dual of this problem becomes 

maximize 

r ̂ "1 
- 6 0 

61 

L-62J 

T 
rzM 

z^ 
z^ 

[z^\ 

^^ The transformations carried out below lead to an increase of the numbers of constraints and 
variables in the problem formulation. They are therefore 'bad' from a computational point of view. 
But our present purpose is purely theoretical. In Appendix D it is shown how the problem can be 
put in canonical form without increasing these numbers. 
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subject to 

Al 
Al 
AJ 

Al 

-Al 
Al 

-AJ 
Al 

Bl 
-Bl 

Bf 
-Bl 

-cl 
c^ 

-cl 
cl 

\zn 
z^ 

z^ 

z^ 

< 
\ "̂"1 

.-c\ 

5 

\zn 
z^ 
z^ 
z^ 

> 0 . 

We can easily check that the variables z^ and z'^ only occur together in the combination 
z^ — z^. Therefore, we can replace the variables by one free variable ]p := z^ — z^. 
This reduces the problem to 

subject to 

maximize 

60 

61 
_ - 6 2 

AT TDT ^ T 

If Bl-Cl 
^2 ~^2 Q 

n 

P 

L 

< > 0 . 

In this problem the first two blocks of constraints can be taken together into one block 
of equality constraints: 

max < 

6°" 
61 

62 

T -yO-

Z^ 

z^ 

Aly'' + Blz^ - Clz^ = c" 
: ^f yO + Biz' - Clz^ < c^, 

-Aly^ - Bjz^ + Clz^ < -c2 

% 3 " 

z 
r4 z 

•V 

> 0 

Finally we multiply the last block of constraints by -1 , we replace the nonnegative 
variable z^ hy y^ = z^ and the nonnegative variable z^ by the nonpositive variable 
y'^ = —z^. This transforms the dual problem to its final form, namely 

{D) max < 

6"" 
61 

62 

T 
•yO-

y' 
y' 

^^y« + BoV+CoV = c° 
: Aly^ + Bly^+Cly^<c\ 

Aly^ + Bly'+Cly^>^ 
y'>o, 

\ 

y ^ < o 

J 

Comparison of the primal problem (P) with its dual problem (D), in its final 
description, reveals some simple rules for the construction of a dual problem for 
any given LO problem. First, the objective vector and the right-hand side vector are 
interchanged in the two problems, and the constraint matrix is transposed. At first 
sight it may not be obvious that the types of the dual variables and the dual constraints 
can be determined. We need to realize that the vector y^ of dual variables relates to 
the first block of constraints in the primal problem, ^^ to the second block and y'^ to 
the third block of constraints. Then the relation becomes obvious: equality constraints 
in the primal problem yield free variables in the dual problem, inequality constraints 
in the primal problem of type > yield nonnegative variables in the dual problem, and 
inequality constraints in the primal problem of type < yield nonpositive variables in 
the dual problem. For the types of dual constraint we have similar relations. Here the 
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vector of primal variables x^ relates to the first block of constraints in the dual problem, 
x^ to the second block and x^ to the third block of constraints. Free variables in the 
primal problem yield equality constraints in the dual problem, nonnegative variables 
in the primal problem yield inequality constraints of type < in the dual problem, and 
nonpositive variables in the primal problem yield inequality constraints of type > in 
the dual problem. Table 2.1. summarizes these observations, and as such provides a 
simple scheme for writing down a dual problem for any given minimization problem. 
To get the dual of a maximization problem, one simply has to use the table from the 
right to the left. 

Primal problem (P) 

min c^x 

equality constraint 

inequality constraint > 

inequality constraint < 

free variable 

variable > 0 

variable < 0 

Dual problem (D) 

max b^y 

free variable 

variable > 0 

variable < 0 

equality constraint 

inequality constraint < 

inequality constraint > 

T a b l e 2 . 1 . Scheme for dualizing. 

As indicated before, the dualizing scheme is such that when it is applied twice, the 
original problem is returned. This easily follows from Table 2.1., by inspection.^^ 

2.11 Convergence of the central path 

We already announced in footnote 23 (page 36) that the central path has a unique 
limit point in the optimal set. Because this result was not needed in the rest of this 
chapter, we postponed its proof to this section. We also characterize the limit point 
as the so-called analytic center of the optimal set of (SP). 

As before, we assume that the central path of (SP) exists. Our aim is to investigate 
the behavior of the central path as /i tends to 0. From the proof of Theorem 1.20 we 
know that the central path has a subsequence converging to an optimal solution. This 
was sufficient for proving the existence of a strictly complementary solution of (SP). 
However, as we show below, the central path itself converges. The limit point z* and 

2'̂  Exerc i se 14 Using the results of this chapter prove that the following three statements are 
equivalent: 

(i) (SP) satisfies the interior-point condition; 
(ii) the level sets £^ := | (z, s(z)) : q^ z < 7, s(z) = Mz + q > 0, 2 ; > 0 | of q^ z are bounded; 

(Hi) the optimal set of (SP) is bounded. 



44 I Theory and Complexity 

its surplus vector 5* := 5(z*) form a strictly complementary optimal solution pair, 
and hence determine the optimal parti t ion (B,N) of (SP). 

The optimal set of (SP) is given by 

SV* = {{z, s) : Mz^q = s, z>0, s>0, q^z = 0} . 

This makes clear tha t SV^ is the intersection of the afhne space 

{{z,s) : Mz^q = s, q^z = 0} 

with the nonnegative orthant of IR ^. 
At this stage we need to define the analytic center of SV^. We give the definition 

for the more general case of an arbitrary (nonempty) set tha t is the intersection of an 
affine space in IR^ and the nonnegative orthant of K^. 

Def in i t ion 1.29 ( A n a l y t i c center) ^^ Let the nonempty and bounded set T be the 
intersection of an affine space in K^ with the nonnegative orthant oflR^. We define 
the support (j{T) of T as the subset of the full index set {1, 2 , . . . ,p} given by 

(j{T) = {i : 3x G T such tha t x^ > 0 } . 

The analytic center ofT is defined as the zero vector if CF{T) is empty; otherwise it is 
the vector in T that maximizes the product 

W X,, xeT. (2.51) 

If the support of the set T in the above definition is nonempty then the convexity of 
T implies the existence of a vector x G T such tha t Xcr(r) > 0- Moreover, if CF{T) is 
nonempty then the maximum value of the product (2.51) exists since T is bounded. 
Since the logarithm of the product (2.51) is strictly concave, the maximum value (if it 
exists) is at tained at a unique point of T . Thus the above definition uniquely defines 
the analytic center for any bounded subset tha t is the intersection of an affine space 
in ]R^ with the nonnegative orthant of K^. 

Due to Lemma 1.9 any pair (z, s) G 5 P * satisfies 

T T /• \ — 

e z -\- e s[z) = n. 

This makes clear tha t the optimal set SV^ is bounded. Its analytic center therefore 
exists. We now show tha t the central pa th converges to this analytic center. The proof 
very much resembles tha t of Theorem 1.20.^^ 

^^ The notion of analytic center of a polyhedron was introduced by Sonnevend [257]. It plays a crucial 
role in the theory of interior-point methods. 

^^ The limiting behavior of the central path as /x approaches zero has been an important subject in 
research on interior-point methods for a long time. In the book by Fiacco and McCormick [77] 
the convergence of the central path to an optimal solution is investigated for general convex 
optimization problems. McLinden [197] considered the limiting behavior of the path for monotone 
complementarity problems and introduced the idea for the proof-technique of Theorem 1.20, which 
was later adapted by Giiler and Ye [135]. Megiddo [200] extensively investigated the properties of 
the central path, which motivated Monteiro and Adler [218], Tanabe [261] and Kojima, Mizuno 
and Yoshise [178] to investigate primal-dual methods. Other relevant references for the limiting 
behavior of the central path are Adler and Monteiro [3], Asic, Kovacevic-Vujcic and Radosavljevic-
Nikolic [28], Giiler [131], Kojima, Mizuno and Noma [176], Monteiro and Tsuchiya [222] and 
Witzgall, Boggs and Domich [294], Halicka [137], Wechs [290] and Zhao and Zhu [321]. 
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T h e o r e m 1.30 The central path converges to the analytic center of the optimal set 
SV* of{SP). 

Proof: Let (z*,5*) be an accumulation point of the central path, where 5* = s{z*). 
The existence of such a point has been established in the proof of Theorem 1.20. Let 
{/i/cj^i be a positive sequence such tha t /i^ ^ 0 and such tha t (z(/i/c), 5(/i/c)), with 
s{iik) = s{z{fik))i converges to (z*,5*). Then z* is optimal, which means z*5* = 0, 
and z* and 5* are strictly complementary, i.e, z* + 5* > 0. 

Now let z be optimal in (SP) and let s = Mz -\- q he its surplus vector. Applying 
the orthogonality property (2.22) to the points z and z(/i) we obtain 

(z(/ife) - z)^{s{iik) - 5) = 0. 

Rearranging terms and using z{fik)^s{fik) = /̂̂ fe and {z)^s = 0, we get 

n n 

^ZjSjdiik) -^^SjZjdiik) =niik-

Since the pair (z*, 5*) is strictly complementary and (z, 5) is an arbitrary optimal pair, 
we have for each coordinate j : 

4 = 0 ^ Zj = 0 , 5* = 0 ^ Sj = 0. 

Hence, Zj = 0 if j ^ ^(^*) and 5^ = 0 if j ^ ^(<5*)- Thus we may write 

jecr{z*) jGcr(s*) 

Dividing both sides by /i^ = Zj{jiik)sj{jiik), we get 

Letting A: ^ 00, it follows tha t 

E Zj V A 5 j 

jecr{z*) ^ jGcr(s*) -̂  
Using the arithmetic-geometric-mean inequality we obtain 

n J n 1) ^ f̂ E S+ E |l=i-
Obviously, the above inequality implies 

n .̂ n h< n ^ n «.* 
je(T{z*) jGcr(s*) je(T{z*) jGcr(s*) 

This shows tha t (z*,5*) maximizes the product Ylj^cr(z*) ^jYljecr(s*) ^j ^^^^ ^^^ 
optimal set. Hence the central pa th of (SP) has only one accumulation point when /i 
approaches zero and this is the analytic center of SV*. • 
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~2n 
0 
K. 

n 
0 

, s{z) = 

0 
tv 

0 
0 

5 — 5/̂  

Example 1.31 Let us compute the hmit point of the central path of the self-dual 
problem (SP) in Example 1.7, as given by (2.19). Recall from (2.26) in Example 1.12 
that any optimal solution has the form 

0 < /^< 1, 

from which the sets B and N follow: 

B = {1, 3, 4} , N = {2,5}. 

Hence we have for any optimal z, 

This product is maximal for n = 0.8, so the analytical center of the optimal set is 
g iven b y 30,31,32,33 

1.6 
0 

0.8 
0.8 
0 

, s{z) = 

0 
0.̂  
0 
0 
1 0 

The convergence of the central path when /i goes to zero implies the boundedness of 
the coordinates of z{fi) and s{fi) for any finite section of the central path. Of course, 
this also follows from Lemma L9 and (2.33).^^ 

^° Exercise 15 Find the analytic center of the self-dual problem considered in Exercise 4 (page 27). 

^^ Exercise 16 Find the analytic center of the self-dual problem considered in Exercise 5 (page 27). 

^^ Exercise 17 Find the analytic center of the self-dual problem considered in Exercise 6 (page 27). 

^^ Exercise 18 Find the analytic center of the self-dual problem considered in Exercise 7 (page 27). 
34 Exercise 19 For any positive /x consider the set 

Sr,^ := {(z,s) : Mz^q = s, z>0, s>0, q^z = q^z(iJ.)] . 

Using the same proof-technique as for Theorem 1.30, show that the pair {z{ii)^ ^(/i)) is the analytic 
center of this set. 



A Polynomial Algorithm for the 
Self-dual Model 

3.1 Introduction 

The previous chapter made clear tha t any (canonical) LO problem can be solved by 
finding a strictly complementary solution of a specific self-dual problem tha t satisfies 
the interior-point assumption. In particular, the self-dual problem has the form 

(SP) min {q^z : Mz>-q,z>0}, 

where M is a skew-symmetric matr ix and q a nonnegative vector. Deviating from the 
notation in Chapter 2 we denote the order of M as n (instead of n ) . Then, according 
to (2.12) the vector q has the form 

Q '--
O n - l 

n 
(3.1) 

Note tha t due to the definition of the matr ix M we may assume tha t n > 5. 
Like before, we associate to any vector z G IR^ its slack vector s{z): 

s{z) := Mz^q. (3.2) 

As a consequence we have 

z is a feasible for (SP) if and only if z > 0 and s{z) > 0. 

Also recall tha t the all-one vector e is feasible for (SP) and its slack vector is the 
all-one vector (cf. Theorem 1.5): 

5(e) = e. (3.3) 

Assuming tha t the entries in M and q are integral (or rational), we show in this chapter 
tha t we can find a strictly complementary solution of (SP) in polynomial time. This 
means tha t we present an algorithm tha t yields a strictly complementary solution of 
(SP) after a number of arithmetic operations tha t is bounded by a polynomial in the 
size of (SP). 

R e m a r k 1.32 The terminology is taken from complexity theory. For our purpose it is not 
necessary to have a deep understanding of this theory. Major contributions to complexity 
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theory were given by Cook [56], Karp [166], Aho, Hopcroft and Ullman [5], and Carey and 
Johnson [92]. For a survey focusing on hnear and combinatorial optimization problems we 
refer the reader to Schrijver [250]. Complexity theory distinguishes between easy and hard 
problems. In this theory a problem consists of a class of problem instances, so 'the' LO 
problem consists of all possible instances of LO problems; here we restrict ourselves to LO 
problems with integral input data.^ A problem is called solvable in polynomial time (or simply 
polynomtial or easy) if there exists an algorithm that solves each instance of the problem in 
a time that is bounded above by a polynomial in the size of the problem instance; otherwise 
the problem is considered to be hard. In general the size of an instance is defined as the 
length of a binary string encoding the instance. For the problem (SP) such a string consists 
of binary encodings of the entries in the matrix M and the vector q. Note that the binary 
encoding of a positive integer a requires a string of length 1 + [log2(l + |a|)]- (The first 1 
serves to encode the sign of the number.) If the entries in M and q are integral, the total 
length of the string for encoding (SP) becomes 

^ (1 + riog2 (1 +1*1)1) + ^ (1 + riog2 (1 + \Mi,m) = 
n n 

n{n + 1) + ^ riog2 (1 + k.|)l + Y. riog2 (1 + \Mii\)^ . (3.4) 

Instead we work with the smaller number 

L = n(n+1) + logs n , (3.5) 

where 11 is the product of all nonzero entries in q and M. Ignoring the integrality operators, 
we can show that the expression in (3.4) is less than 2L. In fact, one can easily understand 
that the number of operations of an algorithm is polynomial in (3.4) if and only if it is 
bounded by a polynomial in L. • 

We consider the number L, as given by (3.5), as the size of {SP). In fact we use 
this number only once. In the next section we present an algorithm tha t generates a 
positive vector z such tha t z^s{z) < e, where s is any positive number, and we derive 
a bound for the number of iterations required by the algorithm. Then, in Section 3.3, 
we show tha t this algorithm can be used to find a strictly complementary solution of 
{SP) and we derive an iteration bound tha t depends on the so-called condition number 
of {SP). Finally, we show tha t the iteration bound can be bounded from above by a 
polynomial in the quanti ty L, which represents the size of {SP). 

3.2 F ind ing an ^-solution 

After all the theoretical results of the previous sections we are now ready to present 
an algorithm tha t finds a strictly complementary solution of {SP) in polynomial t ime. 
The working horse in the algorithm is the Newton step tha t was introduced in Section 
2.7.2. It will be convenient to recall its definition and some of its properties. 

^ We could easily have included LO problems with rational input data in our considerations, because 
if the entries in M and q are rational numbers then after multiplication of these entries with their 
smallest common multiple, all entries become integral. Thus, each problem instance with rational 
data can easily be transformed to an equivalent problem with integral data. 
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Given a positive vector z such tha t s = s{z) > 0, the Newton direction Az at z 
with respect to fi (or the /i-center z{fi)) is uniquely determined by the linear system 
(cf. (2.35) - (2.36)) 

MAz - A s = 0, (3.6) 

zAs -\- sAz = fie — zs. (3-'^) 

Substi tuting (3.6) into (3.7) we get ^ 

{S + ZM) Az = lie- zs. 

Since the matr ix S + ZM is invertible (cf. Exercise 9, page 29), it follows tha t 

Az = {S^ ZM)~^ {lie - zs) (3.8) 

As = MAz. (3.9) 

The result of the Newton step is denoted as 

z+ := z^Az; 

the new slack vector is then given by 

5+ := 5(z+) = M{z + Az) + ^ = 5 + MAz. 

The vectors Az and As are orthogonal, by (2.34). After the Newton step the objective 
value has the desired value n/i, by (2.38): 

q^ z = s^ z = nji. (3.10) 

The variance vector of z with respect to fi is defined by (cf. (2.41))^: 

This implies 
zs{z) = fie <^ V = e. (3.12) 

We use S{z, fi) as a measure for the proximity of z to z{fi). It is defined by (cf. (2.42)) 

5{z,fi) := \ \v-v-^\. (3.13) 

If z = z{fi) then v = e and hence S{z,fi) = 0, otherwise S{z,fi) > 0. If S{z,fi) < 1 
then the Newton step is feasible, and if S{z,fi) < l / \ / 2 then the Newton process 
quadratically fast converges to z{fi). This is a consequence of the next lemma (cf. 
Theorem 1.16). 

L e m m a 1.33 If S := S{z,fi) < 1, then the Newton step is strictly feasible, i.e., z+ > 0 
and 5+ > 0. Moreover, 

(5(z+, / i )< , 

^ ' ^ ^ - v / 2 ( r ^ ^ 
^ Here, as usual, Z = diag (z) and S* = diag (s). 
3 . y 

Exercise 20 If we define d := y^z/s, where s = s{z), then show that the Newton step Az satisfies 

(/ + DMD) Az= - (v~'^ -v) = ^s~^ - z. 
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3.2.1 Newton-step algorithm 

The idea of the algorithm is quite simple. Starting at z = e, we choose /i < 1 such 
that 

5 ( Z , M ) < ^ , (3.14) 

and perform a Newton step targeting at z{ii). After the step the new iterate z 
satisfies 8{z^ii) < ^. Then we decrease fi such that (3.14) holds for the new values 
of z and /i, and repeat the procedure. Note that after each Newton step we have 
q^z = z^s{z) = nfi. Thus, if fi approaches zero, then z will approach the set of 
optimal solutions. Formally the algorithm can be stated as follows. 

Full-Newton step algorithm 

Input: 
An accuracy parameter £ > 0; 
a barrier update parameter ^, 0 < ^ < 1. 

begin 
z = e; /i := 1; 
while n/i > £ do 

begin 
/ i : = ( l - ^ ) / i ; 
z := z ^ Az; 

end 
end 

Note that the reduction of the harrier parameter ji is realized by the multiplication 
with the factor 1 — ^. In the next section we discuss how an appropriate value of the 
update parameter 6 can be obtained, so that during the course of the algorithm the 
iterates are kept within the region where Newton's method is quadratically convergent. 

3.2.2 Complexity analysis 

At the start of the algorithm we have /i = 1 and z = z{l) = e, whence q^z = n and 
S{z, fi) = 0. In each iteration /i is first reduced with the factor 1 — 0 and then the 
Newton step is made targeting the new /i-center. It will be clear that the reduction 
of /i has effect on the value of the proximity measure. This effect is fully described by 
the following lemma. 

Lemma 1.34 Let z > 0 and fi > 0 be such that s = s{z) > 0 andq^z = n/j.. Moreover, 
let 5 := 5{z, fi) and fi' = {1 — 6)IJL. Then 
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Proof: Let S~^ := S{z,fi^) and v = y^zsjjl, as in (3.11). Then, by definition, 

4 ^ ) ^ vT" 

From z^s = n/j. it follows that \\v\\ = n. This implies 

v^ {y~^ — v) = n— \\v\\ = 

Hence, v is orthogonal to v~^ —v. Therefore, 

4((5+)2 = ( l - ^ ) | | i ; - l -

VY^{v-^ -v) Ov 

VT^ 

0. 

2 . ^ ^ I l ^ l l ' 
1 

Since \\v ^ — v\\ = 26, the result follows. 

/-I /.N II 1 l|2 ^6*^ 

D 

Lemma 1.35 Le^ 0 = ^==. T/ien â  the start of each iteration we have 

q^z = nfi and 5{z, ji) < 
1 

(3.15) 

Proof: At the start of the first iteration we have /i = 1 and z = e, so q^z = n and 
S{z,fi) = 0. Therefore (3.15) certainly holds at the start of the first iteration. Now 
suppose that (3.15) holds at the start of some iteration. We show that (3.15) then also 
holds at the start of the next iteration. Let 5 = 5{z,jii). When the barrier parameter 
is updated to /î  = (1 — ^)/i. Lemma L34 gives 

5{z,fiy = {l-0)5'^ 
4(1-0) 

< 
1 1 

8 ( 1 - ^ ) 
< 

The last inequality can be understood as follows. Due to n > 2 we have 0 < ^ < 
1/v^ = 1/2. The left hand side expression in the last inequality is a convex function 
of 0. Its value at ^ = 0 as well as at ^ = 1/2 equals 3/8, hence its value does not 
exceed 3/8 for 0 e [0,1/2]. 

Since 3/8 < 1/2, it follows that after the /i-update S{z,fi') < l / \ /2- Hence, by 
Lemma L33, after performing the Newton step we certainly have (5(z+,/i^) < 1/2. 
Finally, by (3.10), q^z~^ = nfi\ Thus the lemma has been proved. • 

How many iterations are needed by the algorithm? The answer is provided by the 
following lemma. 

Lemma 1.36 After at most 

iterations we have nfi < e. 

1 . n 

Proof: Initially, the objective value is n and in each iteration it is reduced by the 
factor \ — d. Hence, after k iterations we have /i = (1 — d)^. Therefore, the objective 
value, given by q^z{/j.) = n/j., is smaller than, or equal to s if 

(1-0) n<s. 
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Taking logarithms, this becomes 

k log (1 — ^) + log n < log £. 

Since — log {I — 0) > 0, this certainly holds if 

77/ 

kO > log n — log s = log —. 

This implies the lemma. • 

The above results are summarized in the next theorem which requires no further 
proof. 

T h e o r e m 1.37 If 0 = - ^ then the algorithm requires at most 

r-— ^ n 
2n log — 

iterations. The output is a feasible z > 0 such that q^z = nji < e and S{z, fi) < ^. 

This theorem shows tha t we can get an e-solution z of our self-dual model with s as 
small as desirable.^ 

A crucial question for us is whether the variable n = z^-i is positive or zero in 
the limit, when fi goes to zero. In practice, for small enough s it is usually no serious 
problem to decide which of the two cases occurs. In theory, however, this means tha t 
we need to know what the optimal parti t ion of the problem is. As we explain in the 
next section, the optimal parti t ion can be found in polynomial t ime. This requires 
some further analysis of the central path. 

E x a m p l e 1.38 In this example we demonstrate the behavior of the Full-Newton step 
algorithm by applying it to the problem (SP) in Example 1.7, as given in (2.19) on 
page 23. According to Theorem 1.37, with n = 5, the algorithm requires at most 

5 
10 log -

iterations. For s = 10~^ we have log (5/e) = log 5000 = 8.5172, and we get 27 as an 
upper bound for the number of iterations. When running the algorithm with this £ 
the actual number of iterations is 22. The actual values of the output of the algorithm 
are 

z = (1.5999, 0.0002, 0.8000, 0.8000, 0.0002)^ 

and 

s{z) = (0.0001, 0.8000, 0.0002, 0.0002, 1.0000)^. 

The left plot in Figure 3.1 shows how the coordinates of the vector z := (zi, Z2, ^3, Z4 = 
/̂ , Z5 = 7 )̂, which contains the variables in the problem, develop in the course of the 
algorithm. The right plot does the same for the coordinates of the surplus vector 
s{z) := (51,52,53,54,55). Observe tha t z and s{z) converge nicely to the limit point 
of the central path of the sample problem as given in Example 1.31. (} 

^ It is worth pointing out that if we put e = nil in the iteration bound of Theorem 1.37 we get 
exactly the same bound as given by (2.45). 



1.3 Polynomial Algorithm 53 

1.6 

1.4 

1.2 

0.6 

0.4 

0.2 

-

i\ 

-

. 1 

_ ^ 

S2 

S5 

/ 

S3 

S4 -

5 10 15 20 
iteration number 

5 10 15 20 
iteration number 

Figure 3.1 Output Full-Newton step algorithm for the problem in Example 1.7. 

3.3 Polynomial complexity result 

3.3.1 Introduction 

Having a strictly complementary solution z of (SP), we also know the optimal partition 
( 5 , N) of (SP), as defined in Section 2.6. For if z is a strictly complementary solution 
of (SP) then we have zs{z) = 0 and z -\- s{z) > 0, and the optimal partition follows 
from^ 

B = {i : Zi>0} 

N = {i : s,{z)>0}. 

Definition 1.39 The restriction of a vector z G IR^ to the coordinates in a subset I 
of the full index set {1, 2 , . . . , n} is denoted by zj. 

Hence if z is a strictly complementary solution of (SP) then 

ZB>0, ZN = 0, SB{Z)=0, SN{Z)>0. 

Now let z be any feasible solution of (SP). Then, by Lemma 1.10, with zi = z, Z2 = z 
we obtain that z is optimal if and only if zs{z) = zs{z) = 0. This gives 

z is optimal for (SP) ZN 0 and SB{Z) = 0. 

^ It may be sensible to point out that if, conversely, the optimal partition is known, then it is not 
obvious at all how to find a strictly complementary solution of (SP). 
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As a consequence, the set 5P* of optimal solutions of (SP) is completely determined 
by the optimal partition (B^N) of (SP). We thus may write 

SV* = {zeSV : ZN = 0, SB{Z) = 0} , 

where SV denotes the feasible region of (SP). 
Assuming that M and q are integral we show in this section that a strictly 

complementary solution of (SP) can be found in polynomial time. We divide the 
work into a few steps. First we apply the Full-Newton step algorithm with a suitable 
(small enough) value of the accuracy parameter s. This yields a positive solution z 
of (SP) such that s{z) is positive as well and such that the pair {z,s{z)) is almost 
strictly complementary in the sense that for each index i one of the positive coordinates 
in the pair {zi,Si{z)) is large and the other is small. To distinguish between 'large' 
and 'small' coordinates we introduce the so-called condition number of (SP). We 
are able to specify s such that the large coordinates of z are in B and the small 
coordinates of z in N. The optimal partition of (SP) can thus be derived from 
the almost strictly complementary solution z provided by the algorithm. Then, in 
Section 3.3.6, a rounding procedure is described that yields a strictly complementary 
solution of (SP) in polynomial time. 

3.3.2 Condition number 

Below, {B, N) always denotes the optimal partition of (SP), and SV^ the optimal set 
of (SP). We first introduce the following two numbers: 

aqp := min max izA, aip := min max {si(z)}. 

By convention we take cr|p = oo if 5 is empty and a^p = oo if Â  is empty. Since the 
optimal set SV^ is bounded, cr|p is finite if B is nonempty and a^p is finite if Â  is 
nonempty. Due to the definition of the sets B and Â  both numbers are positive, and 
since B and Â  cannot be both empty at least one of the two numbers is finite. As a 
consequence, the number 

asp :=min{cr |p,cr |p} 

is positive and finite. This number plays a crucial role in the further analysis and is 
called the condition number of (SP).^ Using that z and s{z) are complementary if 
z G SV^ we can easily verify that asp can also be written as 

asp '= min max {zo-\- Soiz)} . 
l<i<nzeSV* 

Example 1.40 Let us calculate the condition number of our sample problem (2.19) 
in Example 1.7. We found in Example 1.12 that any optimal solution z has the form 

^ This condition number seems to be a natural quantity for measuring the degree of hardness of 
(SP). The smaller the number the more difficult it is to find a strictly complementary solution. 
In a more general context, it was introduced by Ye [311]. See also Ye and Pardalos [314]. For a 
discussion of other condition numbers and their relation to the size of a problem we refer the reader 
to Vavasis and Ye [280]. 
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as given by (2.26), namely 

2n 
0 
n 
n 
0 

, s{z) = 

0 
tv 

0 
0 

5 — 5̂ c 

, 0 < / ^< 1 

Hence we have for any optimal z, 

z -^ s{z) 

2ti 

5 — 5/^ 

0<K.<1. 

To find the condition number we need to find the maximum values of each of the 
variables in in this vector. These values are 2, 1, 1, 1 (for K. = 1) and 5 (for /̂  = 0), 
respectively. The minimum of these maximal values being 1, the condition number of 
our sample problem (2.19) turns out to be l7'8,9,io ^ 

In the above example we were able to calculate the condition number of a given 
problem. We see below tha t when we know the condition number of a problem we 
can profit from it in the solution procedure. In general, however, the calculation of 
the condition number is at least as hard as solving the problem. Hence, in general, we 
have to solve a problem without knowing its condition number. In such cases there is 
a cheap way to get a lower bound for the condition number. We proceed by deriving 
such a lower bound for asp in terms of the da ta of the problem (SP). We introduce 
some more notation. 

Def in i t ion 1.41 The suhmatrix of M consisting of the elements in the rows whose 
indices are in I and the columns whose indices are in J is denoted by Mjj. 

Using this convention, we have for any vector z and its surplus vector s = s{z): 

SB 

SN 

MBB MBN 

MNB MNN 

ZB 

ZN 

QB 

qN 

(3.16) 

Recall from the previous section tha t the vector z is optimal if and only if z and s are 
nonnegative, ZN = 0 and SB = 0. Hence we have q^z = Q^ZB- Due to the existence of 

^ Exercise 21 Using the results of Exercise 4 (page 27), prove that the condition number of the 
self-dual problem in question equals 5/4. 

^ Exercise 22 Using the results of Exercise 5 (page 27), prove that the condition number of the 
self-dual problem in question equals 5/4. 

^ Exercise 23 Using the results of Exercise 6 (page 27), prove that the condition number of the 
self-dual problem in question equals 5/(1 + /3) if /3 > 2 and otherwise 5/3/(2(1 + /?)). 

^^ Exercise 24 Using the results of Exercise 7 (page 27), prove that the condition number of the 
self-dual problem in question equals 5/(4 — /3) if /3 < — 1 and otherwise —5/3/(4 — f3). 
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a strictly complementary solution z, for which ZB is positive, we conclude tha t 

te = 0. (3.17) 

Thus it becomes clear tha t a vector z and its surplus vector s are optimal for {SP) if 
and only if ZB > 0, ZAT = 0, 5^ = 0, SAT > 0 and 

This is equivalent to 

MBB OBN 

MNB —INN 

0 

SN 

ZB 

SN 

MBB MBN 

MNB MNN 

ZB 

0 

0 

qN 

OB 

-qN 
ZB >0,ZN = 0, 5^ = 0, SN > 0. (3.18) 

Note tha t any strictly complementary solution z gives rise to a positive solution of 
this system. For the calculation of asp we need to know the maximal value of each 
coordinate of the vector (z^ , SN) when this vector runs through all possible solutions 
of (3.18). Then asp is just the smallest of all these maximal values. 

At this stage we may apply Lemma C.l in Appendix C to (3.18), which gives us an 
easy to compute lower bound for asp-

T h e o r e m 1.42 The condition number asp of (SP) satisfies 

1 
O'SP > n"=iiiM,ii' 

where Mj denotes the j-th column of M. 

Proof: Recall tha t the optimal set of (SP) is determined by the equation (3.18). Also, 
by Lemma L9 we have e^z -\- e^s{z) = n, showing tha t the optimal set is bounded. 
As we just established, the system (3.18) has a positive solution, and hence we may 
apply Lemma C.l to (3.18) with 

MBB 

MNB 

OBN 

—INN 

The columns in A made up by the two left blocks are the columns Mj of M with 
j G B, whereas the columns made up by the two right blocks are unit vectors. Thus 
we obtain tha t the maximal value of each coordinate of the vector (ZB^SN) is bounded 
below by the quanti ty 

1 

n,.^iiM,ir 
With the definition of asp this implies 

1 
O'SP > > 

UjeB\\Mj\\ - n ; = i i i M , i 

The last inequality is an obvious consequence of the assumption tha t all columns in 
M are nonzero and integral. Hence the theorem has been proved. • 
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3.3.3 Large and small variables 

It will be convenient to call the coordinates of z(/i) tha t are indexed by B the 
large coordinates of ^(/i), and the other coordinates the small coordinates of ^(/i). 
Furthermore, the coordinates of SN{I~J) are called the large coordinates of 5(/i), and 
the coordinates of ^^(/i) small coordinates of 5(/i). The next lemma provides lower 
bounds for the large coordinates and upper bounds for the small coordinates of z(/i) 
and 5(/i). This lemma implies tha t the large coordinates of z(/i) and 5(/i) are bounded 
away from zero along the central path, and there exists a uniform lower bound tha t is 
independent of /i. Moreover, the small coordinates are bounded above by a constant 
times /i, where the constant depends only on the da ta in the problem (SP). In other 
words, the order of magnitude of the small coordinates is 0{fi). The bounds in the 
lemma use the condition number asp of (SP). 

L e m m a 1.43 For any positive fi we have 

z^{fi) > ^ ^ , i e B, z,(/i) < ^ ^ , i e N, 
n asp 

Si{jii) < , i e B, Si{ij) > , i e N. 
(JSP n 

Proof: First let i ^ N and let z be an optimal solution such tha t si := Si{z) is 
maximal. Then the definition of the condition number asp implies tha t si > asp-
Applying the orthogonality property (2.22) to the points z and z(/i) we obtain 

(Z(M) - zf{s{ii) - s) = 0, 

which gives 
z{fi)^s -\- s{fi)^z = nfi. 

This implies 
Zi{ii)si < z{jii)^s < nji. 

Dividing by si and using tha t si > asp we obtain 

Si crsp 

Since Zi{jii)si{jii) = /i, it also follows tha t 

SiW > . 
n 

This proves the second and fourth inequality in the lemma. The other inequalities are 
obtained in the same way. Let i e B and let z be an optimal solution such tha t Zi 
is maximal. Then the definition of the condition number asp implies tha t Zi > asp-
Applying the orthogonality property to the points z and z(/i) we obtain in the same 
way as before 

Si{iJi)zi < s{jii)^z < nji. 

From this we deduce tha t 

Zi CFSP 
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Using once more z{fi)s{fi) = fie we find 

Zi{/J.) > 
O'SP 

completing the proof of the lemma.^^'^^ 

We collect the results of the above lemma in Table 3.1. 

D 

Zi{f^) 

Si{f^) 

i e B 

^ crsp 
— n 

— asp 

i eN 

— asp 

^ O'SP 
— n 

T a b l e 3 . 1 . Es t imates for large and small variables on the central pa th . 

The lemma has an important consequence. If /i is so small that 

nfi asp 

asp n 
then we have a complete separation of the small and the large variables. This means 
that if a point z(/i) on the central path is given so that 

^ crsp'^ 

then we can determine the optimal partition {B,N) of (SP). 
In the next section we show that the Full-Newton step algorithm can produce a 

point z in the neighborhood of the central path with this feature, namely that it gives 
a complete separation of the small and the large variables. 

3.3.4 Finding the optimal partition 

Theorem 1.37 states that after at most 

^ 1 ^ 2n log — (3.19) 

^^ Exerc i se 25 Let 0 < /x < /x. Using the orthogonality property (2.22), show that for each 
(1 < i < n), 

Zi(fl) Si(fl) 

^^ The result in Exercise 25 can be improved to 

< 2n. 

Zi(fl) Si(j2) 
< n , 

which implies 
Ziifi) < nzi(fL), Si(iJ.) < nsi{ji). 

For a proof we refer the reader to Vavasis and Ye [281]. 
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iterations the Full-Newton step algorithm yields a feasible solution z such that 
q^z = nfi < £ and S{z,fi) < ^. We show in this section that if fi is small enough 
we can recognize the optimal partition {B, N) from z, and such z can be found in 
a number of iterations that depends only on the dimension n and on the condition 
number asp of (SP). 

We need a simple measure for the distance of z to the central path. To this end, for 
each positive feasible vector z with s{z) > 0, we define the number Sc{z) as follows: 

^ max(zg(z)) 
Oc{z) := —^-—---. (3.20) 

mm[zs[z)) 

Observe that Sc{z) = 1 if and only if zs{z) is a multiple of the all-one vector e. This 
occurs precisely if z lies on the central path. Otherwise we have Sc{z) > 1. We consider 
Sc{z) as an indicator for the 'distance' of z to the central path.^^ 

Lemma 1.44 If 5{z,ii) < ^ then Sc{z) < 4. 

Proof: Using the variance vector v of z, with respect to the given /i > 0, we may 
write 

max [fiv'^) max (i;^) 

min(/i'U^) min('U^) 

Using (3.13), it follows from S{z,fi) < ^ that 

Without loss of generality we assume that the coordinates of v are ordered such that 

Vi>V2>...>Vn. 

Then Sc{z) = vf/v'^. Now consider the problem 

{f Mk-.-'ll.i} 

The optimal value of this problem is an upper bound for Sc{z). One may easily verify 
that the optimal solution has Vi = 1 if 1 < i < n, vi = \/2 and Vn = l / \ /2 . Hence the 
optimal value is 4.^^ This proves the lemma. • 

^^ In the analysis of interior-point methods we always need to introduce a quantity that measures the 
'distance' of a feasible vector x to the central path. This can be done in many ways as becomes 
apparent in the course of this book. In the coming chapters we make use of a variety of so-called 
proximity measures. All these measures are based on the simple observation that x is on the central 
path if and only if the vector xs(x) is a scalar multiple of the all-one vector. 

^^ Exercise 26 Prove that 
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Lemma 1.45 Let z be a feasible solution of (SP) such that Sc{z) < r. Then, with 
8 = s{z), we have 

Zi > , z e B, 
rn 
T 

z s 
Si < , i e B, 

O'SP 

T 

z- < — 
~ O'SP' 

. O'SP 
Si > , 

rn 

ieN, 

i eN. 

Proof: The proof is basicahy the same as the proof of Lemma L43. It is a little more 
complicated because the estimates now concern a point off the central path. From 
^c(^) < T we conclude that there exist positive numbers ri and r2 such that r r i = r2 
and 

Ti < ZiSi < r2, 1 < i < n. (3.21) 

When we realize that these inequalities replace the role of the identity Zi{fi)si{fi) = fi 
in the proof of Lemma L43 the generalization becomes almost straightforward. First 
suppose that i G N and let z be an optimal solution such that Si := Si{z) is 
maximal. Then, from to the definition of asp, it follows that Si > asp- Applying 
the orthogonality property (2.22) to the points z and z, we obtain in the same way as 
before 

ZiSi < Z^S < Z^S. 

Hence, dividing both sides by Si and using that Si > asp we get 

Zi < 

T 
Z^ S 

OSP 

From the left inequality in (3.21) we also have ZiSi > r i . Hence we must have 

. riosp 
Si > 7j^ . 

z-^ s 

The right inequality in (3.21) gives z^s < nr2. Thus 
TlOsP OSP Si > 

nT2 

This proves the second and fourth inequality in the lemma. The other inequalities 
are obtained in the same way. If z G 5 and z is an optimal solution such that Zi is 
maximal, then Zi > (JSP- Applying the orthogonality property (2.22) to the points z 
and z we obtain 

Thus we get 

SiZi < S^Z < Z^S. 

T T 
Z S Z S 

S ^ < ^ < . 
Zi OSP 

Using once more that ZiSi > ri and z^ s < nr2 we obtain 

. nosp ^ nasp OSP 
z-^ s nT2 nr 

completing the proof of the lemma. • 
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Zi 

Si{z) 

i G B 

— rn 
T 

<^ _Z S_ 

— (TSP 

i&N 

T 
<^ Z_ S_ 

— (TSP 

^ crsp 
— rn 

Table 3.2. Estimates for large and small variables if 5c{z) < r. 

The results of the above lemma are shown in Table 3.2.. We conclude tha t if z^s 
is so small tha t 

O'SP T 
Z S 
(Jsp rn 

then we have a complete separation of the small and the large variables. Thus we may 
state without further proof the following result. 

L e m m a 1.46 Let z be a feasible solution of (SP) such that Sc{z) < r. If 

z^s{z) < 
O'SP 

then the optimal partition of (SP) follows from 

B = {i : Zi > Si{z)} and N = {i 

This lemma is the basis of our next result. 

T h e o r e m 1.47 After at most 

4n^ 

osp'^ 

<Si{z)}. (3.22) 

2n log • (3.23) 

iterations, the Full-Newton step algorithm yields a feasible (and positive) solution z of 
(SP) that reveals the optimal partition (B^N) of (SP) according to (3.22). 

Proof: Let us run the Full-Newton step algorithm with e = c r | p / {An). Then Theorem 
L37 states tha t we obtain a feasible z with z^s{z) < a'gp/ (An) and 8{z^ii) < 1/2. 
Lemma L44 implies tha t 5c{z) < 4. By Lemma L46, with r = 4, this z gives a complete 
separation between the small variables and the large variables. By Theorem L37, the 
required number of iterations for the given s is at most 

An' 
2n log 

OSP^ 

which is equal to the bound given in the theorem. Thus the proof is complete. • 
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Example 1.48 Let us apply Theorem 1.47 to the self-dual problem (2.19) in Example 
1.7. Then n = 5 and, according to Example 1.40 (page 54), asp = 1. Thus the iteration 
bound (3.23) in Theorem 1.47 becomes 

10 log (100) = [14.5628] = 15. 

With the help of Figure 3.1 (page 53) we can now determine the optimal partition 
and we find 

5 = {1 ,3 ,5} , iV = {2 ,4} , 

in agreement with the result of Example 1.12. () 

3.3.5 A rounding procedure for interior-point solutions 

We have just established that the optimal partition of {SP) can be found after a 
finite number of iterations of the Full-Newton step algorithm. The required number 
of iterations is at most equal to the number given by (3.23). After this number of 
iterations the small variables and the large variables are well enough separated from 
each other to reveal the classes B and N that constitute the optimal partition. 

The aim of this section and the next section is to show that if B has been fixed then 
a strictly complementary solution of {SP) can be obtained with little extra effort.^^ 

First we establish that the class B is not empty. 

Lemma 1.49 The class B in the optimal partition of {SP) is not empty. 

Proof: If B is the empty set then z = 0 is the only optimal solution. Since, by 
Theorem L20, this solution must be strictly complementary we must have s{z) > 0. 
Since s{z) = Mz -\- q = q, we find q > 0. This contradicts that q has zero entries, by 
(3.1). This proves the lemma. • 

Assuming that the optimal partition {B, N) has been determined, with B nonempty, 
we describe a rounding procedure that can be applied to any positive vector z with 
positive surplus vector s{z) to yield a vector z such that z and its surplus vector 
s = s{z) are complementary (in the sense that ZN = SB = 0) but not necessarily 
nonnegative. In the next section we run the algorithm an additional number of 
iterations to get a sharper separation between the small and the large variables and 
we show that the rounding procedure yields a strictly complementary solution in 
polynomial time. 

Let us have a positive vector z with positive surplus vector s{z). Recall from (3.16), 
page 55, that 

SB 

SN 

MBB M BN 

MNB MNN 

ZB 

ZN 

QB 

qN 

^^ It is generally believed that interior-point methods for LO never generate an exact optimal solution 
in polynomial time (Andersen and Ye [11]). In fact, Ye [308] showed in 1992 that a strictly 
complementary solution can be found in polynomial time by all the known 0{n^L) interior-point 
methods. See also Mehrotra and Ye [208]. The rounding procedure described in this chapter is 
essentially the same as the one presented in these two papers and leads to finite termination of the 
algorithm. 
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This implies tha t 

SB = MBBZB + MBNZN + te-

Since QB = 0, by (3.17), ^ = ZB satisfies the system of equations in the unknown 
vector ^ given by 

MBB C = SB- MBNZN- (3.24) 

Note tha t ZB is a 'large' solution of (3.24), because the entries of ZB are large variables. 
On the other hand we can easily see tha t (3.24) must have more solutions. This follows 
from the existence of a strictly complementary solution of {SP)^ because for any such 
solution z we derive from ZAT = 0 and SB{Z) = 0 tha t MBB^B = 0- Since ZB > 0, it 
follows tha t the columns oi MBB are linearly dependent, and hence (3.24) has multiple 
solutions. 

Now let (f be any solution of (3.24) and consider the vector z defined by 

ZB = ZB - <f, ZN = 0. 

For the surplus vector s = s{z) of z we have 

SB = MBBZB + MBNZN = MBBZB = MBB {ZB - <f) = 0. 

So we have ^AT = 5^ = 0, which means tha t the vectors z and s are complementary. It 
will be clear, however, tha t the vectors z and s are not necessarily nonnegative. This 
only holds if 

ZB = ZB -C>0, 

and 

SN = MNBZB + MNNZN ^qN = MNB {ZB -O^QN = SN - MNNZN - MNBC > 0. 

We conclude tha t if (3.24) admits a solution (^ tha t satisfies the last two inequalities 
then z is a solution of (SP). Moreover, if (^ satisfies these inequalities strictly, so tha t 

ZB-C>0, SN- MNNZN - MNBC > 0, (3.25) 

then z is a strictly complementary solution of (SP). In the next section we show tha t 
solving (3.24) by Gaussian elimination gives such a solution, provided the separation 
between the small and the large variables is sharp enough. 

E x a m p l e 1.50 In this example we show tha t the Full-Newton step algorithm 
equipped with the above described rounding procedure solves the sample problem 
(2.19) in Example 1.7 in one iteration. Recall from Example 1.14 tha t the Newton step 
in the first iteration is given by (2.39) and (2.40). Since in this iteration fi = 1 — 0, 
substi tuting 0 = l / \ /TO, we find 

Az = - - ^ ( - ^ , ^ , ^ , i , l ) = - (-0.1054, 0.2811, 0.1405, 0.0351, 0.3162)^, 

and 

As = ^ ( - , - , - , - , 0 I = - (0.4216, 0.0351, 0.1757, 0.2811, 0.0000)^. 
v ^ V3 9 9 9 y 
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Hence, after one iteration the new iterate is given by 

(1.1054, 0.7189, 0.8595, 0.9649, 0.6838)^ 

and 
s = (0.5784, 0.9649, 0.8243, 0.7189, 1.0000)' . 

It is interesting to observe tha t the sets B and N, as defined by (3.22) are aheady the 
classes of the optimal parti t ion of the problem: 

5 = {1, 3, 4 } , iV = {2, 5 } . 

Now we apply the rounding procedure at z with respect to the parti t ion {B, N). The 
matr ix MBB is given by 

r 0 1 - 1 

MBB = - 1 0 2 

1 - 2 0 

We have 

MBBZB 

1" 

2 

0 

" 1.1054 " 

0.8595 

0.9649 

= 

-0.1054 

0.8243 

-0.6135 

So we need to find a 'small' solution ( of the system 

MBBZB • 

A solution of this system is 

c 

-1 

2 

0 

0.0000 

0.3067 

0.4122 

-0.1054 

0.8243 

-0.6135 

The rounded solution is now defined by 

ZB = ZB -( 

' 1.1054 " 

0.8595 

0.9649 

-
" 0.0000 " 

0.3067 

0.4122 

= 

" 1.1054 " 

0.5527 

0.5527 

ZN = 0. 

Hence the rounded solution is 

z = (1.1054, 0.0000, 0.5527, 0.5527, 0.0000)^. 

The corresponding slack vector is 

s{z) = Mz^q = (0.0000, 0.5527, 0.0000, 0.0000, 2.2365)^. 

Since z and s{z) are nonnegative and complementary, z is optimal. Moreover, z-\-s{z) > 
0, so z is a strictly complementary solution. Hence we have solved the sample problem 
in one iteration. (} 
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R e m a r k 1.51 In the above example we used for ^ the least norm solution of (3.24). This 
is the solution of the minimization problem 

min {ll^ll : MBB^ = MBBZB}-

Formally the least norm solution can be described as 

^ = M^B^BBZB, 

where M^^ denotes the generalized inverse(cf. Appendix B) of MBB- We may then write 

ZB-i= {IBB - M^BMBB) ZB, 

where IBB is the identity matrix of appropriate size. 
Since we want ^ to be such that ZB — ^ is positive, an alternative approach might be to 

use the solution of 

min {||z^"^^|| : MBB^ = MBBZB}-

Then ^ is given by 
^ = ZB (MBBZB)^ MBBZB. 

• 

Of course, we were lucky in the above example in two ways: the first i terate already 
determined the optimal parti t ion and, moreover, at this i terate the rounding procedure 
yielded a strictly complementary solution. In general more iterations will be necessary 
to find the optimal parti t ion and once the optimal parti t ion has been found the 
rounding procedure may not yield a strictly complementary solution at once. But, 
as we see in the next section, after sufficiently many iterations we can always find an 
exact solution of any problem in this way, and the required number of iterations can 
be bounded by a (linear) polynomial of the size of the problem. 

3.3.6 Finding a strictly complementary solution 

In this section we assume tha t the optimal parti t ion {B, N) of (SP) is known. In the 
previous section we argued tha t it may be assumed without loss of generality tha t 
the set B is not empty. In this section we show tha t when we run the algorithm an 
additional number of iterations, the rounding procedure of the previous section can be 
used to construct a strictly complementary solution of (SP). The additional number 
of iterations depends on the size of B and is aimed at creating a sufficiently large 
distance between the small and the large variables. 

We need some more notation. First, co will denote the infinity norm of M: 

l<i<n ^—' 
J = l 

Second, B* denotes the subset of B for which the columns in MBB are nonzero, and 
third, the number TTB is defined by 

^B • = < 

1 if 5* = 0, 

n ll(^^^)jll otherwise. 
jeB* 
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L e m m a 1.52 Let z be a feasible solution of (SP) such that Sc{z) < r = 4. / / 

z^s{z) < 'SP 

4 n ( l + c j ) 2 7 r 5 V | 5 | 

with uo and TTB as defined above, then a strictly complementary solution can be found 
in 

C)(|5*|^) 

arithmetical operations. 

Proof: Suppose tha t z is positive solution of (SP) with positive surplus vector 
5 = s{z) such tha t Sc{z) < 4 and z^s < e, where 

s:= ^ = . (3.26) 

Recall tha t the entities \B\, uo and HB are all at least 1 and also, by Lemma L45, tha t 
the small variables in z and 5 are less than s/asp and the large variables are at least 
asp/{4n). 

We now show tha t the system (3.24) has a solution ^ whose coordinates are small 
enough, so tha t 

ZB-C>0, SN- MNNZN - MNBC > 0. (3.27) 

We need to distinguish between the cases where MBB is zero and nonzero respectively. 
We first consider the case where MBB = 0- Then <f = 0 satisfies (3.24) and for this 

(f the condition (3.27) for the rounded solution z to be strictly complementary reduces 
to the single inequality 

SN - MNNZN > 0. (3.28) 

This inequality is satisfied if M^N = 0- Otherwise, if M^N T^ 0, since ZN is small we 
may write 

IIM^^z^ll^ < IIM^^II^ \\ZN\\^ < \\Ml ^ "̂̂  
^ o'sp o-sp 

Hence, since SN is large, (3.28) certainly holds if 

which is equivalent to 

SUJ GSP 

cFsp 4n 

e < ^^ 
Anuo 

Since this inequality is implied by the hypothesis of the lemma, we conclude tha t the 
rounding procedure yields a strictly complementary solution if MBB = 0-

Now consider the case where MBB T^ 0- Then we solve (3.24) by Gaussian 
elimination. This goes as follows. Let Bi and B2 be two subsets oiB such tha t MB^B2'^^ 
a nonsingular square submatrix of MBB with maximal rank, and let C, be the unique 
solution of the equation 

MBIB2C = SBI - MB^NZN' 
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From Cramer 's rule we know tha t the i-th entry of (, with z G ̂ 2 , is given by 

detM^'^o 

d e t M ^ , ^ / 

(i) 

where M^^^^^ is the matr ix arising by replacing the z-th column in MB^B2 by the vector 
5^^ —MBINZN' Since the entries of MB^B2 ^^e integral and this matr ix is nonsingular, 
the absolute value of its determinant is at least 1. As a consequence we have 

101 < detM^'^^^^ 

The right-hand side is no larger than the product of the norms of the columns in the 

matr ix M^^^ , due to the inequality of Hadamard (cf. Section 1.7.3). Thus 

IGI < \\SB-MBNZN\\ n l l (^^i^2) j l l < WSB-MBNZNWTTB^ (3.29) 

J^B2\{i} 

The last inequality follows because the norm of each nonzero column in MBB is at 
least 1, and TTB is the product of these norms. 

Since 5^ and ZN are small variables we have 

and 

\\MBNZN\L < \\MBN\L IÎ NIIOO < ll^lloo INNIIOO < ^ -

Therefore 

\SB - MBNZNW < V\B\\\SB - MBNZN\L< V\B\^^^^''^ 
(^SP 

Substituting this inequality in (3.29), we obtain 

£ ( l + w ) 7 r B V ^ 
IC.I< 

(^SP 

Defining (f by 
U = C , 6 = 0, iGB\B,, 

the vector ^ satisfies (3.24), because MBIB2 is a nonsingular square submatrix of MBB 
with maximal rank and because SB—MBNZN{= MBB^B) belongs to the column space 
of MBB' Hence we have shown tha t Gaussian elimination yields a solution (^ of (3.24) 
such tha t 

U\L < ^ ^ ^ + " ^ ^ " ^ - (3.30) 
O'SP 

Applying the rounding procedure of the previous section to z, using ^, we obtain 
the vector z defined by 

ZB = ZB - <?, ZN = 0, 

file:////MbnZn/L
file:////Mbn/L
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and the surplus vector s = s{z) satisfies SB = 0. SO Z is complementary. We proceed 
by showing tha t z is a strictly complementary solution of (SP) by proving tha t (, 
satisfies the condition (3.25), namely 

ZB = ZB - C> ^1 SN = SN - MNNZN - MNBC > 0-

We first establish tha t ZB is positive. This is now easy. The coordinates of ZB are 
large and the nonzero coordinates of ^ are bounded above by the right-hand side in 
(3.30). Therefore, ZB will be positive if 

£{l^u;)7TByW\ ^SP 
(Jsp 4n 

or, equivalently. 

e < ^ SP 

An{l^uo)7iB^\B\ 

and this is guaranteed by the hypothesis in the lemma. 
We proceed by estimating the coordinates of s^. First we write 

WMNNZN + MNB^WOO = \\{MNN MNB)\\OO ( ^f 

Using (3.30) and the fact that z^ is small we obtain 

< \M\l ZN 

\\MNNZN ^MNBCWOO ^ ^ m a x 
O'SP O'SP 

£u;{l -\- u;)7TBy^\B\ 

O'SP 

Here we used again tha t TT^ > 1 and \B\ > 1. Hence, since the coordinates of SN are 
large, the coordinates of SN will be positive if 

su;{l^u;)7TBy^W\ asp 
< 

O'SP An 

or, equivalent ly, if 

s < 'SP 

4n6 j ( l -^u;)7TBy^\B\ 

and this follows from the hypothesis in the lemma. 
Thus we have shown tha t the condition for z being strictly complementary is 

satisfied. Finally, the calculation of ( can be performed by Gaussian elimination and 
this requires 0{\B*\ ) arithmetic operations. Thus the proof is complete. • 

The next theorem now easily follows from the last lemma. 

T h e o r e m 1.53 Using the notation introduced above, the Full-Newton step algorithm 
yields a feasible solution z for which the rounding procedure yields a strictly compl­
ementary solution of {SP), after at most 

An^{l^uof7iB^\B\ 

^IP 
2n log 

iterations. 

file:////MnnZn
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Proof: By Lemma 1.52 the rounding procedure yields a strictly complementary 
solution if we run the Full-Newton step algorithm with 

4 P 
4 n ( l + c j ) 2 7 r 5 V | 5 | 

By Theorem 1.37 for this value of e the Full-Newton step algorithm requires at most 

2n log • 
^ 5 P 

iterations. This proves the theorem. • 

R e m a r k 1.54 The result in Theorem 1.53 can be used to estimate the number of arithmetic 
operations required by the algorithm in a worst-case situation. This number can be bounded 
by a polynomial of the size L of (SP) (cf Remark 1.32), as we show. We thus establish that 
the method proposed in this chapter solves the self-dual model in polynomial time. As a 
consequence, by the results of the previous chapter, it also solves the canonical LO problem 
in polynomial time. 

The iteration bound in the theorem is worst if B contains all indices. Ignoring the integrality 
operator, and denoting the number of iterations by K, the iteration bound becomes 

K < v 2 n log — ^ , 

where 

niî -̂
J = l 

By Theorem 1.42 we have 
1 1 

crsp > y=rn—TTT-r-^ = • 

n,=iii^iii ^^ 

Substituting this we get the upper bound 

K < V2^ log Uni (1 + cofiTM) , (3.31) 

for the number of iterations. A rather pessimistic estimate yields 
n / n \ 

j=l \i=l ) 

This follows by expanding the product in the middle, which gives n^ terms, each of which 
is bounded above by 11^, where 11 is defined in Remark 1.32 as the product of all nonzero 
entries in q and M. We also have the obvious (and very pessimistic) inequality a; < 11, which 
implies 1 + a; < 211. Substituting these pessimistic estimates in (3.31) we obtain 

K < V2^ log Uni {2Uf (n^'U^)^) = V2^ log (l6n^^U^) . 
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This can be further reduced. One has 

l o g M 6 n ^ ^ t f j = log 1 6 + ^ ^ - — l o g n + 51ogn 

< 3 + i ( 3 n + 5 ) ( n - l ) + ^ l o g 2 n 

^ (3n^ + 2 n + l + 71og2n) 

< - ( n ( n + l ) + l o g 2 n ) . 

The first inequality is due to log 16 = 2.7726 < 3, logn < n — 1 and log 11 = 0.6931 log2 H, 
and the second inequality holds because 7n(n -\- 1) > 3n^ + 2n + 1 for all n. 

Finally, using the definition (3.5) of the size L{= n{n -\- 1) + log2 H)), we obtain 

K < ^-V2^L< 5^/^L. 

Thus the claim has been proved. 

3.4 Conc lud ing remarks 

The analysis in this chapter is based on properties of the central path of (SP). To 
be more specific, on the property that when one moves along the central path to the 
optimal set, the separation between the large and small variables becomes apparent. 
We showed that the Full-Newton step algorithm together with a simple rounding 
procedure yields a polynomial algorithm for solving a canonical LP problem; the 
iteration bound is S y ^ L , where L is the binary input size of the problem. 

In the literature many other polynomial-time interior-point algorithms have been 
presented. We will encounter many of these algorithms in the rest of the book. Almost 
all of these algorithms are based on a Newton-type search direction. At this stage we 
want to mention an interesting exception, which is based on an idea of Dikin and that 
also can be used to solve in polynomial time the self-dual problem that we considered 
in this and the previous chapter. In fact, an earlier version of this book used the 
Dikin Step Algorithm in this part of the book. The iteration bound that we could 
obtain for this algorithm was 7nL. Because it leads to a better iteration bound, in this 
edition we preferred to use the Full-Newton step algorithm. But because the Dikin 
Step Algorithm is interesting in itself, and also because further on in the book we will 
deal with Dikins method, we decided to keep a full description and analysis of the 
Dikin Step Algorithm in the book. It can be found in Appendix F.^^ 

^^ The Dikin Step Algorithm was investigated first by Jansen et al. [156]; the analysis of the algorithm 
used in this chapter is based on a paper of Ling [182]. By including higher-order components in 
the search direction, the complexity can be improved by a factor ^/n, thus yielding a bound of the 
same order as for the Full-Newton step algorithm. This has been shown by Jansen et al. [160]. See 
also Chapter 18. 



Solving the Canonical Problem 

4.1 In troduct ion 

In Chapter 2 we discussed the fact that every LO problem has a canonical description 
of the form 

(P) min {c^x : Ax>b,x>0}. 

The matrix A is of size m x n and the vectors c and x are in K^ and b in K"^. In this 
chapter we further discuss how this problem, and its dual problem 

(D) max {b^y : A^y < c, y > O} , 

can be solved by using the algorithm of the previous chapter for solving a self-dual 
embedding of both problems. With 

M :--

0 
-A^ 

b^ 

A 

0 
T 

-I 

C 

0 
z := (4.1) 

as in (2.7), the embedding problem is given by (2.15). It is the self-dual homogeneous 
problem 

(SPo) {O^z : Mz>0, z>0} (4.2) 

In Chapter 3 we showed that a strictly complementary solution z of (SPQ) can be 
found in polynomial time. If a strictly complementary solution z has n > 0 then 
X ^ X / Ki is an optimal solution of (P), and if ĉ = 0 then (P) (and also its dual (D)) 
must be either unbounded or infeasible. This was shown in Section 2.8, where we also 
found that any strictly complementary solution of (SPQ) with K. > 0 provides a strictly 
complementary pair of solutions (x^y) for (P) and (D). Thus x is primal feasible and 
y dual feasible. The complementarity means that 

x{c- A^y) = 0 , y {Ax - 6) = 0, 

and the strictness of the complementarity that 

X + (c - A^y) > 0, ^ + {Ax - 6) > 0. 

Obviously these results imply that every LO problem can be solved exactly in 
polynomial time. The aim of this chapter is to make a more thorough investigation of 
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the consequences of the results in Chapter 2 and Chapter 3. We restrict ourselves to 
the canonical model. 

The algorithm for the self-dual model, presented in Section 3.2, requires knowledge 
of a positive z such tha t the surplus vector s{z) = Mz of z is positive. However, such 
z does not exist, as we argued in Section 2.4. But then, as we showed in the same 
section, we can embed (6'Po) in a slightly larger self-dual problem, named {SP) and 
given by (cf. (2.16)), 

(6'P) min {q^z : Mz>-q,z>^}. (4.3) 

for which the constraint matr ix has one extra row and one extra column, so tha t any 
strictly complementary solution of {SP) induces a strictly complementary solution 
of (^'Po)- Hence, applying the algorithm to the larger problem {SP) yields a strictly 
complementary solution of {SP^^^ hence also for (P) and {!)) if these problems are 
solvable. 

It should be noted tha t both the description of the Full-Newton Step algorithm 
(page 50) and its analysis apply to any problem of the form (4.3) tha t satisfies the 
IPC, provided tha t the matr ix M is skew-symmetric and g' > 0. In other words, we 
did not exploit the special s tructure of the matr ix M , as given by (2.11), neither did 
we use the special s tructure of the vector q^ as given by (2.12). 

Also note tha t if the embedding problem is ill-conditioned, in the sense tha t the 
condition number GSP is small, we are forced to run the Full-Newton step algorithm 
with a (very) small value of the accuracy parameter. In practice, due to limitations of 
machine precision, it may happen tha t we cannot reach the state at which an exact 
solution of {SP) can be found. In tha t case the question becomes important of what 
conclusions can be drawn for the canonical problem (P) and its dual problem (P)) 
when an e-solution for the embedding self-dual problem is available. 

The aim of this chapter is twofold. We want to present two other embeddings of 
(6'Po) tha t satisfy the IPC. Recall tha t the embedding in Chapter 2 did not require 
any foreknowledge about the problems (P) and (I^). We present another embedding 
tha t can also be used for tha t case. A crucial question tha t we want to investigate is if 
we can then decide whether the given problems have optimal solutions or not without 
using the rounding procedure. Obviously, this amounts to deciding whether we have 
ĉ > 0 in the limit or not. This will be the subject in Section 4.3. 

Our first aim, however, is to consider an embedding tha t applies if both (P) and 
(P)) have a strictly feasible solution and such solutions are know in advance. This case 
is relatively easy, because we then know for sure tha t ĉ > 0 in the limit. 

4.2 T h e case w h e r e str ict ly feasible so lut ions are known 

We start with the easiest case, namely when strictly feasible solutions of (P) and (D) 
are given. Suppose tha t x^ G K^ and y^ G K"^ are strictly feasible solutions of (P) 
and (D) respectively: 

x^ > 0, s{x^) =Ax^-b>0 and y^ > 0, s{y^) = c- A^y^ > 0. 
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4-2.1 Adapted self-dual embedding 

Let 

M : = 

0 A - 6 0 

-A^ 0 c 0 

h^ -c^ 0 1 

0 0 - 1 0_ 

and consider the self-dual problem 

(SPi) min {q^z 

, z := 

y 
X 

_^_ 

, q : = 

: Mz^q > 0 , z>0}. 

0 

0 

0 

_ 2 

Note that q > 0. We proceed by showing that this problem has a positive solution 
with positive surplus vector. Let 

^0 := 1 + c^a;0 - 5^^°. 

The weak duality property implies that c^x^ — b^y^ > 0. If c^x^ — b^y^ = 0 then x^ 
and y^ are optimal and we are done. Otherwise we have 'd^ > 1. We can easily check 
that for 

1 
^0 

have 

s(z°) := Mz° + g : c - A V 
iT'^.O 

&^?/' 

-1 + 2 

s{x^) 

s{y') 
1 
1 

so both z^ and its surplus vector are positive.^ Now let z be a strictly complementary 
solution of (SPi). Then we have, for suitable vectors y and x and scalars R and i!̂ , 

> 0, s{z) 

Ax — nb 

Re — A^y 

b^y c^x -\-1^ 
> 0 , zs{z)=0, z^s{z)>0. 

Since the optimal objective value is zero, we have 'd = 0. On the other hand, we 
cannot have ^ = 0, because this would imply the contradiction that either (P) or (D) 
is infeasible. Hence we conclude that ^ > 0. This has the consequence that x = x/R 
is feasible for (P) and y = y/R is feasible for (D), as follows from the feasibility of z. 
The complementarity of z and s{z) now yields that 

5 (R) := b^y — c^x = 0. 

Exercise 27 If it happens that we have a primal feasible x^ and a dual feasible y^ such that 
x^s(y^) = iiCn and y^s{x^) = iiCm for some positive /x, find an embedding satisfying the IPC such 
that z^ is on its central path. 



74 I Theory and Complexity 

Thus it fohows tha t XJK is optimal for (P) and yJK is optimal for {D). Finally, the 
strict complementarity of z and s(z) gives the strict complementarity of this solution 
pair. 

^.2.2 Central paths of (P) and (D) 

At this stage we want to point out an interesting and important consequence of the 
existence of strictly feasible solutions of (P) and (D). In tha t case we can define central 
paths for the problems (P) and (D). This goes as follows. Let /i be an arbitrary positive 
number. Then the /i-center of (SPi) is determined as the unique solution of the system 
(cf. (2.46), page 35) 

Mz^q = 5, z > 0 , 5 > 0 
(4.4) 

zs = / ie^+n+2-

In other words, there exist unique nonnegative x^y^n^'d such tha t 

Ax- nh> 0, nc - A^y > 0, b^y-Jx^i9>0, 2 - /̂  > 0 

and, moreover 

y {Ax - Kh) = fiem 

x{nc-A^y) = fiCn 

n (h^y — c^x -\-1^) = fi 

d{2-t^) = II. 

An immediate consequence is tha t all the nonnegative entities mentioned above are 
positive. Surprisingly enough, we can compute the value of K. from (4.4). Taking the 
inner product of both sides in the first equation with z, while using the orthogonality 
property, we get q^z = z^s. The second equation in (4.4) gives z^s = (n + TTI + 2)/i. 
Due to the definition of q we obtain^ 

2^ = {n^m^2)fi. (4.6) 

In fact, this relation expresses tha t the objective value q^z = 21^ along the central 
pa th equals the dimension of the matr ix M times /i, already established in Section 2.7. 
Substitution of (4.6) in the last equation of (4.5) yields 

(n + m + 2 ) ' ^ ( 2 - / ^ ) = 2^ .̂ 

Since î  > 0, after dividing by i} it easily follows tha t 

_ 2(n + m + l ) 

n-\-m-\-2 

Substitution of the values of n and i} in the third equation gives 

c^x — b^y 1^ fi d^i — fi {n -\- m) /J. {n -\- m) {n -\- m -\-2) 

n n N? N? N? 4 ( n + m + l )^ 

(4.7) 

The relation can also be obtained by adding all the equations in (4.5). 
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/ i = ^ , 

Now, defining 

X = 

and using the notation 

X 

= - , y = 
hi 

s{x) 

s{y) 

_ y 
hi 

:= 

:= 

1^ 
1^ 

= - , / i 
hi 

Ax -b 

c - A^y, 

we obtain that the positive vectors x and y are feasible for (P) and (D) respectively 
with s{x) and s{y) positive, and moreover, 

y s(x) = UGm 

xs{y) = /ie^. 

If /i runs through the interval (0, oo) then p runs through the same interval, since 
hi is constant. We conclude that for every positive jH there exist positive vectors x 
and y that are feasible for (P) and (D) respectively and are such that x, y and their 
associated surplus vectors s{x) and s{y) satisfy (4.8). 

Our next aim is to show that the system (4.8) cannot have more than one solution 
with X and y feasible for (P) and (D). Suppose that x and y are feasible for (P) and 
(D) and satisfy (4.8). Then it is quite easy to derive a solution for (4.5) as follows. 
First we calculate hi from (4.7). Then taking /i = hi^ft, we can find i} from (4.6). Finally, 
the values x = hix and y = hiy satisfy (4.5). Since the solution of (4.5) is unique, it 
follows that the solution of (4.8) is unique as well. Thus we have shown that for each 
positive p the system (4.8) has a unique solution with x and y feasible for (P) and 
(D). 

Denoting the solution of (4.8) by x(/i) and ^(/i), we obtain the central paths of (P) 
and (D) by letting jH run through all positive values. Summarizing the above results, 
we have proved the following. 

Theorem 1.55 Let (x(/i),7/(/i), ^c(/i),'^(/i)) denote the point on the central path of 
(SPi) corresponding to the barrier parameter value ji. Then we have hi{fi) = hi with 

2(n + m + l) 
hi = - — . 

n -\- m -\-2 

If jH = fJi/hi^, then x{p) = x{jii)/hi and y{p) = y{jii)/hi are the points on the central 
paths of (P) and (D) corresponding to the barrier parameter ft. As a consequence we 
have 

c^x — b^y = x^s{y) -\- y^s{x) = (n + m)jl. 

4.2.3 Approximate solutions of (P) and (D) 

Our aim is to solve the given problem (P) by solving the embedding problem (SPi). 
The Full-Newton step algorithm yields an e-solution, i.e. a feasible solution z of (SPi) 
such that q^z < £, where s is some positive number. Therefore, it is of great importance 
to see how we can derive approximate solutions for (P) and (D) from any such solution 
of (SPi). In this respect the following lemma is of interest. 
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L e m m a 1.56 Let z = {y^x^n^'d) he a positive solution of (SPi). If 

X y 
x = - , y = - , 

then X is feasible for (P), y is feasible for (D), and the duality gap at the pair {x,y) 
satisfies 

rp rp U 

c X — b y < 

Proof: Since z is feasible for (SPi), we have 

Ax - nb > 0 

-A^y -^ nc > 0 

b^y -Jx^i9 > 0 

-n^2 > 0. 

Wi th X and y as defined in the theorem it follows tha t Ax > 6, A^y < c and 

rp rp IJ 

c X — b y < —, 
n 

thus proving the lemma. • 

The above lemma makes clear tha t it is important for our goal to have a solution 
z = {y^x^n^'d) of (^'Pi) for which the quotient 'd/n is small. From (4.7) in Section 
4.2.2 we know tha t along the central pa th the variable K. is constant and given by 

_ 2(n + m + l ) 

n + 771 + 2 

Hence, along the central pa th we have the following inequality: 

T~ rp^ ^ {n^m^2)i9 
c X — b y < 

2(n + m + l) 

For large-scale problems, where n + m is large, this means tha t the duality gap at the 
feasible pair (x^y) is about 1^/2. 

Unfortunately our algorithm for solving (SPi) generates a feasible solution z tha t 
is not necessarily on the central path. Hence the above estimate for the duality gap 
at (x, y) is no longer valid. However, we show now tha t the estimate is 'almost ' valid 
because the solution z generated by the algorithm is close to the central path. To be 
more precise, according to Lemma L44 z satisfies Sc{z) < r , where r = 4, and where 
the proximity measure Sc{z) is defined by 

mdix(zs(z)) 
Oc{z) = —^-—---. 

mm(z5(z) ) 

Recall tha t Sc{z) = 1 if and only if zs{z) is a multiple of the all-one vector e. This 
occurs precisely if z lies on the central path. Otherwise we have Sc{z) > 1. Now we 
can prove the following generalization of Lemma L56. 
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L e m m a 1.57 Let r > 1 and let z = {y^x^n^'d) he a feasible solution of (SPi) such 
that Sc{z) <T. If 

X y 
x = - , y = - , 

n n 
then X is feasible for (P), y is feasible for (D), and the duality gap at the pair {x,y) 
satisfies 

T~ 7T~ n + m + 2 ^ 
c X — b y < — tt. 

^ 2(n + m + 2 - r ) 
Proof: Recall from (2.23) tha t q^z = z^s{z). Since q^z = 2^ ,̂ the average value of 
the products ZiSi{z) is equal to 

n -\- m -\- 2 

From Sc{z) < r we deduce the following bounds:^'^ 

21^ 2r'd 
— — < ZiSi(z) < - , l < z < m + n + 2. (4.9) 
r ( n + m + 2) - ' ' ^ ^ - n + m + 2 ' - - ^ ^ 

The lemma is obtained by applying these inequalities to the last two coordinates of z, 
which are n and i}. Application of (4.9) to Zi = i} yields the inequalities 

2'^ n / ^ N 2r ' ^ 
<i}{2-n)< r (n -\- m -\- 2) n -\- m -\- 2 

After division by i^ and some elementary reductions, this gives the following bounds 
on K.: 

2(n + m + 2 - r ) ^ ^ ^ 2 ( r (n + m + 2) - 1) 
n + m + 2 ~ ~ r ( n + m + 2) * y • ) 

Application of the left-hand side inequality in (4.9) to Zi = K. leads to 

K ib^y - c^x + i?) > — - . 
^ ^ ^ - r (n + m + 2) 

Using the upper bound for n in (4.10) we obtain 

,T T , .a -̂  ^^ r (n + m + 2) _ i9 
Vy-c^ x^^> 

r (n + m + 2) 2 {T{n + m + 2) - 1) r ( n + m + 2) - 1* 

Hence, 

c^ x-b^y <'d z = —z -{ 'd K'd. 

r ( n + m + 2 ) - l r ( n + m + 2) - 1 
Finally, dividing both sides of this inequality by n, and using the lower bound for n 
in (4.10), we obtain 

T~ iT~ c^x — b^y n-\-m-\-2 
c^x-b^y = < — d. 

n 2(n + m + 2 - r ) 

^ These bounds are sufficient for our purpose. Sharper bounds could be obtained from the next 
exercise. 
Exercise 28 Let x G M.^ and r > 1. Prove that if e^x = na and Tmin(x) > max(x) then 

cr na ma ^ ^ • ^ 
— < — < Xi < < ra, 1 < I < n. 
T 1 + (n — 1)T n + T — 1 
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This proves the lemma.^ 
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D 

For large-scale problems the above lemma implies that the duality gap at the feasible 
pair {x,y) is about 1 /̂2, provided that r is small compared with n -\- m. 

4.3 The general case 

4.3.1 Introduction 

This time we assume that there is no foreknowledge about (P) and (D). It may well 
be that one of the problems is infeasible, or both. This raises the question of whether 
the given problems have any solution at all. This question must be answered by the 
solution method. In fact, the method that we presented in Chapter 3 perfectly answers 
the question. In the next section, we present an alternative self-dual embedding. The 
new embedding problem can be solved in exactly the same way as the embedding 
problem (SP) in Chapter 3, and by using the rounding procedure described there, we 
can find a strictly complementary solution. Then the answer to the above question is 
given by the value of the homogenizing variable n. If this variable is positive then both 
(P) and (D) have optimal solutions; if it is zero then at least one of the two problems 
is infeasible. Our aim is to develop some tools that may be helpful in deciding if n is 
positive or not without using the rounding procedure. 

4-3.2 Alternative embedding for the general case 

Let x^ and y^ be arbitrary positive vectors of dimension n and m respectively. Defining 
positive vectors s^ and t^ by the relations 

X S ^ Cfi^ y t ^ Cfrii 

we consider the self-dual problem 

{SP2) min [q^z : Mz + ^ > 0, z > O} , 

where M and q are given by 

M 

0. 

7^ yJnn 

-b b 

C C 

-c^ -(3 O j 

(1 '--

0^ 

On 

0 

n + m + 2 

with 

t^ + 6 - Ax 0 

^ Exercise 29 Using the sharper bounds for ZiSi{z) obtainable from Exercise 28, and using the 
notation of Lemma 1.57, derive the following bound for the duality gap: 

T~ ,T~ ^ ( ^ + ' ' ^ + 1 + '̂ ) ((^ + ''^ + l ) ' ^ - 1) 0 
c X — b y < ?; ly. 

2T(n + m + ly 
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c 

Taking 

-c + ^ V 

1 

1 

we then have 

Mz° 

Ax^-h + b 
-A^y^ + C + C 

bTyO _ c^x" + /? 
_5TyO _ ^T^O _ ^ 

o„ 
0 

h m • 

= 

r t M 
50 

1 

_ 1 

Except for the last entry in the last vector this is obvious. For this entry we write 

^ . , 0 -b'y' -T 0 
C X •P (iO + 5 - AxYy"" - (s° - c + A^y'^f x^ •P 

whence 
[T^.o -b'y' 

-m 

-T 0 
c X 

h^lp — n + (F x^ — P = —'^ — n — 1, 

•/3 + n + m + 2 = 1. 

We conclude that z^ is a positive solution of {SP2) with a positive surplus vector. 
Moreover, since x^s^ = e^ and y^t^ = e^, this solution lies on the central path of 
{SP2) and the corresponding barrier parameter value is 1. It remains to show that if a 
strictly complementary solution of {SP2) is available then we can solve problems (P) 
and (D). Therefore, let 

•" y 

X 

i9 

be a strictly complementary solution. Then, since the optimal value of {SP2) is zero, 
we have 1!̂  = 0. As a consequence, the vector 

z := 

is a strictly complementary solution of 

in < 

/ • 

' Om' 

On 

0 

1' 
y 
X 

0mm ^ ^ 

—A ijjiji c 

6^ - c ^ 0 

y 
X 

tv 

> 
Om 

On 

0 
1 

y 
X 

tv 

X 

>0 I 
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This is the problem (SPQ), tha t we introduced in Chapter 2. We can duplicate the 
arguments used there to conclude tha t if R is positive then the pair {x/R, y/R) provides 
strictly complementary optimal solutions of (P) and {D)^ and if R is zero then one 
of the two problems is feasible and the other is unbounded, or both problems are 
infeasible. 

Thus {SP2) provides a self-dual embedding for (P) and {D). Moreover, z^ provides 
a suitable start ing point for the Full-Newton step algorithm. It is the point on the 
central pa th of {SP2) corresponding to the barrier parameter value 1. 

4.3.3 The central path of {SP2) 

In this section we point out some properties of the central pa th of the problem (6'P2)-
Let /i be an arbitrary positive number. Then the /i-center of {SP2) is determined as 
the unique solution of the system (cf. (2.46), page 35) 

^ ' " ' " (4.11) 

This solution defines the point on the central pa th of {SP2) corresponding to the 
barrier parameter value /i. Hence there exists unique positive x,7/, hi^i^ such tha t 

(4.12) 
S{K.) :=¥y-c^x^'df3 > 0 

s{'d) := n -

and, moreover, 

y (^Ax — hib-\- i^b) = /ie„ 

X (^nc — A^y + 'dc) = /ie„ 

Hi {b^y — c^x -\- d0) = fi 

î  (n + 771 + 2 — iFy — c^x — Hi0) = fi. 

S{N) := 

m + 2 -

Ax - Kh^ ^h 

hic — A^y -\- dc 

-- b^y - c^x + 1^(3 

- Wx — c^y — hif3 

> 

> 

> 

> 

0 

0 

0 

0 

(4.13) 

Just as in Section 4.2.2 we take the inner product of both sides with z in the first 
equation of (4.11). Using the orthogonality property, we obtain q^z = z^s. The second 
equation in (4.11) gives z^s = {n-\-m-\- 2)/i. Due to the definition of q we obtain 

{n -\- m -\- 2)'d = (n + TTI + 2)/i, 

which gives 'd = fi. Since 'ds{'d) = /i, by the fourth equation in (4.13), we conclude 
tha t s{'d) = 1. Since 

s(d) = n + m + 2 — Wy — c^x — nfS 

this leads to 
b^y + c^x + /̂ /3 = n + m + 1. (4.14) 
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Using î  = /i, the third equality in (4.13) can be rewritten as 

ti (b^y — (Fx) = fi — finfS, 

which gives 

/̂ /3 = 1 + - (c^x - b^y) . 
fi 

Substituting this in (4.14) we get 

0 y-\-c X-\—(c x — b y) = n-\-m, 

which is equivalent to 

{nc^jic) X — ynb — jib) y = fi{n-\-m). (4.15) 

This relation admits a nice interpretation. The first two inequality in (4.12) show tha t 
X is feasible for the per turbed problem 

min <̂  {hic -\- fic) x : Ax > nb — fib^ x >^\ ^ 

and y is feasible for the dual problem 

max < (^Kh — jjFj y : A^y < K,C-\- fic, y > 0>. 

For these perturbed problems the duality gap at the pair (x^y) is fi{n -\- m), from 
(4.15). Now consider the behavior along the central pa th when /i approaches zero. 
Two cases can occur: either n converges to some positive value, or n goes to zero. In 
both cases the duality gap converges to zero. Roughly speaking, the limiting values of 
X and y are optimal solutions for the perturbed problems. In the first case, when n 
converges to some positive value, asymptotically the first per turbed problem becomes 
equivalent to (P ) . We simply have to replace the variable x by hix. Also, the second 
problem becomes equivalent to (D): replace the variable y by hiy. In the second case 
however, asymptotically the perturbed problems become 

min {O^x : Ax > 0, x > O} , 

and 
max {O^y : A^y <0,y>0}. 

As we know, one of the problems (P) and (D) is then infeasible and the other 
unbounded, or both problems are infeasible. 

When dealing with a solution method for the canonical problem, the method 
must decide which of these two cases occurs. In this respect we make an interesting 
observation. Clearly the first case occurs if and only if n G B and the second case if and 
only if K G N, where (B,N) is the optimal parti t ion of {SP2). In other words, which 
of the two cases occurs depends on whether ẑ : is a large variable or a small variable. 
Note tha t the variable i^ is always small. In the present case we have '^(/i) = /i, for 
each /i > 0. Recall from Lemma 1.43 tha t the large variables are bounded below by 
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(Jsp/n and the smah variables above by nfi/asp- Hence, if /̂  is a large variable then 

^ > (^sp/'^ implies 

K, K, ~ (JsP 

This implies tha t the quotient 'd/K. goes to zero if /i goes to zero. On the other hand, 
if ĉ is a small variable then 

n nji n 
i9 i9asp (JSP 

proving tha t the quotient n/'d is bounded above. Therefore, if ji goes to zero, H?I'd 
goes to zero as well, and hence 'd/H? goes to infinity. Thus we may state the following 
without further proof. 

T h e o r e m 1.58 If K. is a large variable then 

lim — = lim ^ r = 0, 

and if K. is a small variable then 

lim ^7 = oo. 

The above theorem provides another theoretical tool for distinguishing between the 
two possible cases. 

4.3.4- Approximate solutions of (P) and (D) 

Assuming tha t an e-solution z = (T/, X, /̂ , i^) for the embedding problem {SP2) is given, 
we proceed by investigating what information this gives on the embedded problem (P) 
and its dual (D). Wi th 

X ^ y 
x : = - , y:=-, 

hi hi 

the feasibility of z for {SP2) implies the following inequalities: 

Ax > b-^b 

(4.16) 
c^x - b^y < ^13 

hi (Wx -\- c^y -\- P) < n -\- m -\-2. 

Clearly we cannot conclude tha t x is feasible for (P) or tha t y is feasible for (D). But 
X is feasible for the per turbed problem 

(P ' ) m i n < ( c + - c j x : Ax > b 6, x > 0 > , 

and y is feasible for its dual problem 

(D^) msix Ub bj y : A^y < c^-c, y > o\ . 

We have the following lemma. 
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L e m m a 1.59 Let z = {y, x, /̂ , i^) be a feasible solution of {SP2) with K. > 0. If 

^ X ^ y 
x = - , y = - , 

hi hi 

then X is feasible for {P'), y is feasible for {D'), and the duality gap at the pair {x,y) 
for this pair of perturbed problems satisfies 

c^-c] x-ib--b] y<^ ^—. 
hi J V ^ / ^ 

Proof: We have already established tha t x is feasible for (P^) and y is feasible for 
(D^). We rewrite the duality gap for the perturbed problems (P^) and (D^) at the pair 
{x,y) as follows: 

c -\—c 1 X — i b b] y = (FX — b^y H— (^x + b^y) . 
hi J \ ^ J ^ 

The third inequality in (4.16) gives 

c^x - b^y < -(3 
hi 

and the fourth inequality 

c X ^b y < p . 

Substitution gives 

C + - C x - [ b - - b ) y<-f3^-l /3 = ^ ^ , 
hi J V ^ / hi hi \ hi J hi"^ 

proving the lemma. • 

The above lemma seems to be of interest only if hi is SL large variable. For if 'd/hi 
and 'd/hi'^ are small enough then the lemma provides a pair of vectors (x^y) such tha t 
X and y are 'almost ' feasible for (P) and (D) respectively and the duality gap at this 
pair is small. The error in feasibility for (P) is given by the vector ((d/hi)b and the 
error in feasibility for {D) by the vector {'d/hi)c, whereas the duality gap with respect 
to (P) and (D) equals 

- (c^x + b^y) . 



Part II 

The Logarithmic Barrier 
Approach 



5 

Preliminaries 

5.1 Introduction 

In the previous chapters we showed that every LO problem can be solved in polynomial 
time. This was achieved by transforming the given problem to its canonical form and 
then embedding it into a self-dual model. We proved that the self-dual model can 
be solved in polynomial time. Our proof was based on the algorithm in Chapter 3 
that uses the Newton direction as search direction. As we have seen, this algorithm is 
conceptually simple and allows a quite elementary analysis. For the theoretical purpose 
of Part I of the book this algorithm therefore is an ideal choice. 

From the practical point of view, however, there exist more efficient algorithms. 
The aim of this part of the book is to deal with a class of algorithms that has a 
relatively long history, going back to work of Frisch [88] in 1955. Frisch was the first 
to propose the use of logarithmic barrier functions in LO. The idea was worked out by 
Lootsma [185] and in the classical book of Fiacco and McCormick [77]. After 1984, the 
year when Karmarkar's paper [165] raised new interest in the interior-point approach 
to LO, the so-called logarithmic harrier approach also began a new life. It became 
the basis of a wide class of polynomial time algorithms. Variants of the most efficient 
algorithms in this class found their way into commercial optimization packages like 
CPLEX and OSL.^ 

The aim of this part of the book is to provide a thorough introduction to these 
algorithms. In the literature of the last decade these interior-point algorithms were 
developed for LO problems in the so-called standard format: 

(P) min {c^x : Ax = 6, x > O} , 

where A is an rax n matrix of rank m, c,x G K^, and b G K"^. This format also served 
as the standard for the literature on the Simplex Method. Because of its historical 
status, we adopt the standard format for this part of the book. 

We want to point out, however, that all results in this part can easily be adapted 
to any other format, including the self-dual model of Part I. We only have to define a 
suitable logarithmic barrier function for the format under consideration. 

A disadvantage of the change from the self-dual to the standard format is that it 
leads to some repetition of results. For example, we need to establish under what 
conditions the problem (P) in standard format has a central path, and so on. In fact, 

^ CPLEX is a product of CPLEX Optimization, Inc. OSL stands for Optimization Subroutine Library 
and is the optimization package of IBM. 
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we could have derived all these results from the results in Chapter 2. But, instead, to 
make this part of the book more accessible for readers who are better acquainted with 
the s tandard format rather than the less known self-dual format, we decided to make 
this part self-contained. 

Readers who went through Par t I may only be interested in methods for solving the 
self-dual problem 

(SP) min {q^x : Mx>-q,x>0}, 

with q > 0 and M^ = —M. Those readers may be advised to skip the rest of this 
chapter and continue with Chapters 6 and 7. The relevance of these chapters for 
solving (SP) is due to the fact tha t (SP) can easily be brought into the s tandard 
format by introducing a surplus vector s to create equality constraints. Since x and s 
are nonnegative, this yields (SP) in the s tandard format: 

(SPS) min {q^x : Mx - s = -q, x > 0, s > O} . 

In this part of the book we take the classical duality results for the s tandard format 
of the LO problem as granted. We briefly review these results in the next section. 

5 . 2 D u a l i t y r e s u l t s for t h e s t a n d a r d L O p r o b l e m 

The s tandard format problem (P) has the following dual problem: 

(D) max {b^y : A^y + 5 = c, 5 > O} , 

where s G IR^ and y G K"^. We call (D) the s tandard dual problem. The feasible 
regions of (P) and (D) are denoted by V and P , respectively: 

V := {x : Ax = b, X > 0} , 

V:={{y,s) : A^y ^ s = c, s > O} . 

If V is empty we call (P) infeasible, otherwise feasible. If (P) is feasible and the 
objective value c^x is unbounded below on P , then (P) is called unbounded, otherwise 
bounded. We use similar terminology for the dual problem (D). 

Since we assumed tha t A has full (row) rank m, we have a one-to-one correspondence 
between y and s in the pairs {y, s) G V. In order to facilitate the discussion we feel 
free to refer to any pair {y, s) ^ V either by 7/ G P or 5 G P . The (relative) interiors 
of V and V are denoted by P + and P + : 

P + :={x : Ax = 6, X > 0} , 

V+ :={{y,s) : A^y ^ s = c, s > {)] . 

We recall the well known and almost trivial weak duality result for the LO problem 
in s tandard format. 
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Proposition II.1 (Weak duality) Let x and s be feasible for (P) and{D), respect­
ively. Then c^x — b^y = x^s > 0. Consequently, c^x is an upper bound for the optimal 
value of (D), if it exists, and b^y is a lower bound for the optimal value of (P), if it 
exists. Moreover, if the duality gap x^s is zero then x is an optimal solution of (P) 
and {y, s) is an optimal solution of (D). 

Proof: The proof is straightforward. We have 

0 < x^s = x^{c - A^y) = c^x - {Ax)^y = c^x - b^y. (5.1) 

This implies that c^x is an upper bound for the optimal objective value of (D), and 
b^y is a lower bound for the optimal objective value of (P), and, moreover, if the 
duality gap is zero then the pair (x, 5) is optimal. • 

A direct consequence of Proposition II. 1 is that if one of the problems (P) and 
(D) is unbounded, then the other problem is infeasible. The classical duality results 
for the primal and dual problems in standard format boil down to the following two 
results. The first result is the Duality Theorem (due to von Neumann, 1947, [227]), 
and the second result will be referred to as the Goldman-Tucker Theorem (Goldman 
and Tucker, 1956, [111]). 

Theorem II.2 (Duality Theorem) / / (P) and (D) are feasible then both problems 
have optimal solutions. Then, if x G V and {y,s) G V, these are optimal solutions 
if and only if x^s = 0. Otherwise neither of the two problems has optimal solutions: 
either both (P) and (D) are infeasible or one of the two problems is infeasible and the 
other one is unbounded. 

Theorem II.3 (Goldman—Tucker Theorem) / / (P) and (D) are feasible then 
there exists a strictly complementary pair of optimal solutions, that is an optimal 
solution pair (x, s) satisfying x -\- s > 0. 

It may be noted that these two classical results follow immediately from the results in 
Part I.^ For future use we also mention that (P) is infeasible if and only if there exists 
a vector y such that A^y < 0 and b^y > 0, and (D) is infeasible if and only if there 
exists a vector x > 0 such that Ax = 0 and c^x < 0. These statements are examples 
of theorems of the alternatives and easily follow from Farkas' lemma.^ 

We denote the set of all optimal solutions of (P) by P* and similarly P* denotes the 
set of optimal solutions of (D). Of course, P* is empty if and only if (P) is infeasible 
or unbounded, and P* is empty if and only if (D) is infeasible or unbounded. Note 
that the Duality Theorem (II.2) implies that P* is empty if and only if P* is empty. 

^ Exercise 30 Derive Theorem II.2 and Theorem II.3 from Theorem 1.26. 

^ Exercise 31 Using Farkas' lemma (cf. Remark 1.27), prove: 
(i) either the system Ax = b, x > 0 or the system A^y < 0, b^y > 0 has a solution; 

(a) either the system A^y < c or the system Ax = 0, x > 0, c^x < 0 has a solution. 
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5.3 T h e primal logari thmic barrier funct ion 

We start by introducing the so-called logarithmic barrier function for the primal 
problem (P). This is the function ^^(x) defined by 

n 

g^{x) :=c^x- /j.^\ogXj, (5.2) 
j = i 

where /i is a positive number called the barrier parameter, and x runs through all 
primal feasible vectors that are positive. The domain of ^^ is the set V^. 

The use of logarithmic barrier functions in LO was first proposed by Frisch [88] in 
1955. By minimizing ^^(x), we try to realize two goals at the same time, namely to 
find a primal feasible vector x for which c^x is small and such that the barrier term 
Xl?=i log^j is large. Frisch observed that the minimization of ^^(x) can be done easily 
by using standard techniques from nonlinear optimization. The barrier parameter can 
be used to put more emphasis on either the objective value c^x of the primal LO 
problem (P), or on the barrier term. Intuitively, by letting fi take a small (positive) 
value, we may expect that a minimizer of ^^(x) will be a good approximation for an 
optimal solution of (P). It has taken approximately 40 years to make clear that this 
is a brilliant idea, not only from a practical but also from a theoretical point of view. 
In this part of the book we deal with logarithmic barrier methods for solving both the 
primal problem (P) and the dual problem (D), and we show that when worked out 
in an appropriate way, the resulting methods solve both (P) and (D) in polynomial 
time. 

5.4 E x i s t e n c e of a minimizer 

In the logarithmic barrier approach a major question is whether the barrier function 
has a minimizing point or not. This section is devoted to this question, and we present 
some necessary and sufficient conditions. One of these (mutually equivalent) conditions 
will be called the interior-point condition. This condition is fundamental not only for 
the logarithmic barrier approach, but as we shall see, for all interior-point approaches. 

Note that the definition of g,^{x) can be extended to the set 1R++ of all positive 
vectors x, and that ^^(x) is differentiable on this set. We can easily verify that the 
gradient of ^^ is given by 

V^^(x) = c- /j.x~^, 

and the Hessian matrix by 

Obviously, the Hessian is positive definite for any x G 1R++- This means that ^^(x) 
is strictly convex on 1R++. We are interested in the behavior of g^ on its domain, 
which is the set P+ of the positive vectors in the primal feasible space. Since P+ 
is the intersection of 1R++ and the affine space {x : Ax = 6}, it is a relatively open 
subset of 1R++- Therefore, the smallest affine space containing P+ is the affine space 



II .5 Pre l iminar ies 91 

{x : Ax = 6}, and the linear space parallel to it is the null space Af{A) of A: 

J\f{A) = {x : Ax = 0}. 

Taking D = 3R++ and C = P + , we may now apply Proposition A. l . From this we 
conclude tha t ^^ has a minimizer if and only if there exists an x G V^ such tha t 

c- fix-^ ±J\f{A). 

Since the orthogonal complement of the null space of A is the row space of A, it follows 
tha t X G V^ is a minimizer of ^^ if and only if there exists a vector y G IR"^ such tha t 

— 1 AT 

c — fix = A y. 

By put t ing 5 := /ix~^, which is equivalent to xs = /ie, it follows tha t g^ has a 
minimizer if and only if there exist vectors x, y and 5 such tha t 

Ax = 6, X > 0, 

A^T/ + 5 = C, 5 > 0, (5.3) 

xs = /ie. 

We thus have shown tha t this system represents the optimality conditions for the 
primal logarithmic barrier minimization problem, given by 

(P^) min {g^{x) : x G P + } . 

We refer to the system (5.3) as the K K T system with respect to /i.^ 
Note tha t the condition x > 0 can be relaxed to x > 0, because the third equation in 

(5.3) forces strict inequality. Similarly, the condition 5 > 0 can be replaced by 5 > 0. 
Thus, the first equation in (5.3) is simply the feasibility constraint for the primal 
problem (P) and the second equation is the feasibility constraint for the dual problem 
(D). For reasons tha t we shall make clear later on, the third constraint is referred to 
as the centering condition with respect to /i. 

5.5 T h e interior-point condi t ion 

If the K K T system has a solution for some positive value of the barrier parameter /i, 
then the primal feasible region contains a positive vector x, and the dual feasible region 
contains a pair (T/, S) with positive slack vector s. In short, both V and V contain a 
positive vector. At this stage we announce the surprising result tha t the converse is 
also true: if both V and V contain a positive vector, then the K K T system has a 
solution for any positive /i. This is a consequence of the following theorem. 

T h e o r e m II .4 Let /i > 0. Then the following statements are equivalent: 

(i) both V and V contain a positive vector; 

^ The reader who is familiar with the theory of nonlinear optimization will recognize in this system 
the first-order optimality conditions, also known as Karush-Kuhn-Tucker conditions, for (P^). 
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(a) there exists a (unique) minimizer of g^ on V^; 
(Hi) the KKT system (5.3) has a (unique) solution. 

Proof: The equivalence of (n) and {Hi) has been estabhshed above. We have also 
observed already the implication {Hi) => {i). So the proof of the theorem will be 
complete if we show {i) => {ii). The proof of this implication is more sophisticated. 

Assuming (z), there exist vectors x^ and y^ such that x^ is feasible for (P) and y^ 
is feasible for {D), x^ > 0 and s^ := c — A^y^ > 0. Taking K = gi/j, {x^) and defining 
the level set CK of 9i^ by 

CK:={xeV^ : g^{x)<K}, 

we have x^ G CK, SO CK is not empty. Since ^^ is continuous on its domain, it suffices 
to show that CK is compact. Because then ^^ has a minimizer, and since ^^ is strictly 
convex this minimizer is unique. Thus to complete the proof we show below that CK 
is compact. 

Let X G CK' Using Proposition ILl we have 

c^x - b^y'' = x'^s\ 

SO, in the definition of gjj,{x) we may replace c^x by b^y^ -\- x^s^: 

n n 

9i^{x) = c X — ji 2_. log Xj = b y^ -\- X s^ — fi \ . log Xj. 

Since x^s^ = e^ {xs^) and e^e = n, this can be written as 

^ xs^- ^ 
g^{x) = e^ {xs^ -e) - /i ^ log - ^ + n - n/i log/i + 6^7/̂  + /i ^ log g ,̂ 

i= i ^ i= i 

or, equivalently, 

e^ {xs^ -e) - fi^log^-^ =9^{x) - n ^ nfilogfi - b^y^ - / i ^ l o g s ^ . 
i= i ^ 

Hence, using g,^{x) < K and defining K by 

i = i '̂  

0 K := K — n -\- n/j. log /i — 6^7/̂  — /i \ ^ log 5^ 

we obtain 
Xo5^ 

e^ {xs^ - e) - /i ^ log - ^ < K. (5.4) 
j=i ^ 

Note that K does not depend on x. 
Now let the function ^̂  : (—1, oo) ^ IR be defined by 

tlj{t)=t-\og{l^t). (5.5) 
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Then, also using e^e = n, we may rewrite (5.4) as follows: 

93 

/ i E^ 
j = i 

' 0 
Xj Sj 1] <K. (5.6) 

The rest of the proof is based on some simple properties of the function il^{t),^ namely 

• V^(t) > 0 for t > - 1 ; 

• V̂  is strictly convex; 

• V (̂O) = 0; 

• limt^oo '0(0 = ^ ; 

• l i m t | - i '0(t) = oo. 

In words: '0(t) is strictly convex on its domain and minimal at t = 0, with 0(0) = 0; 
moreover, '0(t) goes to infinity if t goes to one of the boundaries of the domain (—1, oo) 
of tjj. Figure 5.1 depicts the graph of tjj. 
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F i g u r e 5 .1 T h e graph of ip. 

Since ^p is nonnegative on its domain, each term in the above sum is nonnegative. 
Therefore, 

flip 
Xj Sj 

1 < K , 1 < j < n. 

Now using tha t '0(t) is strictly convex, zero at t = 0, and unbounded if t goes to —1 
or to infinity, it follows tha t there must exist unique nonnegative numbers a and 6, 

^ E. Klafszky drew our attention to the fact that this function is known in the literature. It was 
used in a different context for measuring discrepancy between two positive vectors in R^ . See 
Csiszar [58] and Klafszky, Mayer and Terlaky [169]. 
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with a < 1, such tha t 

V^(-a) = V (̂6) 
K 

We conclude tha t 

which gives 

-a < - ^ - 1 < 6, 1 < j < n, 

/i(l — a) /i(l + h) 

Since 1 — a > 0, this shows tha t each coordinate of the vector x belongs to a finite 
and closed interval on the set (0, oo) of positive real numbers. As a consequence, since 
the level set CK is a closed subset of the Cartesian product of these intervals, CK is 
compact. Thus we have shown tha t (ii) holds. • 

The first condition in Theorem II.4 will be referred to as the interior-point condition. 
Let us point out once more tha t the word 'unique' in the second statement comes from 
the fact tha t ^^ is strictly convex, which implies tha t ^^ has at most one minimizer. 
The equivalence of (ii) and (Hi) now justifies the word 'unique' in the third statement. 

R e m a r k II .5 It is possible to give an elementary proof (i.e., without using the equivalence 
of (ii) and (Hi) in Theorem 11.4) of the fact that the KKT system (5.3) cannot have more 
than one solution. This goes as follows. Let x^ ,y^, s^ and x^,y^, s^ denote two solutions of the 
equation system (5.3). Define Ax := x^ — x^ ^ and similarly A?/ := 
Then we may easily verify that 

A^ /\y + As 

-•=y'-

0 

0 

0. 

- y^ and As : .= 8^-s\ 

(5.7) 

(5.8) 

(5.9) 

A/\x = 

+ As = 

X As + s Ax + As Ax = 

From (5.7) and (5.8) we deduce that As^Ax = 0, or 

e^AxAs = 0. (5.10) 

Rewriting (5.9) gives 

(x'^ + Ax) As + s'^Ax = 0. 

Since x^ + Ax = x^ > 0 and s^ > 0, this implies that no two corresponding entries in Ax 
and As have the same sign. So it follows that 

AxAs < 0. (5.11) 

Combining (5.10) and (5.11), we obtain AxAs = 0. Hence either (Ax)i = 0 or (As)^ = 0, 
for each i. Using (5.9), we conclude that (Ax)i = 0 and (As)^ = 0, for each i. Hence x^ = x^ 
and ŝ  = s^. Consequently, A^(y^ — y^) = 0. Since rank (A) = m, the columns of A^ are 
linearly independent and it follows that y^ = y^- This proves the claim. • 



II.5 Preliminaries 95 

5 . 6 T h e c e n t r a l p a t h 

Theorem II.4 has several important consequences. First we remark tha t the interior-
point condition is independent of the barrier parameter. Therefore, since this condition 
is equivalent to the existence of a minimizer of the logarithmic barrier function ^^, 
if such a minimizer exists for some (positive) /i, then it exists for all /i. Hence, the 
interior point condition guarantees tha t the K K T system (5.3) has a unique solution 
for every positive value of /i. These solutions are denoted throughout as x(/i),7/(/i) 
and 5(/i), and we call x(/i) the /i-center of (P) and (^/(/i), 5(/i)) the /i-center of (D). 
The set 

{x(/i) : /i > 0} 

of all primal /i-centers represents a parametric curve in the feasible region V of (P) 
and is called the central path of ( P ) . Similarly, the set 

{{y{fi),s{fi)) : / i > 0 } 

is called the central path of (D). 

R e m a r k II .6 It may worthwhile to point out that along the primal central path the primal 
objective value c^x(/j,) is monotonically decreasing and along the dual central path the dual 
objective value b^y{/j) is monotonically increasing if /x decreases. In fact, in both cases the 
monotonicity is strict unless the objective value is constant on the feasible region, and in the 
latter case the central path is just a point. Although we will not use these results we include 
here the proof for the primal case.^ Recall that x{/j) is the (unique) minimizer of the primal 
logarithmic barrier function 

n 

g^{x) = c^x- fi^logxj, 
j = i 

as given by (5.2), when x runs through the positive vectors in V. First we deal with the 
case when the primal objective value is constant on V. We have the following equivalent 
statements: 

(i) c^x is constant for x ^ V; 
(ii) x{ii) is constant for /x > 0; 

(iii) x(/ii) = x{ii2) for some /xi and /i2 with 0 < /xi < /i2; 
{iv) there exists a ^ G K^ such that s(/i) = /x^ for /a > 0. 

The proof is easy. If (i) holds then the minimizer of Qi^ix) is independent of /x, and hence 
x{ii) is constant for all /x > 0, which means that {ii) holds. The implication (ii) =^ (Hi) is 
obvious. Assuming (Hi), let ^ be such that x(/ii) = x(/i2) = C Since s(/ii) = Mi^~^ ^̂ d̂ 
5(^2) = l^2^~^ we have 

A^y{lii) + iiiC^ = c, A^y{ii2) + ii2C^ = c. 

This implies 
(/i2 - Ml) c = A^ (M2?/(1) - Mi?/(2)), 

^ The idea of the following proof is due to Fiacco and McCormick [77]. They deal with the more 
general case of a convex optimization problem and prove the monotonicity of the objective value 
only for the primal central path. We also refer the reader to den Hertog, Roos and Vial [146] for 
a different proof. The proof for the dual central path is similar to the proof for the primal central 
path and is left to the reader. 
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showing that c belongs to the row space of A. This means that (i) holds/ Thus we have 
shown the equivalence of (i) to (Hi). The equivalence of (ii) and (iv) is immediate from 
x(/i)s(/i) = /xe for all /x > 0. 

Now consider the case where the primal objective value is not constant on V. Letting 
0 < /ii < /i2 and x^ = x(/2i) and x^ = x(/22), we claim that c^x^ < c^x^. The above 
equivalence (i) <^ (in) makes it clear that x^ ^ x^. The rest of the proof is based on 
the fact that g^(x) is strictly convex. From this we deduce that g^x-Y^x^) < ^MI(^^) ^^^ 
9^A^^) < 9i^2{x^)- Hence 

n n 

and 
n n 

' ~ ' ~ (5.13) 

The sums in these inequalities can be eliminated by multiplying both sides of (5.12) by /i2 
and both sides of (5.13) by /xi, and then adding the resulting inequalities. Thus we find 

T 1 
C X -

T 2 
C X -

- fii^logx] 

n 

- / i 2 ^ 1 o g x | 

J = l 

^ T 2 
< C X -

^ T 1 
< C X -

- /ii ^ log 

n 

- /i2 ^ log; 

2 

1 
Xj. 

T 1 T 2 T 2 T 1 
II2C X + / i l C X < II2C X + / i l C X , 

which is equivalent to 
(M2 — Ml) ( e x — c X ) < 0. 

Since /j.2 — /J^i > 0 we obtain c^x^ < c^x^, proving the claim. • 

It is obvious tha t if one of the problems (P) and (D) is infeasible, then the interior-
point condition cannot be satisfied, and hence the central paths do not exist. But 
feasibility of both (P) and (D) is not enough for the existence of the central paths: 
the central paths exist if and only if both the primal and the dual feasible region 
contain a positive vector. In tha t case, when the interior-point condition is satisfied, 
the central pa th can be obtained by solving the K K T system. 

Unfortunately, the K K T system is nonlinear, and hence in general it will not be 
possible to solve it explicitly. In order to understand better the type of nonlinearity, 
we show tha t the K K T system can be reformulated as a system of m polynomial 
equations of degree at most n, in the m coordinates of the vector y. This goes as 
follows. From the second and the third equations we derive tha t 

x = fi{c- A^y) . 

Substituting this in the first equation we obtain 

liA{c-A^yy^ = b. (5.14) 

If we multiply each of the m equations in this system by the product of the n 
coordinates of the vector c — A^y, which are linear in the m coordinates yj, we arrive 
at m polynomial equations of degree at most n in the coordinates of y. 

We illustrate this by a simple example. 

^ Exercise 32 Assume that (P) and (D) satisfy the interior point condition. Prove that the primal 
objective value is constant on the primal feasible region V if and only if c = A^X for some A G R"^, 
and the dual objective value is constant on the dual feasible region V if and only if 6 = 0. 
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E x a m p l e II .7 Consider the case where 

A 
1 

0 

- 1 

0 

0 

1 
5 C = 

1 

1 

1 

For the moment we do not further specify the vector h. The left-hand side of (5.14) 
becomes 

jiA (c — A y) =11 
1 

u 
- 1 

u 
u 
1 

l - ? / l 

l + ?/l 

1 - ? / 2 

i-yl 

1 - ? / 2 

This means tha t the K K T system (5.3) is equivalent to the system of equations 

i-yl 

1 - ? / 2 

hi 

b2 

^-yi 

1 - ? / 2 

> 0 . 

We consider this system for special choices of the vector b. Obviously, if 62 ^ 0 then 
the system has no solution, since /i > 0 and 1 — ^2 ^ 0 - Note tha t the second equation 
in Ax = b then requires tha t X3 < 0, showing tha t the primal feasible region does not 
contain a positive vector in tha t case. Hence, the central path exists only if 62 > 0-
Without loss of generality we may put 62 = 1 • Then we find 

7/2 = 1 - / i . 

Now consider the case where 61 = 0: 

Then we obtain ^1 = 0 from the first equation, and hence for each /i > 0: 

x(/i) 

S{fl) 

y{f^) 

( / i , / i , i ) 

(1,1,/ i) 

( 0 , l - / i ) . 

Thus we have found a parametric representation of the central paths of (P) and (D). 
They are straight half lines in this case. The dual central pa th (in the ^/-space) is 
shown in Figure 5.2. 

Note that these data are the same as in the examples D.5, D.6 and D.7 in Appendix D. These 
examples differ only in the vector b. 
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y2 

t • 
-1 

-2 

-3 

-4 

-

-

central path 
\ 

yi 

Figure 5.2 The dual central path \fh= (0,1). 

Let us also consider the case where hi = 1: 

b = 

The first equation in the reduced K K T system then becomes 

yi + 2fiyi - 1 = 0, 

givmg 

The minus sign gives yi < —I, which implies 52 = 1 + yi < 0. Since 1 + ^i must be 
positive, the unique solution for yi is determined by the plus sign: 

7/1 = -/i + v T T ^ . 

With y{jii) found, the calculation of 5(/i) and x(/i) is straightforward, and yields a 
parametric representation of the central paths of (P) and (D). We have for each 
/i > 0: 

x(/ i ) 

5 ( / i ) 

i (/i +1 + v^TT^) , i ( -1+ /i + v ^ T T ^ ) , ! 

(̂ 1 + /i - VTTT^, 1 - /i + \ / i + /i2, 

7/(/i) = (^-/i + \ / i + / i ^ 1 - / i ) . 

The dual central pa th in the y-space is shown in Figure 5.3. 

, / i 
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y2 

yi 

Figure 5.3 The dual central path if b = (1,1). 

Note tha t in the above examples the limit of the central pa th exists if /i approaches 
zero, and tha t the limit point is an optimal solution. In fact this property of the central 
pa th is at the heart of the interior-point methods for solving the problems (P) and 
(D). The central pa th is used as a guideline to the optimal solution set. (} 

5.7 Equivalent formulat ions of t h e interior-point condi t ion 

Later on we need other conditions tha t are equivalent to the interior-point condition. 
In this section we deal with one of them. 

Let X be feasible for the primal problem, and (T/, S) for the dual problem. Then, 
omitting y, we call (x, s) a primal-dual pair. From Proposition II. 1 we recall tha t the 
duality gap for this pair is given by 

T 
c X 

Vy 
T 

X S. 

We now derive an important consequence of the interior point condition on the level 
sets of the duality gap. In doing so, we shall use a simple relationship tha t we state, 
for further use, as a lemma. The relation in the lemma is an immediate consequence 
of the orthogonality of the row space and the null space of the matr ix A. 

L e m m a II .8 Assume x eV and s eV. Then for all primal-dual feasible pairs (x, s), 

T —T —T —T — 
X 8 = 8 X -\- X 8 — X 8. 
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Proof: From the feasibihty assumption, the vectors x — x and s — s are orthogonal, 
since the first vector belongs to the null space of A while the second is in the row space 
of A. Expanding the scalar product {x — x)^{s — s) and equating it to zero yields the 
result. • 

Theorem II.9 Let the interior-point assumption hold. Then, for each positive K, the 
set of all primal-dual feasible pairs (x, s) such that x^s < K is bounded. 

Proof: By the interior-point assumption there exists a positive primal-dual feasible 
pair (x, s). Substituting K for x^s in Lemma IL8, we get 

s^x -\- x^s < K -\- x^s. 

This implies that both s^x and x^s are bounded. Since x > 0 and 5 > 0, we conclude 
that all components of x and s must also be bounded. • 

We can restate Theorem IL9 by saying that the interior-point condition implies that 
all level sets of the duality gap are bounded. Interestingly enough, the converse is also 
true. If all level sets of the duality gap are bounded, then the interior point condition 
is satisfied. This is a consequence of our next result.^ 

Theorem 11.10 Let the feasible regions of (P) and (D) be nonempty. Then the 
following statements are equivalent: 

(i) both V and V contain a positive vector; 
(a) the level sets of the duality gap are bounded; 

(Hi) the optimal sets of (P) and (D) are bounded. 

Proof: The implication (i) ^ (n) is just a restatement of Theorem II.9. The 
implication (n) => (Hi) is obvious, because optimal solutions of (P) and (D) are 
contained in any nonempty level set of the duality gap. The implication (Hi) ^ (i) in 
the theorem is nontrivial and can be proved as follows. 

Since the feasible regions of (P) and (D) are nonempty we have optimal solutions 
X* and (T/*, 5*) for (P) and (D). First assume that the optimal set of (P) is bounded. 
Since x e V is optimal for (P) if and only if x^5* = 0, this set is given by 

V* = {x : Ax = b,x>0, x^s* = O} . 

The boundedness of P* implies that the problem 

max \e^x : Ax = 6, x > 0, x^s^ = O} 

is bounded, and hence it has an optimal solution. Since x and 5* are nonnegative, the 
problem is equivalent to 

max^^-^-- . A^ -J. ^^n ^T^* : {e^x : Ax = b, x>0, x^5* < O} 

This result was first establisiied by McLinden [197, 198]. See also Megiddo [200]. 
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Hence, the dual of this problem is feasible. The dual is given by 

min {b^y : A^y + As* > e, A > O} . 

Let (^, A) be feasible for this problem. Then we have A^y -\- As* > e. If A = 0 then 
A^y > e, which implies 

A^ {y* -y) = A^y* - A^y < c- e, 

and hence y^ — y is dual feasible with positive slack vector. Now let A > 0. Then, 
replacing 5* by c — A^y* in A^y -\- Xs* > e we get 

A^^ + A ( C - A V ) >e. 

Dividing by the positive number A we obtain 

showing that y^ — y/X is feasible for (D) with a positive slack vector. 
We proceed by assuming that the (nonempty!) optimal set of (D) is bounded. The 

same arguments apply in this case. Using that {y,s) G V is optimal for (D) if and 
only if 5^x* = 0, the dual optimal set is given by 

P* = {{y, s) : A^y + 5 = c, 5 > 0, 5^x* = O} . 

The boundedness of P* implies that the problem 

max \e^s : A^y + 5 = c, 5 > 0, s^x^ = O} 
y,s 

is bounded and hence has an optimal solution. This implies that the problem 

maxje 5 : A y-\-s = c, s>0, s x* < O} 
y,s 

is also feasible and bounded. Hence, the dual problem, given by 

min {c^x : Ax = 0, x + r]x* > e, T̂  > O} , 

is feasible and bounded as well. We only use the feasibility. Let (x^fj) be a feasible 
solution. Then x -\- fjx* > e and Ax = 0. If ?̂  = 0 then we have x* -\- x > e > 0 and 
A (x* -\- x) = Ax -\- Ax^ = 6, whence x* + x is a positive vector in P . If ?̂  > 0 then we 
write 

A I 3 + ^* I = -Ax + Ax* = 6, 
\V J V 

yielding that the positive vector x/f]-\-x^ is feasible for (P). Thus we have shown that 
(Hi) implies (z), completing the proof. • 

Each of the three statements in Theorem 11.10 deals with properties of both (P) 
and (D). We also have two one-sided versions of Theorem 11.10 in which we have three 
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equivalent statements where each statement involves a property of (P) or a property 
of (D). We state these results as corollaries, in which a primal level set means any set 
of the form 

{xeV : c^x< K} 

and a dual level set means any set of the form 

{yeV : b^y>K}, 

where K may be any real number. The first corollary follows. 

Corollary 11.11 Let the feasible regions of (P) and (D) be nonempty. Then the 
following statements are equivalent: 

(i) V contains a positive vector; 
(a) the level sets of the dual objective are bounded; 

(Hi) the optimal set of (D) is bounded. 

Proof: Recall that the hypothesis in the corollary implies that the optimal sets of 
(P) and (D) are nonempty. The proof is cyclic, and goes as follows. 

(i) => (ii): Letting x G P , with x > 0, we show that each level set of the dual 
objective is bounded. For any number K let VK be the corresponding level set of the 
dual objective: 

VK = {{y,s)eV : b^y>K}. 

Then (y^s) G VK implies 

s^x = c^x — b^y < (FX — K. 

Since x > 0, the z-th coordinate of s must be bounded above by {c^x — K)/xi. 
Therefore, VK is bounded. 

{ii) ^ {Hi): This implication is trivial, because the optimal set of {D) is a level set 
of the dual objective. 

{Hi) ^ {i): This implication has been obtained as part of the proof of Theorem ILIO. 
D 

The proof of the second corollary goes in the same way and is therefore omitted. 

Corollary 11.12 Let the feasible regions of {P) and {D) be nonempty. Then the 
following statements are equivalent: 

(i) V contains a positive vector; 
(ii) the level sets of the primal objective are bounded; 

(Hi) the optimal set of {P) is bounded. 

We conclude this section with some interesting consequences of these corollaries. 
We assume that the feasible regions V and V are nonempty. 

Corollary 11.13 V is bounded if and only if the null space of A contains a positive 
vector. 
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Proof: The dual feasible region remains unchanged if we put 6 = 0. In tha t case V 
coincides with the optimal set V* of {D)^ and this is the only nonempty dual level set. 
Hence, Corollary 11.11 yields tha t V is bounded if and only if V contains a positive 
vector. Since 6 = 0 this gives the result. • 

Corol lary 11.14 V is hounded if and only if the row space of A contains a positive 
vector. 

Proof: The primal feasible region remains unchanged if we put c = 0. Now V coincides 
with the primal optimal set V* of (P ) , and Corollary 11.12 yields tha t V is bounded 
if and only if V contains a positive vector. Since c = 0 this gives the result. • 

Note tha t the word 'positive' in the last two corollaries could be replaced by the word 
'negative', because a linear space contains a positive vector if and only if it contains 
a negative vector. An immediate consequence of Corollary 11.13 and Corollary 11.14 is 
as follows. 

Corol lary 11.15 At least one of the two sets V and V is unbounded. 

Proof: If both sets are bounded then there exist a positive vector x and a vector y 
such tha t Ax = 0 and A^y > 0. This gives the contradiction 

0 = {Axf y = x^ (A^y) > 0. 

The result follows. • 

R e m a r k 11.16 If (P) and (D) satisfy the interior-point condition then for every positive 
/i we have a primal-dual pair (x, s) such that xs = fie. Letting /x go to infinity, it follows that 
for each index i the product XiSi goes to infinity. Therefore, at least one of the coordinates 
Xi and Si must be unbounded. It can be shown that exactly one of these two coordinates is 
unbounded and the other is bounded. This is an example of a coordinatewise duality property. 
We will not go further in this direction here, but refer the reader to Williams [291, 292] and 
to Giiler et al. [134]. • 

5 . 8 S y m m e t r i c f o r m u l a t i o n 

In this chapter we dealt with the LO problem in s tandard form 

(P) min {c^x : Ax = b, x>0} , 

and its dual problem 

(D) max {b^y : A^y + 5 = c, 5 > O} . 

Note tha t there is an asymmetry in problems (P) and (D). The constraints in (P) and 
(D) are equality constraints, but in (P) all variables are nonnegative, whereas in (D) 
we also have free variables, in y. Note tha t we could eliminate s in the formulation of 
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(L)), leaving us with the inequality constraints A^y < c, so this would not remove the 
asymmetry in the formulations. 

We could have avoided the asymmetry by using a different format for problem (P) , 
but because the chosen format is more or less s tandard in the literature, we decided 
to use the s tandard format in this chapter and to accept its inherent asymmetry. Note 
tha t the asymmetry is also reflected in the K K T system. This is especially t rue for 
the flrst two equations, because the third equation is symmetric in x and s. 

In this section we make an effort to show tha t it is quite easy to obtain a perfect 
symmetry in the formulations. This has some practical value. It implies tha t every 
concept, or result, or algorithm for one of the two problems, has its natural counterpart 
for the other problem. It will also highlight the underlying geometry of an LO problem. 

Let us deflne the linear space C as the null space of the matr ix A: 

/: = {Ax = 0 : xeW}, (5.15) 

and let £ ^ denote the orthogonal complement of C Then, due to a well known result 
in linear algebra, £ ^ is the row space of the matr ix A, i.e., 

C^ = {A^y : yeU"^}. (5.16) 

Now let X be any vector satisfying Ax = b. Then x is primal feasible if x e x -\- C and 
X G IR^. So the primal problem can be reformulated as 

(PO min {c^x : x G (x + £ ) H IR^} . 

So, (P) amounts to minimizing the linear function c^x over the intersection of the 
afline space x -\- C and the nonnegative orthant IR^. 

We can put (D) in the same format by eliminating the vector y of free variables. 
To this end we observe tha t s G K^ is feasible for (D) if and only if 5 G c + £ ^ and 
s G IR^. Given any vector s e c-\- £ ^ , let y be such tha t A^y -\- s = c. Then 

rji 'T̂  rji rji rji rji rji 

b y = {Ax) y = x A y = x {c — s) = c x — x s. {^A7) 

Omitt ing the constant c^x, it follows tha t solving (D) is equivalent to solving the 
problem 

{D') min {x^s : s e {c ^ C^) nlRl} . 

Thus we see tha t the dual problem amounts to minimizing the linear function x^s 
over the intersection of the afline space c -\- C^ and the nonnegative orthant ]R!|:. 
The similarity with reformulation (P^) is striking: both problems are minimization 
problems, the roles of the vectors x and c are interchanged, and the underlying linear 
spaces are each others orthogonal complement. An immediate consequence is also tha t 
the dual of the dual problem is the primal problem. ^̂  The K K T conditions can now 
be expressed in a way tha t is completely symmetric in x and s\ 

(5.18) 

^^ The affine spaces c + C^ and x + £ intersect in a unique point ^ G R^ . Hence, we could even take 
c — X — ^. 

X 

s 

xs 

G 

G 

= 

{x^/:)nivi, 
{c^c^)niRl, 
fie. 

X > 0 

5 > 0 , 
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Due to (5.17), we conclude tha t on the dual feasible region, b^y and x^s sum up to 
the constant c^x. 

5.9 Dual logarithmic barrier function 

We conclude this chapter by introducing the dual logarithmic barrier function, using 
the symmetry tha t has now become apparent. Recall tha t for any positive /i the primal 
/i-center x(/i) has been characterized as the minimizer of the primal logarithmic barrier 
function ^^(x) , as given by (5.2): 

n 

g^{x) =c^x- /j.^\ogXj. 

Using the symmetry, we obtain tha t the dual /i-center s{fi) can be characterized as 
the minimizer of the function 

n 

h^{s) :=x^s- fi^logSj, (5.19) 

j = i 

where 5 runs through all positive dual feasible slack vectors. According to (5.17), we 
may replace x^s by c^x — b^y. Omitt ing the constant c^x, it follows tha t {y{/J^), ̂ M) 
is the minimizer of the function 

n 

k^{y,s) = -b^y- ii^logSj. 

j = i 

The last function is usually called the dual logarithmic barrier function. Recall tha t for 
any dual feasible pair {y,s), /^^(s) and kf^{y^s) differ by a constant only. It may often 
be preferable to use hfj{s), because then we only have to deal with the nonnegative 
slack vectors, and not with the free variable y. It will be convenient to refer also to 
hj^{s) as the dual logarithmic barrier function. 

From now on we assume tha t the interior point condition is satisfied, unless 
stated otherwise. As a consequence, both the primal and the dual logarithmic barrier 
functions have a minimizer, for each /i > 0. These minimizers are denoted by x(/i) 
and s{fi) respectively. 



6 

The Dual Logarithmic Barrier 
Method 

In the previous chapter we introduced the central pa th of a problem as the set 
consisting of all /i-centers, with fi running through all positive real numbers. Using 
this we can now easily describe the basic idea behind the logarithmic barrier method. 
We do so for the dual problem in s tandard format: 

(D) max {b^y : A^y + 5 = c, 5 > O} . 

Recall tha t any method for the dual problem can also be used for solving the primal 
problem, because of the symmetry discussed in Section 5.8. The dual problem has the 
advantage tha t its feasible region—in the ^/-space—can be drawn if its dimension is 
small enough {m = 1,2 or 3). This enables us to illustrate graphically some aspects 
of the methods to be described below. 

6.1 A conceptua l m e t h o d 

We assume tha t we know the /i-centers y{jii) and 5(/i) for some positive fi = fi^. Later 
on, in Chapter 8, we show tha t this assumption can be made without loss of generality. 
Given 5(/i), the primal /i-center x(/i) follows from the relation 

x{jii)s{jii) = fie. 

Now the duality gap for the pair of /i-centers is given by 

c^x{ii) — lFy{ii) = x{ii)^ s{ii) = nfi. 

The last equality follows since we have for each i tha t 

Xi{ll)Si{ll) = /i. 

It follows tha t if /i goes to zero, then the duality gap goes to zero as well. As a 
consequence we have tha t if /i is small enough, then the pair (^/(/i), 5(/i)) is 'almost ' 
optimal for the dual problem. This can also be seen by comparing the dual objective 
value b^y{fi) with the optimal value of (D). Denoting the optimal value of (P) and 
(D) by z* we know from Proposition II. 1 tha t 

b^y{fi) < z* < c^x{fi), 
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so we have 

and 

(Fx{ii) — z* < (Fx{ii) — h^y{ii) = x{jii)^s{jii) = nfi. 

Thus, if /i is chosen small enough, the primal objective value c^x{fi) and the dual 
objective value b^y{fi) can simultaneously be driven arbitrarily close to the optimal 
value. We thus have to deal with the question of how to obtain the /i-centers for small 
enough values of /i. 

Now let /i* be obtained from fi by 

^i* := {1 - 0) ^i, 

where ^ is a positive constant smaller than 1. We may expect that if 0 is not too large, 
the /i*-centers will be close to the given /i-centers.^ For the moment, let us assume 
that we are able to calculate the /i*-centers, provided 0 is not too large. Then the 
following conceptual algorithm can be used to find e-optimal solutions of both (P) 
and (D). 

Conceptual Logarithmic Barrier Algorithm 

Input: 
An accuracy parameter £ > 0; 
a barrier update parameter ^, 0 < ^ < 1; 
the center (^/(/i^), 5(/i^)) for some /i^ > 0. 

begin 
fi:= fi^ 

while 
begin 

/ i : = 

5 : = 
end 

end 

5 

nfi > 

( 1 -
s(fi); 

: s do 

0)^i•, 

Recall that, given the dual center 5(/i), the primal center x{fi) can be calculated 
immediately from the centering condition at /i. Hence, the output of this algorithm 
is a feasible primal-dual pair of solutions for (P) and (D) such that the duality gap 
does not exceed £. How many iterations are needed by the algorithm? The answer is 
provided by the following lemma. 

This is a consequence of the fact that the /x-centers depend continuously on the barrier parameter 
/i, due to a result of Fiacco and McCormick [77]. See also Chapter 16. 
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Lemma 11.17 / / the barrier parameter fi has the initial value fi^ and is repeatedly 
multiplied by 1 — 6, with 0 < ^ < 1, then after at most 

1 n / 

iterations we have nfi < e. 

Proof: Initially the duality gap is nii^ ^ and in each iteration it is reduced by the 
factor \ — Q. Hence, after k iterations the duality gap is smaller than e if 

The rest of the proof goes in the same as in the proof of Lemma L36. Taking logarithms 
we get 

A:log(l -Q) +log(n/i^) < logs. 

Since — log (1 — ^) > ^, this certainly holds if 

kQ > log(n/i^) — logs = log . 

This implies the lemma. • 

To make the algorithm more practical, we have to avoid the exact calculation of the 
/i-center s{fi). This is the subject of the following sections. 

6.2 Using approximate centers 

Recall that any /i-center is the minimizer for the corresponding logarithmic barrier 
function. Therefore, by minimizing the corresponding logarithmic barrier function we 
will find the /i-center. Since the logarithmic barrier function has a positive definite 
Hessian, Newton's method is a natural candidate for this purpose. If we know the 
/i-center, then defining /i* by /i* := (1 — ^)/i, just as in the preceding section, we 
can move to the /i*-center by applying Newton's method to the logarithmic barrier 
function corresponding to /i*, starting at the /i-center. Having reached the /i*-center, 
we can repeat this process until the barrier parameter has become small enough. In 
fact this would yield an implementation of the conceptual algorithm of the preceding 
section. Unfortunately, however, after the update of the barrier parameter to /i*, to 
find the /i*-center exactly infinitely many Newton steps are needed. To restrict the 
number of Newton steps between two successive updates of the barrier parameter, we 
do not calculate the /i*-center exactly, but instead use an approximation of it. Our 
first aim is to show that this can be done in such a way that only one Newton step 
is taken between two successive updates of the barrier parameter. Later on we deal 
with a different approach where the number of Newton steps between two successive 
updates of the barrier parameter may be larger than one. 

In the following sections we are concerned with a more detailed analysis of the 
use of approximate centers. In the analysis we need to measure the proximity of 
an approximate center to the exact center. We also have to study the behavior of 



110 II Logarithmic Barrier Approach 

Newton's method when apphed to the logarithmic barrier function. We start in the 
next section with the calculation of the Newton step. Then we proceed to defining a 
proximity measure and deal with some related properties. After this we can formulate 
the algorithm, and analyze it. 

6.3 Def ini t ion of t h e N e w t o n s t e p 

In this section we assume that we are given a dual feasible pair {y, 5), and, by applying 
Newton's method to the dual logarithmic barrier function corresponding to the barrier 
parameter value /i, we try to find the minimizer of this function, which is the pair 
(7/(/i),5(/i)). Recall that the dual logarithmic barrier function is the function k^{y^s) 
defined by 

k^{y, s) := -h^y - /i ^ log Si 

where (7/, s) runs through all dual feasible pairs with positive slack vector s. Recall 
also that y and s are related by the dual feasibility condition 

A^y + 5 = c, 5 > 0, 

and since we assume that A has full rank, this defines a one-to-one correspondence 
between the components y and s in dual feasible pairs. As a consequence, we can 
consider k^{y^s) d.s d. function of s alone. In Section 5.8 we showed that k^{y^s) differs 
only by the constant (Fx from 

n 

h^{s) =x^s- fi^logSj, 
j = i 

provided Ax = b. 
Our present aim is to compute the minimizer s{fi) of /^^(s). Assuming 5 ^ 5(/i), we 

construct a search direction by applying Newton's method to hj^{s). We first calculate 
the first and second derivatives of /^^(s) with respect to 5, namely 

\/h^{s) =x- iiis-\ \/^h^{s) = / i6 ' -^ 

where, as usual, S = diag (5). The Newton step As — in the 5-space — is the minimizer 
of the second-order approximation of hi^{s -\- As) at 5, which is given by 

T 1 
t{As) := h^{s) + (x - fis~^) As + -As^fiS~'^As, 

subject to the condition that 5 + A s is dual feasible. The latter means that there exists 
Ay such that 

A^ {y + Ay) + 5 + As = c. 

Since A^y + 5 = c, this is equivalent to 

A^Ay + As = 0 
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for some AT/. 
We make use of an (n — m) x n matr ix H whose null space is equal to the row space 

of A. Then the condition on As simply means tha t H/\s = 0, which is equivalent to 

A s G null space of H. 

Using Proposition A. l , we find tha t As minimizes t (As) if and only if 

V t (As ) = X — iis~^ + jiis~^As -L null space of H. 

It is useful to restate these conditions in terms of the matr ix HS:'^ 

sx — jiie-\- jiis~^As -L null space of HS, 

and 
fis~^As G null space of HS. 

Therefore, writing 

sx — fie = —fis~^As -\- (sx — fie -\- fis~^As^ , 

we have a decomposition of the vector sx — fie into two components, with the first 
component in the null space of HS and the second component orthogonal to the 
null space of HS. Stated otherwise, fis~^As is the orthogonal projection of fie — sx 
into the null space of HS. Hence we have shown tha t 

fis~^As = PHS (/^e — sx). (6-1) 

From this relation the Newton step A s can be calculated. Since the projection matr ix 

PHS^ is given by 

PHS = I - SH^ [HS^H^Y^ HS, 

we obtain the following expression for As : 

s(l-SH^{HS^H^y^Hs) (e 
fi 

Recall tha t x may be any vector such tha t Ax = h. It follows tha t the right-hand 
side in (6.1) must be independent of x. It is left to the reader to verify tha t this is 
indeed true.^'^'^ We are now going to explore this in a surprising way with extremely 
important consequences. 

^ Exerc i se 33 Let S* be a square and nonsingular matrix and H be any other matrix such that the 
product HS is well defined. Then x G null space of H if and only if S~^x G null space of HS^ and 
X 1. null space of H if and only if Sx 1. null space of HS^. Prove this. 

^ For any matrix Q the matrix of the orthogonal projection onto the null space of Q is denoted as 

PQ-

^ Exerc i se 34 Show that PHS (SAX) = 0 whenever AAx = 0. 

^ Exerc i se 35 The Newton step in the y-space is given by 

^y={AS-^A^y^{^--AS-^^. 

Prove this. (Hint: Use that A^Ay + As = 0.) 

^ Observe that the computation of As requires the inversion of the matrix HS^H^ ^ and the 
computation of Ay the inversion of the matrix AS~'^ A^. It is not clear in general which of the two 
inversions is more attractive from a computational point of view. 
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If we let X run through the afhne space Ax = b then the vector fie — sx runs through 
another afhne space tha t is parahel to the nuh space of AS~^. Now using tha t 

null space of AS~^ = row space of HS, 

we conclude tha t the afhne space consisting of all vectors fie — sx, with Ax = 6, is 
orthogonal to the null space of HS. This implies tha t these two spaces intersect in a 
unique point. Hence there exists a unique vector x satisfying Ax = b such tha t fie — sx 
belongs to the null space of HS. We denote this vector as x{s,fi). From its definition 
we have 

PHS il^e - sx{s, fi)) = fie- sx{s, fi), 

thus yielding the following expression for the Newton step: 

fis "^As = fie — sx{s,fi). (6.2) 

Figure 6.1 depicts the situation. 

U— {fie — sx : Ax = b} 

null space of HS 

K 
-- fie — sx{s, fi) 

Figure 6.1 The projection yielding s ^As 

Another important feature of the vector x{s,fi) is tha t it minimizes the 2-norm of 
fie — sx in the affine space Ax = b. Hence, x{s, fi) can be characterized by the property 

x{s,fi) = argmin^ {11/̂ ^ 

We summarize these results in a theorem. 

sx\ Ax = b}. (6.3) 

T h e o r e m 11.18 Let s be any positive dual feasible slack vector. Then the Newton 
step As at s with respect to the dual logarithmic barrier function corresponding to the 
barrier parameter value fi satisfies (6.2), with x{s,fi) as defined in (6.3). 
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6.4 P r o p e r t i e s of t h e N e w t o n s t e p 

We denote the result of the Newton step at 5 by 5+. Thus we may write 

5+ := 5 + A s = 5 (e + 5~^A5) . 

A major question is whether 5+ is feasible or not. Another important question is 
whether x{s,fi) is primal feasible. In this section we deal with these two questions, 
and we show tha t both questions allow a perfect answer. 

We start with the feasibility of 5+. Clearly, 5+ is feasible if and only if 5+ is 
nonnegative, and this is t rue if and only if 

e + 5 ~ ^ A 5 > 0 . (6.4) 

We conclude tha t the (full) Newton step is feasible if (6.4) is satisfied. 
Let us now consider the vector x{s, fi). By definition, it satisfies the equation Ax = 6, 

so if it is nonnegative, then x{s, fi) is primal feasible. We can derive a simple condition 
for tha t . From (6.2) we obtain tha t 

x{s, fi) = fis~^ (^e — s~^As) . (6.5) 

We conclude tha t x(5,/i) is primal feasible if and only if 

e - 5 ~ ^ A 5 > 0 . (6.6) 

Combining this result with (6.4) we state the following lemma. 

L e m m a 11.19 / / the Newton step As satisfies 

-e < s~^As < e 

then x{s, ji) is primal feasible, and s~^ = s -\- As is dual feasible. 

R e m a r k 11.20 We make an interesting observation. Since s is positive, (6.6) is 
equivalent to 

5 - A s > 0. 

Note that s — As is obtained by moving from s in the opposite direction of the Newton 
step. Thus we conclude that x{s, ji) is primal feasible if and only if a backward Newton 
step yields a dual feasible point for the dual problem. 

We conclude this section by considering the special case where As = 0. From (6.2) 
we deduce tha t this occurs if and only if sx{s^ fi) = /ie, i.e., if and only if s and x{s^ fi) 
satisfy the centering condition with respect to /i. Since s and x{s, fi) are positive, they 
satisfy the K K T conditions. Now the unicity property gives us tha t x{s,fi) = x{fi) 
and s = s{fi). Thus we see tha t the Newton step at s is equal to the zero vector if and 
only if 5 = s{fi). This could have been expected, because s{fi) is the minimizer of the 
dual logarithmic barrier function. 
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6 . 5 P r o x i m i t y a n d l o c a l q u a d r a t i c c o n v e r g e n c e 

Lemma IL19 in the previous section states under what conditions the Newton step 
yields feasible solutions on both the dual and the primal side. This turned out to be 
the case when 

- e < s~^As < e. 

Observe tha t these inequalities can be rephrased simply by saying tha t the infinity 
norm of the vector s~^As does not exceed 1. We refer to s~^As as the Newton step 
As scaled by s, or, in short, the scaled Newton step at s. 

In the analysis of the logarithmic barrier method we need a measure for the 'distance' 
of s to the /i-center 5(/i). The above observation might suggest tha t the infinity norm 
of the scaled Newton step could be used for tha t purpose. However, it turns out to 
be more convenient to use the 2-norm of the scaled Newton step. So we measure the 
proximity of s to s{fi) by the quantity^ 

S{s,fi) := | | 5 "^A5 | | . (6.7) 

At the end of the previous section we found tha t the Newton step As vanishes if and 
only if s is equal to 5(/i). As a consequence we have 

S{s, fi) = 0 < ^ ^ s = s{fi). 

The obvious question tha t we have to deal with is about the improvement in the 
proximity to 5(/i) after a feasible Newton step. The next theorem provides a very 
elegant answer to this question. In the proof of this theorem we need a different 
characterization of the proximity (5(5,/i), which is an immediate consequence of 
Theorem 11.18, namely 

S{s,fi) 
sx{s, fi) 

— mini l l / ie — 5x11 : Ax = b} . (6-8) 

We have the following result. 

T h e o r e m 11.21 If 5{s,jii) < 1, then x{s,jii) is primal feasible, and 5+ = 5 + A5 is 
dual feasible. Moreover, 

5is+,n)<5is,i^f. 

Proof: The first part of the theorem is an obvious consequence of Lemma 11.19, 
because the infinity norm of 5~^A5 does not exceed its 2-norm and hence does not 
exceed 1. Now let us tu rn to the proof of the second statement. Using (6.8) we write 

(5(5^,/i) = — min lll/ie — 5^x11 : Ax = b} . 

Exercise 36 If s = s(/i) then we know that iis~^ is primal feasible. Now let 8 = 6(s, /x) > 0 and 
consider x = iis~^. Let Q = AS~'^A^. Then Q is positive definite, and so is its inverse. Hence 
Q~^ defines a norm that we denote as | | . | | Q _ I . Thus, for any z G R^: 

||2;||g-i = ^J z^Q-^z. 

Measuring the amount of infeasibility of x in the sense of this norm, prove that 

| | A X - 6 | | g _ l < [l8. 
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Substi tuting for x the vector x{s,fi) we obtain the inequality 

S{s~^,fi) < — \\fie — s~^x{s,fi)\\ . (6.9) 

The vector jie — s~^x{s,fi) can be reduced as follows: 

fie — s~^x{s, fi) = fie — {s -\- As) x{s, fi) = fie — sx{s, fi) — Asx{s, fi). 

From (6.2) this implies 

fie — s~^x{s,fi)=fis~^As — Asx{s,fi) = {fie — sx{s,fi))s~^As = fi(^s~^As) . (6.10) 

Thus we obtain, by substitution of this equality in (6.9), 

6{s^,fi) < \\{s-^As) < Ws'^^AsW Ws'^^AsW . 

Now from the obvious inequality \\z\\^ < ||z||, with z = s ^As, the result follows. • 

Theorem 11.21 implies tha t after a Newton step the proximity to the /i-center 
is smaller than the square of the proximity before the Newton step. In other 
words, Newton's method is quadratically convergent. Moreover, the theorem defines 
a neighborhood of the /i-center s{fi) where the quadratic convergence occurs, namely 

{seV : S{s,fi) < 1 } . (6.11) 

This result is extremely important . It implies tha t when the present i terate 5 is close 
to s{fi), then only a small number of Newton steps brings us very close to s{fi). For 
instance, if S{s, fi) = 0.5, then only 6 Newton steps yield an iterate with proximity 
less than 10~^^. Figure 6.2 shows a graph depicting the required number of steps to 

I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

• S{x,ii) 

Figure 6.2 Required number of Newton steps to reach proximity 10 

reach proximity 10 ^̂  when start ing at any given value of the proximity in the interval 

(0,1). 

file:////fie
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We can also consider it differently. If we repeatedly apply Newton steps, starting at 
5^ = 5, then after k Newton steps the resulting point, denoted by 5^, satisfies 

Hence, taking logarithms on both sides, 

-log5(s^Ai)>-2Mog5(s^Ai), 
see Figure 6.3 (page 116). 
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iteration number k 

Figure 6.3 Convergence rate of the Newton process. 

The above algebraic proof of the quadratic convergence property is illustrated 
geometrically by Figure 6.4 (page 117). Like in Figure 6.1, in Figure 6.4 the 
null space of HS and the row space of HS are represented by perpendicular axes. 
From (6.1) we know tha t the orthogonal projection of any vector fie — sx, with 
Ax = 6, into the null space of HS yields fis~^As. Hence the norm of this projection 
is equal to fiS{s,fi). In other words, fiS{s,fi) is equal to the Euclidean distance from 
the affine space {fie — sx : Ax = b} to the origin. Therefore, the proximity after the 
Newton step, given by fi5{s~^,fi), is the Euclidean distance from the affine space 
{fie — s~^x : Ax = b} to the origin. The affine space {fie — s~^x : Ax = b} contains 
the vector fie — s~^x{s, fi), which is equal to fi ( s^^As) , from (6.10). Hence, fiS{s~^, fi) 
does not exceed the norm of this vector. 

The properties of the proximity measure S{s,fi) described in Theorem 11.21 are 
illustrated graphically in the next example. In this example we draw some level curves 
for the proximity measure for some fixed value of the barrier parameter /i, and we 
show how the Newton step behaves when applied at some points inside and outside 
the region of quadratic convergence, as given by (6.11). We do this for some simple 
problems. 
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- {fie — sx : Ax = b} 

{fie — s^x : Ax = b} 

null space of HS 

fi^ = fie — sx{s,fi) 

fid{s,fi) 

Figure 6.4 The proximity before and after a Newton step. 

5{s,2) = l 

Figure 6.5 Demonstration no.l of the Newton process. 

E x a m p l e 11.22 First we take A and c as in Example II.7 on page 97, and b = (0,1)-^. 
Figure 5.2 (page 98) shows the feasible region and the central path. In Figure 6.5 we 
have added some level curves for 5{s,2). We have also depicted the Newton step at 
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several points in the feasible region. The respective starting points are indicated by 
the symbol ' ° ' , and the resulting point after a Newton step by the symbol '*'; the two 
points are connected by a straight line to indicate the Newton step. 

Note tha t , in agreement with Theorem 11.21, when start ing within the region of 
quadratic convergence, i.e., when S{s,jii) < 1, the Newton step is not only feasible, but 
there is a significant decrease in the proximity to the 2-center. Also, when start ing 
outside the region of quadratic convergence, i.e., when S{s, fi) > 1, it may happen tha t 
the Newton step leaves the feasible region. 

In Figure 6.6 we depict similar results for the problem defined in Example II.7 with 

U(s,2) = l 

Figure 6.6 Demonstration no.2 of the Newton process. 

Finally, Figure 6.7 depicts the situation for a new, less regular, problem. It is defined 

A 
- 2 1 1 0 1 - 1 0 

1 1 - 1 1 0 0 - 1 

by 

1 

4 

1 

1 ^ 1 I 
, b= \ , c = 2 

1 1 1 I 
2 
0 
0 

This figure makes clear tha t after a Newton step the proximity to the 2-center may 
increase. Concluding this example, we may state tha t inside the region of quadratic 
convergence our proximity measure provides perfect control over the Newton process. 
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?:i 1.5 

0 0.5 1 1.5 2 

— ^ yi 

Figure 6.7 Demonstration no.3 of the Newton process. 

but outside this region it has Uttle value. 0 

6.6 T h e dual i ty gap close t o t h e central pa th 

A nice feature of the /i-center s = 5(/i) is tha t the vector x = /i5~^ is primal feasible, 
and the duality gap for the primal-dual pair (x, s) is given by nfi. One might ask 
about the situation when s is close to s{fi). The next theorem provides a satisfactory 
answer. It states tha t for small values of the proximity 5{s, fi) the duality gap for the 
pair {x{s, fi), s) is close to the gap for the /i-centers. 

T h e o r e m 11.23 Let S := S{s,fi) < 1. Then the duality gap for the primal-dual pair 

(x(5,/ i) ,5) satisfies 

nji {1 — S) < s^x{s, ji) < n/i (1 + (5). 

Proof: From Theorem 11.21 we know tha t x{s^ii) is primal feasible. Hence, for the 
duality gap we have 

s^x{s,jii) = 5^ {l^s~^ (e — s~^As)) = fie^ (e — s~^As) . 

Since the coordinates of the vector e — s~^As lie in the interval [1 — (5,1 + (5], the result 
follows. • 
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R e m a r k 11.24 The above estimate for the duahty gap is not as sharp as it could be, but is 
sufficient for our goal. Nevertheless, we want to point out that the Cauchy-Schwarz inequality 
gives stronger bounds. We have 

s x(s,/j,) = lie fe — s~ Asj = n/x — fie s~ As. 

Hence 
\s x(s, /J,) — nm = /i\e s~ As < /x ||e|| \\s~ As = /i^/nd, 

and it follows that 

nfi 1 — < s x(s, fi) < nfi 1 H — 

6 . 7 D u a l l o g a r i t h m i c b a r r i e r a l g o r i t h m w i t h ful l N e w t o n s t e p s 

We can now describe an algorithm using approximate centers. We assume tha t we are 
given a pair (7/^,5^) G T) and a /i^ > 0 such tha t (7/^,5^) is close to the /i^-center in 
the sense of the proximity measure (5(5^,/i^). In the algorithm the barrier parameter 
monotonically decreases from the initial value /i^ to some small value determined by 
the desired accuracy. In the algorithm we denote by p(5, /i) the Newton step A s at 
5 G V^ to emphasize the dependence on the barrier parameter /i. 

D u a l Logar i thmic Barrier A l g o r i t h m w i t h full N e w t o n s t e p s 

Input : 
A proximity parameter r , 0 < r < 1; 
an accuracy parameter £ > 0; 
[%P, s^) G P and / > 0 such tha t (^(s^ / ) < r ; 
a fixed parameter ^, 0 < ^ < 1. 

b e g i n 
5 1 = 5 ^ 

while 
begin 

5 : = 

/ i : = 
end 

end 

; i^'-
nfi 

5 + 
(1-

= / ; 
> ( i -

p(5,/i) 
-0)fi; 

0)s do 

We prove the following theorem. 

T h e o r e m 11.25 If r = l / \ / 2 and 0 = l / ( 3 v ^ ) , then the Dual Logarithmic Barrier 
Algorithm with full Newton steps requires at most 

' r^ ^^^ 3 v ^ l o g 
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iterations. The output is a primal-dual pair (x, s) such that x^s < 2s. 

6.7.1 Convergence analysis 

The proof of Theorem 11.25 depends on the fohowing lemma. The lemma generalizes 
Theorem 11.21 to the case where, after the Newton step corresponding to the barrier 
parameter value /i, the barrier parameter is updated to /i+ = (1 — 6)ii. Taking ^ = 0 
in the lemma we get back the result of Theorem 11.21. 

Lemma 11.26^ Assuming S{s,jii) < 1, let 5+ he obtained from s by moving along the 
Newton step As = p{s, ji) at s corresponding to the barrier parameter value ji, and let 
fi- (1 — ^)/i. Then we have 

s{s+,ii+r<5{s,,ir + n 
[i-ey 

Proof: By definition we have 

5{s+,^i+) mm {||M+ e — 5 ' X : Ax = b] 

Substituting for x the vector x{s,fi) we obtain the inequality: 

From (6.10) we deduce that 

5^x(5,/i) = /i f e — (^s~^As) 

Substituting this, while simplifying the notation by using 

5+x (5 , / i ) 

M i - ^ ) 

h := 5~^A5, 

we get 

<5(5+,M+)< 
e-h^ 

1 
Ii' 

1 
(e-h^ (6.12) 

To further simplify the notation we replace 0/ {1 — 0) by p. Then taking squares of 
both sides in the last inequality we obtain 

Sis+,i^+f < \\h^\f - 2p {hY (e - h^)+P^ \\e - h^^ . 

Since \\h\\ = S{s,fi) < 1 we have 

0 < e - /i^ < e. 

Hence we have 
{hY (e - h^) > 0, e-h'r<\\e\\ 

This lemma and its proof are due to Ling [182]. It improves estimates used by Roos and Vial [245]. 
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Using this, and also tha t ||e|| = n, we obtain 

(5(5+,/i+)2 < ll^'ir + p" M? < \\h\f + A = 5{s,^f + A , 

thus proving the lemma. • 

R e m a r k 11.27 It may be noted that a weaker result can be obtained in a more simple way 
by applying the triangle inequality to (6.12). This yields 

^(s ,M ) < 11̂  II + YTT^ 1 1 ^ - ^ II < ^ ( 5 ' M ) + YTT^-

This result is strong enough to derive a polynomial iteration bound, but the resulting bound 
will be slightly weaker than the one in Theorem 11.25. • 

The proof of Theorem 11.25 goes now as follows. Taking 6 = l / ( 3 y ^ ) , we have 

i-e 1 - - ^ - 1 2' 

Hence, applying the lemma, we obtain 

Therefore, if S{s,fi) < r = l / \ / 2 , then we obtain 

which implies tha t (5(5+,/i+) < l / \ / 2 = r . Thus it follows tha t after each iteration of 
the algorithm the property 

(5(5,/i) < r 

is maintained. The iteration bound in the theorem is an immediate consequence of 
Lemma 1.36. Finally, if 5 is the dual i terate at termination of the algorithm, and /i the 
value of the barrier parameter, then with x = x{s, fi), Theorem 11.23 yields 

s^x{s, ji) < n/i (1 + (5(5, /i)) < n/i (1 + r ) < 2n/i. 

Since upon termination we have nfi < e, it follows tha t s^x{s^ fi) < 2s. This completes 
the proof of the theorem. • 

6.7.2 Illustration of the algorithm with full Newton steps 

In this section we start with a straightforward application of the logarithmic barrier 
algorithm. After tha t we devote some sections to modifications of the algorithm tha t 
increase the practical efficiency of the algorithm without destroying the theoretical 
iteration bound. 

file:////h/f
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As an example we solve the problem with A and c as in Example II.7, and with 
b^ = (1,1). Written out, the (dual) problem is given by 

max {^1+^2 : - 1 < ^i < 1, ^2 < 1} • 

and the primal problem is 

min {xi -\- X2 -\- Xs : Xi — X2 = 1, X3 = 1, x > 0} . 

We can start the algorithm at 7/ = (0,0) and /i = 2, because we then have 5 = (1,1,1) 
and, since x = (2,1,1) is primal feasible. 

(5(5,/i) < sx 1 

With £ = 10 ^, the dual logarithmic barrier algorithm needs 53 iterations, to generate 
the primal feasible solution x = (1.000015,0.000015,1.000000) and the dual feasible 
pair {y,s) with y = (0.999971,0.999971) and s = (0.000029,1.999971,0.000029). The 
respective objective values are c^x = 2.000030 and b^y = 1.999943, and the duality 
gap is 0.000087. 

Table 6.1. (page 124) shows some quantities generated in the course of the algorithm. 
For each iteration the table shows the values of nfi, the first coordinate of x{s, /i), the 
coordinates of y, the first coordinate of 5, the proximity S = S{s, ji) before and the 
proximity 6^ = (5(5+,/i) after the Newton step at y to the /i-center, and, in the last 
column, the barrier update parameter ^, which is constant in this example. 

The columns for 6 and 6^ in Table 6.1. are of special interest. They make clear 
that the behavior of the algorithm differs from what might be expected. The analysis 
was based on the idea of maintaining the proximity of the iterates below the value 
r = l/^/2 = 0.7071, so as to stay in the region where Newton's method is very efficient. 
Therefore we updated the barrier parameter in such a way that just before the Newton 
step, i.e., just after the update of the barrier parameter, the proximity should reach 
the value r . The table makes clear that in reality the proximity takes much smaller 
values (soon after the start). Asymptotically the proximity before the Newton step is 
always 0.2721 and after the Newton step 0.0524. 

This can also be seen from Figure 6.8, which shows the relevant part of the feasible 
region and the central path. The points y are indicated by small circles and the exact 
/i-centers as asterisks. The above observation becomes very clear in this figure: soon 
after the start the circles and the asterisks can hardly be distinguished. The figure 
also shows at each iteration the region where the proximity is smaller than r, thus 
indicating the space where we are allowed to move without leaving the region of 
quadratic convergence. Instead of using this space the algorithm moves in a very 
narrow neighborhood of the central path. 

6.8 A version of the algorithm with adaptive updates 

The example in the previous section has been discussed in detail in the hope that the 
reader will now understand that there is an easy way to reduce the number of iterations 
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1^ It. n/j. Xi yi y2 Sl 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

000000 
845299 
912821 
159798 
551695 
060621 
664054 
343807 
085191 
876346 
707693 
571498 
461513 
372695 
300969 
243048 
196273 
158500 
127997 
103364 
083472 
067407 
054435 
043959 
035499 
028667 
023150 
018695 
015097 
012192 
009845 
007951 
006421 
005185 
004187 
003381 
002731 
002205 
001781 
001438 
001161 
000938 
000757 
000612 
000494 
000399 
000322 
000260 
000210 
000170 
000137 
000111 
000089 
000072 

2.500000 
2.255388 
1.969957 
1.749168 
1.578422 
1.447319 
1.347011 
1.270294 
1.211482 
1.166207 
1.131170 
1.103907 
1.082581 
1.065815 
1.052577 
1.042085 
1.033741 
1.027088 
1.021771 
1.017513 
1.014098 
1.011356 
1.009152 
1.007378 
1.005950 
1.004800 
1.003873 
1.003125 
1.002522 
1.002036 
1.001643 
1.001327 
1.001071 
1.000865 
1.000698 
1.000564 
1.000455 
1.000368 
1.000297 
1.000240 
1.000194 
1.000156 
1.000126 
1.000102 
1.000082 
1.000066 
1.000054 
1.000043 
1.000035 
1.000028 
1.000023 
1.000018 
1.000015 
1.000015 

0.000000 
0.250000 
0.285497 
0.342068 
0.403015 
0.467397 
0.532510 
0.595745 
0.654936 
0.708650 
0.756184 
0.797423 
0.832650 
0.862383 
0.887244 
0.907881 
0.924914 
0.938910 
0.950370 
0.959728 
0.967352 
0.973553 
0.978589 
0.982674 
0.985986 
0.988668 
0.990839 
0.992596 
0.994017 
0.995165 
0.996094 
0.996845 
0.997451 
0.997941 
0.998337 
0.998657 
0.998915 
0.999124 
0.999292 
0.999429 
0.999539 
0.999627 
0.999699 
0.999757 
0.999804 
0.999841 
0.999872 
0.999897 
0.999917 
0.999933 
0.999946 
0.999956 
0.999964 
0.999971 

0.000000 
-0.500000 
-0.606897 
-0.234058 
-0.022234 
0.184083 
0.337370 
0.466322 
0.568477 
0.651736 
0.718677 
0.772849 
0.816552 
0.851862 
0.880369 
0.903393 
0.921985 
0.936999 
0.949123 
0.958915 
0.966821 
0.973207 
0.978363 
0.982527 
0.985890 
0.988605 
0.990798 
0.992569 
0.993999 
0.995154 
0.996087 
0.996840 
0.997448 
0.997939 
0.998336 
0.998656 
0.998915 
0.999124 
0.999292 
0.999428 
0.999538 
0.999627 
0.999699 
0.999757 
0.999804 
0.999841 
0.999872 
0.999897 
0.999917 
0.999933 
0.999946 
0.999956 
0.999964 
0.999971 

1.000000 
0.750000 
0.714503 
0.657932 
0.596985 
0.532603 
0.467490 
0.404255 
0.345064 
0.291350 
0.243816 
0.202577 
0.167350 
0.137617 
0.112756 
0.092119 
0.075086 
0.061090 
0.049630 
0.040272 
0.032648 
0.026447 
0.021411 
0.017326 
0.014014 
0.011332 
0.009161 
0.007404 
0.005983 
0.004835 
0.003906 
0.003155 
0.002549 
0.002059 
0.001663 
0.001343 
0.001085 
0.000876 
0.000708 
0.000571 
0.000461 
0.000373 
0.000301 
0.000243 
0.000196 
0.000159 
0.000128 
0.000103 
0.000083 
0.000067 
0.000054 
0.000044 
0.000036 
0.000029 

0.6124 
0.0901 
0.2491 
0.2003 
0.2334 
0.2285 
0.2406 
0.2438 
0.2500 
0.2537 
0.2574 
0.2601 
0.2624 
0.2643 
0.2658 
0.2670 
0.2680 
0.2688 
0.2695 
0.2700 
0.2704 
0.2707 
0.2710 
0.2712 
0.2714 
0.2716 
0.2717 
0.2718 
0.2718 
0.2719 
0.2720 
0.2720 
0.2720 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2721 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 
0.2722 

0.2509 
0.0053 
0.0540 
0.0303 
0.0420 
0.0379 
0.0416 
0.0421 
0.0441 
0.0453 
0.0467 
0.0477 
0.0486 
0.0493 
0.0499 
0.0504 
0.0508 
0.0511 
0.0513 
0.0515 
0.0517 
0.0518 
0.0519 
0.0520 
0.0521 
0.0521 
0.0522 
0.0522 
0.0523 
0.0523 
0.0523 
0.0523 
0.0523 
0.0523 
0.0523 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 
0.0524 

0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 
0.1925 

Table 6.1. Output of the dual full-step algorithm. 



II.6 Dual Logarithmic Barrier Method 125 

(5(5,2(1-6')) = r 

S{s,2) =T 

-^ yi 

Figure 6.8 Iterates of the dual logarithmic barrier algorithm. 

required by the algorithm without losing the quality of the solution guaranteed by 
Theorem 11.25. The obvious way to reach this goal is to make larger updates of the 
barrier parameter while keeping the iterates in the region of quadratic convergence. 

This is called the adaptive-update strategy,^ which we discuss in the next section. 
After that we deal with a more greedy approach, using larger updates of the barrier 
parameter, and in which we may leave temporarily the region of quadratic convergence. 
This is the so-called large-update strategy. The analysis of the large-update strategy 
cannot be based on the proximity measure S{y, ji) alone, because outside the region of 
quadratic convergence this measure has no useful meaning. But, as we shall see, there 
exists a different way of measuring the progress of the algorithm in that case. 

6.8.1 An adaptive-update variant 

Observe that the iteration bound of Theorem 11.25 was obtained by requiring that 
after each update of the barrier parameter /i the proximity satisfies 

(5(5,/i) < r . (6.13) 

In order to make clear how this observation can be used to improve the performance 
of the algorithm without losing the iteration bound of Theorem 11.25, let us briefiy 
recall the idea behind the proof of this theorem. At the start of an iteration we are 
given 5 and /i such that (6.13) holds. We then make a Newton step to the /i-center. 

The adaptive-update strategy was first proposed by Ye [303]. See also Roos and Vial [245]. 
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central pa th 

Figure 6.9 The idea of adaptive updating. 

which yields 5+, and we have 

Then we update /i to a smaller value /i+ = (1 — ^)/i such tha t 

Sis+,^+)<T, 

(6.14) 

(6.15) 

and we start the next iteration. Our estimates in the proof of Theorem 11.25 were such 
tha t it has become clear tha t the value 0 = l / ( 3 y ^ ) guarantees tha t (6.15) will hold. 
But from the example in the previous section we know tha t actually the new proximity 
may be much smaller than r . In other words, it may well happen tha t using the given 
value of 0 we start the next iteration with an 5+ and a /i+ such tha t (5(5+,/i+) is 
(much) smaller than r . 

It will be clear tha t this opens a way to speed up the algorithm without degrading 
the iteration bound. For if we take 0 larger than the value 0 = l / ( 3 y n ) used in 
Theorem 11.25, thus enforcing a deeper update of the barrier parameter in such a way 
tha t (6.15) still holds, then the analysis in the proof of Theorem 11.25 remains valid 
but the number of iterations decreases. The question arises of how deep the update 
might be. In other words, we have to deal with the problem tha t we are given 5+ and 
/i such tha t (6.14) holds, and we ask how large we can take ^ in /i+ = (1 — 0)fi so tha t 
(6.15) holds with equality: 

5is+,^i+) r. 

See Figure 6.9. Note tha t we know beforehand tha t this value of 0 is at least 
0 = l / ( 3 v ^ ) . 

To answer the above question we need to introduce the so-called afRne-scaling 
direction and the centering direction at s. 
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6.8.2 The affine-scaling direction and the centering direction 

From (6.1) we recall that the Newton step at s to the /i-center is given by 

fis~^As = PHS (/̂ e — sx), 

so we may write 

As = SPHS ( e - — ) = SPHS (e) - - SPHSSX. 

The directions 

and 

A=s := SPHS (e) 

M's := -SPHS {SX) 

(6.16) 

(6.17) 

are called the centering direction and the affine-scaling direction respectively. Note that 
these two directions depend only on the iterate 5 and not on the barrier parameter ji. 
Now the Newton step at s to the /i-center can be written as 

As = A^5 + - A"5, 
/ i 

and the definition (6.7) of the proximity S{s,fi) implies 

S{s,fi) 
/ i 

where 
(î  = 5-^A^5, d"" = s-^A^'s 

are the scaled centering and affine-scaling directions respectively. 

6.8.3 Calculation of the adaptive update 

Now that we know how the proximity depends on the barrier parameter we are able 
to solve the problem posed above. We assume that we have an iterate 5 such that for 
some /i > 0 and 0 < r < l / \ /2 , 

S := S{s, fi) < r^, 

and we ask for the smallest value /i+ of the barrier parameter such that 

(5(5,/i+) = r . 

Clearly, /i+ is the smallest positive root of the equation 

S{s,fi) d""^- d"" T. (6.18) 
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Note that in the case where 6 = 0, the dual objective value is constant on the dual 
feasible region and hence s is optimal.^^'^^ We assume that d^ ^ 0. This is true if and 
only if 6 ^ 0. It then follows from (6.18) that S{s,jii) depends continuously on /i and 
goes to infinity if /i approaches zero. Hence, since r > r'^, equation (6.18) has at least 
one positive solution. 

Squaring both sides of (6.18), we arrive at the following quadratic equation in 1/fi: 

^ \\d^f^ -{d^fd"" + ||(i^f - r^ = 0. (6.19) 

The two roots of (6.19) are given by 

-{d'-fd^ ± y((da)Trfc)2 _| |^a| |2|^| |rfc|p 

We already know that at least one of the roots is positive. Hence, although we do not 
know the sign of the second root, we may conclude that l//i*, where /i* is the value of 
the barrier parameter we are looking for, is equal to the larger of the two roots. This 
gives, after some elementary calculations. 

fJU — 

{d^)^d^ + M{d^Yd^f - \\d^f Ud^w^ - TA 

It is interesting to observe that it is easy to characterize the situation that both 
roots of (6.18) are positive. By considering the constant term in the quadratic equation 
(6.19) we see that both roots are positive if and only if ||c^ |̂| — r^ > 0. From (6.18) it 
follows that \\d^\\ = (^(s, oo). Thus, both roots are positive if and only if 

(5(5, oo) > r. 

Obviously this situation occurs only if 

((i")^(i^ < 0. 

Thus we find the interesting result 

5{s,oo)>T => ( ( i " ) ^ ( i ^<0 . 

At the central path, when S{s,jii) = 0, we have d^ = —fid^, so in that case the above 
implication is obvious. 

10 Exercise 37 Show that d" = 0 if and only if 6 = 0. 

11 Exercise 38 Consider the case 6 = 0. Then the primal feasibility condition is Ax = 0, x > 0, 
which is homogeneous in x. Show that x{s^ii) = /ix(s, 1) for each /x > 0, and that (5(s,/i) is 
independent of /x. Taking s = s ( l ) , it now easily follows that s(/i) = s( l ) for each /x > 0. This 
means that the dual central path is a point in this case, whereas the primal central path is a 
straight half line. If s and /x > 0 are such that S(s, /x) < 1 then the Newton process converges 
quadratically to s ( l ) , which is the analytic center of the dual feasible region. See also Roos and 
Vial [243] and Ye [310]. 
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6.8.4 Illustration of the use of adaptive updates 

By way of example we solve the same problem as in Section 6.7.2 with the dual 
logarithmic barrier algorithm, now using adaptive updates. As before, we start 
the algorithm at y = (0,0) and /i = 2. With s = 10~^ and adaptive updates, 
the dual full-step algorithm needs 20 iterations to generate the primal feasible 
solution X = (1.000013,0.000013,1.000000) and the dual feasible pair {y,s) with y = 
(0.999973,0.999986) and s = (0.000027,1.999973,0.000014). The respective objective 
values are c^x = 2.000027 and b^y = 1.999960, and the duality gap is 0.000067. 
Table 6.2. (page 129) gives some information on how the algorithm progresses. From 
the seventh column in this table (with the heading 5) it is clear that we have reached 
our goal: after each update of the barrier parameter the proximity equals r . Moreover, 
the adaptive barrier parameter update strategy reduced the number of iterations, from 
53 to 20. 

Figure 6.10 (page 130) provides a graphical illustration of the adaptive strategy. 
It shows the relevant part of the feasible region and the central path, as well as 
the first four points generated by the algorithm and their regions of quadratic 
convergence. After each update the iterate lies on the boundary of the region of 
quadratic convergence for the next value of the barrier parameter. 

1 ^ It. n/j. Xi yi y2 51 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

.000000 

.778382 

.863937 
505477 
.280994 
.165317 
.093710 
.055038 
.031566 
018469 
.010662 
.006220 
.003603 
.002098 
001217 
000708 
.000411 
.000239 
.000139 
.000081 
000081 

1.500000 
1.374235 
1.149409 
1.091171 
1.047762 
1.028293 
1.015735 
1.009255 
1.005275 
1.003087 
1.001779 
1.001038 
1.000601 
1.000350 
1.000203 
1.000118 
1.000069 
1.000040 
1.000023 
1.000013 
1.000013 

0.000000 
0.500000 
0.579559 
0.864662 
0.847943 
0.954529 
0.947640 
0.984428 
0.982196 
0.994677 
0.993971 
0.998188 
0.997961 
0.999385 
0.999311 
0.999792 
0.999767 
0.999930 
0.999921 
0.999976 
0.999973 

0.000000 
0.000000 
0.686927 
0.714208 
0.913169 
0.906834 
0.971182 
0.968951 
0.990450 
0.989568 
0.996813 
0.996484 
0.998931 
0.998814 
0.999640 
0.999599 
0.999879 
0.999865 
0.999959 
0.999954 
0.999986 

1.000000 
0.500000 
0.420441 
0.135338 
0.152057 
0.045471 
0.052360 
0.015572 
0.017804 
0.005323 
0.006029 
0.001812 
0.002039 
0.000615 
0.000689 
0.000208 
0.000233 
0.000070 
0.000079 
0.000024 
0.000027 

0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 
0.7071 

0.1581 
0.4725 
0.4563 
0.4849 
0.4912 
0.4776 
0.4937 
0.4799 
0.4915 
0.4827 
0.4894 
0.4846 
0.4881 
0.4856 
0.4874 
0.4862 
0.4870 
0.4864 
0.4868 
0.4865 

0.5000 
0.4072 
0.5142 
0.4149 
0.4441 
0.4117 
0.4332 
0.4127 
0.4265 
0.4149 
0.4227 
0.4167 
0.4207 
0.4177 
0.4198 
0.4183 
0.4193 
0.4186 
0.4191 
0.4187 

Table 6.2. Output of the dual full-step algorithm with adaptive updates. 
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y2 

% , 2 ) = r 

-^ yi 

Figure 6.10 The iterates when using adaptive updates. 

6.9 A version of the algorithm with large updates 

In this section we consider a more greedy approach than the adaptive strategy, using 
larger updates of the barrier parameter. As before, we assume that we have an iterate 
s and a /i > 0 such that s belongs to the region of quadratic convergence around the 
/i-center. In fact we assume that^^ 

5{s,ii) <T 
1 

72-

Starting at s we want to reach the region of quadratic convergence around the /i+-
center, with 

/ i ' ( l - ^ ) / i . 

and we assume that 6 is so large that s lies outside the region of quadratic convergence 
around the /i+-center. In fact, it may well happen that 6{s^ /i+) is much larger than 1. 
It is clear that the analysis of the previous sections, where we always took full Newton 
steps for the target value of the barrier parameter, is then no longer useful: this analysis 
was based on the nice behavior of Newton's method in a close neighborhood of the 
/i+-center. Being outside this region, we can no longer profit from this nice behavior 
and we need an alternative approach. 

Now remember that the target center 5(/i+) can be characterized as the (unique) 

^'^ We could have taken a different value for r, for example r = 1/2, but the choice r = l / v ^ seems 
to be natural. The analysis below supports our choice. In the literature the choice r = 1/2 is very 
popular (see, e.g., [140]). It is easy to adapt the analysis below to this value. 
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minimizer of the dual logarithmic barrier function 

n 

and that this function is strictly convex on the interior of the dual feasible region. 
Hence, the difference 

vanishes if and only if 5 = 5(/i+) and is positive elsewhere. The difference can therefore 
be used as another indicator for the 'distance' from 5 to 5(/i+). That is exactly what 
we plan to do. Outside the region of quadratic convergence the barrier function value 
will act as a measure for proximity to the /i-center. We show that when moving in the 
direction of the Newton step at 5 the barrier function decreases, and that by choosing 
an appropriate step-size we can guarantee a sufficient decrease of the barrier function 
value. In principle, the step-size can be obtained from a one-dimensional line search 
in the Newton direction so as to minimize the barrier function in this direction. Based 
on these ideas we derive an upper bound for the required number of damped Newton 
steps to reach the vicinity of 5(/i+); the upper bound will be a function of 0. 

The algorithm is described on page 131. We refer to the first while-loop in the 

Dual Logarithmic Barrier Algorithm with Large Updates 

Input: 
A proximity parameter r = l / \ /2 ; 
an accuracy parameter s > 0; 
a variable damping factor a; 
an update parameter ^, 0 < ^ < 1; 
(7/O, s^) G P and / > 0 such that S{s^,fi^) < r . 

begin 
5 : = 5^; /i : = /i^; 

while nfi > £ do 
begin 

/i := (1 -0)/j.; 
while 5{s, /i) > r do 
begin 

s := s -\- ap{s, fi); 
(The damping factor a must be such that kfj{y, s) decreases 
sufficiently. The default value is 1/(1 + S{s, fi)).) 

end 
end 

end 

algorithm as the outer loop and to the second while-loop as the inner loop. Each 
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execution of the outer loop is called an outer iteration and each execution of the inner 
loop an inner iteration. The required number of outer iterations depends only on the 
dimension n of the problem, on /i^ and e, and on the (fixed) barrier update parameter 
0. This number immediately follows from Lemma L36. The main task in the analysis 
of the algorithm is to derive an upper bound for the number of iterations in the inner 
loop. For tha t purpose we need some lemmas tha t estimate barrier function values 
and objective values in the region of quadratic convergence around the /i-center. Since 
these estimates are interesting in themselves, and also because their importance goes 
beyond the analysis of the present algorithm with line searches alone, we discuss them 
in separate sections. 

6.9.1 Estimates of harrier function values 

We start with the barrier function values. Our goal is to estimate dual barrier function 
values in the region of quadratic convergence around the /i-center. It will be convenient 
not to deal with the barrier function itself, but to scale it by the barrier parameter. 
Therefore we introduce 

h,j,{s) := -k^{y,s) = ^logSj. 

Let us point out once more tha t y is omitted in the argument of h^{s) because of the 
one-to-one correspondence between y and s in dual feasible pairs {y^s). We also use 
the primal barrier function scaled by ji: 

9^{x) := -g^{x) = ^ l o g x ^ - . 

Recall tha t both barrier functions are strictly convex on their domain and tha t 5(/i) 
and x(/i) are their respective minimizers. Therefore, defining 

^ M ( ^ ) •= ^ M ( ^ ) - 9n{x{ii)), (l)'l{s) := h^{s) - h^{s{fi)), 

we have (/^^(s) > 0, with equality if and only if 5 = 5(/i), and also (/>^(x) > 0, with 
equality if and only if x = x(/i) . As a consequence, defining 

(/)^(x,5):=(/)^(x) + (/)^(5), (6.20) 

where (x, 5) is any pair of positive primal and dual feasible solutions, we have 
(l)i^{x,s) > 0, and the equality holds if and only if x = x{fi) and 5 = s{fi). The 
function (/)̂  : V^ x P + -^ K ^ is called the primal-dual logarithmic barrier function 
with barrier parameter /i. Now the following lemma is almost obvious. 

L e m m a 11.28 Let x > 0 be primal feasible and s > 0 dual feasible. Then 

Proof: The inequalities in the lemma are immediate from (6.20) since (j^^Ax) and 

(/)^(5) are nonnegative. Similarly, the equalities follow since (/)̂  {x{fi)) = (j)^ {s{fi)) = 0. 

Thus the lemma has been proved. • 
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In the sequel, properties of the function (j)^ form the basis of many of our estimates. 
These estimates follow from properties of the univariate function 

V ^ ( t ) = t - l o g ( l + t ) , t > - l , (6.21) 

as defined in (5.5).^^ The definition of V̂  is extended to any vector z = (zi, Z 2 , . . . , ^n) 
satisfying z + e > 0 according to 

n n n 

Psi{z) = Y, i'i^j) = E (̂ i - log(l + ^i)) = e^^ - E log(l + î)- (6.22) 
j = l j = l j = l 

We now make a crucial observation, namely tha t the barrier functions (/)^(x, 5), (/)^(x) 

and (l)^{s) can be nicely expressed in terms of the function ^ . 

L e m m a 11.29 Let x > 0 be primal feasible and s > 0 dual feasible. Then 

(U)4>P{x) = ^[^-e); 

Proof: ^̂  First we consider item (i). We use tha t c^x — b^y = x^s and c^x{fi) — 
b^y{li) = x{ii)^s{ii) = nfi. Now (/)^(x, 5) can be reduced as follows: 

(/)^(x, 5) = h^{s) + g^{x) - {h^{s{fi)) + g^{x{fi))) 

x^s ^ . x ( / i ) ^ 5 ( / i ) ' J ^ , / N / N 
- - - 2 ^ log XjSj + 2 ^ log Zj {fi)Sj (/i) 

rp n 

X S ^r-^. 
= > logXj5j — n + n log / i . 

Since x-^5 = e^{xs) and e-^e = n, we find the following expression for (/)^(x, 5):^^ 

0 , ( x , . ) = e ^ p - e - ^ l o g : ^ = ^ p - e . (6.23) 

This proves the first s tatement in the lemma. The second statement follows by 
substi tuting 5 = 5(/i) in the first statement, and using Lemma n .28 . Similarly, the 
third statement follows by substi tuting x = x{fi) in the first s tatement. • 

13 Exercise 39 Let t > - 1 . Prove that 

^\l + tj ^^^ 1 + t •t 

^^ Note that the dependence of (j)i_i{x, s) on x and s is such that it depends only on the coordinatewise 
product xs of X and s. 

^^ Exercise 40 Considering (6.23) as the definition of (pfj^ix, s), and without using the properties of 
'0, show that (pi_^(x,s) is nonnegative, and zero if and only if xs = fie. (Hint: Use the arithmetic-
geometric-mean inequality.) 
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Now we are ready to derive lower and upper bounds for the value of the dual 
logarithmic barrier function in the region of quadratic convergence around the /i-
center. These bounds heavily depend on the following two inequalities: 

V'(lkll)<*W<^(-|kll z > —e. (6.24) 

The second inequality is valid only if ||^|| < 1. The inequalities in (6.24) are 
fundamental for our purpose and are immediate consequences of Lemma C.2 in 
Appendix C.i^'i'^ 

Lemma 11.30 ^̂  Let 5 := S{s,fi). Then 

c^'^is) > 6-\og{l^ 6) = ^l;{6). 

Moreover, if 5 < 1, then 

4>t{s) < 0^(x(s, fi), s)<-6- log(l -6) = V(-5). 

Proof: By applying the inequalities in (6.24) to (6.23) we obtain for any positive 
primal feasible x: 

V' sx < (i)^{x,s) < IIJ sx (6.25) 

where the second inequality is valid only if the norm of xs/fi — e does not exceed 1. 
Using (6.8) we write 

S = S{s,fi) = 

Hence, by the monotonicity of '0(t) for t > 0 

sx{s, fi) 
< sx 

/ i 

sx 

^^ At least one of the inequalities in (6.24) shows up in almost every paper on interior-point methods. 
As far as we know, all usual proofs use the power series expansion of log(l -\- x),—l < x < 1 and 
do not characterize the case of equality, at least not explicitly. We give an elementary proof in 
Appendix C (page 435). 

1'̂  Exercise 41 Let ^ G R"^. Prove that 

^ > 0 

-e< z <0 

*(.)<n^(M)<M 

"^(z) > nip 
\fn •)^¥ 

-•̂^ This lemma improves a similar result of den Hertog et al. [146] and den Hertog [140]. The 
improvement is due to a suggestion made by Osman Giiler [130] during a six month stay at 
Delft in 1992, namely to use the primal logarithmic barrier function in the analysis of the dual 
logarithmic barrier method. This approach not only simplifies the analysis significantly, but also 
leads to sharper estimates. It may be appropriate to mention that even stronger bounds for (/)^(x, s) 
will be derived in Lemma n.69, but there we use a different proximity measure. 
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for any positive primal feasible x. Taking x = x{fi) and using the left inequality in 
(6.25) and the third statement in Lemma IL29, we get 

IIJ{S) < V̂  
sx{jii) 

/ i 
< ( / ) ^ ( x ( / i ) , 5 ) = ( / ) ^ ( 5 ) , 

proving the first inequality in the lemma. For the proof of the second inequality in the 
lemma we assume S < 1 and put x = x{s,fi) in the right inequality in (6.25). This 
gives 

I sx{s, fi) 
(j)^{x{s,ii),s) < ip 

/ i 
V^(-^). 

By Lemma IL28 we also have (l)^{s) < (j)^{x{s^ ji)^ s). Thus the lemma follows. • 

The functions '0((5) and '0(—(5), for 0 < 6 < 1, play a dominant role in many of the 
estimates below. Figure 6.11 shows their graphs. 
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Figure 6.11 The functions ^(8) and '0(—(5) for 0 < (5 < 1. 

6.9.2 Estimates of objective values 

We proceed by considering the dual objective value b^y in the region of quadratic 
convergence around the /i-center. Using that x{fi)s{fi) = fie and c^x{fi) — b^y{fi) = 
x{fi)^s{fi) = nfi, we write 

b^yi^i) - b^y c^x{ii) — nfi — b^y = s^x{ii) — nfi = e^ {sx{ii) — fie) 

^,T (SJM _ e /ie 
5 ( / i ) 

(6.26) 
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Applying the Cauchy-Schwarz inequahty to the expression for b^y{fi) — b^y in (6.26), 
we obtain 

Ib^vifi) -b^y\ < fiy^ 
5 ( / i ) 

(6.27) 

We assume S : = S{s,fi) < 1 / A / 2 . It seems reasonable then to expect tha t the norm of 
the vector 

5 Sx(fl) 
hs := —^- - e = e 

will not differ too much from 5. In any case, tha t is what we are going to show. It will 
then follow tha t the absolute value of b^y{ii) — b^y is of order /j^Sy^. 

Note tha t hs can be writ ten as 

_ s - s{fi) 

and hence \\hs\\ measures the relative difference between 5 and 5(/i). We also introduce 
a similar vector for any primal feasible x > 0: 

xs{fi) X X — x{fi) 

fJL x{jil) x{jil) 

Using tha t x — x{fi) and s — s{fi) are orthogonal, as these vectors belong to the null 
space and row space of A, respectively, we may write 

X — x{fl)\ f S — s{fl)\ 1 J. 

This makes clear tha t hx and hs are orthogonal as well. In the rest of this section we 
work with x = x{s,fi) and derive upper bounds for \\hx\\ and \\hs\\. It is convenient to 
introduce the vector 

h = hx -\- hs. 

The next lemma implicitly yields an upper bound for \\h\\. 

L e m m a 11.31 Let 5 = 5{s, /i) < 1 and x = x{s, fi). Then ilj{\\h\\) < '0(—(5). 

Proof: Using Lemma 11.29 we may rewrite (6.20) as 

(j)^{x,s) = ^{hx)^^{hs). 

By the first inequality in (6.24) we have 

* ( / ! . ) > V-dl/i^ll) and * ( / i , ) > ^ ( | | / i , | | ) . 

Applying the first inequality in (6.24) to the 2-dimensional vector {\\hx\\ , H/̂ sID? we 
obtain 

V(||/i . | |) + V( l | / i . | | )> (̂11/̂ 11). 
Here we used tha t hx and hs are orthogonal. Substitution gives 
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On the other hand, by Lemma IL30 we have (/)^(x,5) < '0(—(5), thus completing the 
proof. • 

Let us point out tha t we can easily deduce from Lemma IL31 an interesting 
upper bound for \\h\\ if S < 1. It can then be shown tha t V^dl/iH) < '0(—(^) implies 
\\h\\ < S/{1 - (5).i9'20 This implies tha t \\h\\ < 1 if S < 1/2. However, for our purpose 
this bound is not strong enough. We prove a stronger result tha t implies tha t \\h\\ < 1 
if6< 1 / A / 2 . 

L e m m a 11.32 Let S = S{s,fi) < 1 / A / 2 . Then \\h\\ < A/2 . 

Proof: By Lemma IL31 we have V^dl/iH) < '0(—(5). Since '0(—(^) is monotonically 
increasing in 5, this implies 

< V ^ ( - 1 / A / 2 ) = 0.52084. 

Since 
V^(A/2) = 0.53284 > 0.52084, 

and '0(t) is monotonically increasing for t > 0, we conclude tha t \\h\\ < \f2. 

We now have the following result. 

L e m m a 11.33 ^i Let 5 := S{s,fi) < 1 / A / 2 . Then 

\\hs\\ 
5 ( / i ) 

< V 1 - \ / l - 2 ( 5 2 . 

Moreover, if x = x{s,jii) then also 

11̂.11 \x{ii) 

Proof: Lemma 11.32 implies tha t 

\\K. + h. = \\h\\ < V2. 

On the other hand, since 

xs xs 
/i x{ii)s{ii) 

with X = x{s,jii), and using (6.8), it follows tha t 

\\hx -^hs -^hxhsW = 6 < 

(e + ha:){e ^ hs) - e = ha: ̂  hs ^ Khs 

V2' 

D 

19 Exercise 42 Let 0 < t < I. Prove that 

i^ \1+ tj - 2(1 +t) - ^^ ^ - 2 - ^^ ^ - 2{l-t) - ^ \ l - t j 

Also show that the first two inequalities are valid for any t > 0. 

20 Exerc i se 43 Let 0 < (5 < I and r > 0 be such that V (̂r) < ^l^(-6). Prove that r < 6/(1 - 6). 

^^ For b < 1/2 this lemma was first shown by Gonzaga (private communication, Delft, 1994). 

file:///l-tj


138 II Logarithmic Barrier Approach 

At this stage we may apply the fourth uv-\em.m.Si (Lemma C.8 in Appendix C) with 
u = hx and v = hs, to obtain the lemma. • 

We are now ready for the main result of this section. 

T h e o r e m 11.34 If S = S{s,fi) < 1 /A /2 then 

Proof: Recah from (6.27) tha t 

\b^y{fi)-b^y\ < / i v ^ \\hs\\. 

Substituting the bound of Lemma IL33 on \\hs\\, the theorem follows. D 

\ y. 
y>^ 

5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 6.12 The graphs of 6 and y^l-VT^^^ for 0 < (5 < 1/^2. 

Figure 6.12 (page 138) shows the graphs of S and yl — V l — 2(5^. It is clear tha t 
for small values of 5 {5 < 0.3 say) the functions can hardly be distinguished. 

6.9.3 Effect of large update on barrier function value 

We start by considering the effect of an update of the barrier parameter on the 
difference between the dual barrier function value and its minimal value. More 
precisely, we assume tha t for given dual feasible 5 and /i > 0 we have 5 = S{s, fi) < 
l / \ / 2 , and we want to estimate 

where /i+ = / i( l — ^) for 0 < ^ < 1. Note tha t Lemma IL30 gives the answer if ^ = 0: 
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For the general case, where ^ > 0, we write 

<+(s) = V ( 5 ) - V ( S ( A ^ + ) ) 

= V (s) - V (KM)) + <+ (S(M))> (6.28) 

and we treat the first two terms and the last term in the last expression separately. 

Lemma 11.35 In the above notation, 

V(5) - V ( K M ) ) < ^i-s) + Y^ \ / i - Vi - 252. 

Proof: Just using definitions we write 

V ( S ) - V ( S ( M ) ) = ^^-Y.^ogsj + ^-^+J2^ogsji^) 
^ 3 = 1 ^ 3 = 1 

3=1 3=1 ^ 

Applying Lemma IL30 to the first term in the last expression, and Theorem IL34 to 
the second term gives the lemma. • 

Lemma 11.36 In the above notation, 

id 

Proof: The inequality follows from Lemma n.28. The equality is obtained as follows. 
From (6.23), 

0 , . ( . ( , ) , s(M)) = e- ( £ ( ^ - e) -±,og^-M£M. 

Since x{fi)s{fi) = fie and /i+ = (1 — ^)/i, this can be simplified to 

rp f fie 

J 

(j)^+{x{fi),s{fi)) = ^' ( — - ^ ) " X ^ l o g — 

e 
\ I - ^ / 

l o g ( 1 
l-O " V 1 
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This completes the proof. • 

Combining the results of the last two lemmas we find the next lemma. 

Lemma 11.37 Let S{s,fi) < l / \ /2 for some dual feasible s and /i > 0. Then, if 
ji^ = /i(l — 6) with 0 < ^ < 1, we have 

<*<»>^K^)-^-*(T^) 
Proof: The lemma follows from (6.28) and the bounds provided by the previous 
lemmas, by substitution oi 5 = l / \ /2- D 

With 5, ji and /i+ as in the last lemma, our aim is to estimate the number of damped 
Newton steps required to reach the vicinity of the /i+-center when starting at 5. To 
this end we proceed by estimating the decrease in the barrier function value during a 
damped Newton step. 

6.9.4 Decrease of the harrier function value 

In this section we consider a damped Newton step to the /i-center at an arbitrary 
positive dual feasible 5 and we estimate its effect on the barrier function value. The 
analysis also yields a suitable value for the damping factor a. The result of the damped 
Newton step is denoted by 5+, so 

5 + = 5 + Q^A5, (6.29) 

where As denotes the full Newton step. 

Lemma 11.38 Let 6 = 5{s,jii). If a = 1/(1 + 5) then the damped Newton step (6.29) 
is feasible and it reduces the harrier function value by at least 6 — log(l + (5). In other 
words, 

< ( 5 ) - < ( s + ) > < 5 - l o g ( l + <5) = V(<5). 

Proof: First recall from (6.5) in Section 6.5 that the Newton step As is determined 
by 

x{s,fi) = fis~^ (e — s~^As^ . 

We denote x{s, fi) briefiy as X. With 
As xs 

S fl 

the damped Newton step can be described as follows: 

5^ = 5 + aAs = s{e -\- az). 

Since 5+ is feasible if and only if it is nonnegative, the step is certainly feasible if 
Q̂  ||z|| < 1. Since 5 = \\z\\, the value for a specified by the lemma satisfies this condition. 
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and hence the feasibihty of 5+ fohows. Now we consider the decrease in the dual barrier 
function value during the step. We may write 

<(s ) - <(5+) = h^is) - h^is+) 
bTy " -bTy+ " 

• 2 ^ log Sj + 2 ^ log s+. 

The difference b^y~^ — iFy can be written as follows: 

5 y"*" — by = ex — by — ( e x — b y~^) = x s — x s"*" 

= —a X {sz) = —a e (xs) z = a ii{z — e)z. 

Thus we obtain 

< ( s ) - < ( s + ) = ae^{z-e)z + Y,\og(l+aZj) 

3 = 1 

I 
= a e^z^ — e^ (az) — \ ^ log {1 -\- a Zj) 

= a5'^ -"^{az). 

Since ||Q^^|| < 1 we may apply the right-hand side inequality in (6.24), which gives 
"^{a z) < tjj {—a \\z\\) = tjj {—a5), whence 

(/)̂ (5) - (/)^(5+) >aS^ - ij{-aS) = aS^ ^aS^ log(l -aS). 

As a function of a, the right-hand side expression is increasing for 0 < ô  < 1/(1 + (5), 
as can be easily verified, and it attains its maximal value at ô  = 1/(1 + (5), which is 
the value specified in the lemma. Substitution of this value yields the bound in the 
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lemma. Thus the proof is complete.^^'^^ • 

We are now ready to estimate the number of (inner) iterations between two 
successive updates of the barrier parameter. 

6.9.5 Number of inner iterations 

Lemma 11.39 The number of (inner) iterations between two successive updates of the 
barrier parameter is no larger than 

Proof: From Lemma n.37 we know that after the update of /i we have 

<.(^)<^(-r) + ^ + n v ( ^ ) , 

where r = l / \ /2 . The algorithm repeats damped Newton steps as long the iterate 5 
satisfies 6 = (5(5,/i+) > r. In that case the step decreases the barrier function value 
by at least '0((5), by Lemma IL38. Since (5 > r, the decrease is at least 

V (̂r) = 0.172307. 

As soon as the barrier function value has reached '0(r) we are sure that (5(5,/i+) < r, 
from Lemma IL30. Hence, the number of inner iterations is no larger than 

-_!_(,<_., _ , M , ^ , „,(_!_)) 

The rest of the proof consists in reducing this expression to the one in the lemma. 
First, using that '0(—r) = 0.52084, we obtain 

V^(-r) - V (̂r) 0.34853 
V (̂r) 0.172307 

< 3 . 

22 Exerc i se 44 In the proof of Lemma 11.38 we found the fohowing expression for the decrease in 
the dual barrier function value: 

't>t{s)-<Pi{s+) = ae^z^-'^{az), 

where a denotes the size of the damped Newton step. Show that the decrease is maximal for the 
unique step-size a determined by the equation 

n 2 

J ^2 _ sr — L 
^-^ 1 + azi 

and that for this value the decrease is given by 

\e^ az J 
22 It is interesting to observe that Lemma 11.38 provides a second proof of the first statement in 

Lemma 11.30, namely 

<(s) > V-W, 
where b :— S{s,ii). This follows from Lemma 11.38, since (/)^(s+) > 0. 
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Furthermore, using '0(t) < t^ /2 for t > 0 we get^^ 

143 

mjj < 
nO^ 

l-Oj - 2(1 \2' (6.30) 

Finally, using tha t l / ' 0 ( r ) < 1/6 we obtain the following upper bound for the number 
of inner iterations: 

6(9v^ 3n(92 

{1-oy 3 ( ^ -

This proves the lemma. D 

R e m a r k 11.40 It is tempting to apply Lemnia 11.39 to the case where 9 = l / ( 3 y ^ ) . We 
know that for that value of 0 one full Newton step keeps the iterate in the region of quadratic 
convergence around the /x^-center. Substitution of this value in the bound of Lemma 11.39 
however yields that at least 6 damped Newton steps are required for the same purpose. This 
disappointing result reveals a weakness of the above analysis. The weakness probably stems 
from the fact that the estimate of the number of inner iterations in one outer iteration is based 
on the assumption that the decrease in the barrier function value is given by the constant 
' 0 (T) . Actually the decrease is at least '0((5). Since in many inner iterations, in particular in 
the iterations immediately after the update of the barrier parameter, the proximity 6 may be 
much larger than r , the actual number of iterations may be much smaller than the pessimistic 
estimate of Lemma IL39. This is the reason why for the algorithm with large updates there 
exists a gap between theory and practice. In practice the number of inner iterations is much 
smaller than the upper bound given by the lemma. Hopefully future research will close this 
gap.2^ • 

6.9.6 Total number of iterations 

We proceed by estimating the total number of iterations required by the algorithm. 

T h e o r e m 11.41 To obtain a primal-dual pair {x^s), with x = x{s,jii), such that 
x^s < 2e, at most 

1 K ^ - log 

iterations are required by the logarithmic barrier algorithm with large updates. 

^̂  A diflFerent estimate arises by using Exercise 39, which implies '^(t) < t^/(l -\-t) for t > —1. Hence 

/ 6* \ ne^ 
n'0 

which is sharper than (6.30) if ^ > ^. The use of (6.30) however does not deteriorate the order of 
our estimates below. 

^̂  Exercise 45 Let 6 = 6{s, /x) > 0 and x = x{s, /x). Then the vector z = (xs/fi) — e has at least one 
positive coordinate. Prove this. Hence, if z has only one nonzero coordinate then this coordinate 
equals ||2;||. Show that in that case the single damped Newton step with step-size a = 1/(1 -\- 6) 
yields s+ = ^(/i). 
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Proof: The number of outer iterations follows from Lemma L36. The bound in the 
theorem is obtained by multiplying this number by the bound of Lemma IL39 for 
the number of inner iterations per outer iteration and rounding the product, if not 
integral, to the smallest integer above it. • 

We end this section by drawing two conclusions. If we take ^ to be a fixed constant 
(independent of n), for example 6 = 1/2, the iteration bound of Theorem IL41 becomes 

O in log ^ ^ 

For such values of 6 we say that the algorithm uses large updates. The number of 
inner iterations per outer iteration is then 0{n). 

If we take 0 = vj\fn for some fixed constant v (independent of n), the iteration 
bound of Theorem 11.41 becomes 

O (V^ log ^ 

provided that n is large enough (n > v^ say). It has become common to say that the 
algorithm uses medium updates. The number of inner iterations per outer iteration is 
then bounded by a constant, depending on u. 

In the next section we give an illustration. 

6.9.7 Illustration of the algorithm with large updates 

We use the same sample problem as before (see Sections 6.7.2 and 6.8.4) and solve 
it using the dual logarithmic barrier algorithm with large updates. We do this for 
several values of the barrier update parameter 6. As before, we start the algorithm at 
y = (0,0) and /i = 2, and the accuracy parameter is set to s = 10~^. For 6 = 0.5, 
Table 6.3. (page 145) lists the algorithm's progress. 

The table needs some explanation. The first two columns contain counters for the 
outer and inner iterations, respectively. The algorithm requires 16 outer and 16 inner 
iterations. The table shows the effect of each outer iteration, which involves an update 
of the barrier parameter, and also the effect of each inner iteration, which involves a 
move in the dual space. During a barrier parameter update the dual variables y and 
s remain unchanged, but, because of the change in /i, the primal variable x{s, fi) and 
the proximity attain new values. After each update, damped Newton steps are taken 
until the proximity reaches the value r. In this example the number of inner iterations 
per outer iteration is never more than one. Note that we can guarantee the primal 
feasibility of x only if the proximity is at most one. Since the table shows only the 
second coordinate of x (and also of 5), infeasibility of x can only be detected from the 
table if X2 is negative. In this example this does not occur, but it occurs in the next 
example, where we solve the same problem with 0 = 0.9. 

With 0 = 0.9, Table 6.4. (page 146) shows that in some iterations x is infeasible 
indeed. Moreover, although the number of outer iterations is much smaller than in 
the previous case (5 instead of 16), the total number of iterations is almost the same 
(14 instead of 16). Clearly, and understandably, the deeper updates make it harder to 
reach the new target region. 
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Outer 

0 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Inner 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

nfi 

6.000000 

3.000000 

3.000000 

1.500000 

1.500000 

0.750000 

0.750000 

0.375000 

0.375000 

0.187500 

0.187500 

0.093750 

0.093750 

0.046875 

0.046875 

0.023438 

0.023438 

0.011719 

0.011719 

0.005859 

0.005859 

0.002930 

0.002930 

0.001465 

0.001465 
0.000732 

0.000732 

0.000366 

0.000366 

0.000183 

0.000183 

0.000092 

0.000092 

X2 

1.500000 

0.500000 

0.690744 

0.230248 

0.302838 

0.105977 

0.138696 

0.056177 

0.065989 

0.029627 

0.032120 

0.015201 
0.015842 

0.007704 

0.007866 

0.003878 

0.003920 

0.001946 

0.001956 

0.000975 

0.000977 

0.000488 

0.000488 

0.000244 

0.000244 

0.000122 

0.000122 

0.000061 

0.000061 

0.000031 

0.000031 

0.000015 

0.000015 

y]_ 

0.000000 

0.000000 

0.292893 

0.292893 

0.519549 

0.519549 

0.717503 

0.717503 

0.847850 

0.847850 

0.920315 

0.920315 

0.959178 

0.959178 

0.979268 

0.979268 

0.989548 

0.989548 

0.994747 

0.994747 

0.997366 

0.997366 

0.998681 

0.998681 

0.999340 

0.999340 

0.999670 

0.999670 

0.999835 

0.999835 

0.999917 

0.999917 

0.999959 

y^ 

0.000000 

0.000000 

0.000000 

0.000000 

0.433260 

0.433260 
0.696121 

0.696121 

0.840792 

0.840792 

0.918672 

0.918672 

0.958681 

0.958681 

0.979161 

0.979161 

0.989516 

0.989516 

0.994740 

0.994740 
0.997364 

0.997364 

0.998680 

0.998680 

0.999340 

0.999340 

0.999670 

0.999670 

0.999835 

0.999835 

0.999917 

0.999917 

0.999959 

52_ 

1.000000 

1.000000 

1.292893 

1.292893 

1.519549 

1.519549 

1.717503 

1.717503 

1.847850 

1.847850 

1.920315 

1.920315 

1.959178 

1.959178 

1.979268 

1.979268 

1.989548 

1.989548 

1.994747 

1.994747 

1.997366 

1.997366 

1.998681 

1.998681 

1.999340 

1.999340 

1.999670 

1.999670 

1.999835 

1.999835 

1.999917 

1.999917 

1.999959 

S 

0.6124 

0.7071 

0.2229 

1.3081 

0.2960 

1.7316 

0.3618 

2.0059 

0.4050 
2.1632 

0.4367 

2.2575 

0.4591 

2.3176 
0.4744 

2.3556 

0.4844 

2.3793 

0.4907 

2.3937 

0.4945 

2.4023 

0.4968 

2.4074 

0.4982 

2.4103 

0.4990 

2.4120 
0.4994 

2.4130 

0.4997 

2.4135 

0.4998 

Table 6.3. Progress of the dual algorithm with large updates, 0 = 0.5. 

This is even more t rue in the last example where we take 0 = 0.99. Table 6.5. 
(page 146) shows the result. The number of outer iterations is only 3, but the total 
number of iterations is still 14. This leads us to the important observation tha t the 
deep update strategy has its limits. On the other hand, the number of iterations is 
competing with the methods using full Newton steps, and is significantly less than the 
iteration bound of Theorem 11.41. 
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Outer 

0 
1 

2 

3 

4 

5 

Inner 

0 

1 
2 

3 
4 
5 

6 
7 
8 

9 
10 
11 

12 
13 
14 

nfi 

6.000000 
0.600000 
0.600000 
0.600000 
0.060000 
0.060000 
0.060000 
0.060000 
0.006000 
0.006000 
0.006000 
0.006000 
0.000600 
0.000600 
0.000600 
0.000600 
0.000060 
0.000060 
0.000060 
0.000060 

X2 

1.500000 
-0.300000 
0.014393 
0.108620 

-0.005240 
0.008563 
0.010057 
0.010098 
0.000891 
0.000994 
0.001001 
0.001001 
0.000099 
0.000100 
0.000100 
0.000100 
0.000010 
0.000010 
0.000010 
0.000010 

yi 

0.000000 
0.000000 
0.394413 
0.762163 
0.762163 
0.906132 
0.967364 
0.977293 
0.977293 
0.992649 
0.996651 
0.997834 
0.997834 
0.999254 
0.999676 
0.999782 
0.999782 
0.999926 
0.999967 
0.999978 

y2 

0.000000 
0.000000 
0.631060 
0.722418 
0.722418 
0.922246 
0.961475 
0.978223 
0.978223 
0.992275 
0.996769 
0.997808 
0.997808 
0.999264 
0.999673 
0.999783 
0.999783 
0.999926 
0.999968 
0.999978 

52 

1.000000 
1.000000 
1.394413 
1.762163 
1.762163 
1.906132 
1.967364 
1.977293 
1.977293 
1.992649 
1.996651 
1.997834 
1.997834 
1.999254 
1.999676 
1.999782 
1.999782 
1.999926 
1.999967 
1.999978 

6 
0.6124 
5.3385 
2.4112 
0.5037 
16.8904 
4.7236 
1.1306 
0.1716 
14.3247 
3.9208 
0.9143 
0.1277 
13.9956 
3.8257 
0.8883 
0.1224 
13.9508 
3.8128 
0.8847 
0.1216 

Table 6.4. Progress of the dual algorithm with large updates, 6 = 0.9. 

Outer 

0 
1 

2 

3 

Inner 

0 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

nfi 

6.000000 
0.060000 
0.060000 
0.060000 
0.060000 
0.060000 
0.000600 
0.000600 
0.000600 
0.000600 
0.000600 
0.000600 
0.000006 
0.000006 
0.000006 
0.000006 
0.000006 
0.000006 

X2 

1.500000 
-0.480000 
-0.133674 
0.008587 
0.009852 
0.010099 

-0.000021 
0.000086 
0.000099 
0.000100 
0.000100 
0.000100 
0.000001 
0.000001 
0.000001 
0.000001 
0.000001 
0.000001 

yi 

0.000000 
0.000000 
0.407010 
0.906680 
0.949767 
0.978068 
0.978068 
0.992297 
0.998161 
0.999183 
0.999720 
0.999781 
0.999781 
0.999939 
0.999980 
0.999994 
0.999997 
0.999998 

y2 

0.000000 
0.000000 
0.797740 
0.860655 
0.964246 
0.974574 
0.974574 
0.993722 
0.997593 
0.999394 
0.999656 
0.999792 
0.999792 
0.999934 
0.999981 
0.999993 
0.999997 
0.999998 

52 

1.000000 
1.000000 
1.407010 
1.906680 
1.949767 
1.978068 
1.978068 
1.992297 
1.998161 
1.999183 
1.999720 
1.999781 
1.999781 
1.999939 
1.999980 
1.999994 
1.999997 
1.999998 

6 
0.6124 

60.4235 
28.2966 
7.0268 
1.7270 
0.2919 

166.4835 
48.2832 
13.7438 
3.6913 
0.8224 
0.1013 

149.4817 
43.4727 
12.4359 
3.3655 
0.7573 
0.0949 

Table 6.5. Progress of the dual algorithm with large updates, 6 = 0.99. 
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We conclude this section with a graphical illustration of the algorithm, with 6 = 0.9. 
Figure 6.13 shows the first outer iteration, which consists of 2 inner iterations. 

y2 
(^(s,0.2) = T 

5{s,2) =T 

Figure 6.13 The first iterates for a large update with 0 = 0.9. 



The Primal-Dual Logarithmic 
Barrier Method 

7.1 In troduct ion 

In the previous chapter we dealt extensively with the dual logarithmic barrier approach 
to the LO problem. It has become clear tha t Newton's method, when applied to find 
the minimizer of the dual logarithmic barrier function, yields a search direction As in 
the dual space tha t allows us to follow the dual central pa th (approximately) to the 
dual optimal set. We were able to show tha t an e-solution of (D) can be obtained in a 
number of iterations tha t is proportional to the product of the logarithm of the initial 
duality gap divided by the desired accuracy, and y ^ (for the full-step method and the 
medium-update method) or n (for the large-update method) . Although the driving 
force in the dual logarithmic barrier approach is the desire to solve the dual problem 
(D), it also yields an e-solution of the primal problem (P ) . The problem (P) also plays 
a crucial role in the analysis of the method. For example, the Newton step As at {y, s) 
for the barrier parameter value fi is described by the primal variable x{s, fi). Moreover, 
the convergence proof of the method uses the duality gap c^x{s, fi) — b^y. Finally, the 
analysis of the medium-update and large-update versions of the dual method strongly 
depend on the properties of the primal-dual logarithmic barrier function (/)^(x,5). 

The aim of this chapter is to show tha t we can benefit from the primal problem not 
only in the analysis but also in the design of the algorithm. The idea is to solve both 
the dual and the primal problem simultaneously, by taking in each iteration a step 
As in the dual space and a step Ax in the primal space. Here, the search directions 
As and Ax still have to be defined. This is done in the next section. Again, Newton's 
name is given to the search directions, but now the search directions arise from an 
iterative method — also due to Newton — for solving the system of equations defining 
the /i-centers of (P) and (D). 

In the following paragraphs we follow the same program as for the dual algorithms: 
we first introduce a proximity measure, then we deal with full-step methods, with both 
fixed and adaptive updates of the barrier parameter, and finally we consider methods 
tha t use deep (but fixed) updates and damped Newton steps. 

For the sake of clarity, it might be useful to emphasize tha t it is not our aim to 
take for As the dual Newton step and for Ax its counterpart , the primal Newton step. 
For this would mean tha t we were executing two algorithms simultaneously, namely 
the dual logarithmic barrier algorithm and the primal logarithmic barrier algorithm. 
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Apart from the fact that this makes no sense, it doubles the computational work 
(roughly speaking). Instead, we define the search directions As and Ax in a new 
way and we show that the resulting algorithms, called primal-dual algorithms, allow 
similar theoretical iteration bounds to their dual (or primal) counterparts. In practice, 
however, primal-dual methods have a very good reputation. Many computational 
studies give support to this reputation. This is especially true for the so-called 
predictor-corrector method, which is discussed in Section 7.7. 

7.2 Def ini t ion of t h e N e w t o n s t e p 

In this section we are given a positive primal-dual feasible pair (x, {y,s)), and some 
/i > 0. Our aim is to define search directions Ax, Ay, As that move in the direction of 
the /i-center x{fi),y{fi),s{fi). In fact, we want the new iterates x -\- Ax, y -\- Ay, s -\- As 
to satisfy the KKT system (5.3) with respect to /i. After substitution this yields the 
following conditions on Ax, Ay, As: 

A{x + Ax) = b, X + Ax > 0, 

A^{y^Ay)^s^As = c, 5 + As > 0, 

{x^Ax){s^As) = fie. 

If we neglect for the moment the inequality constraints, then, since Ax = b and 
A^y -\- s = c, this system can be rewritten as follows: 

AAx 

A^Ay + As 

xAs + Ax As 

= 0, 

= 0, 

fie 

(7.1) 
sAx -\- xAs -\- Ax As = fie — xs. 

Unfortunately, this system of equations in Ax, Ay and As is nonlinear, because of the 
term Ax As in the third equation. To overcome this difficulty we simply neglect this 
quadratic term, according to Newton's method for solving nonlinear equations, and 
we obtain the linear system 

(7.2) 

Below we show that this system determines the displacements Ax, Ay and As 
uniquely. We call them the primal-dual Newton directions and these are the directions 
we are going to use. 

Theorem 11.42 The system (7.2) has a unique solution, namely 

Ay = {AXS-^A^y^ (b - fiAs-^) 

As = -A^Ay 

Ax = fis~^ — X — xs~^ As. 

AAx 

A^Ay + As 

sAx + xAs 

= 0, 

= 0, 

fie 
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Proof: We divide the third equation in (7.2) coordinatewise by 5, and obtain 

Ax-\-xs~^As = jiis~^ — X. (7.3) 

Multiplying this equation from the left by A, and using tha t AAx = 0 and Ax = 6, 
we get 

AXS~^As = fiAs-^ - Ax = fiAs-^ - b. 

The second equation gives As = —A^Ay. Substi tuting this we find 

AXS-^A^Ay = b-fiAs-K 

Since A is an TTI x n matr ix of rank m, the matr ix AXS~'^A^ has size m x m and is 
nonsingular, so the last equation determines Ay uniquely as specified in the theorem. 
Now As follows uniquely from As = —A^Ay. Finally, (7.3) yields the expression for 
Ax} • 

R e m a r k 11.43 In the analysis below we do not use the expressions just found for the search 
directions in the primal and the dual space. But it is important to see that their computation 
requires the solution of a linear system of equations with AXS~'^A^ as coefficient matrix. 
We refer the reader to Chapter 20 for a discussion of computational issues related to efficient 
solution methods for such systems. • 

R e m a r k 11.44 We can easily deduce from Theorem 11.42 that the primal-dual directions 
for the y- and the s-space differ from the dual search directions used in the previous chapter. 
For example, the dual direction for y was given by 

{AS-^A-)-'^1^-As-

whereas the primal-dual direction is given by 

(AXS-^A^y^ (b-fiAs-^). 

The difference is that the scaling matrix S~^ in the dual case is replaced by the scaling matrix 
XS~^/11 in the primal-dual case. Note that the two scaling matrices coincide if and only if 
XS = /ill, which happens if and only if x = x{ii) and s = s(/i). In that case both expressions 
vanish, since then /xAs"^ = Ax = b. We conclude that if s / s(/i) then the dual directions 
in the y- and in the s-space differ from the corresponding primal-dual directions. A similar 
result holds for the search direction in the primal space. It may be worthwhile to point out 
that the dual search direction at y depends only on y itself and the slack vector s = c — A^y, 
whereas the primal-dual direction at y also depends on the given primal variable x. • 

Exercise 46 An alternative proof of the unicity property in Theorem 11.42 can be obtained by 
showing that the matrix in the linear system (7.2) is nonsingular. This matrix is given by 

A 0 0 
0 A^ I 

^ S 0 X 

Prove that this matrix in nonsingular. 

1 
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7.3 P r o p e r t i e s of t h e N e w t o n s t e p 

We denote the result of the (fuh) Newton step at {x,y,s) by (x+,7/+,5+): 

x~^ = X -\- Ax, y~^ = y -\- Ay, s~^ = s -\- As. 

Note that the new iterates satisfy the afhne equations Ax~^ = b and A^y~^ + 5+ = c, 
since A Ax = 0 and A^ Ay + As = 0, so we only have to concentrate on the sign of 
the vectors x+ and 5+. We call the Newton step feasible if x+ and 5+ are nonnegative 
and strictly feasible if x~^ and 5+ are positive. The main aim of this section is to find 
conditions for feasibility and strict feasibility of the (full) Newton step. 

First we deal with two simple lemmas.^ 

Lemma 11.45 Ax and As are orthogonal 

Proof: Since AAx = 0, Ax belongs to the null space of A, and since As = —A^Ay, 
As belongs to the row space of A. Since these spaces are orthogonal, the lemma follows. 

D 

If x+ and 5+ are nonnegative (positive), then their product is nonnegative (positive) 
as well. We may write 

x~^s~^ = {x -\- Ax){s -\- As) = xs -\- {sAx -\- xAs) -\- AxAs. 

Since sAx -\- xAs = fie — xs this leads to 

X+5+ = /ie + AxAs. (7.4) 

Thus it follows that x+ and 5+ are feasible only if fie -\- AxAs is nonnegative. 
Surprisingly enough, the converse is also true. This is the content of our next lemma. 

Lemma 11.46 The primal-dual Newton step is feasible if and only if fie -\- AxAs > 0 
and strictly feasible if and only if fie -\- AxAs > 0. 

Proof: The 'only if part of both statements in the lemma follows immediately from 
(7.4). For the proof of the converse part we introduce a step length a,0 < a < 1, and 
we define 

x^ = X -\- aAx, y^ = y -\- aAy, s^ = s -\- aAs. 

We then have Qy tZJ • Qy Qy + and similar relations for the dual variables. Hence we 
have x^s^ = xs > 0. The proof uses a continuity argument, namely that x^ and 5̂  
are nonnegative if x'^s'^ is positive for all a in the open interval (0,1). This argument 
has a simple geometric interpretation: x^ and 5̂  are feasible if and only if the open 
segment connecting x^ and x^ lies in the interior of the primal feasible region, and the 
open segment connecting 5^ and 5̂  lies in the interior of the dual feasible region. Now 
we write 

x^5^ = {x -\- aAx){s -\- aAs) = xs -\- a {sAx -\- xAs) -\- a'^AxAs. 

^ One might observe that some of the results in this and the next section are quite similar to 
analogous results in Section 2.7.2 in Part I for the Newton step for the self-dual model. To keep 
the treatment here self-supporting we do not invoke these results, however. 
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Using sAx -\- xAs = fie — xs gives 

x^5^ = XS -\- a {fie — xs) -\- a'^AxAs. 

Now suppose fie -\- Ax As > 0. Then it follows tha t 

x^s^ > xs -\- a {fie — xs) — a^fie = {1 — a) {xs -\- afie). 

Since xs and e are positive it follows tha t x'^s'^ > 0 for 0 < ô  < 1. Hence, none of the 
entries of x^ and 5^ vanish for 0 < ô  < 1. Since x^ and 5^ are positive, this implies 
tha t x^ > 0 and 5^ > 0 for 0 < ô  < 1. Therefore, by continuity, the vectors x^ and 
5^ cannot have negative entries. This completes the proof of the first s tatement in the 
lemma. Assuming fie -\- Ax As > 0, we derive in the same way 

j,a^a y xs -\- a {fie — xs) — a^fie = {1 — a) {xs + afie). 

This implies tha t x^s^ > 0. Hence, by continuity, x^ and 5^ must be positive, proving 
the second statement in the lemma. • 

We proceed with a discussion of the vector AxAs. From (7.4) it is clear tha t the 
error made by neglecting the second-order term in the nonlinear system (7.1) is given 
by this vector. It represents the so-called second-order effect in the Newton step. 
Therefore it will not be surprising tha t the vector Ax As plays a crucial role in the 
analysis of primal-dual methods. 

It is worth considering the ideal case where the second-order term vanishes. If 
Ax As = 0, then Ax and As solve the nonlinear system (7.1). By Lemma 11.46 the 
Newton iterates x~^ and 5+ are feasible in this case. Hence they satisfy the K K T 
conditions. Now the unicity property gives us tha t x+ = x{fi) and 5+ = s{fi). Thus 
we see tha t the Newton process is exact in this case: it produces the /i-centers in one 
iteration.^ 

In general the second-order term is nonzero and the new iterates do not coincide 
with the /i-centers. But we have the surprising property tha t the duality gap always 
assumes the same value as at the /i-centers, where the duality gap equals nfi. 

L e m m a 11.47 / / the primal-dual Newton step is feasible then (x+) 5+ = nfi. 

Proof: Using (7.4) and the fact tha t the vectors Ax and As are orthogonal, the 
duality gap after the Newton step can be writ ten as follows: 

(x^) 5^ = e {x~^s~^) = e {fie -\- AxAs) = fie e = nfi. 

This proves the lemma. • 

In the general case we need some quanti ty for measuring the progress of the 
Newton iterates on the way to the /i-centers. As in the case of the dual logarithmic 
barrier method we start by considering a 'full-step method' . We then deal with 

^ Exercise 47 Let {x,s) be a positive primal-dual feasible pair with x = x{ii). Show that the 
Newton process is exact in this case, with Ax = 0 and As = s(/i) — s. (A similar results holds if 
s = s(/i), and follows in the same way.) 
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an 'adaptive method' , in which the barrier parameter is updated 'adaptively', and 
then tu rn to the ' large-update method' , which uses large fixed updates and damped 
Newton steps. For the large-update method we already have an excellent candidate 
for measuring proximity to the /i-centers, namely the primal-dual logarithmic barrier 
function (/)^(x,5). For the full-step method and the adaptive method we need a new 
measure tha t is introduced in the next section. 

7 . 4 P r o x i m i t y a n d l o c a l q u a d r a t i c c o n v e r g e n c e 

Recall tha t for the dual method we have used the Euclidean norm of the Newton step 
As scaled by 5 as a proximity measure. It is not at all obvious how this successful 
approach can be generalized to the primal-dual case. However, there is a natural way 
of doing this, but we first have to reformulate the linear system (7.2) tha t defines the 
Newton directions in the primal-dual case. To this end we introduce the vectors 

a := ^/—, u := 
V s 

Using d we can rescale x and s to the same vector, namely u: 

d~^x ds 

Now we scale Ax and As similarly to dx and ds'. 

For easy reference in the future we write 

d-^Ax ^ dAs ^ _ ^, 
: dx, —^ = : ds. (7.5) 

x~^ = X-\-Ax = y^d{u-\-dx) C -̂̂ ) 

s = y^d-^{u^ds) (7.7) 5 ^ = 5 • 

and, using (7.4), 

x~^s~^ = /ie + AxAs = /i (e + dxds). C -̂̂ ) 

Thus we may restate Lemma 11.46 without further proof as follows. 

L e m m a 11.48 The primal-dual Newton step is feasible if and only if 

e + dxds > 0 (7.9) 

and strictly feasible if and only if 

Since 

e^dxds>0. (7.10) 

AxAs = fidxds, C^-ll) 
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the orthogonality of Ax and As implies tha t the scaled displacements d^ and ds are 
orthogonal as well. Now we may reformulate the left-hand side in the third equation 
of the K K T system as follows: 

sAx -\- xAs = y//i {sddx + xd~^ds) = jiu {dx + ds), 

and the right-hand side can be rewritten as 

fie — xs = fie — fiv? = fiu (u~^ — u) . 

The third equation can then be restated simply as 

dx -\- ds = u~^ — u. 

On the other hand, the first and the second equations can be reformulated as ADdx = 0 
and {AD)^dy -\- ds = 0, where 

dy = ^ . 

We conclude tha t the scaled displacements dx,dy and ds satisfy 

ADdx = 0 

{AD)^dy^ds = 0 (7.12) 

dx -\- ds = u~^ — u. 

The first two equations show tha t the vectors dx and ds belong to the null space and 
the row space of the matr ix AD respectively. These two spaces are orthogonal and 
the row space of AD is equal to the null space of the matr ix HD~^, where H is any 
matr ix whose null space is equal to the row space of A, as defined in Section 6.3 (page 
111). The last equation makes clear tha t dx and ds form the orthogonal components 
of the vector i^~^ — î  in these complementary subspaces. Therefore, we find^'^ 

dx = PAD{U-^-U) (7.13) 

ds = PHD-^{U-^-U). (7.14) 

The orthogonality of dx and ds also implies 

\\d,f + \\d£ = \\u-'-u\^. (7.15) 

Note tha t the displacements dx^ ds (and also dy) are zero if and only if i^~^ — u = 0. 
In this case x, y and 5 coincide with the respective /i-centers. It will be clear tha t 
the quanti ty H^ "̂̂  ~ 1̂1 ^̂  ̂  natural candidate for measuring closeness to the pair of 

^ Exercise 48 Verify that the expressions for the scaled displacements dx and ds in (7.13) and 
(7.14) are in accordance with Theorem 11.42. 

^ Exercise 49 Show that 

PAD+PHD-^ =I^ 

where / denotes the identity matrix in R^ . Also show that 

PAD = D-^H^ [HD-'^H^)~^ HD-^, PHD-^ = DA^ (^AD^A^)~^ AD. 
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/i-centers. It turns out that it is more convenient not to use the norm of î  ^ 
but to divide it by 2. Therefore, we define 

itself, 

S{x,s;/j.) :--
1 

(7.16) 

By (7.15), S{x,s; fi) is simply half of the Euclidean norm of the concatenation of the 
search direction vectors Ax and As after some appropriate scaling.^'^'^ 

In the previous section we discussed that the quality of the Newton step greatly 
depends on the second-order term AxAs. Recall that this term, when expressed in 
the scaled displacements, equals fidxds. We proceed by showing that the vector dxds 
can be nicely bounded in terms of the proximity measure. 

Lemma 11.49 Let (x, s) be any positive primal-dual pair and suppose fi > 0. If 
S := S{x,s;fi), then \\dxds\\^ < S'^ and \\dxds\\ < S'^y^. 

Proof: Since the vectors dx and ds are orthogonal, the lemma follows immediately 
from the first uv—\em.m.Si (Lemma C.4 in Appendix C) by noting that dx^dg = u~^ —u 
and ||î ~-̂  — 1̂11 = 2(5. • 

We are now ready for the main result of this section (Theorem 11.50 below), which 
is the primal-dual analogue of Theorem 11.21 for the dual logarithmic barrier method. 

Theorem 11.50 If 6 := 5{x,s;jii) < 1, then the primal-dual Newton step is feasible, 
i.e., x~^ and s~^ are nonnegative. Moreover, if 5 < 1, then x~^ and s~^ are positive and 

( 5 ( x ^ , 5 ^ ; / i ) < 
x/2(l-^2)-

This proximity measure was introduced by Jansen et al. [157]. In the context of primal-dual 
methods, most authors used a different but closely related proximity measure. See Section 7.5.3. 
Because of the analogy with the proximity measure in the dual case, and also because of its natural 
interpretation as the norm of the scaled Newton direction, we prefer the proximity measure as 
defined by (7.16). Another motivation for the use of this measure is that it allows sharper estimates 
in the analysis of the primal-dual methods. This will become clear later. 

Exerc i se 50 Let 6 = (5(x,s;/i). In general the vector x = iis~^ is not primal feasible, and the 
vector s = iix~^ not dual feasible. The aim of this exercise is to show that the deviation from 
feasibility can be measured in a natural way. Defining 

Gnp AD^A 2 / . T Gd HD-^H^ 

we have 

\\Ax - h\\ 1 = ^/Jl 

As a consequence, prove that 

\\Ax -

^ Exerc i se 51 Prove that 

(5(x, s;/i) : 

\ 

\\Hs- Hc\\ VJ^\ 

r, ^ 1 

- > ( cosh log —^—^ — 1 
2 Z ^ V ^ u, i ^ log 

file:////Hs-
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Proof: The first part of the theorem is a direct consequence of Lemma IL49 and 
Lemma IL48. The second lemma yields tha t Hĉ â ĉ sH^ < 1 and the first lemma tha t 
the primal-dual Newton step is feasible in this case. Now let us tu rn to the proof of 
the second statement. Let 5~^ := 5{x~^,s~^; fi) and 

,+ ._ !"+_« + 
/ i 

Then we have, by definition, 

2(5+ = | | ( ^+)"^ 

Recall from (7.8) tha t 
x+ 

Hence, 

jii{e^dxds). 

y^e^dxds. 

Substitution gives 

26+ 
Qjrj.Qjo 

Ve + d:,ds 
< 

\\dxds\\ 

VT^HMc 
Now using the bounds in Lemma IL49 we obtain 

S^V2 
25+ < 

Dividing both sides by 2 we arrive at the result in the theorem. D 

Theorem IL50 makes clear tha t the primal-dual Newton method is quadratically 
convergent in the region 

| ( x . 
1 

s) eV xV : S{x,s;/j.) < -^ 
v 2 

0.7071 (7.17) 

where we have 5+ < S'^. It is clear tha t Theorem IL50 has no value if the upper bound 
for 5{x+, s+; ji) is not smaller than 8^ which is the case \i 8 > Y ^ 2 / 3 = 0.8165. 

As for the dual Newton method, we provide a graphical example to illustrate how 
the primal-dual Newton process behaves. 

E x a m p l e 11.51 We use the same problem as in Example IL7 with h = (1 ,1 )^ . So 
A, b and c are given by 

A 
0 

1 
5 C = 

r 11 
1 

1 

, b = 

i_ _. 

1 

1 
^ -• 

Instead of drawing a graph in the dual (or primal) space we take another approach. We 
associate with each primal-dual pair (x, 5) the positive vector w = X5, and represent 
this vector by a point in the so-called w-spsice, which is the interior of the nonnegative 
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central path 

* K 1 . ) ^ - L 

F i g u r e 7.1 Quadra t i c convergence of pr imal-dual Newton process (/x = 1). 

orthant of IR^, with n = 3. Note that 5{x,s;jii) = 0 if and only if x = x(/i) and 
5 = 5(/i), and that in that case xs = fie. Hence, in the w-spsice the central path is 
represented by the half-line /ie, /i > 0. Figure 7.1 (page 158) shows the level curves 
(in the w-spdice) for the proximity values r = l / \ /2 and r^ with respect to /i = 1, and 
also how the Newton step behaves when applied at some points on the boundary of 
the region of quadratic convergence. This figure depicts the w-spsice projected onto 
its first two coordinates. The starting point for a Newton step is always indicated by 
the symbol '° ' , and the point resulting from the step by the symbol '*'.^ The curve 
connecting the two points shows the intermediate values of xs on the way from the 
starting point to the point after the full Newton step. The points on these curves 
represent 

x'^s'^ = (x + aAx){s + aAs) = xs ^ a {xAs + sAx) + a'^AxAs, 0 < ô  < 1, 

where (x^,5^) is the starting point of the iteration and (x^,5^) the result of the full 
Newton step. If there were no second-order effects (i.e., if Ax As = 0) then this curve 
would be a straight line. So the curvature of the line connecting the point before and 
after a step is an indication of the second-order effect. Note that after the Newton 
step the new proximity value is always smaller than r^ = 1/2, in agreement with 
Theorem 11.50. In fact, one may observe that often the decrease in the proximity to 
the 1-center is much more significant. 

The starting points in this example were obtained by using theory that will be developed later in 
the book, in Part III. There we show that for any positive vector w G R ^ there exists a primal-dual 
pair (x, s) such that xs = w and we also deal with methods that yield such a pair. For each starting 
point the first two entries of w can be read from the figure; for the third coordinate of w we used 
the value 1, which is the value of W3 at the 1-center, since x(l)s(l) = e. 
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When starting outside the region of quadratic convergence the behavior of the 
Newton process is quite unpredictable. Note tha t the feasibility of the (full) Newton 
step is then not guaranteed by the theory. 

W2 1 

\\f 
^ J . 5 

N J .25 : 

N^̂ i ; ^ v 

r \ 0 . 7 5 ; Nĝ  

a ^ . 5 : ^m^ 

[ 0 . 2 ^ ^ ; V 

/ ^ T T i i ^ — i 

/ central p 

\ ^(w, 1) = 1.5 

8 9 

Figure 7.2 Demonstration of the primal-dual Newton process. 

In Figure 7.2 we consider the behavior of the Newton process outside this region, 
even for proximity values larger than 1. The behavior (in this simple example) is 
surprisingly good if we start on (or close to) the central path. When starting closer 
to the boundary of the i(;-space the second-order effect becomes more evident and 
this may result in infeasibility of the Newton step, as Figure 7.2 demonstrates (for 
example if i(;i = 8 and W2 = 1). This observation, tha t Newton's method performs 
better when the start ing point is on or close to the central pa th than when we start 
close to the boundary of the nonnegative orthant , is not supported by the theory, but 
is in agreement with common computational practice. 0 

H.l A sharper local quadratic convergence result 

In this section we show tha t Theorem 11.50 can be slightly improved. By using the 
third uv—\em.m.di (Lemma C.7 in Appendix C) we obtain the following. 

T h e o r e m 11.52 If S = S{x,s;fi) < 1 then 

(5(x^,5^;/i) < 
v/2(l-5^)' 
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Proof: From the proof of Theorem 11.50 we recah the definitions of 6~^ and i^+, and 
the relation 

Since dx and ds are orthogonal this implies tha t ||i^^|| = n. Now we may write 

\{u-^)-'\\ - n = e' 
e + dxds 

Application of Lemma C.7 to the last expression (with u = dx and v = dg) yields the 
result of the theorem, since ||ĉ a; + c^s|| =2(5, with 6 <1. • 

7 .5 P r i m a l - d u a l l o g a r i t h m i c b a r r i e r a l g o r i t h m w i t h ful l N e w t o n 
s t e p s 

In this section we investigate a primal-dual algorithm using approximate centers. The 
algorithm is described below. It is assumed tha t we are given a positive primal-dual 
pair (x^, 5^) G V^ x P + and /i^ > 0 such tha t (x^, 5^) is close to the /i^-center in the 
sense of the proximity measure 6{x^^ s^; fi^). In the algorithm Ax and As denote the 
primal-dual Newton step, as defined before. 

P r i m a l - D u a l Logar i thmic Barrier A l g o r i t h m w i t h full N e w t o n s t e p s 

Input : 
A proximity parameter r , 0 < r < 1; 
an accuracy parameter s > 0; 
(x^,5^) G P + X P + and /i^ > 0 such tha t {x^)^s^ = nfi^ and 
S{x^,s^;fi^) < r ; 
a barrier update parameter ^, 0 < ^ < 1. 

b e g i n 
X : = x^; s : = 5^; fi : = /i^; 

whi l e nfi > (1 — 6)£ d o 
b e g i n 

X := X -\- Ax; 
s := s -\- As; 
fi:={l-0)fi; 

e n d 
e n d 

We have the following theorem. The proof will follow below. 
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T h e o r e m 11.53 If r = l / \ / 2 and 0 = 1/V2n, then the Primal-Dual Logarithmic 
Barrier Algorithm with full Newton steps requires at most 

V2n\og^^ 

iterations. The output is a primal-dual pair (x, s) such that x^s < e. 

7.5.1 Convergence analysis 

Just as in the dual case the proof depends on a lemma tha t quantifies the effect on 
the proximity measure of an update of the barrier parameter to /i+ = (1 — 0)fi. 

L e m m a 11.54 Let (x, s) be a positive primal-dual pair and /i > 0 such that x^s = n/j.. 
Moreover, let 5 := 5{x, s; fi) and let /i+ = (1 — 6)IJL. Then 

8{x,s',ii^Y = {1-9)8'^ 
4(1 

Proof: Let 5^ := (5(x,5;/i+) and u = ^Jxsj^L. Then, by definition, 

4(5+)2 ^ / ^ ^ u - l 
VT^^ 

sj\-e {vT^ - M ) + 
du 

Vl^ 

From x^s = n/x it follows tha t ||M|| = n. Hence, u is orthogonal to u ^ — u: 

(u-'-u) 

Therefore, 

4.(5+f = (1 \ur 

Finally, since llî  ^ 25 and n the result follows. D 

The proof of Theorem IL53 now goes as follows. At the start of the algorithm we 
have S{x,s;fi) < r = l / \ / 2 . After the primal-dual Newton step to the /i-center we 

+ ̂ ^c + n/j.. have, by Theorem ILSO, (5(x+,5+;/i) < 1/2. Also, from Lemma IL47, (x+)^ 5 
Then, after the barrier parameter is updated to /i+ = (1 — ^)/i, with 0 = l / \ / 2 n , 
Lemma IL54 yields the following upper bound for (5(x+, 5+; / i+) : 

(5(x+,5+; / i+)2< 
8 ( 1 - ^ ) 

3 < - . 

Assuming n > 2, the last inequality follows since its left hand side is a convex function 
of (9, whose value is 3/8 both in (9 = 0 and (9 = 1/2. Since 0 G [0,1/2], the left hand 
side does not exceed 3/8. Since 3/8 < 1/2, we obtain (5(x+, 5+; /i+) < l / \ / 2 = r . Thus, 
after each iteration of the algorithm the property 

5{x, s; fi) < r 
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is maintained, and hence the algorithm is weh defined. The iteration bound in the 
theorem fohows from Lemma L36. Finahy, since after each fuh Newton step the 
duahty gap at tains its target value, by Lemma IL47, the duality gap for the pair (x, s) 
generated by the algorithm is at most £. This completes the proof of the theorem. • 

R e m a r k 11.55 It is worthwhile to discuss the quality of the iteration bound in Theorem 
IL53. For that purpose we consider the hypothetical situation where the Newton step in 
each iteration is exact. Then, putting 5^ = (5(x^, s^, / i^) , after the update of the barrier 
parameter we have 

and hence we have (5+ < 1/^2 only if O^n < 2(1 - 6). This occurs only if ^ < y^2/n. Hence, 
if we maintain the property 5(x, s; /j,) < 1/V^ after the update of the barrier parameter, then 
the iteration bound will never be smaller than 

^ l o g — (7.18) 

Note that the iteration bound of Theorem IL53 is only a factor 2 worse than the 'ideal' 
iteration bound (7.18). Recall that the bound (7.18) assumes that the Newton step is exact 
in each iteration. In this respect it is interesting to indicate that for larger values of n the 
result of Theorem 11.53 can be improved so that it becomes closer to the 'ideal' iteration 
bound. But then we need to use the stronger quadratic convergence result of Theorem 11.52. 
If we take 9 = Xj\fn^ then by using Lemma 11.54 and Theorem 11.52, we may easily verify 
that the property d{x,s; /j) < r = 1/A/2 is maintained if 

1 ^ i ^ < i 
4(1-6*) 6 - 2 ' 

This holds if ^ < 0.36602, which corresponds to n > 8. Thus, for n > 8 the iteration bound 
of Theorem 11.53 can be improved to 

\/n log 
£ 

(7.19) 

This iteration bound is the best among all known iteration bounds for interior-point methods. 
It differs by only a factor ^/2 from the ideal bound (7.18). • 

7.5.2 Illustration of the algorithm with full Newton steps 

We use the same sample problem as before (see Sections 6.7.2, 6.8.4 and 6.9.7). As 
start ing point we use the vectors x = (2 ,1 ,1) , y = (0,0) and s = (1 ,1 ,1) , and since 
x^s = 4, we take the initial value of the barrier parameter fi equal to 4 / 3 . We can 
easily check tha t 5{x, s; fi) = 0.2887. So these da ta can indeed be used to initialize the 
algorithm. Wi th s = 10~^, the algorithm generates the da ta collected in Table 7.1.. 
As before. Table 7.1. contains one entry (the first) of the vectors x and s. The seventh 
column contains the values of the proximity 6 = 6{x^ s; ji) before the Newton step, and 
the eighth column the proximity 6^ = (5(x+, 5+; ji) after the Newton step at (x, s) to 
the current /i-center. 
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It. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

nji 

4.000000 
2.367007 

1.400680 
0.828855 

0.490476 

0.290240 
0.171750 

0.101633 
0.060142 

0.035589 

0.021060 
0.012462 

0.007375 
0.004364 

0.002582 

0.001528 
0.000904 

0.000535 
0.000317 

0.000187 
0.000111 

0.000066 

0.000039 

Xl 

2.000000 
2.000000 
1.510102 

1.267497 

1.148591 

1.085283 
1.049603 

1.029055 
1.017089 

1.010076 

1.005950 
1.003516 

1.002079 
1.001230 

1.000728 
1.000430 

1.000255 

1.000151 
1.000089 

1.000053 
1.000031 

1.000018 

1.000011 

m_ 

0.000000 
0.333333 

0.442200 
0.601207 
0.744612 

0.843582 

0.905713 

0.943610 
0.966423 

0.980058 
0.988174 

0.992993 

0.995850 
0.997543 

0.998546 
0.999139 

0.999491 

0.999699 
0.999822 

0.999894 

0.999938 

0.999963 

0.999978 

^ 

0.000000 
-0.333333 

0.210998 
0.533107 

0.723715 

0.836508 
0.903253 

0.942750 
0.966122 

0.979953 

0.988137 
0.992980 

0.995846 
0.997542 

0.998545 
0.999139 

0.999491 

0.999699 
0.999822 

0.999894 

0.999938 

0.999963 

0.999978 

sj_ 

1.000000 
0.666667 

0.557800 
0.398793 

0.255388 

0.156418 
0.094287 

0.056390 
0.033577 
0.019942 

0.011826 
0.007007 

0.004150 
0.002457 
0.001454 

0.000861 

0.000509 

0.000301 
0.000178 

0.000106 
0.000062 

0.000037 
0.000022 

5 

0.2887 
0.4596 

0.4611 
0.4618 

0.4608 

0.4601 
0.4598 

0.4597 
0.4596 

0.4596 

0.4596 
0.4596 

0.4596 
0.4596 

0.4596 
0.4596 

0.4596 

0.4596 
0.4596 

0.4596 
0.4596 

0.4596 

-

5+ 

0.0000 
0.0479 

0.0586 
0.0437 

0.0271 
0.0162 

0.0096 

0.0057 
0.0034 

0.0020 
0.0012 

0.0007 
0.0004 
0.0002 

0.0001 
0.0001 

0.0001 

0.0000 
0.0000 

0.0000 
0.0000 

0.0000 

-

0 

0.4082 
0.4082 

0.4082 
0.4082 

0.4082 

0.4082 
0.4082 

0.4082 
0.4082 

0.4082 

0.4082 
0.4082 

0.4082 
0.4082 

0.4082 
0.4082 

0.4082 

0.4082 
0.4082 

0.4082 
0.4082 

0.4082 

-

Table 7.1. Output of the primal-dual full-step algorithm. 

Comparing the results in Table 7.1. with those in the corresponding table for the 
dual algorithm with full steps (Table 6.1., page 124), the most striking differences are 
the number of iterations and the behavior of the proximity measure. In the primal-dual 
case the number of iterations is 22 (instead of 53). This can be easily understood from 
the fact that we could use the larger barrier update parameter 6 = l / \ /2n (instead of 
e = i/(3V^)). 

The second difference is probably more important. In the primal-dual case Newton's 
method is much more efficient than in the dual case. This is especially evident in the 
final iterations where both methods show very stable behavior. In the dual case the 
proximity takes in these iterations the values 0.2722 (before) and 0.0524 (after the 
Newton step), whereas in the primal-dual case these values are respectively 0.4596 and 
0.0000. Note that in the dual case the effect of the Newton step is slightly better than 
the quadratic convergence result of Theorem 11.21. In the primal-dual case, however, 
the effect of the Newton step is much better than predicted by Theorem 11.50, and 
even much better than the improved quadratic convergence result of Theorem 11.52. 
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The figures in Table 7.1. justify the statement (at least for this sample problem, but 
we observed the same phenomenon in other experiments) tha t asymptotically the 
primal-dual Newton method is almost exact. 

R e m a r k 11.56 It is of interest to have a closer (and more accurate) look at the proximity 
values in the final iterations. They are given in Table 7.2. (page 164). These figures show that 

It. 

11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

5 

0.45960642869434 

0.45960584496214 

0.45960564054812 

0.45960556896741 

0.45960554390189 

0.45960553512461 

0.45960553205110 

0.45960553097480 

0.45960553059816 

0.45960553046642 

0.45960553041942 

(5+ 

0.00069902816289 

0.00041365328341 

0.00024478048789 

0.00014484936548 

0.00008571487895 

0.00005072193012 

0.00003001478966 

0.00001776130347 

0.00001051028182 

0.00000621947704 

0.00000368038542 

Table 7.2. Proximity values in the final iterations. 

in the final iterations, where Newton's method is almost exact, the quality of the method 
gradually improves. After the step the proximity decreases monotonically In fact, surprisingly 
enough, the rate of decrease of subsequent values of the proximity after the step is almost 
constant (0.59175). Remember that the barrier parameter /x also decreases at a linear rate 
by a factor 1 — 0, where 0 = 1/V2n. In our case we have n = 3. This gives 0 = 0.4082 and 
1 — 0 = 0.59175, precisely the rate of decrease in 5^. Before the Newton step the proximity 
is almost constant (0.4596). Not surprisingly, this is precisely the value of ^ y ^ / ( 2 ( l — 0)). 
Thus, our numerical experiment gives rise to a conjecture: 

Conjecture 11.57 Asymptotically the quality of the primal-dual Newton step gradually 
improves. The proximity before the step converges to some constant and the proximity after the 
step decreases monotonically to zero with a linear convergence rate. The rate of convergence 
is equal to 1 — 0. 

This observed behavior of the primal-dual Newton method has no theoretical justification at 
the moment. • 

We conclude this section with a graphical illustration. Figure 7.3 shows on two 
graphs the progress of the algorithm in the w-spdice (cf. Example 11.51 on page 157). 
In both figures the w-spsice is projected onto its first two coordinates. The difference 
between the two graphs is due to the scaling of the axes. On the left graph the scale 
is linear and on the right graph it is logarithmic. As in Example 11.51, the curves 
connecting the subsequent iterates show the intermediate values of xs on the way to 
the next iterate. The graphs show tha t after the first iteration the iterates follow the 
central pa th quite accurately. 
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Figure 7.3 The iterates of the primal-dual algorithm with full steps. 

7.5.3 The classical analysis of the algorithm 

In this section we give a different analysis of the primal-dual logarithmic barrier 
algorithm with full Newton steps. The analysis uses the proximity measure 

cr(x,5;/i) := xs 
fl 

which is very common in the literature on primal-dual methods.^^ 
Because of its widespread use, it seems useful to show in this section how the analysis 

can be easily adapted to the use of the classical proximity measure. In fact, the only 
thing we have to do is find suitable analogues of the quadratic convergence result in 
Theorem 11.50 and the barrier update result of Lemma 11.54. 

Theorem 11.58 ^̂  If a := a{x,s;fi) < 2/ ("l + v^TTv^) = 0.783155, then the pri­

mal-dual Newton step is feasible. Moreover, in that case 

a{x~^,s~^; fi) < 

Proof: First we derive from \\u'^ — e a the obvious inequality 

l-a<uf<l^a, 1 <i <n. 

^^ It was introduced by Kojima, Mizuno and Yoshise [178] and used in many other papers. See, e.g., 
Gonzaga [124], den Hertog [140], Marsten Shanno and Simantiraki [196], McShane, Monma and 
Shanno [199], Mehrotra and Sun [205], Mizuno [215], Monteiro and Adler [218], Todd [262, 264], 
Zhang and Tapia [319]. 

11 This result is due to Mizuno [212]. 
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This impHes 

II 211 1 

II lloo - 1 _ ^ 

From (7.4) we recall tha t 

x~^s~^ = /ie + AxAs. 

Hence, using (7.11), we have ^^'^^ 

\AxAs 
a{x^,s^; fi) := 

/ i / i 
\\dxds\\ . 

(7.20) 

By the first i^'u-lemma (Lemma C.4 in Appendix C) we have 

1 „ , , ,,2 1 „ _ 1 
\\dM\<^\\d.^dsr - ^^ \u — u\ 

Using (7.20) we write 

I - 1 l | 2 
\u — u\\ 

\u-\e-u^)f < \\u- I 2 | | 2 ^ Cr 

\e — u\\ < l - a 

Hence we get 

a{x^, s^; /i) < 
2 A / 2 ( l - c r ) ' 

Since a{x~^,s~^; fi) = ||(ia;C^s||, feasibility of the new iterates is certainly guaranteed if 
a{x~^,s~^; fi) < 1, from (7.9). This condition is certainly satisfied if 

< 1 , 
2 A / 2 ( l - c r ) 

and this inequality holds if and only if cr < 2 / (l + \ / l + x/2) , as can easily be 

verified. The theorem follows. • 

^2 Exerc i se 52 This exercise provides an alternative proof of the first inequality in Lemma C.4. Let 
u and V denote vectors in R ^ and (5 > 0 ((5 G R ) . First prove that 

mm < ui 
u,v I 

vi : ^ UiVi = 0, ^ (u'^ + ^1) :4S^ y =s^. 

Using this, show that if u and v are orthogonal and ||iz + t'H = 26 then Hizt̂ H^ < 6^. 

^^ Exerc i se 53 This exercise provides tighter version of the second inequality in Lemma C.4. Let u 
and V denote vectors in H ^ and 6 > 0 ((5 G R ) . First prove that 

max < \ ufvf 
u,v I f^ ^ 

=1 i=\ 

^. = 0, V " {ul + vf) = 46^ 
i=l 

n-l' 

Using this show that if u and v are orthogonal and ||iz + t'H = 26 then \\uv\\ < 6'^V2. 

file:///AxAs
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L e m m a 11.59 Let (x, s) be a positive primal-dual pair and /i > 0 such that x^s = nfi. 
Moreover, let a := a{x, s; fi) and let /i+ = (1 — 0)fi. Then we have 

cr{x,s;fi^) 

Proof: Let a~^ := a{x,s; /j.'^), with x^s = n/j.. Then, by definition, 

i^V + A2 xs 

(i-oh (i-ey 
XS 

The vectors e and xs/fi — e are orthogonal, as easily follows. Hence 

/ i / i 
f=a'^0\. 

The lemma follows. D 

From the above results, it is clear tha t maintaining the property a{x,s : /i) < r 
during the course of the algorithm amounts to the following condition on 0: 

1 

1 {1-ry 
nO'^ < r . (7.21) 

For any given r this inequality determines how deep the updates of the barrier 
parameter are allowed to be. Since the full Newton step must be feasible we may 
assume tha t 

r < ^ = 0.783155. 
1 + V I + A/2 

Squaring both sides of (7.21) gives 

n0^<T^{l-0f. 
8 ( 1 - r ) 2 

This implies nO'^ < r^, and hence the parameter 0 must satisfy 0 < r j^/n. 
The iteration bound of Lemma L36 becomes smaller for larger values of Q. Our aim 

here is to show tha t for the best possible choice of Q the iteration bound resulting 
from the classical analysis cannot be bet ter than the bound of Theorem IL53. For 
tha t purpose we may assume tha t n is so large tha t \ — d'^\. Then the condition on 
d becomes 

or equivalently. 

8 ( 1 - r ) 2 
nO^ < T^ 

(7.22) 
8 ( 1 - r ) 2 -

Note tha t the right-hand side expression must be nonnegative, which holds only if 

2A/2 
r < 

1 + 2A/2 
0.738796. 
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We can easily verify that the right-hand side expression in (7.22) is maximal if 

7r^ - 22T^ + 24r - 8 = 0, 

which occurs for r = 0.60155. Substituting this value in (7.22) we obtain 

nO'^ < 0.258765, 

which amounts to 
. 0.508689 1 
u *\ ^— ^/n 2^/n' 

Obviously, this upper bound for 6 is too optimistic. The above argument makes clear 
that by using the 'classical' proximity measure (j{x^ s; ji) in the analysis of the primal-
dual method with full Newton steps, the iteration bound obtained with the proximity 
measure (5(x, 5; /i) cannot be improved. 

7.6 A vers ion of t h e a lgor i thm w i t h adapt ive u p d a t e s 

7.6.1 Adaptive updating 

We have seen in Section 7.5 that when the property 

( 5 ( x , 5 ; / i ) < r = - ^ (7.23) 

is maintained after the update of the barrier parameter, the values of the barrier 
update parameter 0 are limited by the upper bound 0 < \j2jn^ and therefore, the 
iteration bound cannot be better than the 'ideal' bound 

n , nii^ 

Thus, larger updates of the barrier parameter are possible only when abandoning the 
idea that property (7.23) must hold after each update of the barrier parameter. 

To make clear how this can be done without losing the iteration bound of 
Theorem 11.53, we briefly recall the idea behind the proof of this theorem. After 
each Newton step we have a primal-dual pair (x, s) and /i > 0 such that 

S(x, s;fi) <f= , (7.24) 

^ ' ' ^ ^ - V 2 ( l - r 2 ) ^ ^ 

Then we update /i to a smaller value /i+ = (1 — ^)/i such that 

(5(x,5;/i+) < r , (7.25) 
and we perform a Newton step to the /i+-center, yielding a primal-dual pair (x+, 5+) 
such that (5(x+,5+;/i+) < f. Figure 7.4 illustrates this. 

Why does this scheme work? It works because every time we perform a Newton 
step the iterates x and s are such that xs is in the region around the /i-center where 
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central pa th 

S{x,s, fi) = r 

(5(x,5,/i+) = r 

X s = nfi^ 

Figure 7.4 The primal-dual full-step approach. 

Newton's method behaves well. The theory guarantees tha t if the proximity does not 
exceed the parameter r = l / \ / 2 then we stay within this region. However, in practice 
the region where Newton's method behaves well may be much larger. 

Thus we can adapt our strategy to this phenomenon and choose the smallest barrier 
parameter /i+ = (1 — ^)/i so tha t after the Newton step to the /i+-center the iterates 
satisfy (5(x+, 5+;/ i+) < f. Therefore, let us consider the following problem: 

Given a primal-dual pair (x, 5) and /i > 0 such tha t 6 := 5{x,s;jii) < f, 
find the largest 0 such tha t after the Newton step at (x^s) with barrier 
parameter value /i+ = (1 — ^)/i we have S~^ = (5(x+, 5+; /i+) < f. 

Here we use the parameter f instead of r , because until now r referred to the proximity 
before the Newton step, whereas f is an upper bound for the proximity just after the 
Newton step. It is natural to take for f the value 1/2, because this is an upper bound 
for the proximity after the Newton step when the proximity before the step is l / \ / 2 . 
Our aim in this section is to investigate how deep the updates can be taken, so as to 
enhance the performance of the algorithm as much as possible. See Figure 
as in the case of the dual method with adaptive updates, we need to introduce the 
so-called primal-dual afRne-scaling and primal-dual centering directions at (x, 5). 

^^ The idea of using adaptive updates of the barrier parameter in a primal-dual method can be found 
in, e.g., Jarre and Saunders [163]. 
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x^s = nfi 

central pa th 

S{x, 5,/i) = r 

(5(x,5,/i+) = r 

X s = nfi^ 

Figure 7.5 The fuh-step method with an adaptive barrier update. 

7.6.2 The primal-dual affine-scaling and centering direction 

We first recall some definitions and properties from Section 7.4. Wi th 

d-

the vectors x and 5 can be scaled by d to the vector u as follows: 

d~^x ds 

The same scaling applied to the Newton steps Ax and As yields the scaled Newton 
steps dx and ds'. 

_ d-^Ax dAs 

and these satisfy 

V ^ 

dx ^ds =u ^ 

V ^ ' 

Moreover, the vectors dx and ds are orthogonal. They are the components of the vector 
u~^ — u in the null space of AD and the null space of HD~^ respectively: 

dx 

ds 

PAD{U ^ - u ) (7.26) 

(7.27) 
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In this section we work mainly with the scaled Newton steps dx and dg. The last 
expressions yield a natural way of separating these directions into a so-called afRne-
scaling component and a centering component. The (scaled) centering directions are 
defined by 

dl = PAD{U-'), dl = PHD-^ {U-'), (7.28) 

and the (scaled) affine directions by 

dl = -PAD{u), d1 = -PHD-^{u). (7.29) 

Now we have the obvious relations 

dx = dl+ d% 

ds = d'; + d^ 

and 

dl+d"^ =u~^ 
dl + d1 = -u. 

The unsealed centering and afRne-scaling directions are defined in the obvious way: 
A°x := y/JIdd'^, etc. For the sake of completeness we list these definitions below and 
we also give some alternative expressions which can straightforwardly be verified. 

A^x := ^dd% = -^DPAD{U) = -DPAD{VXS) 

A^s := ^d-^d'i = -^D-^PHD-^{U) = -D-^PHD-^{V^S) 

A^x := ^dd% = ^DPAD{U-^) = i^DPAoi^) 

A-s := ^d-'d1 = ^D-^PHD-^{U-^) = fiD-'PHD-^i-h)-

Note that the affine-scaling directions A^x and A^s depend only on the iterates x and 
5 and not on the barrier parameter fi. For the centering directions we have that A^x/fi 
and A^s/fi depend only on the iterates x and 5 and not on the barrier parameter fi. 
Also note that if we are on the central path, i.e., if x = x{fi) and 5 = 5(/i), then we 
have u = e. This implies u~^ —u = 0, whence d^ = dg = 0. Hence, on the central path 
we have d% = —d% and d^ = —d^. 

For future reference we observe that the above definitions imply the obvious relations 

Ax = A"x + A^x 
(7.30) 

As = A"5 + A^5, 

which show that the (unsealed) full Newton step (Ax, As) — at (x, 5) and for the 
barrier parameter value fi — can be nicely decomposed in its affine scaling and its 
centering component. 
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7.6.3 Condition for adaptive updates 

In this section we start to deal with the problem stated before. Let (x, s) be a positive 
primal-dual pair and /i > 0 such that 6 = 5{x,s; fi) < f. We want to investigate how 
large 0 can be so that after the Newton step at (x, s) with barrier parameter value 
/i+ = (1 — ^)/i we have S~^ = (5(x+, 5+; /i+) < f. We derive a condition for the barrier 
update parameter 0 that guarantees the desired behavior. 

The vector u, the scaled search directions dx and ds and their (scaled) centering 
components d^^d^ and (scaled) afhne components d^,d^, have the same meaning as 
in the previous section; the entities u, d% and d^ depend on the given value /i of the 
barrier parameter. The scaled search directions at (x, 5) with barrier parameter value 
/i+ are denoted by (i+ and (i+. Letting Ax and As denote the (unsealed) Newton 
directions with respect to /i+, we have 

s/\x + x/\s fi^e • xs, 

and therefore, also using (7.11), 

X+5+ = /i+e + AxAs = /i+ (e + d'^d'^) . 

By Lemma IL48, the step is feasible if e + d'^df > 0, and this certainly holds if 

K4IL<i. 
Moreover, from the proof of Theorem IL50 we recall that the proximity 5~^ := 
5{x~^, 5+; /i+) of the new pair (x+, 5+) with respect to the /i+-center is given by 

26+ 
d^ dg 

\/e + dtdt 
This implies that we have 5^ < r if and only if 

,|2 
a^ ctg 

\/e + dtdt 
In the sequel we use the weaker condition 

<4f^ 

14411'<4f2 (1-114411 ) 
\ X b \\ — \ \\ X b \\ 0 0 / 

(7.31) 

which we refer to as the condition for adaptive updating. A very important observation 
is that when this condition is satisfied, the Newton step is feasible. Because, if (7.31) 
holds, since the left-hand side expression is nonnegative, the right-hand side expression 
must be nonnegative as well, and hence | | 4 4 l l o o — -̂ Thus, in the further analysis 
we may concentrate on the condition for adaptive updating (7.31). 

7.6.4 Calculation of the adaptive update 

We proceed by deriving upper bounds for the 2-norm and the infinity norm of the 
vector 4 4 . It is convenient to introduce the vector 
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We then have 
xs 

(1 - 0)11 y r 

Hence, using this and (7.26), 

1 
4 = PAD {U-^ -U)= VI^PAD (^"') - -^==PAD (U) 

and 

dt = PHD-^ {U-^ -U)= VI^PHD-^ (""') - - ^ |L=P^o- i {u). 

Now using (7.28) and (7.29) we obtain 

4 = v^r^4+ f̂L_ (7.32) 

d+ = v / r^rf^+ ^ ' . (7.33) 

Note that d'^ can be rewritten in the foUowing way: 

Since (i+ can be reformulated in exactly the same way we find 

dt = vr^d, + ^jf^di 

Multiphcation of both expressions gives 

4 4 = (1 - e)d^ds + e {d^di + d^di) + -^d%di. (7.34) 
1 — C7 

At this stage we see how the coordinates of the vector dt^dt^ depend on 6. The 
coordinates of (1 — 0)d'^df are quadratic functions of 0: 

(1 - 0)dtdt = (1 - Ofd^ds + ^(1 - 0) {d^d^^ + dsdl) + O'^dld^^. 

When multiplying the condition (7.31) for adaptive updating by (1 — ̂ )^, this condition 
can be rewritten as 

4f2(l - 9f - 11(1 - 9)dtdt\\^ > 4f2(l - e) 11(1 - 0)dtdt\\^ . (7.35) 

Now denoting the left-hand side member by p{0) and the z-th coordinate of the vector 
{l — 0)d'^df by qi{0), with f given, we need to find the largest positive 0 that satisfies 
the following inequalities: 

> 

> 

4f\l -

-4f\l -

-0)qi{0), l<i<n 

-0)qi{0), l<i<n. 
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Since p{6) is a polynomial of degree 4 in 6^ and each qi{6) is a polynomial of degree 
2 in ^, the largest positive 6 satisfying each single one of these 2n inequalities can be 
found straightforwardly by solving a polynomial equation of degree 4. The smallest of 
the 2n positive numbers obtained in this way (some of them may be infinite, but not 
all of them!) is the value of 6 determined by the condition of adaptive updating. Thus 
we have shown tha t the largest 6 satisfying the condition for adaptive updat ing can 
be found by solving 2n polynomial equations of degree A}^ 

Below we deal with a second approach. We consider a further relaxation of the 
condition for adaptive updat ing tha t requires the solution of only one quadratic 
equation. Of course, this approach yields a smaller value of 6 than the above procedure, 
which gives the exact solution of the condition (7.31) for adaptive updating. Before 
proceeding it is of interest to investigate the special case where we start at the /i-centers 
X = x(/i) and s = 5(/i). 

7.6.5 Special case: adaptive update at the fi-center 

When we start with x = x(/i) and s = 5(/i), we established earlier tha t u = e, 
dx = ds = 0, d^ = —d^ and d^ = —d^. Substi tuting this in (7.34) we obtain 

Now we can use the first uv-\em.m.Si (Lemma C.4 in Appendix C) to estimate the 
2-norm and the infinity norm of d^d^. Since d^ -\- d^ = —u = —e, we obtain 

11̂ X11 < :r^, IÎ XIloo < 7-
2 A / 2 ' " ^ ^ " ^ - 4* 

Substitution in (7.31) gives 

<4fUl 
9^n 

1-^)2 - V 4 ( 1 - ^ ) 7 * 

This can be rewritten as 

which is equivalent to 

or 

9 ^ 2 f^O^n 
< 4 f 2 

8 ( 1 - ^ ) 2 1 

^V2] <4f2 + 2f̂  
9^n 

2 A / 2 ( 1 - 0) 

^ < 2A/2 ( V 4 f 2 + 2f4 - f ^ v ^ ) . 

Substi tuting f = 1/2 gives 
9^n 

1 
< 2. 

^^ In fact, more efficient procedures exist for solving the condition for adaptive updating, but here 
our only aim has been to show that there exists an efficient procedure for finding the maximal 
value of the parameter 6 satisfying the condition for adaptive updating. 
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This result has its own interest. The bound obtained is exactly the 'ideal' bound for 6 
derived in Section 7.5 for the hypothetical situation where the Newton step is exact. 
Here we obtained a better bound without this assumption, but under the more realistic 
assumption that we start at the /i-centers x = x(/i) and s = 5(/i). 

7.6.6 A simple version of the condition for adaptive updating 

We return to the general case, and show how a weakened version of the condition for 
adaptive updating 

| |4(i+|| '<4f2(i-| |44|| ) 
can be reduced to a quadratic inequality in 6. With 

the first uv-levavcidi (Lemma C.4 in Appendix C) implies that 

\\dun<\\^ Wdun < ^ i 
M -^ -=11 — c\ fey ' II X 6 11 QQ — A 

Substituting these bounds in the condition for adaptive updating we obtain the weaker 
condition 

M ^ < 4f 2 ("i _ M ^ y 

Rewriting this as 

( | |d+ f+ 4f2)'<32f2 + 16f4, 

we obtain 
\\d-^f < \/32f2 + 16f4 - 4f^ 

Substituting f = 1/2 leads to the condition 

||(i+||^ < 2 . (7.36) 

From the expressions (7.32) and (7.33) for (i+ and (i+, and also using that d^^d^ = u~^ 
and d%^ d^ = —u, we find 

d^ = vr iU 
-1 

From this expression we can calculate the norm of d'^: 

||d+f = ( l - ^ ) | k - i f + M ^ - 2 n . 
\ — U 

Since 111̂11 = n and Hî "-*-!! = n + 4(5 ,̂ where (5 = (5 (x, 5;/i), we obtain 

\\d+\? = {l-e){n + 4^2) + ^ _ 2n = 4(1 - 6)5^ + - ^ . '^ 
\ — u \ — u 

^^ Since <̂ ^ = 25{x^ s : /i+) this analysis yields in a different way the same result as in Lemma 11.54, 
namely 
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Putting this in (7.36) we obtain the following condition on 9: 

32n 

The largest 6 satisfying this inequality is given by 

^ ^ V 2 n + l - 4 n ^ ^ + 4 . ^ ^ (7.37) 

With this value of 6 we are sure that when starting with S{x,s; fi) = S, after the Newton 
step with barrier parameter value /i+ = {l — 0)fi we have (5(x+, 5+; /i+) < 1/2. If (5 = 0, 
the above expression reduces to 

2 1 
< 1 + V2n + 1 " A/2^ 

and ifS = 1/2 to 
17 

as easily may be verified. Hence, when using cheap adaptive updates the actual value 
of 6 varies from iteration to iteration but it always lies between the above two extreme 
values. The ratio between these extreme values is about \/2. As a consequence, the 
speedup factor is bounded above by (approximately) \/2-

7.6.7 Illustration of the algorithm with adaptive updates 

With the same example as in the previous illustrations, and the same initialization 
of the algorithm as in Section 7.5.2, we experiment in this section with two adaptive-
update strategies. First we consider the most expensive strategy, and calculate the 
barrier update parameter 0 from (7.35). In this case we need to solve 2n polynomial 
inequalities of degree four. The algorithm, with s = 10~^, then runs as shown in 
Table 7.3.. As before. Table 7.3. contains one entry (the first) of the vectors x and 
s. A new column shows the value of the barrier update parameter in each iteration. 
The fast increase of this parameter to almost 1 is surprising. It results in very fast 
convergence of the method: only 5 iterations yield the desired accuracy. 

When we calculate 0 according to (7.37), the performance of the algorithm is as 
shown in Table 7.4.. Now 15 iterations are needed instead of 6. In this example in 
the final iterations 6 seems to stabilize around the value 0.58486. This implies that 
the convergence rate for the duality gap is linear. This is in contrast with the other 
approach, where the convergence rate for the duality gap appears to be quadratic. 

Unfortunately, at this time no theoretical justification for a quadratic convergence 
rate of the adaptive version of the full-step method exists. For the moment we leave 

^^ We could have used this value of 6 in Theorem 11.53, leading to the iteration bound 

/ — n r i ^ ^ ° Vn + 1 log 

s 

for the Primal-Dual Logarithmic Barrier Algorithm with full Newton steps. 
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It. 

0 
1 
2 
3 
4 
5 

nji 

4.000000 

1.281509 

0.197170 

0.004586 

0.000002 

0.000000 

Xi 

2.000000 

1.093836 

1.010191 

1.000224 

1.000000 

1.000000 

yi 

0.000000 

0.333333 

0.888935 

0.997391 

0.999999 

1.000000 

y2 

0.000000 

0.572830 

0.934277 

0.998471 

0.999999 

1.000000 

5l 

1.000000 

0.666667 

0.111065 

0.002609 

0.000001 

0.000000 

5 

0.2887 

0.7071 

0.7071 

0.7071 

0.7071 

-

5+ 

0.7071 

0.7071 

0.7071 

0.7071 

0.1472 

-

0 

0.679623 

0.846142 

0.976740 

0.999460 

0.999999 

-

Table 7.3. The primal-dual full-step algorithm with expensive adaptive updates. 

1 ^ It. nil Xi Vi y2 Sl 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

000000 
860612 
866381 
393584 
177943 
080352 
036275 
016375 
007392 
003337 
001506 
000680 
000307 
000139 
000063 
000028 

2.000000 
1.286871 
1.138033 
1.063707 
1.029247 
1.013307 
1.006028 
1.002726 
1.001231 
1.000556 
1.000251 
1.000113 
1.000051 
1.000023 
1.000010 
1.000005 

0.000000 
0.333333 
0.698479 
0.865026 
0.939865 
0.973046 
0.987874 
0.994534 
0.997535 
0.998887 
0.999498 
0.999773 
0.999898 
0.999954 
0.999979 
0.999991 

0.000000 
0.379796 
0.711206 
0.868805 
0.940686 
0.973216 
0.987908 
0.994542 
0.997536 
0.998888 
0.999498 
0.999773 
0.999898 
0.999954 
0.999979 
0.999991 

1.000000 
0.666667 
0.301521 
0.134974 
0.060135 
0.026954 
0.012126 
0.005466 
0.002465 
0.001113 
0.000502 
0.000227 
0.000102 
0.000046 
0.000021 
0.000009 

0.2887 
0.2934 
0.1355 
0.0670 
0.0308 
0.0140 
0.0063 
0.0028 
0.0013 
0.0006 
0.0003 
0.0001 
0.0001 
0.0000 
0.0000 

0.2934 
0.1355 
0.0670 
0.0308 
0.0140 
0.0063 
0.0028 
0.0013 
0.0006 
0.0003 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 

0.534847 
0.534357 
0.545715 
0.547890 
0.548438 
0.548554 
0.548578 
0.548583 
0.548584 
0.548584 
0.548584 
0.548584 
0.548584 
0.548584 
0.548584 

Table 7.4. The primal-dual full-step algorithm with cheap adaptive updates. 

this topic with the conclusion tha t the above comparison between the 'expensive' and 
the 'cheap' adaptive update full-step method suggests tha t it is worth spending extra 
effort in finding as large values for 6 as possible. 

We conclude the section with a graphical illustration of the adaptive updat ing 
strategy. Figure 7.6 shows on two graphs the progress of the algorithm with the 
expensive update . The graphs show the first two coordinates of the iterates in the 
i(;-space. The left graph has a linear scale and the right graph a logarithmic scale. 
Figure 7.7 concerns the case when cheap updates are used. 

7.7 T h e predictor-corrector m e t h o d 

In the previous section it became clear tha t the Newton step can be decomposed into an 
affine-scaling component and a centering component. Using the notations introduced 
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10-^ 10-6 10-^ 10-4 10-3 10-2 10-1 10° 10^ 

Figure 7.6 Iterates of the primal-dual algorithm with adaptive updates. 

there, we recall from Section 7.6.2 tha t the (scaled) centering components are given 

by 

and the (scaled) afRne components by 

dl = -PAD{u), d1 = -PHD-^{U), 

where 
_ [x lies 

a = \ —, u 

10-^ 10-6 10-^ 10-4 10-3 10-2 10-1 10° 10^ 
^ wi 

Figure 7.7 Iterates of the primal-dual algorithm with cheap adaptive updates. 
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We also recall the relations 

and 

dx 

ds 

dl+dl 
dl + dl 

= 

= 

= u - i 

= —u. 

dl 
dl 

+ dl 
+d: 

The unsealed centering and afhne-scaling components are given by 

A"x = y/Jiddl, A"5 = y/Jid-^d'l 

and 
A^x = y^dd^, A^s = y^d~^d^; 

as a consequence we have 

A"xA"5 = fid^d''^, A^xA^5 = fidld""^. 

It is interesting to consider the effect of moving along these directions. Let us define 

X̂  = X + A^X 5̂  = 5 + A"5. 

We say that x^{0) and s^{0) result from an afRne-scaling step of size 0 at {x,s). In 
preparation for the next lemma we first establish the following two relations: 

xA"5 + 5A"x = -xs (7.38) 

xA^5 + 5A^x = /ie. (7.39) 

These relations easily follow from the previous ones. We show this for the first of the 
two relations. We first write 

xA^'s = y^xd-^d"^ = fiud"^, 

and 
sA^'x = y^sddl = fiud^. 

Adding the last two equalities we get (7.38): 

xA^'s + sA^'x = fiu {dl + d^) = -fiu'^ = -xs. 

Now we can prove 

Lemma 11.60 Let x^s = nji. Assuming feasibility of the steps, the affine-scaling step 
reduces the duality gap by a factor 1 — 0 and the step along the centering components 
doubles the duality gap. 
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Proof: We have 

x"(^)5"(^) = (x + OA^'x) {s + OA^'s) =xs^O {xA^'s + sA^'x) + O^A^'xA^'s. 

Using (7.38) we find 

x^{0)s^{0) = (1 - 0)xs + O^A^xA^s. 

Using that A^x and A^s are orthogonal we obtain 

(x"(^))^ 5"(^) = e^ ((1 - 0)xs + ^^A^xA^s) = (1 - ^)x^5, 

proving the first statement. For the second statement we write 

x^'s'' = (x + A^'x) {s + A^'s) = X5 + {xA^'s + sA'^x) + A^'xA^'s. 

Substitution of (7.39) gives 

x^'s'' = X5 + /ie + O'^A^'xA^'s. 

Thus we obtain 

{x"")^ s"" = e^ (xs + /ie + O'^A^'xA^'s) = x^s + fie^e = 2n/i. 

This completes the proof. • 

Recall from (7.30) that the (unsealed) full Newton step (Ax, As) at (x, 5) — with 
barrier parameter value /i — can be decomposed in its affine scaling and its centering 
component. The above lemma makes clear that in the algorithms we dealt with before, 
the reduction in the duality gap during a (full) Newton step is delivered by the affine-
scaling component in the Newton step. The centering component in the Newton step 
forces the iterates to stay close to the central path. 

When solving a given LO problem, we wish to find a primal-dual pair with a 
duality gap close to zero. We want to reduce the duality gap as fast as possible to 
zero. Therefore, it becomes natural to consider algorithms that put more emphasis on 
the affine-scaling component. That is the underlying idea of the predictor-corrector 
method which is the subject of this section. Note that when the full affine-scaling step 
(with step-size 1) is feasible, it produces a feasible pair with duality gap zero, and 
hence it yields an optimal solution pair in a single step. This makes clear that the full 
affine step will be infeasible in general. 

In the predictor-corrector method, instead of combining the two directions in a 
single Newton step, we decompose the Newton step into two steps, an affine-scaling 
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step first and, next, a so-called pure centering step.^^ Since a full affine-scaling step 
is infeasible, we use a damping parameter 0. By taking 0 small enough we enforce 
feasibility of the step, and at the same time gain control over the loss of proximity 
to the central path. The aim of the centering step is to restore the proximity to the 
central path. This is obtained by using a Newton step with barrier parameter value 
/i, where nfi is equal to the present duality gap. Such a step leaves the duality gap 
unchanged, by Lemma IL47. 

7.7.1 The predictor-corrector algorithm 

In the description of the predictor-corrector algorithm below (page 182), Ax and As 
denote the full Newton step at (x, s) with the current value of the barrier parameter 
/i, and A^x and A^s denote the full affine-scaling step at the current iterate (x^s). 
Observe that according to Lemma IL60 the damping factor 0 for the affine-scaling 
step can also be interpreted as an updating parameter for the barrier parameter /i. 

We have the following theorem. 

Theorem 11.61 Ifr = 1/2 andO = l / (2y^ ) , then the Predictor-Corrector Algorithm 
requires at most 

2 v ^ l o g ^ ^ 

iterations. The output is a primal-dual pair (x, s) such that x^s < s. 

The proof of this result is postponed to Section 7.7.3. It requires a careful analysis 
of the affine-scaling step, which is the subject of the next section. Let us note now 
that the iteration bound is a factor \/2 worse than the bound in Theorem 11.53 for 
the algorithm with full Newton steps. Moreover, each major iteration in the predictor-
corrector algorithm consists of two steps: the centering step (also called the corrector 
step) and the affine-scaling step (also called the predictor step). 

7.7.2 Properties of the affine-scaling step 

The purpose of this section is to analyze the effect of an affine-scaling step with size 
0 on the proximity measure. As before, (x, s) denotes a positive primal-dual pair. We 

^^ The idea of breaking down the Newton direction into its affine-scaling and its centering component 
seems to be due to Mehrotra [205]. The method considered in this chapter was proposed first by 
Mizuno, Todd and Ye [217]; they were the first to use the name predictor-corrector method. The 
analysis in this chapter closely resembles their analysis. Like them we alternate (single) primal-
dual affine-scaling steps and (single) primal-dual centering steps. An earlier paper of Sonnevend, 
Stoer and Zhao [258] is based on similar ideas, except that they use multiple centering steps. It 
soon appeared that one could prove that the method asymptotically has a quadratic convergence 
rate (see, e.g., Mehrotra [206, 205], Ye et al. [317], Gonzaga and Tapia [126, 127], Ye [309] and 
Luo and Ye [188].). Quadratic convergence of the primal-dual predictor-corrector method is the 
subject in Section 7.7.6. A dual version of the predictor-corrector method was considered by Barnes, 
Chopra and Jensen [36]; they showed polynomial-time convergence with an 0{nL) iteration bound. 
Mehrotra's variant of the primal-dual predictor-corrector method will be discussed in Chapter 20. It 
significantly cuts down the computational effort to achieve the greatest practical efficiency among 
all interior-point methods. See, e.g., Lustig, Marsten and Shanno [192]. As a consequence the 
method has become very popular. 
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Predictor-Corrector Algorithm 

Input: 
A proximity parameter r, 0 < r < 1; 
an accuracy parameter £ > 0; 
(x^ 5 )̂ G P X P , / > 0 with {x^)^s^ = nfi^, S{x^, s^; / ) < r; 
a barrier update parameter ^, 0 < ^ < 1. 

begin 

while nfi > (1 — ^)£ do 
begin 

X := X -\- Ax; 

s := s -\- As; 
X : = x + 6'A"x; 

fi:={l-0)fi; 
end 

end 

assume that /i > 0 is such that x^s = nfi, and (5 := S{x,s; fi). Recah from (7.16) that 

A 1 II -1 II 1 
2 II II 2 

e — u" 

where 

We need a simple bound on the coordinates of the vector u. 

Lemma 11.62 Let p{6) := 6 ^ VlTP. Then 

1 

p{S) 
^Ui < p{6), 1 < i < n. 

Proof: Since Ui is positive for each z, we have 

-2Sui <l-u'^^ < 2Sui. 

This implies 

Rewriting this as 

ut - 2Sui - 1 < 0 < < + 2Sui - 1. 

{ui-5f -1-5^ <0< {ui -^5)^-1-5^ 
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we obtain 

183 

which implies 

Thus we arrive at 

Un -S <\ui-S\< \ / l + (52 <u^^S. 

For the left-hand expression we write 

D This proves the lemma. 

Now we can prove the following. 

Lemma 11.63 Let the pair (x+,5+) result from an affine-scaling step at (x, 5) with 
step-size 6. If x^s = nfi and S := S{x,s;fi) < r, then we have 6^ := (5(x+,5+; (1 — 
0)lJi) < T if 0 satisfies the inequality 

1-0 
'" <2V-2 rj ' (7.40) , - — ^ 4Sp{S)V2 + 2r2 - 2Sp{S) - r ^ y ^ | . 

p{5y J 

For fixed r, the right-hand side expression in (7.40) is a monotonically decreasing 
function of 5. 

Proof: From the proof of Lemma ILGO we recall that 

X+5+ = (1 - 0)xs + O^A^'xA^'s. 

This can be rewritten as 

5 + = / i ( ( l - ^ ) ^ 2 + ^ 2 « ) . »+o + 

Defining 

we thus have 

u + ._ 
+ .ĉ  + x^s 

ii-oh' 

K) ,+^2 
1 

^x^s 

The proximity after the affine-scaling step satisfies 

5+ = I | | K ) - ^ (e - (u+f) II < I | | K ) - ^ | L Ih - K 
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We proceed by deriving bounds for the last two norms. First we consider the second 
norm: 

e - (^+) 

< 

e — u 

\e — u 

2 ^ ^x^s < e-u^ ll<^?ll 

n 
2 A / 2 ( 1 

For the last inequality we applied the first i^'u-lemma (Lemma C.4 in Appendix C) to 
the vectors d^ and d^ and further utilized ||i^|| = n. From Lemma IL62, we further 
obtain 

\e — u 
e — u" 

< u 
e — u" < 2Sp{S). 

For the estimate of 
once more, 

{u+y we write, using Lemma IL62 and the first i^'u-lemma 

/ _ L \ 2 o U M , ^ , ^ M -L ( 7 7 7 / 

We conclude, by substitution of these estimates, tha t 

S^< 
1 e^n 

Hence, 6^ <T holds if 

28p{8) < 
4r2 e^nr^ 

2V2{1-0)J ~ p{5? 1 

This can be rewritten as 

25p{5) 
2 A / 2 ( 1 - 0) 

or equivalently, 

25p{5) 

2T'^V2i25p{5) 
2^2(1-0)) - p{S) 

< 
AT' 

(7.41) 

4r'^6p{6)V2, 

2 A / 2 ( 1 - 0) 

By taking the square root we get 

2Sp{S) 

T'V2] < 

• r ^ V ^ < 

ill 
p{6y 

-4r'^Sp{S)V2^2r^ 

2A/2(1 - ^) ' ' ^ ^ " ' Y p{S)^ 

By rearranging terms this can be rewritten as 

/ 32^ I 

4Sp{S)V2^2r'^. 

<r, 
2A/2(1 - ^) " V ^(^) 

A5p{5)V2 + 2r2 - 25p{5) - r ^ v ^ . 



II.7 Primal-Dual Logarithmic Barrier Method 185 

This implies the first s tatement in the lemma. For the proof of the second statement 
we observe tha t the inequality (7.40) in the lemma is equivalent to the inequality 
(7.41). We can easily verify tha t the left-hand side expression in (7.41) is increasing in 
both 5 and 0 and the right-hand side expression is decreasing in both 5 and 0. Hence, 
if 0 satisfies (7.41) for some value of 5, then the same value of 0 satisfies (7.41) also 
for smaller values of S. Since the inequalities (7.40) and (7.41) are equivalent, the last 
inequality has the same property: if 0 satisfies (7.40) for some value of S, then the 
same value of 0 satisfies (7.40) also for smaller values of 5. This implies the second 
statement in the lemma and completes the proof. • 

\ ^ upper bound for j - ^ 

>s. X 

) 

0.3 0.4 

- 5 = 5{x,s; fi) 

Figure 7.8 The right-hand side of (7.40) for r = 1/2. 

Figure 7.8 shows the graph of the right-hand side of (7.40) as a function of S. 
With the above lemma the analysis of the predictor-corrector algorithm can easily 

be accomplished. We do this in the next section. At the end of this section we apply 
the lemma to the special case where we start the affine-scaling step at the /i-centers. 
Then 6 = 0 and p{S) = 1. Substitution of these values in the lemma yields tha t the 
proximity after the step does not exceed r if 

1 
< 2 A / 2 ( r / 4 + 2r2 - r ̂ v^). 

Note tha t this bound coincides with the corresponding bound obtained in Section 7.6.5 
for an adaptive update at the /i-center with the full-step method. 

7.7.3 Analysis of the predictor-corrector algorithm 

In this section we provide the proof of Theorem 11.61. Taking r = 1/2 and 6 = l / ( 2 y ^ ) 
we show tha t each iteration starts with x, s and fi such tha t S{x,s; fi) <r. This makes 
the algorithm well defined, and implies the result of the theorem. 
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The corrector step is simply a Newton step to the /i-center. By Theorem 11.50 (on 
page 156) the result is a pair (x, s) such tha t 

2 ( 1 - 1 ) x/24-
5 := 5{x, s; fi) < 

Now we apply Lemma IL63 to this pair (x, s). This lemma states tha t the afhne step 
with step-size 0 leaves the proximity with respect to the barrier parameter (1 — ̂ )/i 
smaller than (or equal to) r if 0 satisfies (7.40) and, moreover, tha t for fixed r the 
right-hand side of (7.40) is monotonically decreasing in S. For S = l / \ / 2 4 we have 

(̂') = i i + V^+i = v l 
Substitution of the given values in the right-hand side of (7.40) yields the value 
0.612626 (cf. Figure 7.8, with 6 = 1 / A / 2 4 = 0.204124). Hence (7.40) is certainly 
satisfied if 

< 0.612626. 
1 

If ^ = l / ( 2 y ^ ) this condition is satisfied for each n > 1. This proves Theorem IL61. 
D 

R e m a r k 11.64 In the above analysis we could also have used the improved quadratic 
convergence result of Theorem 11.52. However, this does not give a significant change. After 
the centering step the proximity satisfies 

5 := 5{x, s;/i) < 
1 

V 2 ( l - ^ ) V30' 

and the condition on 6 becomes a little weaker, namely: 

< 0.768349. 

l.H An adaptive version of the predictor-corrector algorithm 

As stated before, the predictor-corrector method is the most popular interior-point 
method for solving LO problems in practice. But this is not t rue for the version we 
dealt with in the previous section. When we update the barrier parameter each t ime 
by the factor I — 0, with 0 = l / ( 2 y ^ ) , as in tha t algorithm, the required number of 
iterations will be as predicted by Theorem 11.61. Tha t is, each iteration reduces the 
duality gap by the constant factor 1 — 0 and hence the duality gap reaches the desired 
accuracy in a number of iterations tha t is proportional to y ^ . The obvious way to 
reduce the number of iterations is to use adaptive updates of the barrier parameter. 
The following lemma is crucial. 

L e m m a 11.65 Let the pair (x+,5+) result from an affine-scaling step at (x, 5) with 
step-size 6. If x^s = nfi and S := S{x,s;fi) < r, then 6^ := (5(x+, 5+; / i ( l — 6)) <T if 

^ | | « | | < 2 r ( W ^ + 2<5p(5) + T2 - T j - 25p{5). (7.42) 
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Proof: The proof is a slight modification of the proof of Lemma IL63. We recall from 
that proof that the proximity after the affine-scaling step satisfies 

s+ 

where, as before, 

1 
(u+)-' (e - (u+y) II < i II K ) " i ||e - {u+ 

\ / II 2 II lloo II 

K) 
2 2 ^'^d'^d". 

d^ and d^ denote the scaled affine-scaling components, and u = ^/xs/fi. We also recall 
some estimates: 

K) < e-u^ 
1 

Wdy^'sh 

and 

Moreover, 

K)' > 

\e-u'^\\ <2Sp{S). 

1 
'^ ' i^ii«ii~^^-r Ui MXII-

By substitution of these estimates we obtain 

25p{S) + ^,\\d-d'i\\ 
5+< 

'^y JW T^ IMS*̂ ?!! 

Hence, (5+ < T holds if 

This can be rewritten as 

4 2 4^2 2 

p(5Y 1 

25p{5) + ^—^ ||d«d?|| j + 4 T ^ [25p{5) + ^—^ \\dld1\ 

or equivalent ly. 

< i l l ^T^5p{5), 

25p{6) 
a2 \ 2 4_2 

1 |MXII+2r^ < Pisy 
8T^Sp{S) + AT"". 

By taking the square root we get 

a2 
2Sp{5) 

1 
MXII + 2r2 < 2 T W ^ ^ + 25p(<5) + r2, 

which reduces to 

Kd^A<2r 
1 

1-0 " '̂" '̂*'" - " • \^y p{6)^ 

This completes the proof. 

From this lemma we derive the next theorem. 

+ 2(5p((5) + r2 - r -2Sp{S). 

D 
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Theorem 11.66 If r = 1/3 then the property S{x,s;fi) < r is maintained in each 
iteration if 0 is taken equal to 

i + ^i + is\\d-d-\\' 

Proof: We only need to show that when we start some iteration with x, 5 and /i such 
that 5{x, s; fi) < r, then after this iteration the property 6{x^ s; fi) < r is maintained. 

By Theorem 11.50 (on page 156) the result of the corrector step is a pair (x, 5) such 
that 

i 1 
S := S{x,s;fi) < ^ = —. 

Now we apply Lemma IL65 to (x^s). By this lemma the afhne step with step-size 0 
leaves the proximity with respect to the barrier parameter (1 — ^)/i smaller than (or 
equal to) r if ^ satisfies (7.42). For 5 = 1/12 we have p{5) = 1.0868. Substitution of 
the given values in the right-hand side expression yields 0.308103, which is greater 
than 4/13. The right-hand side is monotonic in 6, as can be verified by elementary 
means, so smaller values of S yield larger values than 4/13. Thus the proximity after 
the affine-scaling step does not exceed r if ^ satisfies 

^2 4 

\dtd-A < TT7. 
1 - ^ " ^ "" - 13 

We may easily verify that the value in the theorem satisfies this condition with equality. 
Hence the proof is complete. • 

7.7.5 Illustration of adaptive predictor-corrector algorithm 

With the same example as in the previous illustrations, and the same initialization, 
the adaptive predictor-corrector algorithm, with s = 10~^, runs as shown in Table 7.5. 
(page 189). Each iteration consists of two steps: the corrector step (with ^ = 0) and 
the affine-scaling step (with 0 as given by Theorem IL66). Table 7.5. shows that only 
7 iterations yield the desired accuracy. After the corrector step the proximity is always 
very small, especially in the final iterations. This is the same phenomenon as observed 
previously, namely that the Newton process is almost exact. For the affine-scaling steps 
we see the same behavior as in the full-step method with adaptive updates. The value 
of the barrier update parameter increases very quickly to 1. As a result the duality 
gap goes very quickly to zero. This is not accidental. It is a property of the predictor-
corrector method with adaptive updates, as shown in the next section. Figure 7.9 
(page 190) shows on two graphs the progress of the algorithm in the w-spsice. 

7.7.6 Quadratic convergence of the predictor-corrector algorithm 

It is clear that the rate of convergence in the predictor-corrector method depends on 
the values taken by the barrier update parameter 0. We show in this section that the 

file:///dtd-A
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It. 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 

nfi 

4.000000 
4.000000 
1.595030 
1.595030 
0.593303 
0.593303 
0.146755 
0.146755 
0.013557 
0.013557 
0.000138 
0.000138 
0.000000 
0.000000 

Xi 

2.000000 
2.000000 
1.278509 
1.334918 
1.088217 
1.108991 
1.019821 
1.025085 
1.001775 
1.002265 
1.000018 
1.000023 
1.000000 
1.000000 

yi 

0.000000 
0.333333 
0.493665 
0.606483 
0.780899 
0.822447 
0.941805 
0.952333 
0.994513 
0.995492 
0.999944 
0.999954 
1.000000 
1.000000 

y2 

0.000000 
-0.333333 
0.468323 
0.468323 
0.802232 
0.802232 
0.951082 
0.951082 
0.995481 
0.995481 
0.999954 
0.999954 
1.000000 
1.000000 

Sl 

1.000000 
0.666667 
0.506335 
0.393517 
0.219101 
0.177553 
0.058195 
0.047667 
0.005487 
0.004508 
0.000056 
0.000046 
0.000000 
0.000000 

s 
0.2887 
0.0000 
0.1576 
0.0085 
0.1486 
0.0031 
0.1543 
0.0008 
0.1568 
0.0001 
0.1575 
0.0000 
0.1576 
0.0000 

0 

0.000000 
0.601242 
0.000000 
0.628030 
0.000000 
0.752648 
0.000000 
0.907623 
0.000000 
0.989826 
0.000000 
0.999894 
0.000000 
1.000000 

Table 7.5. The adaptive predictor-corrector algorithm. 

rate of convergence eventually becomes quadratic. To achieve a quadratic convergence 
rate it must be true that in the limit, (1—0)fi is of the order 0{fi'^), so that 1—0 = 0{fi). 
In this section we show that the value of 6 in Theorem 11.66 has this property. The 
following lemma makes clear that for our purpose it is sufficient to concentrate on the 
magnitude of the norm of the vector d^d^. 

Lemma 11.67 The value of the barrier update parameter 0 in Theorem 11.66 satisfies 

13 
1 < ii«i 

Hence, the rate of convergence for the adaptive predictor-corrector method is quadratic 
if\\d%d-\\ = o{^i). 

Proof: The lemma is an easy consequence of properties of the function / : [0, oo) -^ 
1R+ defined by 

f{x) = 1 ^ 

The derivative is given by 

and the second derivative by 

1 + VI + 13x 

13 

VI + 13x (1 + Vl + 13x)' 

- 1 6 9 ( l + 3Vl + 13x) 

(l + 13x)^ (1 + VI + 13x) 
3-
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^ wx 
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F i g u r e 7.9 T h e i terates of the adapt ive predictor-corrector a lgori thm. 

This impHes that / is monotonically increasing and concave. Since /^(O) = 13/4, it 
follows that f{x) < 13x/4 for each x >0. Putting x = ||(i^(i^|| gives the lemma. • 

We need one more basic fact in the analysis below. This concerns the optimal sets 
V* and V* of the primal and dual problems. Defining the index sets 

and 

B:={i 

N :--

> 0 for some x G P*} 

{i : 5̂  > 0 for some 5 G P*} , 

we know that these sets are disjoint, because x^s = 0 whenever x G P* and 5 G P*. 
We need the far from obvious fact that each index i, 1 < i < n, belongs either to 
B or N}^ AS a consequence, the sets B and N form a partition of the index set 
{i : 1 < i < n}. This partition is called the optimal partition of the problems (P) 
and (D). 

The behavior of the components of the vectors d^ and d^ strongly depends 
on whether a component belongs to one set of the optimal partition or to the 
complementary set. Table 7.6. summarizes some facts concerning the order of 
magnitude of the components of various vectors of interest. From this table we 
read, for example, that XB = G)(l) and A^XN = 0{IJL). According to the definition 
of the symbols B and O this means that there exist positive constants ci,C2,C3 such 
that cie < XB < C2e and A^XN < csfi.'^^ In our case it is important to stress that 

^^ This is the content of the Goldman-Tucker Theorem (Theorem II.3), an early result in the theory 
of Linear Optimization that has often been considered exotic. The original proof was based on 
Farkas' lemma (see, e.g., Schrijver [250], pp. 95-96). In Part I of this book we have shown that 
the corresponding result for the self-dual model is a natural byproduct of the limiting behavior of 
the central path. We also refer the reader to Giiler et al. [134], who derived the Goldman-Tucker 
Theorem from the limiting behavior of the central path for the standard format. Giiler and Ye [135] 
showed that interior-point algorithms — in a wide class — keep the iterates so close to the central 
path that these algorithms yield the optimal partition of the problem. 

^° See Section 1.7.4 for definitions of the order symbols O and 0 . 
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1 

2 

3 

4 

5 

6 

7 

8 

Vector 

X 

s 

u 

d 

€ 
d-

A°-x 

A'̂ 's 

B 

6(1)* 

ei^i) 

0(1) 

© ( * ) 

O(M)* 

0(1) 

o{pr 
0{fi) 

N 

0(M) 

6(1)* 

6(1) 

e(̂ /A )̂ 

0(1) 

O(M)* 

O(M) 

0{pr 

Table 7.6. Asymptotic orders of magnitude of some relevant vectors. 

these constants are independent of the iterates x, 5 and of the value fi of the barrier 
parameter. They depend only on the problem da ta A, b and c. Some of the statements 
in the table are almost trivial; the more difficult ones are indicated by an asterisk. 
Below we present the relevant proofs. 

Let us temporarily postpone the proof of the statements in Table 7.6. and show 
tha t the order estimates given in the table immediately imply quadratic convergence 
of the adaptive predictor-corrector method. 

T h e o r e m 11.68 The adaptive predictor-corrector method is asymptotically quadrati-
cally convergent. 

Proof: From Table 7.6. we deduce tha t each component of the vector d^d^ is bounded 
by 0{jii). From our conventions this implies tha t d^d^ = 0{jii). Hence the result follows 
from Lemma IL67. • 

The rest of this section is devoted to proving the estimates in Table 7.6.. Note tha t 
at the start of an afhne-scaling step we have S = S{x,s; fi) < 1/12, from the proof of 
Theorem IL66. This property will be used several times in the sequel. We start with 
line 3 in the table. 

Line 3: Wi th 6 < 1/12, Lemma IL62 implies tha t each component Ui of u satisfies 

0.92013 < — - < ^^ < p(S) < 1.0868. 
p{d) 

This proves tha t u = B ( l ) . 
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Lines 1 and 2: We start with the estimates for XB and SB- We need the following 
two positive numbers:^^ 

ap := minmaxjx^ : x G P * } 

ad := minmaxl s^ : 5 G P * } . 

Note tha t these numbers depend only on the da ta of the problem and not on the 
iterates. Moreover, due to the existence of a strictly complementary optimal solution 
pair, both numbers are positive. Now let i e B and let x e V* he such tha t Xi is 
maximal. Then, using tha t Xi > dp > 0, we may write 

SiXi S X S X 

Xi Xi dp 

Since x is optimal, c^x < c^x. Hence, with y such tha t s = c — A^y, we have 

s^x = c^x — b^y < (FX — b^y = s^x = nfi, 

so tha t 

< ^ , V^GS. 

This implies tha t 5^ = 0{jii). From the third line in Table 7.6. we derive tha t 
XBSB = /^'^^ = G)(/i). The last two estimates imply tha t 

This implies tha t XB is bounded away from zero. On the other hand, since the pair 
(x, 5) has duality gap nfi and hence, by Theorem II.9 (on page 100), belongs to a 
bounded set, we have XB = ^ ( 1 ) - Thus we may conclude tha t XB = ©(I)- Since we 
also have XBSB = G)(/i), it follows tha t 5^ = 0{jii). In exactly the same way we derive 
tha t SN = G)(l) and XN = G)(/i). 

Line 4: The estimates in the fourth line follow directly from the definition of d and 
the estimates for x and 5 in the first two lines. 

Line 5 and 6: We obtain an order estimate for {d^)N and {d^)B by the following 
simple argument. By its definition d^ is the component of the vector —u in the null 
space of the matr ix AD. Hence we have \\d^\\ < \\u\\ = y ^ . Therefore, d^ = 0{1). 
Since {d^)^ is a subvector of d^, we must also have {d^)^ = ^ ( 1 ) - A similar argument 
applies to {d^)B' 

The estimates for {d^)B and {d^)N are much more difficult to obtain. We only deal 
with the estimate for {d%)B] the result for {d^)N can be obtained in a similar way. 

"^^ These quantities were introduced by Ye [311]. See also Vavasis and Ye [280]. The numbers dp 
and Gd closely resemble the numbers a^p and a^^p for the self-dual model, as introduced in 
Section 3.3.2 of Part I. According to the definition of the condition number asp for the self-dual 
model, the smallest of the two numbers dp and dd is a natural candidate for a condition number 
for the standard problems (P) and (D). We refer the reader to the above-mentioned papers for a 
discussion of other condition numbers and their mutual relations. 
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The main force in the derivation below is the observation tha t df^ can be writ ten as 
the projection on the null space of AD of a vector tha t vanishes on the index set B?'^ 

This can be seen as follows. We may write 

C = -PAD{U) = —PAD(V^) = —PAD{ds). 

Now let (^, s) be any dual optimal pair. Then 

s = c- A^y = A^y + 5 - A^y = 5 + A^{y - y), 

so we have 

ds = ds^{AD)^{y-y). 

This means tha t ds — ds belongs to the row space of AD. The row space being 
orthogonal to the null space of AD, it follows tha t 

PAD{ds)=PAD{ds). 

Thus we obtain 

C = —^PAD{ds). (7.43) 

Since s is dual optimal, all its positive coordinates belong to the index set N, and 
hence we have SB = 0. Now we can rewrite (7.43) in the following way: 

— y^d^ = argmiu;^ (\\ds — h\\ : ADh = O) , 

or equivalently, 

- y ^ ( i ^ = argmin;^ (\\dBSB - /^^H^ + \\dNSN - /̂ Ar||̂  : ABDBHB + A^DNHN = Oj . 

This means tha t the solution of the last minimization problem is given by HB = 
— y^{d^)B and hjy = —y^{d^)N' Hence, substi tuting the optimal value for hjy as 
above, and also using tha t 5^ = 0, we obtain 

-y^{dl)B = argmin;^^ ( l l ^ s f • ABDBhB = y^ANDN{dl)N 

Stated otherwise, —y^{d^)B can be characterized as the vector of smallest norm in 
the afhne space 

S = {C : ABDB£, = ^ANDN{dl)N}-

Now consider the least norm solution of the equation ABZ = y^ANDN{d^)N. This 
solution is given by 

z* = v^A+AArDAr((iS)Ar, 

^^ We kindly acknowledge that the basic idea of the analysis below was communicated privately to us 
by our colleague Gonzaga. We also refer the reader to Gonzaga and Tapia [127] and Ye et al. [317]; 
these papers deal with the asymptotically quadratic convergence rate of the predictor-corrector 
method. 

file:////dBSB
file:////dNSN
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where A'^ denotes the pseudo-inverse^^ of the matrix AB- It is obvious that D^^z* 
belongs to the afhne space S. Hence, —^{d%)B being the vector of smallest norm in 
cS, we obtain 

or, dividing both sides by y//i, 

\\{d%)B\\<\\D-g'A%ANDM{d%)N\\. 

This implies 
\\{d%)B\\<\\D-^'\\\\Al\\\\A^\\\\D^\\\\{d%)i,\\. 

Since, by convention, | |^^ | | and H^Arll are bounded by C^(l), and the order of mag­
nitudes of the other norms on the right-hand side multiply to C^(/i), we obtain that 
\\{dl)B\\=0{ii). This implies the entry {dl)B = 0{fi) in the table. 

Line 7 and 8: These lines are not necessary for the proof of Theorem 11.68. We only 
add them because of their own interest. They immediately follow from the previous 
lines in the table and the relations 

Ax = y^ddxj As = y^d~^ds. 

This completes the proof of all the entries in Table 7.6.. 

7.8 A vers ion of t h e a lgor i thm w i t h large u p d a t e s 

The primal-dual methods considered so far share the property that the iterates stay 
close to the central path. More precisely, each generated primal-dual pair (x, 5) belongs 
to the region of quadratic convergence around some /i-center. In this section we 
consider an algorithm in which the iterates may temporarily get quite far from the 
central path, because of a large, but fixed, update of the barrier parameter. Then, by 
using damped Newton steps, we return to the neighborhood of the point of the central 
path corresponding to the new value of the barrier parameter. The algorithm is the 
natural primal-dual analogue of the dual algorithm with large updates in Section 6.9. 
Just as in the dual case, when the iterates leave the neighborhood of the central path 
the proximity measure for the full-step method, (5(x,5;/i), becomes less relevant as a 
measure for closeness to the central path. It will be of no surprise that in the primal-
dual case the primal-dual logarithmic barrier function (/)^(x, s) is a perfect tool for this 
job. Recall from (6.23), on page 133, that (/)^(x,5) is given by 

0,(x, s) = * (^^ - e) = e^ (^^ - e) - X : log ^ , (7.44) 

and from Section 6.9 (page 130) that (/)^(x,5) is nonnegative on its domain (the set 
of all positive primal-dual pairs), is strictly convex, has a (unique) minimizer, namely 

^^ See Appendix B. 
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(x,5) = (x(/i),5(/i)) and, finally that (j)^{x{ii)^s{ii)) = 0.̂ ^ 
The algorithm is described below (page 195). As usual, Ax and As denote the 

Newton step at the current pair (x, 5) with the barrier parameter equal to its current 
value fjL. The first while-loop in the algorithm is called the outer loop and the second 

Primal-Dual Logarithmic Barrier Algorithm with Large Updates 

Input: 
A proximity parameter r; 
an accuracy parameter s > 0; 
a variable damping factor a; 
a fixed barrier update parameter ^, 0 < ^ < 1; 
(x^, s^) eV xV and /i^ > 0 such that 6{x^, s^; /i^) < r . 

begin 
X : = x^; s : = 5^; /i : = /i^; 

while nfi > £ do 
begin 

/i : = (1 -0)/j.; 

while 5{x, s; fi) > r do 
begin 

X := X -\- aAx; 
s := s -\- aAs; 
(The damping factor a must be such that (/)^(x, 5) decreases 
sufficiently. Lemma 11.72 gives a default value for a.) 

end 
end 

end 

while-loop the inner loop. Each execution of the outer loop is called an outer iteration 
and each execution of the inner loop an inner iteration. The required number of outer 
iterations depends only on the dimension n of the problem, on fi^ and £, and on the 
(fixed) barrier update parameter 0. This number immediately follows from Lemma 
L36 and is given by 

Just as in the dual case, the main task in the analysis of the algorithm is the estimation 
of the number of iterations between two successive updates of the barrier parameter. 

^̂  Exercise 54 Let the positive primal-dual pair (x, s) be given. We want to find /x > 0 such that 
(f)ij^{x,s) is minimal. Show that this happens if /x = x^sjn and verify that for this value of /x we 
have 

(pi^ix^s) = ^ -^ e] = nlog > log 
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This is the purpose of the next sections. We first derive some estimates of (/)^(x, s) in 
terms of the proximity measure S{x,s;fi). 

7.8.1 Estimates of barrier function values 

The estimates in this section are of the same type as the estimates in Section 6.9.1 
for the dual case.^^ Many of these estimates there were given in terms of the function 
tjj : (—1, oo) -^ ]R determined by (5.5): 

V ^ ( t ) = t - l o g ( l + t ) , 

which is nonnegative on its domain, strictly convex and zero at t = 0. For z G K^, 
with z + e > 0, we defined in (6.22), page 133, 

n 

^(z) = ^V^(z , ) . (7.45) 
j = i 

The estimates in Section 6.9.1 were given in terms of the dual proximity measure 
5{y,jii). Our aim is to derive similar estimates, but now in terms of the primal-dual 
proximity measure 5{x, s; fi). 

Let (x, 5) be any positive primal-dual pair and /i > 0. Then, with u as usual: 

xs 
1 

we may write 
n 

(/)^(x,5) = e^ {u^ - e) -^logu^j = ^ {u^ - e) . 

Using this we prove the next lemma. Lemma 11.69 Let S := S{x, s; ji) and p{S) := S -\- Vl + ^^- Then 

^ ( ^ ) <4>^{x,s)<^{25p{5)). 

The first (second) inequality holds with equality if and only if one of the coordinates 
of u attains the value p{S) (l/p{S)) and all other coordinates are equal to 1. 

Proof: Fixing 5^ we consider the behavior of ^ {v? — e) on the set 

r :={ueWC : 11^-^ - 1̂1 = 2(5, ^ > 0} . 

Note that this set is invariant under inverting coordinates of u. Because of the 
inequality 

t / . ( t - l ) > v ( J - l ) , i > l , (7.46) 

^^ The estimates in this section are new and dramatically improve existing estimates from the 
literature. See, e.g., Monteiro and Adler [218], Mizuno and Todd [216], Jansen et al. [157] and 
den Hertog [140]. 



II.7 Primal-Dual Logarithmic Barrier Method 197 

whose elementary proof is left as an exercise ^ ,̂ this implies that u > e if u maximizes 
^(i^^ — e) on T and u < e if u minimizes ^(i^^ — e) on T. 

Consider first the case where î  is a maximizer of ^ on the set T. The first-order 
optimality conditions are 

H l l i 2 , , = 2 A ( „ - i ) , (7.47) 

where A G IR. This can be rewritten as 

u^ {u^ -e)=X{u^- e) {u^ + e) . 

It follows that each coordinate of u satisfies 

Uj 1 or uf = A [uf + 1 

Since î  > 0, we may conclude from this that the coordinates of u that differ from 1 
are mutually equal. Suppose that u has k such coordinates, and that their common 
value is u. Note that A: > 0, unless 5 = 0, in which case the lemma is trivial. Therefore, 
we may assume that A: > 1. Now, since u eT, 

V 

which gives 
l l 

V 
26_ 

Since î  is a maximizer, we have u > 1, and hence 

Therefore, using that 
p{tf - 1 = 2tp{t), t e K, (7.48) 

obtair we oDtam 
* ( u 2 - e ) = f c V ( ^ ^ - l ) = f c V ' ( ^ p ( ^ 

The expression on the right-hand side is decreasing as a function of k.'^^ Hence the 
maximal value is attained if A: = 1, and this value equals ilj{2Sp{S)). The second 
inequality in the lemma follows. 

The first inequality is obtained in the same way. If î  is a minimizer of ^ on the set 
T, then the first-order optimality conditions (7.47) imply in the same way as before 

^̂  Exercise 55 Derive (7.46) from the inequalities in Exercise 42 (page 137). 

^^ Exercise 56 Let 6 and p{6) be as defined in Lemma 11.69, and let k > 1. Prove that 

^<M7l))M'''^''^) 
and that this expression is maximal ii k = 1. 
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that the coordinates of u that differ from 1 are mutually equal. Assuming that u has 
k such coordinates, and that their common value is u again, we now have ẑ  < 1, and 
hence 

1 
ly -

P [Vkj 

Using (7.48), it follows that 

1 1 - p(t)2 _ -2tp{t) _ -2t 

Hence we may write 

^ {u^ -e) =ki) (z/̂  -I) =ki) 
-25 

,̂ ^K )̂. 
The expression on the right-hand side is increasing as a function of k.'^^ Hence the 
minimal value is attained if A: = 1, and this value equals V̂  {—2S/p (6)). Thus the proof 
of the lemma is complete. • 

iP{25p{5)) / 

H^) 
1.5 2 

-^ 5 = 5{x, s; fi) 

Figure 7.10 Bounds for '0^(x,s). 

' Exercise 57 Let S and p(S) be as defined in Lemma IL69, and let k > 1. Prove that 

kip 
-26 

and that this expression is minimal ii k = 1. 

\S^V6^TkJ 
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Figure 7.10 shows the graphs of the bounds in Lemma IL69 for (/)^(x, 5) as a function 
of the proximity 6. 

R e m a r k 11.70 It may be worthwhile to discuss the quality of these bounds. Both bounds 
are valid for all (nonnegative) values of the proximity Especially for the upper bound this 
is worth noting. Proximity measures known in the literature do not have this feature. For 
example, with the popular measure 

I xs 

I ^ 
all known upper bounds grow to infinity if the measure approaches 1. The upper bound of 
Lemma 11.69 goes to infinity only if our proximity measure goes to infinity. 

The lower bound goes to infinity as well if if our proximity measure goes to infinity, due 
to the fact that —2d/p{d) converges to -1 if (5 goes to infinity. This is a new feature, which 
will be used below in the analysis of the large-update method. On the other hand, it must be 
noted that the lower bound grows very slowly if 5 increases. For example, if 5 = 1,000,000 
then the lower bound is only 28.0168. • 

7.8.2 Decrease of barrier function value 

Suppose again tha t (x, s) is any positive primal-dual pair and /i > 0. In this section we 
analyze the eflFect on the barrier function value of a damped Newton step at (x, s) to 
the /i-center. Wi th u as defined before, the Newton displacements Ax and As satisfy 

xAs -\- sAx = fie — xs. 

Let x+ and 5+ result from a damped Newton step of size a at (x, s). Then we have 

x~^ = X -\- aAx, s~^ = s -\- aAs. 

Using the scaled displacements dx and ds, defined in (7.5), page 154, we can also write 

x~^ = y^d{u -\- adx), 5^ = y^d~^ {u -\- ads) • 

As a consequence, 

X ' S jii{u-\- adx) {u -\- ads) = /̂  ('̂ ^ -\- a (^e — u^) + a^dxds) . 

Here we used tha t u {dx -\- ds) = e — u'^, which follows from 

dx + 4 =u~'^ -u. (7.49) 

Now, defining 

it follows tha t 

{u^) = (i^ + adx) ('̂  + ads) = u^ ^ a(e — v?) + a^dxds. (7.50) 

Subtracting e we get 

{u^) — e = {1 — a) {v? — e) + a^dxds. 
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Note that the orthogonahty of d^ and ds imphes that e^d^dg = 0. Using this we find 
the following expression for (/)^(x+,5+): 

M^\s^) = e ^ ( K ) ' - e ) - X : i o g « ) ' 

The next lemma provides an expression for the decrease of the barrier function value 
during a damped Newton step. 

Lemma 11.71 Let S = S{x,s;fi) and let a be such that the pair (x+,5+) resulting 
from the damped Newton step of size a is feasible. Then we have 

Proof: For the moment let us denote A := (/)^(x, 5) — (/)^(x+, 5+). Then we have 

n n 

A = e^ (u'^ -e) - ^ log'ul - (1 - a)e^ (u'^ ~ ^) + X^ ^^g i^t)'^ 

2 

-{u^-e)+±loJ^ ae 

Since 

we may write 

(î ^) = {u-\- adx) {u -\- ads) 

u^\ / , d:,\ ( ds 
— = e + a— e + a — 
u \ u \ u 

. + \ 2 

Substituting this we obtain 

n 

A = ae^ {u^ - e) + ^ log j ^ 

= ae^ [u^ - e) + ^ log ( 1 + a ^ ^ J + ^ log ( 1 + ô -
J = l 

Observe that, by the definition of ^ , 

{dx)j\ J. fdx\ -, fadx 

and, similarly. 

g-O-^)-'^(lf)-* 

g,„,(.,„M).„.(i)_.(^ 
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Substi tuting this in the last expression for A we arrive at 

A = ae' {u'-e)+aj{^-^y ae 
d. 

^ 
adx 

^ 
ad. 

Using (7.49) once more, the coefficients of a in the first three terms can be taken 
together as follows: 

T I 2 , dx -\- d. 
e { u — e-\ •") = e^ (^2 - e + {u-^ - e)) = e^ (u'' - uf . 

Thus we obtain 

Since llî  •*• 

2 ,-., I Oidx 
u\\ — w 

u 

/\ = a \\u 

2(5, the lemma follows.^^'^^ 

^ 
adc 

D 

We proceed by deriving a lower bound for the expression in the above lemma. The 
next lemma also specifies a value of the damping parameter a for which the decrease 
in the barrier function value at tains the lower bound. 

L e m m a 11.72 Let 6 = (5(x, 5; /i) and let a = l/uo — 1/{(JO + 4(5^), where 

A x A s dx 

Then the pair (x+,5+) resulting from the damped Newton step of size a is feasible. 
Moreover, the harrier function value decreases by at least ilj{2S/p{S)). In other words, 

(t)^{x,s) - ( / )^ (x+ ,5+) > V̂  
25 

p{S) 

^^ Exercise 58 Verify that 
Ax dx As ds 

^° Exercise 59 Using Lemma 11.71, show that the decrease in the primal-dual barrier function value 
after a damped step of size a can be written as: 

A := 4>^{x, s) - M^+, s+) = a |M.||2 + a \\d,f - * ( ^ ) - * ( ^ ) . 

Now let z be the concatenation of the vectors dx and dg. Then we may write 

A = a\\z\\ .^ 
az\ 

u ) 

Using this, show that the decrease is maximal for the unique step-size a determined by the equation 

\2 \ 

e + CK̂  

and that for this value the decrease is given by 

-az 
^ 

u-\- az J \u + adxJ \u + adsJ 
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Proof: Assuming feasibility of the damped step with size a^ we know from 
Lemma IL71 that the decrease in the barrier function value is given by 

adx adc 
A := Aa5'^ - ^ ( ^^^^ I - ^ 

u J V '̂  , 
We now apply the right-hand side inequality in (6.24), page 134, to the vector in K^^ 
obtained by concatenating the vectors adx/u and adg/u. Note that the norm of this 
vector is given by auo^ with uo as defined in the lemma, and that auo < 1 for the value 
of a specified in the lemma. Then we obtain 

A > AaS'^ - V̂  {-auj) = AaS'^ + Q̂ CJ + log (1 - auo). (7.51) 

As a function of a, the derivative of the right-hand side expression is given by 

4(5^(1 - aco) - otijj^ 
A5' 

uo 
- UJ • 

\ — OLUJ 1 — OLUJ 

From this we see tha t the right-hand side expression in (7.51) is increasing for 

4(5^ _ 1 1 
^<a<a-- ^^^^ 4(^2) - ,̂  " ,̂  + 4(̂ 2 ' 

and decreasing for larger values of a. Hence it at tains its maximal value at ô  = (̂ , 
which is the value specified in the lemma. Moreover, since the barrier function is finite 
for 0 < Q̂  < ^, the damped Newton step of size ot is feasible. Substitution of ô  = ^ in 
(7.51) yields the following bound for A: 

UJ 
A > +log-

UJ UJ -\- 4:0'^ UJ 

In this bound we may replace cj by a larger value, since '0(t) is monotonically increasing 
for t nonnegative. An upper bound for uj can be obtained as follows: 

Si 

< m \\d,\\'^\\dsr = \\u-

< p{S), by Lemma IL62, page 182, and ||i^ ^ 

u; < 2Sp{S). 

Substitution of this bound yields 

25 we obtain 

(7.52) 

^>-<W^) 
completing the proof 31 D 

^̂  Exercise 60 With u as defined in Lemma 11.72, show that 

26 
UJ > 

P W 

Using this and (7.52), prove that the step-size a specified in Lemma n.72 satisfies 

1 . S^ ^ p{S)^ 

2p(6) (2p(6) + 6) 
< a- < u(u + 6'^) - 2(2 +6p(6))' 
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R e m a r k 11.73 The same analysis as in Lemma IL72 can be applied to the case where 
different step-sizes are taken for the x-space and the s-space. Let x^ = x -\- aAx and 
s^ = s + /3As, with a and [3 such that both steps are feasible. Then the decrease in the 
primal-dual barrier function value is given by 

A := Mx. s) - M^^,s+) = a \\d4^ - * ( ^ ) + P \\d4f - * f ^ 
\ u J \ u 

Defining ui := \\dx/u\\, the x-part of the right-hand side can be bounded by 

l|2 .Tr f ^^X\ ^ /̂. / \\dxf 
Ai:=a\\dxr-^(^]>i; Hir) 

and this bound holds with equality if 

1 1 
a = a ^1 oui + lldxW'^ 

Similarly, defining a;2 := ||(is/ix||, the s-part of the right-hand side can be bounded by 

A2 := P\\ds\\ - ^ ( j > V̂  
l|2 

a;2 

and this bound holds with equality if 

P = p:= ^ .̂ 
^2 cc;2 + ||c^.|r 

Hence, 

\dx\\'^\ , , fWdsW'^ 
A = Ai + A2 > V̂  ^ ^ + V̂  

We can easily verify that 

^1 < p{S) \\dx\\ , u;2 < p{S) \\ds\\ . 

Using the monotonicity of ip, it follows that 

We obtain in this way 

A = Ai + A:, > ^ ( ^^^^ 1 + ^ ( - ! i ^ I 

Finally, applying the left inequality in (6.24) to the right-hand side expression, we can easily 
derive that 

, , , | j N d t ± J t f . , ( - . 

file:////d4f
file:////dxf
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Note that this is exactly the same bound as obtained in Lemma 11.72. Thus, different step-
sizes in the x-space and s-space give in this analysis no advantage over equal step-sizes in 
both spaces. This contradicts an earlier (and incorrect) result of Roos and Vial in [246].^^ • 

For our goal it is of interest to derive the following two conclusions from the above 
lemma. First, if S{x,s;fi) = l / \ / 2 then a damped Newton step reduces the barrier 
function by at least 0.182745, which is larger than 1/6. On the other hand for larger 
values of S{x,s; fi) the lower bound for the reduction in the barrier function value 
seems to be rather poor. It seems reasonable to expect tha t the reduction grows to 
infinity if 5 goes to infinity. However, if 5 goes to infinity then 25/p{5) goes to 1, 
and hence the lower bound in the lemma is bounded by the rather small constant 
V^(l) = 1 - l o g 2.33 

7.8.3 A bound for the number of inner iterations 

As before, we assume tha t we have an iterate (x, s) and /i > 0 such tha t (x, s) belongs 
to the region around the /i-center determined by 

5 = 5{x, s; fi) < r , 

for some positive r . Starting at (x, s) we count the number of inner iterations needed 
to reach the corresponding region around the /i+-center, with 

/.+ = ( ! - )̂/x. 

Implicitly it is assumed tha t 6 is so large tha t (x, s) lies outside the region of quadratic 
convergence around the /i+-center, but this is not essential for the analysis below. 
Recall tha t the target centers x(/i+) and 5(/i+) are the (unique) minimizers of the 
primal-dual logarithmic barrier function (/)^+(x, 5), and tha t the value of this function 
is an indicator for the 'distance' from (x, 5) to (x(/i+), 5(/i+)). 

We start by considering the effect of an update of the barrier parameter to 
/i+ = (1 — 6)11 with 0 < ^ < 1, on the barrier function value. Note tha t Lemma 
11.69 gives the answer if ^ = 0: 

^^{x,s)<i>{25p{5)). 

^^ Exerc i se 61 In this exercise we consider the case where different step-sizes are taken for the x-
space and the s-space. Let x+ = x + CKAX and s+ = s + /3As, with a and /3 such that both steps 
are feasible. Prove that the decrease in the primal-dual barrier function value is given by 

A : = ( / ) ^ ( x , 5 ) - ( / ) ^ ( x + , 5 + ) = a | M ^ | | 2 + / 3 | | d , | | 2 

Using this, show that the decrease is maximal for the unique step-sizes 6L and /3 determined by the 
equations 

( OL(^\'\ 
e {dx) = e ^ , e (ds) = 

ye + a-^ J 
and that for these values of a and /3 the decrease is given by 

-^ds 

\u + adx J u + (3ds 

^^ We want to explicitly show the inherent weakness of the lower bound in Lemma 11.72 in the hope 
that it will stimulate the reader to look for a stronger result. 
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For the general case, with ^ > 0, we have the following lemma. 

L e m m a 11.74 Using the above notation, we have 

Proof: The proof is more or less straightforward. The vector u is defined as usual. 

e^ {v? - e) - ^ l o g ^ l + e^ f - — - - u^ \ + n l o g ( l - 6) 

j = i ^ ^ 

= (/)^(x,5) + y — y +nlog(l-6 ' ) 

9 On 

The second term in the last expression can be bounded by using 

u^ {u - u-^) < \\u\\ 11̂  - ^ - ^ II < 25p{5)^/^. 

The first inequality is simply the Cauchy-Schwarz inequality and the second inequality 
follows from ||i^~-^—1^|| = 28 and ||i^|| < \/n||'^lloo — V^P{^)^ where we used 
Lemma n .62 , page 182. We also have 

n l o g ( l -0) =n( - log 1 + ]] =mlj 

Substitution yields 

and hence the lemma has been proved. • 

Now we are ready to estimate the number of (inner) iterations between two 
successive updates of the barrier parameter. 

L e m m a 11.75 For given 0 {{) <0 <l), let 

Then, when 
- ^ 

2 \ / l + V ^ ' 
the number of (inner) iterations between two successive updates of the barrier 

parameter is not larger than 

2|l + ./f^' 
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Proof: Suppose that S = S{x, s; ji) < r. Then it fohows from Lemma IL74 that after 
the update of the barrier parameter to /i+ = (1 — 0)fi we have 

0^+ (x, 5) < 0^(x, 5) H h niJ 
1 1 

By Lemma IL69 we have (j)f^{x^s) < tlj{25p{5)). Using the monotonicity of tjj and, 
since S <r, 2Sp{S) < 2rp{r) we obtain 

V {x, s) < ^ (2rp(r)) + ^^P^^^^/^ + ^^ 

Application of the inequahty i\)(i) < t^/2 for t > 0 to the first and the third terms 
yields 

( / )^+(x,5)<2rV(r) ' + 
2rp(r)(9yn nO'^ 

2{i-oy 
rp{r)V2 

Oy^ 

A/2(1 - 0) 

The algorithm repeats damped Newton steps until the iterate (x, 5) satisfies S = 
(5(x,5;/i+) < r . Each damped step decreases the barrier function value by at least 
tjj {2r/p{r)). Hence, after 

1 

H )̂ 
TP{T)V2-

e^f^ 
V2(i - e) 

(7.53) 

iterations the value of the barrier function will have reached (or bypassed) the value 
'0(2r/p(r)) . From Lemma IL69, using that '0(2r/p(r)) < V̂  (—2r/p(r)), the iterate 
(x,5) then certainly satisfies (5(x,5;/i+) < r, and hence (7.53) provides an upper 
bound for the number of inner iterations between two successive updates of the barrier 
parameter. 

The rest of the proof consists in manipulating this expression. First, using i\)(i) > 
tV(2(l +1)) and 0 < 2r/p{r) < 1, we obtain 

V̂  
2r 

> 
4r^ 

piry 

Substitution reduces the upper bound (7.53) to 

> 
P{r) 2 • 

Piry 
-p(T)^/2• ev^ 

%/2(i - e) 
2 (pir)^ + l ^ ? ^ " ) 

2T{i-e)j 

For fixed 0 the number of inner iterations is a function of r . Note that this function 
goes to infinity if r goes to zero or to infinity. Our aim is to determine r such that 
this function is minimized. To this end we consider 

TiT):=piTr + 2 , Pir)R 
2T 
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with R as given in the lemma. The derivative of T ( r ) with respect to r can be simplified 
to 

4 r V ( r ) 2 - R 
T\T) 

2 r 2 v T T ^ 

Hence T{T) is minimal if 

2 rp ( r ) = V ^ . 

We can solve this equation for r . It can be rewritten as 

p{Tf -I = VR, 

which gives 

p(r) = ^1 + VR. 

Hence, 

' = \V^'^-W) 
VR 

2vT R 

Substitution of this value in T{T) gives 

T{r)=p{rr + ^' "^^^^-I + VR-
R(I + VR 

2T R 
(i+VRy 

(7.54) 

For the value of r given by (7.54) the number of inner iterations between two successive 
updates of the barrier parameter will not be larger than 

(i + Vny 2 1 

which proves the lemma. D 

R e m a r k 11.76 Note that for small values of 0, so that Oy^ is bounded by a constant, the 
above lemma implies that the number of inner iterations between two successive updates of 
the barrier parameter is bounded by a constant. For example, with 6 = l/v^2ri, which gives 
(for large values of n) r = 0.309883, this number is given by 

2 1 + 23. 

Unfortunately the constant is rather large. Because, if r = 0.309883 then we know that after 
an update with 0 = 1/V2n one full Newton step will be sufficient to reach the vicinity of 
the new target. In fact, it turns out that the bound has the same weakness as the bound 
in Theorem 11.41 for the dual case. As discussed earlier, this weak result is due to the poor 
analysis. • 

In practice the number of inner iterations is much smaller than the number predicted 
by the lemma. This is illustrated by some examples in the next section. But first we 



208 II Logarithmic Barrier Approach 

formulate the main conclusion of this section, namely that the primal-dual logarithmic 
barrier method with large updates is polynomial. This is the content of our final result 
in this section. 

Theorem 11.77 The following expression is an upper bound for the total number of 
iterations required by the logarithmic barrier algorithm with line searches: 

log 
nfi 

Here it is assumed that r is chosen as in Lemma II. 75: 

VR 
where R 

Oy^ 

2VITVR^ ^ 

If 0 < n/{n + ^/n) the output is a primal-dual pair (x, s) such that x^s < 2s. 

Proof: The number of outer iterations follows from Lemma L36. The bound in the 
theorem is obtained by multiplying this number by the bound of Lemma IL75 for 
the number of inner iterations per outer iteration and rounding the product, if not 
integral, to the smallest integer above it. Finally, for the last statement we use the 
inequality 

26p{6)\ 
— r ^ nil, 

where 5 = 5{x^s] fi)] the elementary proof of this inequality is left as an exercise.^^'^^ 
For the output pair (x, s) we may apply this inequality with 6 <T. Since 

x^s< [I 

R 

2\/r R 
, p(r) = Vl + V^, 

we have 2rp{r) = ^/R. NOW 0 < n/{n-\- ^/n) implies that R < n, and hence we obtain 
that x^s < 2n/i < 2s. D 

Just as in the dual case, we draw two conclusions from the last theorem. If we take 
for 0 a fixed constant (independent of n), for example 0 = 1/2, the algorithm is called 
a large-update algorithm and the iteration bound of Theorem IL77 becomes 

O I n log 
nfi 

- Exercise 62 Let (x, s) be a positive primal-dual pair and fi > 0. li 6 = 6{x, s; /x), prove that 

\x^ s — nm 
\ T ( - i M / 2(5p((5) 

li\u [u — u ) < — j ^ nil. Vn 
Exercise 63 The bound in Exercise 62 is based on the estimate \\u\\ < p{6)^/n. Prove the sharper 
estimate 
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If we take 6 = v j\/n for some fixed constant v (independent of n), the algorithm is 
called a medium-update algorithm and the iteration bound of Theorem 11.77 becomes 

O (V^ log ^ 

provided that n is large enough (n > z/̂  say). 

7.8.4 Illustration of the algorithm with large updates 

We use the same sample problem as in the numerical examples given before, and solve 
this problem using the primal-dual logarithmic barrier algorithm with large updates. 
We use the same initialization as before, namely x = (2,1,1), y = (0, 0), s = (1,1,1) 
and /i = 4/3. We do this for the values 0.5, 0.9, 0.99 and 0.999 of the barrier update 
parameter 0. It may be interesting to mention the values of the parameter r, as given 
by Lemma 11.75, for these values of 0. With n = 3, these values are respectively 
0.43239,0.88746,1.74397 and 3.18671. The progress of the algorithm for the three 
successive values of 0 is shown in Tables 7.7. (page 210), 7.8., 7.9. and 7.10. (page 
211). The tables need some explanation. They show only the first coordinates of x 
and of 5. As in the corresponding tables for the dual case, the tables not only have 
lines for the inner iterations, but also for the outer iterations, which multiply the value 
of the barrier parameter by the fixed factor 1 — 0. The last column shows the proximity 
to the current /i-center. The proximity value 5 increases in the outer iterations and 
decreases in the inner iterations. 

The tables clearly demonstrate the advantages of the large-update strategy. The 
number of inner iterations between two successive updates of the barrier parameter is 
never more than two. 

In the last table (with 0 = 0.999) the sample problem is solved in only 3 iterations, 
which is the best result obtained so far. The practical behavior is significantly better 
than the theoretical analysis justifies. This is typical, and the same phenomenon occurs 
for larger problems than the small sample problem. 

We conclude this section with a graphical illustration of the algorithm, in Figure 
7.11 (page 212). 
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nji 

4.000000 

2.000000 

2.000000 

1.000000 

1.000000 

0.500000 

0.500000 

0.250000 

0.250000 

0.125000 

0.125000 

0.062500 

0.062500 

0.031250 

0.031250 

0.015625 

0.015625 

0.007812 

0.007812 

0.003906 

0.003906 

0.001953 

0.001953 

0.000977 

0.000977 

0.000488 

0.000488 

0.000244 

0.000244 

0.000122 

0.000122 

0.000061 

0.000061 

Xl 

2.000000 

2.000000 

1.372070 

1.372070 

1.158784 

1.158784 

1.082488 

1.082488 

1.041691 

1.041691 

1.020805 

1.020805 

1.010423 

1.010423 

1.005201 

1.005201 

1.002606 

1.002606 

1.001300 

1.001300 

1.000651 

1.000651 

1.000325 

1.000325 

1.000163 

1.000163 

1.000081 

1.000081 

1.000041 

1.000041 

1.000020 

1.000020 

1.000010 

m_ 
0.000000 

0.000000 

0.313965 

0.313965 

0.649743 

0.649743 

0.835475 

0.835475 
0.916934 

0.916934 

0.958399 

0.958399 

0.979157 

0.979157 

0.989597 

0.989597 

0.994789 

0.994789 

0.997399 

0.997399 

0.998697 

0.998697 

0.999350 

0.999350 
0.999674 

0.999674 

0.999837 

0.999837 

0.999919 

0.999919 

0.999959 

0.999959 

0.999980 

^ 

0.000000 

0.000000 

0.313965 

0.313965 

0.666131 

0.666131 

0.835249 

0.835249 

0.916776 

0.916776 

0.958395 

0.958395 

0.979156 

0.979156 

0.989598 

0.989598 

0.994789 

0.994789 

0.997399 

0.997399 

0.998697 

0.998697 

0.999350 

0.999350 
0.999674 

0.999674 

0.999837 

0.999837 

0.999919 

0.999919 

0.999959 

0.999959 

0.999980 

s^_ 

1.000000 

1.000000 

0.686035 

0.686035 

0.350257 

0.350257 

0.164525 

0.164525 

0.083066 

0.083066 

0.041601 

0.041601 

0.020843 

0.020843 

0.010403 

0.010403 
0.005211 

0.005211 

0.002601 

0.002601 

0.001303 

0.001303 

0.000650 

0.000650 

0.000326 

0.000326 

0.000163 

0.000163 

0.000081 

0.000081 

0.000041 

0.000041 

0.000020 

6 

0.2887 

0.6455 
0.2334 

0.6838 

0.1559 

0.6237 

0.0587 

0.6031 

0.0281 

0.6115 

0.0147 

0.6111 

0.0073 

0.6129 

0.0039 

0.6111 

0.0019 

0.6129 

0.0015 

0.6111 

0.0007 

0.6129 

0.0012 

0.6112 

0.0006 

0.6129 

0.0011 

0.6112 

0.0005 

0.6129 

0.0012 

0.6112 

0.0005 

Table 7.7. Progress of the primal-dual algorithm with large updates, 6 = 0.5. 
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Outer 

0 
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5 

Inner 

0 

1 
2 

3 

4 

5 

6 

nil 

4.000000 
0.400000 
0.400000 
0.400000 
0.040000 
0.040000 
0.004000 
0.004000 
0.000400 
0.000400 
0.000040 
0.000040 

Xi 

2.000000 
2.000000 
1.051758 
1.078981 
1.078981 
1.004551 
1.004551 
1.000621 
1.000621 
1.000066 
1.000066 
1.000007 

yi 

0.000000 
0.000000 
0.263401 
0.875555 
0.875555 
0.976424 
0.976424 
0.998596 
0.998596 
0.999867 
0.999867 
0.999987 

y2 

0.000000 
0.000000 
0.684842 
0.861676 
0.861676 
0.983729 
0.983729 
0.998677 
0.998677 
0.999868 
0.999868 
0.999987 

5l 

1.000000 
1.000000 
0.736599 
0.124445 
0.124445 
0.023576 
0.023576 
0.001404 
0.001404 
0.000133 
0.000133 
0.000013 

5 

0.2887 
2.4664 
1.1510 
0.0559 
2.5417 
0.3661 
2.7838 
0.0447 
2.4533 
0.0070 
2.4543 
0.0027 

Table 7.8. Progress of the primal-dual algorithm with large updates, 6 = 0.9. 

Outer 

0 
1 

2 

3 

Inner 

0 

1 
2 

3 

4 

nfi 

4.000000 
0.040000 
0.040000 
0.040000 
0.000400 
0.000400 
0.000004 
0.000004 

Xi 

2.000000 
2.000000 
2.000000 
1.004883 
1.004883 
1.007772 
1.007772 
1.000038 

Vi 

0.000000 
0.000000 
0.000000 
0.251292 
0.251292 
0.987570 
0.987570 
0.999743 

y2 

0.000000 
0.000000 
0.000000 
0.743825 
0.743825 
0.986233 
0.986233 
0.999834 

Sl 

1.000000 
1.000000 
1.000000 
0.748708 
0.748708 
0.012430 
0.012430 
0.000257 

S 

0.2887 
8.5737 
4.2530 
0.0816 
8.7620 
0.4532 
9.5961 
0.0392 

Table 7.9. Progress of the primal-dual algorithm with large updates, 0 = 0.99. 

Outer 

0 
1 

2 

Inner 

0 

1 
2 

3 

nfi 

4.000000 
0.004000 
0.004000 
0.004000 
0.000004 
0.000004 

Xi 

2.000000 
2.000000 
1.000977 
1.000481 
1.000481 
1.000000 

Vi 

0.000000 
0.000000 
0.250006 
0.999268 
0.999268 
0.999998 

y2 

0.000000 
0.000000 
0.749018 
0.998990 
0.998990 
0.999999 

Sl 

1.000000 
1.000000 
0.749994 
0.000732 
0.000732 
0.000002 

s 
0.2887 
27.3587 
13.6684 
0.3722 
22.4872 
0.2066 

Table 7.10. Progress of the primal-dual algorithm with large updates, 0 = 0.999. 
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Figure 7.11 The iterates when using large updates with 0 = 0.5,0.9,0.99 and 0.999. 
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Initialization 

All the methods of this part of the book assume the availability of a starting point 
on or close to the central path of the problem. Sometimes such a point is known, but 
more often we have no foreknowledge of the problem under consideration. For these 
cases we provide in this chapter a transformation of the problem yielding an equivalent 
problem for which a point on the central path is available. This transformation is based 
on results in Part I and is described below in detail.^ 

Suppose that we want to solve the problem (P) in standard format: 

(P) min {c^x : Ax = b, x>0} , 

where A is an m x n matrix of rank m, c, x G K^, and b G K"^. Let / be a subset of 
the full index set {1, 2 , . . . , n} such that the submatrix Aj of A has size mx m and is 
nonsingular. Thus, Aj is a basis for (P). After reordering the columns of A, we may 
write 

A = {Ai AJ) , 

where J denotes the complement of / . Now Ax = b can be rewritten as 

Ajxi + Ajxj = 6, 

which is equivalent to 
XI = Aj^{b-AjXj). 

As a consequence we have 

c^x = cjxi + c'jXj = CJAJ^ {b - AjXj) + c^xj = cjAj^b + (cj - A^Aj^cj) xj. 

Hence, omitting the constant cjAj^b we can reformulate (P) as 

(P^) min {{cj - A^Aj^cifxj : Aj^ {b - AjXj) > 0, x j > o} , 

or equivalently, 

(P") min ^{cj - A^jA-^cif xj : -A'^AjXj > -Aj^b, x j > o} . 

^ We want to point out an advantage of the approach in this chapter over the approach in the exis­
ting literature. The technique of embedding a given standard form problem in a homogeneous and 
self-dual problem was introduced by Ye, Todd and Mizuno [316] in 1994. See also Wu, Wu and 
Ye [299]; their final model contains free variables. In our approach the occurrence of free variables 
is avoided by first reducing the given standard problem to a canonical problem. For a different 
approach to the initialization problem we refer to, e.g., Lustig [189, 190]. 
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Thus we have transformed (P) to the equivalent problem (P^), which is in canonical 
format. Chapter 4 describes how we can embed any canonical model in a self-dual 
model so that a strictly complementary solution of the latter model either yields a 
strictly complementary solution of the canonical problem or makes clear that the 
canonical problem is infeasible or unbounded. Moreover, for the embedding problem 
we have a point on its central path available. If we apply such an embedding to (P^), 
the resulting self-dual model may be given by 

(6'P^) mm {q^^ : MC > -g, e > 0} , 

where M is skew-symmetric and q>0. Let ^{fi) be a given point on the central path 
of (SP^) for some positive /i. Now (SP^) can be written in the standard form by 
associating the surplus vector (j{^) := M^-\-q with any ^. We then may rewrite (SP^) 
as 

{SSP"") min {q^^ : M^ - a =-q, ^ > 0, a > O} , 

and we have 
^(/i)cr(^(/i)) = / ie , 

where e is an all-one vector of appropriate size. Note that (SSP^) is in the standard 
format. We can rewrite it as 

(p) mm {c^x : Ax = 6, X > O} , 

with 

A M -Q-

The problem (P) is in the standard format and hence the methods of this chapter 
can be used to yield an e-solution of (P) provided that we have a solution on or close 
to its central path. We now show that this condition is satisfied by showing that the 
/i-center of (P) is known. To this end we need to consider also the dual problem of 
(P), namely 

(D) max {b^y : A^y^ 

For the slack vector s we have 

c, 5 >0} . 

A^y 
M^y 

y 

q^My 

y 

Here we used that M^ = —M. Now with the definition 

y =•• C ( M ) > 

X is feasible for (P) and y is feasible for (D). The feasibility of y follows by considering 
its slack vector: 

My 
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For the product of x and s we have 

xs 
'^(e(M)) 

'^(?(M)) 

<^(e(M))C(M) fie 

This proves that x is the /i-center of (P), as required. 
By way of example we apply the above transformation to the sample problem used 

throughout this part of the book. 

Example 11.78 Taking A and c as in Example II.7 (page 97), and b = (1,1)-^, we 
have 

A-

and (P) is the problem 

(P) min {xi + X2 + X3 : Xi - X2 = 1, X3 = 1, x > 0} . 

The first and the third column of A form a basis. With the index set / defined 
accordingly, the matrix Aj is the identity matrix. Then we express Xi and Xs in 
terms of X2: 

1 

0 

- 1 

0 

0 

1 
, b = 

1 

1 
5 C = 

r 1 1 
1 

1 

Xi 

Xs 

1 + ^ 2 

1 

Using this we eliminate xi and xs from (P) and we obtain the canonical problem (P^): 

(PI min < 2x2 + 2 : 
1 

0 
X2 > 

- 1 

- 1 
X2>0 

Being unrealistic, but just to demonstrate the transformation process for this simple 
case, we do not assume any foreknowledge and embed this problem in a self-dual 
problem as described in Section 4.3.^ Taking 1 for x^ and 5^, and for y^ and t^ the 
all-one vector of length 2, the self-dual embedding problem is given by (SP^) with 

M •• 

0 0 1 1 - 1 

0 0 0 1 0 

- 1 0 0 2 0 

-1 - 1 - 2 0 5 

1 0 0 - 5 0 

Now the all-one vector is feasible for (SP^) and its surplus vector is also the all-one 
vector, as easily can be verified. It follows that the all-one vector is the point on the 
central path for /i = 1. Adding surplus variables to this problem we get a problem in 
the standard format with 5 equality constraints and 10 variables. Solving this problem 

^ Exercise 64 The canonical problem (P^) contains an empty row. Remove this row and then 
perform the embedding. Show that this leads to the same solution of (P^). 
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with the large-update logarithmic barrier method (with 6 = 0.999 and e = 10~^), we 
find in 4 iterations the strictly complementary solution 

4 4 4 8 
e = (o,o,o,-,o,-,- ,- ,o,i). 

The slack vector is 

5 ' 5 ' 5 ' 

4 4 8 4 
^ ( 0 = ( ^ , ^ , ^ , 0 , 1 , 0 , 0 , 0 , - , 0 ) . 

Note tha t the first five coordinates of £^ are equal to the last five coordinates of (j{£) 
and vice versa. In fact, the first five coordinates of £^ form a solution of the self-dual 
embedding (SP^) of (P^). The homogenizing variable, the fourth entry in ^, is positive. 
Therefore, we have found an optimal solution of (P^). The optimal value of X2 in (P^) , 
the third coordinate in the vector ^, is given by X2 = 0. Hence x = (1, 0,1) is optimal 
for the original problem (P ) . (} 

A clear disadvantage of the above embedding procedure seems to be tha t it increases 
the size of the problem. If the constraint matr ix A of (P) has size mxn then the final 
s tandard form problem tha t we have to solve has size (n + 2) x 2(n + 2). However, 
when the procedure is implemented efficiently the amount of extra computation can 
be reduced significantly. In fact, the computation of the search direction for the larger 
problem can be organized in such a way tha t it requires the solution of three linear 
systems with the same matr ix of size {m-\-2) x {m-\-2). This is explained in Chapter 20. 
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Preliminaries 

9.1 Introduction 

In this part we deal again with the problems (P) and (D) in the standard form: 

(P) min {c X : Ax = 6, x > O} , 

(D) max {b^y : A^y < c} . 

As before, the matrix A is of size mxn with full row rank and the vectors c and x are 
in K^ and b in K"^. Assuming that the interior-point condition is satisfied we recall 
from Theorem II.4 that the KKT system (5.3) 

Ax = 6, X > 0, 

A^y^s = c, 5 > 0 , (9.1) 

xs = fie 

has a unique solution for every positive value of /i. These solutions are called the /i-
centers of (P) and (D). The above result is fundamental for the algorithms analyzed 
in Part II. When /i runs through the positive real line then the solutions of the KKT 
system run through the central paths of (P) and (D); the methods in Part II just 
approximately follow the central path to the optimal sets of (P) and (D). These 
methods were called logarithmic barrier methods because the points on the central 
path are minimizers of the logarithmic barrier functions for (P) and (D). For obvious 
reasons they have also become known under the name central-path-following methods. 
In each (outer) iteration of such a method the value of the parameter fi is fixed 
and starting at a given feasible solution of (P) and/or (D) a good approximation is 
constructed of the /i-centers of (P) and (D). Numerically the approximate solutions 
are obtained either by using Newton's method for solving the KKT system or by 
using Newton's method for minimizing the logarithmic barrier function of (P) and 
(D). In the first case Newton's method provides displacements for both (P) and (D); 
then we speak of a primal-dual method. In the second case Newton's method provides 
a displacement for either (P) or (D), depending on whether the logarithmic barrier 
function of (P) or (D) is used in Newton's method. This gives the so-called primal 
methods and dual methods respectively. In all cases the result of an (outer) iteration 
is a primal-dual pair approximating the /i-centers and such that the duality gap is 
approximately nfi. 



220 III Target-following Approach 

In this part we present a generalization of the above results. The starting point is 
the observation that if the vector jie on the right-hand side of the KKT system (9.1) 
is replaced by any positive vector w then the resulting system still has a (unique) 
solution. Thus, for any positive vector w the system 

Ax = 6, X > 0, 

A^y + 5 = c, 5 > 0, (9.2) 

xs = w 

has a unique solution, denoted by x{w)^y{w)^s{w)} This result is interesting in itself. 
It means that we can associate with each positive vector w the primal-dual pair 
{x{w)^s{w))? The map ^PD associating with any w > ^ the pair {x{w)^s{w)) will 
be called the target map associated with (P) and {D). In the next section we discuss 
its existence and also some interesting properties. 

In the present context, it is convenient to refer to the interior of the nonnegative 
orthant in K^ as the w-space. Any (possibly infinite) sequence of positive vectors 
w^ {k = 1,2,...) in the i(;-space is called a target sequence. If a target sequence 
converges to the origin, then the duality gap e^w^ for the corresponding pair in the 
sequence ^PD{W^) converges to zero. We are especially interested in target sequences 
of this type for which the sequence ^PD{W^) is convergent as well, and for which the 
limiting primal-dual pair is strictly complementary. In Section 9.3 we derive a sufficient 
condition on target sequences (converging to the origin) that yields this property. We 
also give a condition such that the limiting pair consists of so-called weighted-analytic 
centers of the optimal sets of (P) and (D). 

With any central-path-following method we can associate a target sequence on the 
central path by specifying the values of the barrier parameter fi used in the successive 
(outer) iterations. The central-path-following method can be interpreted as a method 
that takes the points on the central path as intermediate targets on the way to the 
origin. Thus it becomes apparent how the notion of central-path-following methods 
can be generalized to tar get-following methods, which (approximately) follow arbitrary 
target sequences. To develop this idea further we need numerical procedures that can 
be used to obtain a good approximation of the primal-dual pair corresponding to 
some specified positive target vector. Chapters 10, 12 and 13 are devoted to such 
procedures. The basic principle is again Newton's method. Chapter 10 describes a 
primal-dual method. Chapter 12 a dual method, and Chapter 13 a primal method. 

The target-following approach offers a very general framework for the analysis 
of almost all known interior-point methods. In Chapter 11 we analyze some of the 
methods of Part II in this framework. We also deal with some other applications, 
including a target-following method that is based on the Dikin direction, as introduced 
in Appendix E. Finally, in Chapter 14 we deal with the so-called method of centers. 
This method will be described and after putting it into the target-following framework 
we provide a new and relatively easy analysis of the method. 

^ This result, which establishes a one-to-one correspondence between primal-dual pairs (x,s) and 
positive vectors in R^ , was proved first in Kojima et al. [175]. Below we present a simple alternative 
proof Mizuno [212, 214] was the first to use this property in the design of an algorithm. 

^ Here, as before, we use that any dual feasible pair (y, s) can be uniquely represented by either y 
or s. This is due to the assumption that A has full row rank. 
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9.2 T h e target m a p and its inverse 

Our first aim in this section is to establish that the target map ^PD is well defined. 
That is, we need to show that for any positive vector w G K^ the system (9.2) has 
a unique solution. To this end we use a modification of the primal-dual logarithmic 
barrier as given by (6.23). Replacing the role of the vector fie in this function by the 
vector w, we consider the modified primal-dual logarithmic barrier function defined 
by 

M^.s) = ^ V^iV^ f^^ - l) . (9.3) 
max(^) j - ^ ' \ Wj J 

Here the function V̂  has its usual meaning (cf. (5.5), page 92). The scaling factor 
l/m.dix{w) serves to scale (^^{x^s) in such a way that (^^{x^s) coincides with the 
primal-dual logarithmic barrier function (7.44) in Section 7.8 (page 194) if w is on the 
central path.^ 

Note that (/)^(x,5) is defined for all positive primal-dual pairs (x^s). Moreover, 
(/)^(x, 5) > 0 and the equality holds if and only if xs = w. Hence, the weighted KKT 
system (9.2) has a solution if and only if the minimal value of (p^ is 0. 

By expanding (^^{x^s) we get 

n / 
/ 

max (w) (l)w{x, s) = \ ^ Wj 1 -^-^ — 1 — loj 

j=l j=l j=l j=l 

T 
X s — 2^ '^j logXjSj — e^w -\- 2^ '^j log'^j• (9.4) 

Neglecting for the moment the constant part, that is the part that does not depend 
on X and 5, we are left with the function 

T 
X 

This function is usually called a weighted primal-dual logarithmic harrier function 
with the coefficients of the vector w as weighting coefficients. Since x^s = c^x — b^y, 
the first term in (9.5) is linear on the domain of (l)w{x, s). The second term, called the 
barrier term, is strictly convex and hence it follows that (j)w{x, s) is strictly convex on 
its domain. 

^ li w = lie then max {w) = /x and hence 

n n 

this is precisely the primal-dual logarithmic barrier function (pi_i(x, s) as given by (6.23) and (7.44), 
and that was used in the analysis of the large-update central-path-following logarithmic barrier 
method. 
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In the sequel we need a quanti ty to measure the distance from a positive vector w 
to the central pa th of the i(;-space. Such a measure was introduced in Section 3.3.4 in 
(3.20). We use the same measure here, namely 

^ , , max (w) 
8c{w) := . ; ; . 9.6 

mm [w) 

Now we are ready to derive the desired result by adapting Theorem II.4 and its proof 
to the present case. With w fixed, for given K G IR the level set CK of (j)^ is defined 
by 

CK = {(x, s) : X G P + , 5 G P + , (j)^{x, s) < K] . 

T h e o r e m I I I . l Letw G IR^ andw > 0. Then the following statements are equivalent: 
(i) (P) and (D) satisfy the interior-point condition. 

(a) There exists K >0 such that the level set CK is nonempty and compact. 
(Hi) There exists a (unique) primal-dual pair (x, s) minimizing (j)^ with x and s both 

positive. 
(iv) There exist (unique) x ,5 G IR^ and y G IR"^ satisfying (9.2); 
(v) For each K > 0 the level set CK is nonempty and compact. 

Proof: (i) => (ii): Assuming (z), there exists a positive x^ G V^ and a positive 
5^ G P + . Wi th K = (t)^ (x^, 5^) the level set CK contains the pair (x^, 5^). Thus, CK 
is not empty, and we need to show tha t CK is compact. Let (x, 5) G CK- Then, by the 
definition of CK^ 

i=i 

Wiip ( —^—^ — 1 1 < Km.dix{w). 

Since each term in the sum is nonnegative, this implies 

; fxiSi \ K m a x ( ^ ) j ^ . . X 1 ^ • ^ 
ip 1 < . . . = KSc{w), l<z<n. 

\ Wi ) mm \w) 

Since i\) is strictly convex on its domain and goes to infinity at its boundaries, there 
exist unique positive numbers a and 6, with a < 1, such tha t 

V^(-a) = V̂ (6) = K(5eH. 

We conclude tha t 

—a < -^—^ — 1 < & , 1 < ^ < ^ , 
Wi 

which gives 
Wi{l-a) <XiSi<Wi{l^h), l<i<n. (9.7) 

From the right-hand side inequality we deduce tha t 

x^s < (1 + h)e^w. 

We proceed by showing tha t this and {i) imply tha t the coordinates of x and 5 can 
be bounded above. Since A{x — x^) = 0, the vector x — x^ belongs to the null space of 
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A. Similarly, s — s^ = A^ (y^ — y) implies tha t 5 — 5^ lies in the row space of A. The 
row space and the null space of A are orthogonal and hence we have 

( x - x ^ f ( 5 - 5 0 ) = 0 . (9.8) 

Writing this as 

and using x^s < (1 + b)e^w, we find 

x^fiO + s^xO < (1 + b)e^w + (xO)^(sO). (9.9) 

Since s^x^ > 0, a: > 0, and s^ > 0, this implies for each index i tha t 

â .̂ O < ^TgO ^ ^T^O < (^ ^ ^)gT^ ^ (xO)^(50), 

whence 
(l + 6 ) e ^ ^ + (x0)^(50) 

^^ < 0 ' 

proving tha t the coordinates of the vector x are bounded above. The coordinates of 
the vector 5 are bounded above as well. This can be derived from (9.9) in exactly the 
same way as for the coordinates of x. Using x^s^ > 0, 5 > 0, and x^ > 0, we obtain 
for each index i tha t 

( l + 6 ) e ^ ^ + (x0)^(50) 

' ' - ^ . • 

Thus we have shown tha t the level set CK is bounded. We proceed by showing tha t 
CK is compact. Each 5̂  being bounded above, the left inequality in (9.7) implies tha t 
Xi is bounded away from zero. In fact, we have 

(1 — a)wi (1 — a)x^Wi 
Xi > > V / ^ s, - {l^b)e^w^{x^)^{s^)' 

In the same way we derive tha t for each z, 

(1 — a)wi (1 — a)s^Wi 
Si > > ^ ^ ^ {l^b)e^w^{x^)^{s^)' 

We conclude tha t for each i there exist positive numbers ai and (3i with 0 < ô ^ < /3^, 
such tha t 

ai < Xi,Si < f3i, 1 <i <n. 

Thus we have proved the inclusion 

n 

i=l 

The set on the right-hand side lies in the positive orthant of K^ x K^, and being the 
Cartesian product of closed intervals, it is compact. Since (j)^ is continuous, and well 
defined on this set, it follows tha t CK is compact. Thus we have shown tha t (ii) holds. 
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(a) => {in): Suppose that {%%) holds. Then, for some nonnegative K the level set CK 
is nonempty and compact. Since (j)^ is continuous, it follows that (j)^ has a minimizer 
(x, 5) in CK' Moreover, since (j)^ is strictly convex, this minimizer is unique. Finally, 
from the definition oi (j)^^ tjj {{xiSi/wi) — 1) must be finite, and hence XiSi > 0 for each 
i. This implies that x > 0 and 5 > 0, proving (Hi). 

(Hi) ^ (iv): Suppose that (Hi) holds. Then (p^ has a (unique) minimizer. Since the 
domain V^ x P+ of (p^ is open, (x, 5) G V^ x P+ is a minimizer of (p^ if and only 
if the gradient of (p^ is orthogonal to the linear space parallel to the smallest affine 
space containing V^ x P+ (cf. Proposition A.l). This linear space is determined by 
the affine system 

Ax = 0, Hs = 0, 

where H is Si matrix such that its row space is the null space of A and vice versa. The 
gradient of (/)̂  with respect to the coordinates of x satisfies 

. . _ , . . w 
max (w)\/x(Pw{x, s) = s , 

X 

and with respect to the coordinates of 5 we have 

. . _ , . . w 
max (w)\/s(Pw{x, s) = X . 

s 
Application of Proposition A.l yields that \/x(l)w{x,s) must lie in the row space of A 
and Vs(/)̂ ;̂(x, 5) must lie in the row space of H. These two spaces are orthogonal, and 
hence we obtain 

T 
0. 

X ^ 

This can be rewritten as 

('-ir(-f) 

X / \ X / 

-1 \ Since XS is a diagonal matrix with positive elements on the diagonal, this implies 

II '̂ 11 
\\s = 0 . 
II X II 

Hence, 
w 

s = 0 , 
X 

whence xs = w. This proves that (x, 5) is a minimizer of (/)̂  if and only if (x, 5) satisfies 
(9.2). Hence (iv) follows from (iii). 

(iv) => (i): Let (x, 5) be a solution of (9.1). Since w > 0 and x and 5 are nonnegative, 
both X and 5 are positive. This proves that (P) and (D) satisfy the interior-point 
condition. 

Thus it has been shown that statements (i) to (iv) in the theorem are equivalent. We 
finally prove that statement (v) is equivalent with each of these statements. Obviously 
(v) implies (ii). On the other hand, assuming that statements (i) to (iv) hold, let x and 
5 solve (9.2). Then we have x > 0, 5 > 0 and xs = w. This implies that (l)w{x, s) = 0, 
as easily follows by substitution. Now let K be any nonnegative number. Then the 
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level set CK contains the pair (x, s) and hence it is nonempty. Finally, from the above 
proof of the implication {%) => {%%) it is clear tha t CK is compact. This completes the 
proof of the theorem. • 

If the interior-point condition is satisfied, then the target map ^PD provides a 
tool for representing any positive primal-dual pair (x, s) by the positive vector X5, 
which is the inverse image of the pair {x^s). The importance of this feature cannot 
be overestimated. It means tha t the interior of the nonnegative orthant in K^ can 
be used to represent all positive primal-dual pairs. As a consequence, the behavior 
of primal-dual methods tha t generate sequences of positive primal-dual pairs, can be 
described in the nonnegative orthant in K^. Obviously, the central paths of (P) and 
{D) are represented by the bisector {fie : /i > 0} of the w-spdice; in the sequel we 
refer to the bisector as the central pa th of the w-spsice. See Figure 9.1. 

Wl 

Figure 9.1 The central path in the w-space {n = 2). 

For central-path-following methods the target sequence is a sequence on this pa th 
converging to the origin. The iterates of these methods are positive primal-dual pairs 
'close' to the target points on the central path, in the sense of some proximity measure. 
In the next sections we deal with target sequences tha t are not necessarily on the 
central path. 

R e m a r k III .2 We conclude this section with an interesting observation, namely that the 
target map of (P) and (D) contains so much information that we can reconstruct the data A, b 
and c from the target map.^ This can be shown as follows. We take partial derivatives with 

This result was established by Crouzeix and Roos [57] in an unpublished note. 
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respect to the coordinates of w in the weighted KKT system (9.2). Denoting the Jacobians 
of X, y and s simply by x', y' and s' respectively, we have 

, _ dx / _ dy , _ ds 
dw ' dw ' dw ' 

where the (i, i ) entry of x' is the partial derivative dxi/dwj^ etc. Note that x' and s' are 
n X n matrices and y' is an m x n matrix. Thus we obtain 

Ax' = 0, 

A^y+s' = 0, (9.10) 

Xs-\-Sx' = Inn, 

where / denotes the identity matrix of size n x n.^ The third equation is equivalent to 

s' = X~^ [inn - Sx) . 

Using also the second equation we get 

A^y' = X-^{Sx' -Inn)- (9.11) 

Since y' \s an mxn matrix of rank m there exists an n x m matrix R such that y' R = Imm-
Multiplying (9.11) from the right by R we obtain 

A^ = A^Imm = A^y'R = X-^ {Sx' - Inn) R, 

which determines the matrix A uniquely. Finally, for any positive w, the vectors b and c 
follow from b = Ax{w) and c = A^y{w) + s{w). • 

9.3 Target sequences 

Let us consider a target sequence 

w^,w^,w'^,...,w^,... (9.12) 

which converges to the origin. The vectors w^ in the sequence are positive and 

lim w^ = 0. 

As a consequence, for the duality gap e^w^ at w^ we have linifc^oo e^w^ = 0; this 
implies that the accumulation points of the sequence 

^PD K ) , ̂ PD (W^) , ̂ PD K ) , . . . , ̂ PD (W^) , . . . (9.13) 

are optimal primal-dual pairs.^ In the sequel (x*, 5*) denotes any such optimal primal-
dual pair. 

^ Since the matrix of system (9.10) is nonsingular, the implicit function theorem (cf. Proposition A.2 
in Appendix A) implies the existence of all the relevant partial derivatives. 

^ Exercise 65 By definition, an accumulation point of the sequence (9.13) is a primal-dual pair 
that is the limiting point of some convergent subsequence of (9.13). Verify the existence of such a 
convergent subsequence. 
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We are especially interested in target sequences for which the accumulation pairs 
(x*,5*) are strictly complementary. We prove below tha t this happens if the target 
sequence lies in some cone neighborhood of the central pa th defined by 

Sc{w) < r , 

where r is fixed and r > 1. Recall tha t Sc{w) > 1, with equality if and only if w is on 
the central path. Also, Sc{w) is homogeneous in w: for any positive scalar A and for 
any positive vector w we have 

Sc{Xw) = Sc{w). 

As a consequence, the inequality Sc{w) < r determines a cone in the w-spdice. 
In Theorem 1.20 we showed for the self-dual model tha t the limiting pairs of any 

target sequence on the central pa th are strictly complementary optimal solutions. Our 
next result not only implies an analogous result for the s tandard format but it extends 
it to target sequences lying inside a cone around the central pa th in the w-spsice. 

T h e o r e m III .3 Let r > 1 and let the target sequence (9.12) he such that 6c{w^) < r 
for each k. Then every accumulation pair (x*,5*) of the sequence (9.13) is strictly 
complementary. 

Proof: For each A: = 1, 2 , . . . , let (x^, s^) := ^PD{W^). Then we have 

x^s^ =w^, A: = 1 ,2 , . . . . 

Now let (x*,5*) be any accumulation point of the sequence (9.13). Then there 
exists a subsequence of the given sequence whose primal-dual pairs converge to 
(x*, 5*). Without loss of generality we assume tha t the given sequence itself is such a 
subsequence. Since x^ — x* and s^ — s* belong respectively to the null space and the 
row space of A, these vectors are orthogonal. Hence, 

( x ^ - X * ) ^ ( 5 ^ - 5 * ) = 0 . 

Expanding the product and rearranging terms, we get 

(X*)^ S^ + (5*)^ X^ = {S^fx^ + (5*)^ X\ 

Using tha t (5^) x^ = e^w^ and {x*)^s* = 0, we arrive at 

E ^ > i + E s*x) = e^w\ k = l,2,.... 
je(T{x*) j G c r ( s * ) 

Here o-{x^) denotes the support of x* and cr(5*) the support of 5*.^ Using tha t 
j^kgk = ^k^ ^ g ^^^ write the last equation as 

E ^ + E ^ = ̂ "-^ k = i,2,.... 

^ The support of a vector is defined in Section 2.8, Definition 1.19, page 36. 
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Now let £ be a (small) positive number such that 

> r. 
ne 

Then, since (x*,5*) is the limit of the sequence ( ^ ^ , 5 ^ ) ^ Q , there exists a natural 
number K such that 

^ < 1 + £ and ^ < 1 + £ 

for each j {1 < j <n) and for all k > K. Hence, for A: > K we have 

If the pair (x*, 5*) is not strictly complementary, there exists an index i that does not 
belong to the union a{x'^) U cr(5*) of the supports of x* and 5*. Then we have 

je(T{x*) jGcr(s*) 

^i(;^ -wf. 

Substitution gives 

This implies 

e^w^ < ( ! + £ ) (e^w^ - w^) 

(1 -^s)w^ < ee^w^. 

The average value of the elements of w^ is e^w^/n. Since Sc{w^) < r, the average 
value does not exceed rw^. Hence, e^w^ < nrw^. Substituting this we obtain 

(1 -^s)wf < nsTW^. 

Now dividing both sides by w^ we arrive at the contradiction 

1 + £ < nsT. 

This proves that (x*,5*) is strictly complementary. • 

If a target sequence satisfies the condition in Theorem III.3 for some r > 1, it is 
clear that the ratios between the coordinates of the vectors w^ are bounded. In fact, 

1 w^ 

T w'^ 

for all k and for all i and j . For target sequences on the central path these ratios are 
all equal to one, so the limits of the ratios exist if k goes to infinity. In general we are 
interested in target sequences for which the limits of these ratios exist when k goes to 
infinity. Since the ratios between the coordinates do not change if w^ is multiplied by 
a positive constant, this happens if and only if there exists a positive vector w* such 
that 

h 
mil 

lim = ^ * , (9.14) 



III.9 Preliminaries 229 

and then the hmiting values of the ratios are given by the ratios between the 
coordinates of w*. Note that we have e^w* = n, because the sum of the coordinates 
of each vector nw^/e^w^ is equal to n. Also note that if a target sequence satisfies 
(9.14), we may find a r > 1 such that 5c{w^) < r for each k. In fact, we may take 

T = max —-r. 

Hence, by Theorem III.3, any accumulation pair (x*, 5*) for such a sequence is strictly 
complementary. 

Our next result shows that if (9.14) holds then the limiting pair (x*,5*) is unique 
and can be characterized as a weighted-analytic center of the optimal sets of (P) and 
(D). Let us first define this notion. 

Definition III .4 (Weighted-analytic center) Let the nonempty and bounded set 
T be the intersection of an affine space in K^ with the nonnegative orthant o/K^. We 
define the support CF(T) ofT as the subset of the full index set {1, 2 , . . . , p} given by 

cr(T) = {i : 3x G T such that x^ > 0} . 

/ / w is any positive vector in K^ then the corresponding weighted-analytic center of 
T is defined as the zero vector if CF{T) is empty, otherwise it is the vector in T that 
maximizes the product 

]J <% xeT. (9.15) 

If the support of T is not empty then the convexity of T implies the existence of a 
vector X G T such that Xcr(r) > 0- Moreover, if CF(T) is not empty then the maximum 
value of the product (9.15) exists since T is bounded. Since the product (9.15) is 
strictly concave, the maximum value is attained at a unique point of T. The above 
definition generalizes the notion of analytic center, as defined by Definition 1.29 and 
it uniquely defines the weighted-analytic center (for any positive weighting vector w) 
for any bounded subset that is the intersection of an affine space in IR^ with the 
nonnegative orthant of IR^. ^ 

Below we apply this notion to the optimal sets of (P) and {D). If a target sequence 
satisfies (9.14) then the next result states that the sequence of its primal-dual pairs 
converges to the pair of weighted-analytic centers of the optimal sets of (P) and {D). 

Theorem III .5 Let the target sequence (9.12) be such that (9.14) holds for some 
w*, and let (x*,5*) be an accumulation point of the sequence (9.13). Then x* is the 
weighted-analytic center of V* with respect to w*, and s* is the weighted-analytic 
center ofV with respect to w^. 

Proof: We have already established that the limiting pair (x*,5*) is strictly comp­
lementary, from Theorem III.3. As a consequence, the support of the optimal set V* 

^ Exercise 66 Let w be any positive vector in R^ and let the bounded set T be the intersection of 
an affine space in MP with the nonnegative orthant of R^. Show that the weighted-analytic center 
(with w as weighting vector) of T coincides with the analytic center of T if and only if K; is a scalar 
multiple of the all-one vector. 
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of (P) is equal to the support a{x'^) of x*, and the support of the optimal set P * of 
(D) is equal to the support cr(5*) of 5*. 

Now let X be optimal for (P) and s for (D). Applying the orthogonality property 
to the pairs (x, 5) and (x^,5^) := ^PD{W^) we obtain 

{x^ -xf{s^ -s) = 0. 

Expanding the product and rearranging terms, we get 

{xf s^ + {sf x^ = (s^)^ x^ + {sf X. 

Since (5^) x^ = e^w^ and {x)^s = 0, we get 

^ XjS^ + ^ 5^x^ = e^w^, A: = 1, 2 , . . . . 
jGcr(a:*) jGcr(s*) 

Here we have also used tha t a{x) C a{x*) and (7(5) C cr(5*). Using x^5^ = w^ we 
have 

jGcr(a:*) -̂  jGcr(s*) -̂  

Multiplying both sides by n/e^w^ we get 

^ f T ~ F ̂  / V ^ f r ~T ~ ^^ /c = 1, 2 , . . . . 

jGcr(a:*) -̂  jGcr(s*) -̂  

Letting A: ^ 00, it follows tha t 

E UJ AX q ^ >, VJ A S n 

^+ E -^ 
n. 

jecr{x*) ^ jGcr(s*) ^ 

At this stage we apply the geometric inequality,^ which states tha t for any two positive 
vectors a and f3 in K^, 

n(l) Kis^) • 
We apply this inequality with f3 = w^ and 

- - ^ ^ ( i e a ( x * ) ) , a, = ̂  ( i € a ( 5 * ) ) . 

Thus we obtain, using tha t the sum of the weights w* equals n, 

n (ir n {ff^iki^ f^+Ef^ll -• 
j^a{x*) \ ^ / jecr{s*) \ ^ / \ \jecr{x*) ^ jGcr(s*) ^ 

^ When f3 is the all-one vector e, the geometric inequality reduces to the arithmetic-geometric-mean 
inequality. For a proof of the geometric inequality we refer to Hardy, Littlewood and Polya [139]. 
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Substituting 5 = 5* in the above inequality we get 

n ?̂̂  n -̂ ^ 
jecr{x*) jecr{x*) 

and substituting x = x* gives 

n f̂ ̂  n ^ 
This shows that x* maximizes the product 

n xy 

'f 

and 5* the product 

n 
over the optimal sets of (P) and {D) respectively. Hence the proof is complete. • 

9.4 The target-following scheme 

We are ready to describe more formally the main idea of the target-following approach. 
Assume we are given some positive primal-dual feasible pair (x^, 5^). Put w^ := x^s^ 
and assume that we have a sequence 

w^, w^, ...,w^, ...,w^ (9.16) 

of points w^ in the w-space with the following property: 

Given the primal-dual pair for w^, with 0 < A: < K, it is 'easy' to compute 
the primal-dual pair for w^~^^. 

We call such a sequence a traceable target sequence of length K. 
If a traceable sequence of length K is available, then we can solve the given 

problem pair (P) and (D), up to the precision level e^w^, in K iterations. The k-th 
iteration in this method would consist of the computation of the primal-dual target-
pair corresponding to the target point w^. Conceptually, the algorithm is described as 
follows (page 232). 

Some remarks are in order. Firstly, in practice the primal-dual pair {x{w),s{w)) 
corresponding to an intermediate target w is not computed exactly. Instead we 
compute it approximately, but so that the approximating pair is close to w in the 
sense of a suitable proximity measure. 

Secondly, the target sequence is not necessarily prescribed beforehand. It may be 
generated in the course of the algorithm. Both cases occurred in Chapter 7. For 
example, the primal-dual logarithmic barrier algorithm with full Newton steps in 



232 III Target-following Approach 

C o n c e p t u a l Target - fo l lowing A l g o r i t h m 

Input : 
A positive primal-dual pair (x^,5^); 
a final target vector w. 

b e g i n 
w := x^s^] 
whi le w is not 'close' to w do 
b e g i n 

choose an ' intermediate ' target w] 
compute x{w) and s{w)] 
w := x{w)s{w); 

e n d 
e n d 

Section 7.5 uses intermediate targets of the form w = fie, and each subsequent target is 
given by {l — 6)w, with 6 fixed. The same is t rue for the primal-dual logarithmic barrier 
algorithm with large updates in Section 7.8. In contrast, the primal-dual logarithmic 
barrier algorithm with adaptive updates (cf. Section 7.6.1) defines its target points 
adaptively. 

Thirdly, if we say tha t the primal-dual pair corresponding to a given target can 
be computed 'easily', we mean tha t we have an efficient numerical procedure for 
finding this primal-dual pair, at least approximately. The numerical method is always 
Newton's method, either for solving the K K T system defining the primal-dual pair, or 
for finding the minimizer of a suitable barrier function. When full Newton steps are 
taken, the target must be close to where we are, and one step must yield a sufficiently 
accurate approximation of the primal-dual pair for this target. In the literature, 
methods of this type are usually called short-step methods when the target sequence 
is prescribed, and adaptive-step methods if the target sequence is defined adaptively. 
We call them full-step methods. If subsequent targets are at a greater distance we 
are forced to use damped Newton steps. The number of Newton steps necessary to 
reach the next target (at least approximately) may then become larger than one. To 
achieve polynomiality we need to guarantee tha t this number can be bounded either 
by a constant or by some suitable function of n, e.g., 0{y^) or 0{n). We refer to 
such methods as multistep methods. They appear in the literature as medium-step 
methods and large-step methods. 

In general, a primal-dual target-following algorithm is based on some finite 
underlying target sequence w^, w^, . . . , w^ = w. The final target w; is a vector with 
small duality gap e^w if we are optimizing, but other final targets are allowable as 
well; examples of both types of target sequence are given in Chapter 11 below. The 
general structure is as follows. 
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Generic (Primal-Dual) Target-following Algorithm 

Input: 
A positive primal-dual pair (x^, s^) such that x^s^ = w^; 
a final target vector w. 

begin 
X = x^, s = 5^, w := w^; 
while w is not 'close' to w do 
begin 

replace w by the next target in the sequence; 
while xs is not 'close' to w do 
begin 

apply Newton steps at (x, 5) with w as target 
end 

end 
end 

For each target in the sequence the next target can be prescribed (in advance), but 
it can also be defined adaptively. If it is close to the present target then a single (full) 
Newton step may suffice to reach the next target, otherwise we apply a multistep 
method, using damped Newton steps. 

The target-following approach is more general than the standard central-path-
following schemes that appear in the literature. The vast majority of the latter use 
target sequences on the central path.^^ We show below, in Chapter 11, that many 
classical results in the literature can be put in the target-following scheme and that 
this scheme often dramatically simplifies the analysis. 

First, we derive the necessary numerical tools in the next chapter. This amounts 
to generalizing results obtained before in Part II for the case where the target is on 
the central path to the case where it is off the central path. We ffrst analyze the full 
primal-dual Newton step method and the damped primal-dual Newton step method 
for computing the primal-dual pair corresponding to a given target vector. To this end 
we introduce a proximity measure, and we show that the full Newton step method 
is quadratically convergent. For the damped Newton method we show that a single 
step reduces the primal-dual barrier function by at least a constant, provided that the 
proximity measure is bounded below by a constant. We then have the basic ingredients 

^^ There are so many papers on the subject that it is impossible to give an exhaustive list. We 
mention a few of them. Short-step methods along the central path can be found in Renegar [237], 
Gonzaga [118], Roos and Vial [245], Monteiro and Adler [218] and Kojima et al. [178]. We also 
refer the reader to the excellent survey of Gonzaga [124]. The concept of target-following methods 
was introduced by Jansen et al. [159]. Closely related methods, using so-called a-sequences, were 
considered before by Mizuno for the linear complementarity problem in [212] and [214]. The first 
results on multistep methods were those of Gonzaga [121, 122] and Roos and Vial [244]. We also 
mention den Hertog, Roos and Vial [146] and Mizuno, Todd and Ye [217]. The target-following 
scheme was applied first to multistep methods by Jansen et al. [158]. 
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for the analysis of primal-dual target-following methods. 
The results of the next chapter are used in Chapter 11 for the analysis of several 

interesting algorithms. There we restrict ourselves to full Newton step methods because 
they give the best complexity results. Later we show tha t the target-following concept 
is also useful when dealing with dual or primal methods. We also show tha t the primal-
dual pair belonging to a target vector can be efficiently computed by such methods. 
This is the subject of Chapters 12 and 13. 
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The Primal-Dual Newton Method 

10.1 Introduct ion 

Suppose that a positive primal-dual feasible pair (x, s) is given as well as some target 
vector w > 0. Our aim is to find the primal-dual pair {x{w),s{w)). Recall that to the 
dual feasible slack vector s belongs a unique y such that A^y -\- s = c. The vector in 
the 7/-space corresponding to s{w) is denoted by y{w). In this section we define search 
directions Ax, Ay, As at the given pair (x, s) that are aimed to bring us closer to the 
target pair {x{w),s{w)) corresponding to w. The search directions in this section are 
obtained by applying Newton's method to the weighted KKT system (9.2), page 220. 
The approach closely resembles the treatment in Chapter 7. There the target was on 
the central path, but now the target may be any positive vector w. It will become 
clear that the results of Chapter 7 can be generalized almost straightforwardly to the 
present case. To avoid tiresome repetitions we to omit detailed arguments when they 
are similar to arguments used in Chapter 7. 

10.2 Def ini t ion of t h e primal-dual N e w t o n s t e p 

We want the iterates x -\- Ax, y -\- Ay, s -\- As to satisfy the weighted KKT system (9.2) 
with respect to the target w. So we want Ax, Ay and As to satisfy 

A{x + Ax) = b, X + Ax > 0, 

A^{y^Ay)^s^As = c, 5 + As > 0, 

{x^Ax){s^As) = w. 

Neglecting the inequality constraints, we can rewrite this as follows: 

AAx = 0, 

A^Ay^As = 0, (10.1) 

sAx -\- xAs -\- Ax As = w — xs. 

Newton's method amounts to linearizing this system by neglecting the second-order 
term AxAs in the third equation. Thus we obtain the linear system 

(10.2) 

• XS. 

AAx 

A^Ay + As 

sAx -\- xAs 

= 0, 

0, 

w 
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Comparing this system with (7.2), page 150, in Chapter 7, we see tha t the only 
difference occurs in the third equation, where the target vector w replaces the target 
fie on the central path. In particular, both systems have the same matrix. Since this 
matr ix is nonsingular (cf. Theorem 11.42, page 150, and Exercise 46, page 151), system 
(10.2) determines the displacements Ax, /\y and A s uniquely. We call them the primal-
dual Newton directions at (x, 5) corresponding to the target w}''^'^ It may be worth 
pointing out tha t computation of the displacements Ax, /\y and A s amounts to solving 
a positive definite system with the matr ix AXS~^A^^ just like when the target is on 
the central path. 

1 0 . 3 F e a s i b i l i t y o f t h e p r i m a l - d u a l N e w t o n s t e p 

In this section we investigate the feasibility of the (full) Newton step. As before, the 
result of the Newton step at (x, y^ s) is denoted by (x+, 7/+, 5+), so 

x ^ = X + Ax, y~^ = y -\- Ay, 5+ = 5 + As. 

Since the new iterates satisfy the affine equations we only have to deal with the 
question of whether x+ and 5+ are nonnegative or not. We have 

X+5+ = (x + Ax){s + As) = X5 + {sAx + xAs) + AxAs. 

Since sAx -\- xAs = w — xs this leads to 

X+5+ =w^AxAs. (10.3) 

Hence, x+ and 5+ are feasible only if w -\- Ax As is nonnegative. The converse is also 
true. This is the content of the next lemma. 

L e m m a III .6 The primal-dual Newton step at (x, 5) to the target w is feasible if and 
only if w -\- Ax As > 0. 

Proof: The proof uses exactly the same arguments as the proof of Lemma 11.46; we 
simply need to replace the vector fie by w. We leave it to the reader to verify this. • 

Note tha t Newton's method is exact when the second-order term Ax As vanishes. 
In tha t case we have x~^s~^ = w. This means tha t the pair (x+, 5+) is the image of w 
under the target map, whence x+ = x{w) and 5+ = s{w). 

In general Ax As will not be zero and Newton's method will not be exact. However, 
the duality gap always assumes the correct value e^w after the Newton step. 

^ Exercise 67 Prove that the system (10.2) has a unique solution, namely 

Ay = (AXS-^A^y^ (6 - AWs'^) 

As = -A^Ay 
Ax = ws~^ — X — xs~^As. 

^ Exercise 68 When K; = 0 in (10.2), the resulting directions coincide with the primal-dual affine-
scaling directions introduced in Section 7.6.2. Verify this. 

Exercise 69 When w = iie and /x = x^s/n in (10.2), the resulting directions coincide with the 
primal-dual centering directions introduced in Section 7.6.2. Verify this. 
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L e m m a III .7 / / the primal-dual Newton step is feasible then (x+) 5+ = e^w. 

Proof: This is immediate from (10.3) because the vectors Ax and As are orthogonal. 
D 

In the following sections we further analyze the primal-dual Newton method. This 
requires a quanti ty for measuring the progress of the Newton iterates on the way to 
the pair ^PD{W). A S may be expected, two cases could occur. In the first case the 
present pair (x, s) is 'close' to ^PD{W) and full Newton steps are feasible. In tha t case 
the full Newton step method is (hopefully, and locally) quadratically convergent. In 
the second case the present pair (x, s) is 'far' from ^p]j{w) and the full Newton step 
may not be feasible. Then we are forced to take damped Newton steps and we may 
expect no more than a linear convergence rate. In both cases we need a new quanti ty 
for measuring the proximity of the current i terate to the target vector w. The next 
section deals with the first case and the second case is considered in Section 10.5. It 
will be no surprise tha t we use the weighted primal-dual barrier function (/)^(x,5) in 
Section 10.5 to measure progress of the method. 

1 0 . 4 P r o x i m i t y a n d l o c a l q u a d r a t i c c o n v e r g e n c e 

Recall from (7.16), page 156, tha t in the analysis of the central-path-following primal-
dual method we measured the distance of the pair (x, s) to the target fie by the 
quanti ty 

S{x,s;/j.) 

This can be rewritten as 

5{x, s; fi) 
2v^ 

fie — xs 

xs 

Note tha t the right-hand side measures, in some way, the distance in the w-spdice 
between the inverse image fie of the pair of /i-centers {x{fie),s{fie)) and the primal-
dual pair (x, 5).^ For a general target vector w we adapt this measure to 

S{xs,w) := 
1 

2y/i[nm (w) 

xs 

xs 
(10.4) 

The quanti ty on the right measures the distance from the coordinatewise product xs 
to w. It is defined for (ordered) pairs of vectors in the w-spdiCe. Therefore, and because 
it will be more convenient in the future, we express this feature by using the notation 

This observation makes clear that the proximity measure 6(x,s] fi) ignores the actual data of the 
problems (P) and (D), which is contained in A, b and c. Since the behavior of Newton's method 
does depend on these data, it follows that the effect of a (full) Newton step on the proximity 
measure depends on the data of the problem. This reveals the weakness of the analysis of the 
full-step method (cf. Chapter 6.7). It ignores the actual data of the problem and only provides a 
worst-case analysis. In contrast, with adaptive updates (cf. Chapter 6.8) the data of the problem 
are taken into account and, as a result, the performance of the method is improved. 
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S{xs,w) instead of the alternative notation S{x,s;w). We prove in this section that 
the Newton method is quadratically convergent in terms of this proximity measure.^ 

As before we use scaling vectors d and u. The definition of u needs to be adapted 
to the new situation: 

d:=y/f, u:=^. (10.5) 

Note that xs = w if and only if u = e. We also introduce a vector v according to 

V = ^XS. 

With d we can rescale both x and s to the vector v:^ 

d~^x = V, ds = V. 

Rescaling Ax and As similarly: 

d~^Ax =: dx, dAs =: ds, 

we see that 

(10.6) 

Ax As = dxds. 

Consequently, the orthogonality of Ax and As implies that the scaled displacements 
dx and dg are orthogonal as well. Now we may reduce the left-hand side in the third 
equation of the KKT system as follows: 

sAx -\- xAs = sdd~^Ax -\- xd~^dAs = v {dx -\- ds), 

so the third equation can be restated simply as 

dx -\- ds = v~^ {w — xs). 

^ Exercise 70 The definition (10.4) of the primal-dual proximity measure 6 = 6{xs, w) implies that 

25{xs^w) > 

Using this and Lemma 11.62, prove 

1 
<PW, l<i<n. 

Here we deviate from the approach in Chapter 7. The natural generalization of the approach there 
would be to rescale x and s to u: 

d~^x ds 

Vw 

and then rescale Ax and As accordingly to 

d-^/\x 

\/yo 

dAs 

But then we have 
Ax As = wdxds 

and we lose the orthogonality of dx and ds with respect to the standard inner product. This could 
be resolved by changing the inner product in such a way that orthogonality is preserved. We leave 
it as an (interesting) exercise to the reader to work this out. Here the difficulty is circumvented by 
using a different scaling. 
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On the other hand, the first and second equations can be reformulated as ADd^ = 0 
and {AD)^dy -\- ds = 0, where dy = Ay. We conclude tha t the scaled displacements 
dx, dy and dg satisfy 

ADdx = 0 
{AD)^dy^ds= 0 (10.7) 

dx -\- ds = v~^ {w — xs). 

Using the same arguments as in Chapter 7 we conclude tha t dx and dg form the 
components of v~^ {w — xs) in the null space and the row space of AD, respectively. 
Note tha t w — xs represents the move we want to make in the w-spsice. Therefore we 
denote it as Aw. It is also convenient to use a scaled version d^j of Aw, namely 

d^ := v~^ {w - xs) = v~^Aw. (10.8) 

Then we have 
dx^ds = d^ (10.9) 

and, since dx and dg are orthogonal, 

| |d,f+ | |4f = IM»f. (10.10) 

This makes clear tha t the scaled displacements dx^dg (and also dy) are zero if and 
only \i d^ = 0 . In tha t case x,y and 5 coincide with their values at w. An immediate 
consequence of the definition (10.4) of the proximity 6{xs,w) is 

5(xs,w) = —jM= (10.11) 
2 y mm [w) 

The next lemma contains upper bounds for the 2-norm and the infinity norm of the 
second-order term dxdg. 

L e m m a III .8 We have \\dxds\\^ < \ \\dw\\^ and \\dxds\\ < ^ \\dw\\^-

Proof: The lemma follows immediately by applying the first i^'u-lemma (Lemma C.4) 
to the vectors dx and dg. • 

L e m m a I IL9 The Newton step is feasible if S{xs,w) < 1. 

Proof: Lemma III.6 guarantees feasibility of the Newton step ifw-\-AxAs > 0. Since 
Ax As = dxds this certainly holds if the infinity norm of the quotient dxdg/w does not 
exceed 1. Using Lemma III.8 and (10.11) we may write 

QjxClc 
|2 

minyw) Avuvnyw) w 

This implies the lemma. • 

We are ready for the main result of this section, which is a perfect analogue of 
Theorem 11.50, where the target is on the central path. 
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Theorem III.10 If S := S{xs;w) < 1, then the primal-dual Newton step is feasible 
and (x+)^5+ = e^w. Moreover, if S < 1 then 

S{x^s^,w) < 
Vni-5') 

Proof: The first part of the theorem is a restatement of Lemma III.9 and Lemma IIL7. 
We proceed with the proof of the second statement. By definition, 

5{x~^s~^,wy 
4min (w) Vx~^s~^ 

Recah from (10.3) that x+5+ = w -\- Ax As = w -\- dxdg. Using also Lemma IIL8 and 
(10.11), we write 

min (x^5^) > min (w) — \\dxds\\^ > min (w) — - \\dw\\ = min (w) (l — S'^) . 

Thus we find, by substitution, 

^ ' ^ - 4{1-S^)mm{w)^ 4 {1 - S^) mm (w)^ ' 

Finally, using the upper bound for 11 (î ;(is || in Lemma IIL8 and also using (10.11) once 
more, we obtain 

s{x^s^,wy < 32 (1-6^) mm (w)^ 2(1-6^)' 

This implies the theorem.^ • 

It is clear that the above result has value only if the given pair (x, 5) is close 
enough to the target vector w. It guarantees quadratic convergence to the target 
if S{xs,w) < l / \ /2 . Convergence is guaranteed only if S{xs,w) < Y^2 /3 . For larger 
values of S{xs, w) we need a different analysis. Then we measure progress of the iterates 
in terms of the barrier function (j)^{x^s) and we use damped Newton steps. This is 
the subject of the next section. 

10.5 T h e d a m p e d primal-dual N e w t o n m e t h o d 

As before, we are given a positive primal-dual pair (x, 5) and a target vector w > ^. 
Let x+ and 5+ result from a damped Newton step of size a at (x,5). In this section 

^ Recall from Lemma C.6 in Section 7.4.1 that we have the better estimate 

\ / 2 ( l - 5 4 ) 

if the target w is on the central path. We were not able to get the same result if w is off the central 
path. We leave this as a topic for further research. 
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we analyze the effect of a damped Newton step — at (x, s) and for the target w — on 
the value of the barrier function (/)w(x, s) (as defined on page 221). We have 

x~^ = X -\- aAx, s~^ = s -\- aAs, 

where a denotes the step-size, and 0 < ô  < 1. Using the scaled displacements dx and 
dg as defined in (10.6), we may also write 

x~^ = d{v -\- adx), s~^ = d~^ {v -\- ads) •, 

where v = ^/ocs. As a consequence, 

x'^s'^ = {v ^ adx) ('̂  + Oids) = v'^ ^ av {dx + ds) + a^dxdg. 

Since 

we obtain 

Now, defining 

we have 

and 

V {dx -\- ds) = w — xs = w — v'^, 

x~^s~^ = v'^ -\- a {w — v'^) -\- a^dxds. 

'j~^ : = V X + 5 + , 

(i;+) = (^y-\-adx) {v-\-ads) 

{v~^) — v'^ = a {w — v'^) -\- a^dxds 

(10.12) 

(10.13) 

(10.14) 

The next theorem provides a lower bound for the decrease of the barrier function value 
during a damped Newton step. The bound coincides with the result of Lemma 11.72 
if w is on the central path and becomes worse if the 'distance' from w to the central 
path increases. 

Theorem III.11 Let S = S{xs,w) and let a = l/uu — l/{uj -\- 46'^/Sc{w)), where^ 

Then the pair (x+,5+) resulting from the damped Newton step of size a is feasible. 
Moreover, 

(l)w{x,s) - ( / ) ^ ( x + , 5 + ) > V̂  ( 

Proof: It will be convenient to express max {w) (j)w{x^ s), given by (9.4), page 221, in 
terms oi v = ^/xs. We obviously have 

n n 

max {w) (j)^ {x^s) = e^v^ — \ ^ '^j log v^, — e^w + \ . ^j l^S ^j • 

Exercise 71 Verify that 
Ax dx As ds 

X V ^ S V 
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Hence we have the following expression for max (w) (/)^(x+, 5+): 

n n 

m.dix{w) (l)w{x~^ jS~^) = e {v~^) — N . ' ^ j log ('^^) —^ w -\-y ^Wj log Wj. 

With A := (/)^y(x, 5) — (/)^t;(x+, 5+), subtracting both expressions yields 

n ( + \ 2 
max {w) A = e^ f i;^ — (i;^) j + \ ^ î ;̂  log —^2— 

. = 1 

Substitution of (10.13) and (10.14) gives 

max {w) A = —ae^ (^w — v'^) -\- \ ^ Wj log 1 1 + a j + \ ^ î ;̂  log 1 1 + a 

Here we took advantage of the orthogonality of d^ and ds in omitting the term 
containing e^dxdg. The definition of V̂  implies 

log 1 + a = a - ip a 

and a similar result for the terms containing entries of ds. Substi tuting this we obtain 

max [w) A = —ae [w — v ) -\- ae I \ -\- ae I 

.7 = 1 ^ ^ 

M^+,Y„M 

The contribution of the terms on the left of the sum can be reduced to ô  ||(i^|| . This 
follows because 

^ "^ V V V V 

It can easily be understood tha t the sum attains its maximal value if all the coordinates 
of the concatenation of the vectors ad^/v and otd^jv are zero except one, and the 
nonzero coordinate, for which Wj must be maximal, is equal to minus the norm of this 
concatenated vector. The norm of the concatenation of adx/v and adx/v being auo^ 
we arrive at 

max( i ( ; )A > <^||^w|| — max (i(;) V̂  (—Q^CJ) 

= 4Q^(5^ min (i(;) — max (i(;) V̂  (—Q^cj). 

This can be rewritten as 

A > ——- - tjj (-aco) = - — - + Q̂ cj + log (1 - aco). (10.15) 
dc[w) dc[w) 
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The derivative of the right-hand side expression with respect to a is 

A8^ 

5c{w) 
uo 

- uo 
1 • auj 

and it vanishes only for the value of a specified in the lemma. As in the proof of 
Lemma 11.72 (page 201) we conclude tha t the specified value of a maximizes the lower 
bound for A in (10.15), and, as a consequence, the damped Newton step of the specified 
size is feasible. Substitution in (10.15) yields, after some elementary reductions, the 
following bound for A: 

A > 
4(^2 

u;5c{w) 
log 1 

4(^2 

u;5c{w) V̂  
4(^2 

u;5c{w) 

In this bound we may replace cj by a larger value, since '0(t) is monotonically increasing 
for t nonnegative. An upper bound for co can be obtained as follows: 

dx 
< 

\\dw\\ _ 2Sy^mm{w) 

min (v) min (v) 

Let the index k be such tha t min (v) = Vk- Then we may write 

2S^ym.iI]. (w) 2S^/m\n{w) ^ 25^Jwk 

min (v) 
< 28 

Vk Vk ^k^k 
25ul\ 

where u denotes the vector defined in (10.5). The coordinates of u can be bounded 
nicely by using the function p{6) defined in Lemma IL62 (page 182). This can be 
achieved by reducing 6 = 6{xs^w)^ as given in (10.4), in the following way: 

1 

2y^u^m~(w) 

xs w 
min (w) 

rxs\ 
w J 

> 
1 

Hence we have H^̂ "̂  ~ 1̂1 — ^^- Applying Lemma IL62 it follows tha t the coordinates 
of u and u~^ are bounded above by p{S) (cf. Exercise 70, page 238). Hence we may 
conclude tha t 

uj < 2Sp{S). 

Substitution of this bound in the last lower bound for A yields 

A > V̂  
26 

5c{w)p{5) 

completing the proof. D 

The damped Newton method will be used only if S = S{xs,w) > l / \ / 2 , because 
for smaller values of S full Newton steps give quadratic convergence to the target. For 
S = S{xs,w) > 1 /A/2 we have 

26 

V2 

x/2 

1 + V3 
VS-1 = 0.73205, 
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so outside the region of quadratic convergence around the target w^ a damped Newton 
step reduces the barrier function value by at least 

v- 0.73205 \ 

Jj( 0-7320 
') 

— ^ ScM 

Figure 10.1 Lower bound for the decrease in (p^ during a damped Newton step. 

The graph in Figure 10.1 depicts this function for 1 < Sc{w) < 10. 

R e m a r k III . 12 The above analysis is based on the barrier function (f)w(x,s) defined in 
(9.3). We showed in (9.4) and (9.5) that, up to a constant factor max (it;), the variable part 
in this function is given by the weighted primal-dual logarithmic barrier function 

T 
X S - ^ Wj log 

J = l 

In this function the weights occur in the barrier term. 
We want to point out that there exists an alternative way to analyze the damped Newton 

method by using a barrier function for which the weights occur in the objective term. Consider 

(l)w{x,s) := 
\ W ) ^-^ Wj ^-^ \ Wj J 

xs 
w 

(10.16) 

Clearly ^w{x,s) is defined for all positive primal-dual pairs {x,s). Moreover, (/)̂ ;̂(x,s) > 0 
and the equality holds if and only if xs = w. Hence, the solution of the weighted KKT system 
(9.2) is characterized by the fact that it satisfies the equation ^w{x, s) = 0. The variable part 
of ^w{x, s) is given by 

TXS Y ^ 

w ^-^ 
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which has the weights in the objective term. It has recently been shown by de Klerk, Roos 
and Terlaky [172] that this function can equally well serve in the analysis of the damped 
Newton method. In fact, Theorem III.11 remains true if (j)w is replaced by 0̂ ;̂. This might 
be surprising because, whereas (j)w is strictly convex on its domain, (j)^ is not convex unless 
w is on the central path.^ • 

^ Exercise 72 Let (x, s) be any positive primal-dual pair. Show that 



11 

Applications 

11.1 Introduction 

In this Chapter we present some examples of traceable target sequences. The examples 
are chosen to cover the most prominent primal-dual methods and results in the 
literature. We restrict ourselves to sequences that can be traced by full Newton steps.^ 

To keep the presentation simple, we make a further assumption, namely that 
Newton's method is exact in its region of quadratic convergence. In other words, 
we assume that the algorithm generates exact primal-dual pairs for the respective 
targets in the target sequence. In a practical algorithm the generated primal-dual 
pairs will never exactly match their respective targets. However, our assumption does 
not change the order of magnitude for the obtained iteration bounds. In fact, at the 
cost of a little more involved analysis we can obtain the same iteration bounds for a 
practical algorithm, except for a small constant factor. This can be understood from 
the following theorem, where we assume that we are given a 'good' approximation 
for the primal-dual pair {x{w),s{w)) corresponding to the target w and we consider 
the effect of an update of the target to w. We make clear that S{xs,w) ^ S{w,w) if 
5{xs, w) is small. 

Thus, we assume that the proximity 6 = 6{xs^ w) is small. Recall that the quadratic 
convergence property of Newton's method justifies this assumption, li 5 < l / \ /2 then 
in no more than 6 full Newton steps we are sure that a primal-dual pair (x, s) is 
obtained for which 6{xs^w) < 10~^^. Thus, if K denotes the length of the target 
sequence, QK additional Newton steps are sufficient to work with 'exact' primal-dual 
pairs, at least from a computational point of view. 

Theorem III.13 Let the primal-dual pair (x, 5) and the target w be such that 5 = 
5{xs,w). Then, for any other target vector w we have 

S{xs, w) < \ . )_[ S + p{S) S{w, w). 
y mm (w) 

1 The motivation for this choice is that full Newton steps give the best iteration bounds. The results 
in the previous chapter for the damped Newton step provide the ingredients for the analysis of 
target-following methods using the multistep strategy. Target sequences for multistep methods 
were treated extensively by Jansen in [151]. See also Jansen et al. [158]. 
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Proof: We may write 

S{xs,w) 
2^/min~(w) 

xs — w 
xs 2^m.m.{w) 

xs — w -\-w — w 

Using the triangle inequality we get 

S{xs,w) < 
1 

2^/min~(w) 
xs — w 

2^/min~(w) 

xs 

w — w 

This implies 

c-/ -N / mm(w) ^, -
oixs^w) < \ -^-oixs^w) -\-

y min [w) 
2^ym\n{w) 

w w — w 
xs WW 

From the result of Exercise 70 on page 238, this can be reduced to 

oixs,w) < W ^ — - ^ - 0 + pio)oiw,w), 
y mm [w) 

completing the proof. D 

In the extreme case where S{xs,w) = 0, we have xs = w and hence S{xs,w) = 
S{w,w). In that case the bound in the lemma is sharp, since 6 = 0 and p(0) = 1. If 6 
is small, then the first term in the bound for 5{xs, w) will be small compared to the 
second term. This follows by noting that the square root can be bounded by 

/min (w) 
< IWk 

min (w) Y ^k 
< p{5{w,w)). (11.1) 

Here the index k is such that imii{w) = Wk-'^ Since p{6) P:̂  1 if (5 p:̂  0, we conclude 
that (5(x5, w) ^ 5{w, w) if 5 is small. 

11.2 Central -path-fo l lowing m e t h o d 

Central-path-following methods were investigated extensively in Part II. The aim of 
this section is twofold. It provides a first (and easy) illustration of the use of the target-
following approach, and it yields one of the main results of Part II in a relatively cheap 
way. 

The target points have the form w = fie, fi > 0. When at the target w, we let the 
next target point be given by 

w = {l-0)w, 0<0 <l. 

^ When combining the bounds in Theorem III. 13 and (11.1) one gets the bound 

bixs^w) < p(S(w,w)) S(xs,w) -\- p(S(xs,w)) S(w,w), 

which has a nice symmetry, but which is weaker than the bound of Theorem III. 13. 
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Then some straightforward calculations yield S{w, w): 

5{w, w) 
1 

Assuming tha t n > 4 we find tha t 

w 

lie\ Oy^ 

2^/{l-0)fi 2 v T ^ ^ 

S(w, w) < —= if 0 = —=. 
A/2 V ^ 

Hence, by Lemma 1.36, a full Newton step method needs 

.0 
/n lo^ nfi 

iterations^ to generate an e-solution when starting at w^ = fi^e. 

1 1 . 3 W e i g h t e d - p a t h - f o l l o w i n g m e t h o d 

With a little extra effort, we can also analyze the case where the target sequence lies on 
the half line w = fiw^, /i > 0, for some fixed positive vector w^. This half line is a so-
called weighted path in the w-spdice. The primal-dual pairs on it converge to weighted-
analytic centers of the optimal sets of (P) and (D), due to Theorem III.5. Note tha t 
when using a target sequence of this type we can start the algorithm everywhere in the 
w-spsice. However, as we shall see, not using the central pa th diminishes the efficiency 
of the algorithm. 

Letting the next target point be given by 

w = {l-0)w, 0 < 6 '< 1, (11.2) 

we obtain 

5{w, w) 
2^/mhl{w) 

w — w 

w 

WOy^W 

2y^{l-0)mm{w) 2^fY^ 
w 

min (w) 

Using (^c('̂ )5 as defined in (9.6), page 222, which measures the proximity of w to the 
central path, we may write 

w 
min {w) 

max {w) 

min (w) 
^/n5c{w). 

Thus we obtain 

5{w, w) < 
2^1Y^ ' 

^ Formally, we should round the iteration bound to the smallest integer exceeding it. For simplicity we 
omit the corresponding rounding operator in the iteration bounds in this chapter; this is common 
practice in the literature. 
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Assuming n > 4 again, we find that 

1 1 
S{w, w) < —= if 

A/2 A A ^ ^ ^ ' 

Hence, when starting at w^ ̂  we are sure that the duahty gap is smaller than e after 
at most 

T 0 
x / n ^ e K ) l o g ^ (11.3) 

iterations. Here we used the obvious identity (̂ c('̂ )̂ = ^c('^)- Comparing this result 
with the iteration bound of the previous section we observe that we introduce a factor 
^^6c{w^) > 1 into the iteration bound by not using the central path.^ 

The above result indicates that in some sense the central path is the best path to 
follow to the optimal set. When starting further from the central path the iteration 
bound becomes worse. This result gives us evidence of the very special status of the 
central path among all possible weighted paths to the optimal set. 

11.4 Centering method 

If we are given a primal-dual pair (x^,5^) such that w^ = x^s^ is not on the central 
path, then instead of following the weighted path through w^ to the origin, we can use 
an alternative strategy. The idea is first to move to the central path and then follow 
the central path to the origin. We know already how to follow the central path. But 
the other problem, moving from some point w^ in the w-spdice to the central path, is 
new. This problem has become known as the centering problem.^'^ 

The centering problem can be solved by using a target sequence starting at w^ and 
ending on the central path. We shall propose a target sequence that converges in 

V^log(5eK) (11.4) 

iterations.^ The iteration bound (11.4) can be obtained as follows. Let w be obtained 
from some point w outside the central path by replacing each entry Wi such that 

Wi < {1 -\- 6) min {w) 

^ Primal-dual weighted-path-following methods were first proposed and discussed by Megiddo [200]. 
Later they were also analyzed by Ding and Li [67]. A primal version was studied by Roos and den 
Hertog [241]. 

^ The centering approach presented here was proposed independently by den Hertog [140] and Miz-
uno [212]. 

^ Exercise 73 The centering problem includes the problem of finding the analytic center of a 
polytope. Why? 

^ Note that the quantity 8c{w^) appears under a logarithm. This is very important from the viewpoint 
of complexity analysis. If the weights were initially determined from a primal-dual feasible pair 
(x°,s°) , we can say that 5c(w^) has the same input length as the two points. It is reasonable to 
assume that this input length is at most equivalent to the input length of the data of the problem, 
but there is no real reason to state that it is strictly smaller. Since an algorithm is claimed to be 
polynomial only when the bound on the number of iterations is a function of the logarithm of the 
length of the input data, it is better to have the quantity 5c{w^) under the logarithm. 



III. 11 Applications 251 

by (1 + ^) min (w), where 0 is some positive constant satisfying 1 + ^ < Sc{w). It then 
follows tha t 

Using tha t 0 < Wi — Wi < 0 min (w) we write 

1 
S{w, w) 

This implies 

6{w^ w) < 

so we have 

2Y^min {w) 
w — w < 

2^{l^e)imii{w) 

6 min (w) e 

2yqTTo) 
Y^min (w) t 

< 
2^/{lT0)' 2^/\ 

V2 

Oy^ ^ Oy^ 

5(w, w)< ^ if 0 
A/2 V ^ 

At each iteration, Sc{w) decreases by the factor 1 -\- 0. Thus, when start ing at w^, we 
certainly have reached the central pa th if the iteration number k satisfies 

Substi tuting the value of 9 and then taking logarithms, we obtain 

^/2^ 
kloo: 1 > log (5e (^ ' ) . 

If n > 3, this inequality is satisfied if̂  

_k_ 

Thus we find tha t no more than 

>log(5eK). 

/n log Sc{w^) (11.5) 

iterations bring the iterate onto the central path. This proves the iteration bound 
(11.4) for the centering problem. 

The above-described target sequence ends at the point max (w) e on the central 
path. From there on we can follow the central pa th as described in Section 11.2 and 
we reach an e-solution after a total of 

fn log (5c ( ^ ) + log ^— - (11.6) 

If n > 3 then we have 
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i t e r a t i o n s . 

N o t e t h a t t h i s b o u n d for a s t r a t e g y t h a t first cen t r a l i zes a n d t h e n o p t i m i z e s is b e t t e r 

t h a n t h e o n e we o b t a i n e d for t h e m o r e d i r ec t s t r a t e g y (11.2) of fol lowing a s e q u e n c e 

a l o n g t h e w e i g h t e d p a t h . I n fact t h e b o u n d (11.6) is t h e b e s t o n e k n o w n u n t i l n o w 

w h e n t h e s t a r t i n g p o i n t lies a w a y f rom t h e c e n t r a l p a t h . 

R e m a r k I I I . 1 4 T h e above centering s t ra tegy pushes the small coordinates of w^ upward 
to m a x (w^). We can also consider the more obvious s t ra tegy of moving the large coordinates 
of w'^ downward to min (i^°). Following a similar analysis we obta in 

o[w, w) < . 

Hence, 

6(w, iD) < ^ if (9 ^ 
V2 ^/n6c(w^)' 

As a consequence, in the result ing i terat ion bound , which is propor t ional to 1/0, the quant i ty 

dc{w^) does not appear under the logar i thm. This makes clear t h a t we get a slightly worse 

result t h a n (11.5) in this case.^ • 

11.5 Weighted-centering method 

The converse of the centering problem consists in finding a primal-dual pair (x, s) 
such that the ratios between the coordinates of xs are prescribed, when a point on the 
central path is given. If w^ is a positive vector whose coordinates have the prescribed 
weights, then we want to find feasible x and s such that xs = Xw^ for some positive A. 
In fact, the aim is not to solve this problem exactly; it is enough if we find a primal-
dual pair such that 5{xs, Xw^) < l / \ /2 for some positive A. This problem is known as 
the weighted-centering problem}^ 

Let the primal-dual pair be given for the point w^ = fie on the central path, with 
/i > 0. We first rescale the given vector w^ hj di positive scalar factor in such a way 

Exercise 74 Another strategy for reaching the central path from a given vector w^ can be defined 
as follows. When at w, we define w according to 

9 

(1 + e) min(K;), if K;̂  < (1 + 6) min(K;), 

max(K;) — ^min(K;), if Wi > max(K;) — ^min(K;), 

Wi, otherwise. 

Analyze this strategy and show that the iteration bound is the same as (11.5), but when the central 
path is reached the duality gap is (in general) smaller, yielding a slight improvement of (11.6). 

^^ The treatment of the weighted-centering problem presented here was first proposed by Mizuno [214]. 
It closely resembles our approach to the centering problem. See also Jansen et al. [159, 158] and 
Jansen [151]. A special case of the weighted-centering problem was considered by Atkinson and 
Vaidya [29] and later also by Freund [85] and GofRn and Vial [102]. Their objective was to find the 
weighted-analytic center of a polytope. Our approach generates the weighted-analytic center of the 
primal polytope V if we take c = 0, and the weighted-analytic center of the dual polytope T> if we 
take 6 = 0. The approach of Atkinson and Vaidya was put into the target-following framework by 
Jansen et al. [158]. See also Jansen [151]. The last two references use two nested traceable target 
sequences. The result is a significantly simpler analysis as well as a better iteration bound than 
Atkinson and Vaidya's bound. 
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tha t 
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max(i(;^) = /i, 

and we construct a traceable target sequence from w^ to w^. When we put w := w^, 
the coordinates of w corresponding to the largest coordinates of w^ have their correct 
value. We gradually decrease the other coordinates of w to their correct value by using 
the same technique as in the previous section. Let w be obtained from w by redefining 
each entry Wi according to 

Wi := max (wj, (1 — 0)wi) , 

where 6 is some positive constant smaller than one. Note tha t Wi can never become 
smaller than wj and if it has reached this value then it remains constant in subsequent 
target vectors. Hence, this process leaves the 'correct' coordinates ofw — those have 
the larger values — invariant, and it decreases the other coordinates by a factor I — 0, 
or less if undershooting should occur. Thus, we have 

min (w) > {1 — 0) min (w), 

with equality, except possibly for the last point in the target sequence, and 

^ ^Wi — Wi < 0 min (w). 

To make the sequence traceable, 0 cannot be taken too large. Using the last two 
inequalities we write 

S{w, w) 
1 

2^m.m.{w) 
w — w < 

1 

2y/{l-0)mm{w) 

Om.ii].{w) e 

This gives 

5{w, w) < 
Y^min (w) e 

As before, assuming n > 4 we get 

< 
Oy^ 

2y^0^0) 2 A / F ^ 

5{w, w) < 
V2 

if 0 

Before the final iteration, which puts all entries of w at their correct values, each 
iteration increases 6c{w) by the factor 1/ (1 — ^) . We certainly have reached w^ \i the 
iteration number k satisfies 

Taking logarithms, this inequality becomes 

- A : l o g ( l - 6 ' ) >\og5c{w^) 

and this certainly holds if 
kO >\og8c{w^), 

since 6 < — log (1 — ^) . Substitution of ^ = l / y ^ yields tha t no more than 

V n \og5c{w^) 

iterations bring the iterate to w^. 
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11.6 Centering and optimizing together 

In Section 11.4 we discussed a two-phase strategy for the case where the initial primal-
dual feasible pair (x^, s^) is not on the central path. The first phase is devoted to 
centralizing and the second phase to optimizing. Although this strategy achieves the 
best possible iteration bound obtained so far, it is worth considering an alternative 
strategy that combines the two phases at the same time. 

Let w' 0 „o^o s^ and consider the function / : 1R+ -^ IR^ defined by 

m ••- ewo 
o>o. (11.7) 

The image of / defines a path in the w-spdice starting at /(O) = w^ and converging to 
the origin when 6 goes to infinity. See Figure 11.1. 

W2 

-^ Wi 

F i g u r e 11 .1 A Dikin-path in the w;-space (n = 2). 

We refer to this path as the Dikin-path in the w-spdiCe starting at w^}^ It may easily 
be checked that if w^ lies on the Dikin-path starting at w^, then the Dikin-path 

^̂  Dikin, well known for his primal affine-scaling method for LO, did not consider primal-dual 
methods. Nevertheless, the discovery of this path in the ly-space has been inspired by his work. 
Therefore, we gave his name to it. The relation with Dikin's work is as follows. The direction of 
the tangent to the Dikin-path is obtained by differentiating f(6) with respect to 6. This yields 

dm 
de 

- (^0)2 

(e +6*^0)2 
-f{of 

This implies that the Dikin-path is a trajectory of the vector field —K;^ in the ly-space. Without 
going further into it we refer the reader to Jansen, Roos and Terlaky [156] where this field was 
used to obtain the primal-dual analogue of the so-called primal affine-scaling direction of Dikin [63]. 
This is precisely the direction used in the Dikin Step Algorithm, in Appendix E. 
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starting at w^ is just the continuation of the path starting at w^}'^ Asymptotically, 
the Dikin-path becomes tangent to the central path, because for very large values of 
0 we have 

We can easily establish that along the path the proximity to the central path is 
improving. This goes as follows. Let w := f{0). Then, using that / preserves the 
ordering of the coordinates,^^ we may write 

6c{w) 
max (w^) / O N 

(11.^ 

1+^ min (w' 

The last inequality is strict if bciyj^) > 1. Also, the duality gap is decreasing. This 
follows because 

T 0 

e^Ow^ ~ 1 + 6'mm(i(;0) 

Consequently, the Dikin-path achieves the two goals that were assigned to it. It 
centralizes and optimizes at the same time. 

Let us now try to devise a traceable target sequence along the Dikin-path. Suppose 
that w is a point on this path. Without loss of generality we may assume that 
w = /(O) = w^. Let w := f{6) for some positive 6. Then we have 

6{w^ w) 
1 

2Y^min {w) 

which can be simplified to 

6{w^ w) -

w — w 1 

1 

2Y^min (w) 

Ow^ 

e+6>w W 

Ow 

Using that / preserves the ordering of the coordinates we further deduce 

6{w, w) 

which gives 

Ynr+^inin(i(J) 

2Y/min (w) Ow 
< 

Y^max (w) 

2^ym\n{w) 
Ow 

y^e -\- Ow 

5{w, w) < 

Finally, since e + ^i(; > e, we get 

\ / ^ c ( ^ ) Ow 

\/e + Ow 

5{w,w)<\e^/5jw)\\w\\-

Exercise 75 Show that if w^ lies on the Dikin-path starting at K;°, then the Dikin-path starting 
at K;-*̂  is just the continuation of the path starting at K;°. 

^^ Exercise 76 Let lyj < K;0 < . . . < w^ and w := f(e), with f(e) as defined in (11.7). Prove that 
for each positive 6 we have wi < W2 < . .. < Wn-
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So we have 

5(w,w)<^ if e= ^'^ 

We established above that the duahty gap is reduced by at least the factor l-\-0 min (w). 
Replacing 0 by its value defined above, we have 

Using Sc{w) < Sc{w^), we deduce in the usual way that after 

T 0 
( 5 , ( ^ 0 ) ^ A ^ ^ log ^ (11.9) 

iterations the duality gap is smaller than s. 
For large values of Sc{w^) this bound is significantly worse than the bounds obtained 

in the previous sections when starting off the central path. It is even worse — 
by a factor Sc{w^) — than the bound for the weighted-path-following method in 
Section 11.3. The reason for this weak result is that in the final step, just before 
(11.9), we replaced Sc{w) by 5c{w^). Thus we did not fully explore the centralizing 
effect of the Dikin-path, which implies that in the final iterations 6c{w) tends to 1. 

To improve the bound we shall look at the process in a different way. Instead of 
directly estimating the number of target moves until a suitable duality gap is achieved, 
we shall concentrate on the number of steps that are required to get close to the central 
path, a state that can be measured for instance by Sc{w) < 2. 

Using (11.8) and substituting the value of 0, we obtained 

1^0mm{w) \\w\\ y^Sc{w) ^mm{w)V^ 
oAw) = oAw) ;—- = oAw) , —. 

^ ^ ^ M + ^max(^) "̂  ^ ll^ll v / ^ ^ + max(^)A/2 
This can be written as 

/ A/2 (max ( ^ ) - m i n (^)) \ 
oJw) = oJw) 1 , — . 

V l k l l A / ^ ^ + max(^)A/2y 

Using that \\w\\ < max {w)y^ and max (w) = Sc{w) min (w) we obtain 

S,{w)<S,{w) 1 / / ^ ^ ^ ^ v 

y ( 5 e ( ^ ) ( A A ^ ^ + A / 2 ) 
Now assuming n > 6 and Sc{w) > 2 we get 

V2{6c{w)-1) ^ 1 

This can be verified by elementary means. As a consequence, under these assumptions, 

1 \ 
6,{w) < 6,{w) 1 

2y^n6c{w) 
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Hence, using that Sc{w) < Sc{w^), after k iterations we have 

By the usual arguments, it follows that Sc{w) < 2 after at most 

iterations. The proximity to the central path is then at most 2. Now from (11.9) it 
follows that the number of iterations needed to reach an e-solution does not exceed 

T 0 

2V2n log 
s 

By adding the two numbers, we obtain the iteration bound 

T 0 
V^ 2A/2 log + 2 V / ^ ; K ) log 

s ' " " "̂ "̂" ' " " 2 

Note that this bound is better than the previous bound (11.9) and also better than 
the bound (11.3) for following the weighted central path. But it is still worse than the 
bound (11.6) for the two-phase strategy. 

11.7 Adaptive and large target-update methods 

The complexity bounds derived in the previous sections are based on a worst-case 
analysis of full Newton step methods. Each target step is chosen to be short enough 
so that, in any possible instance, proximity will remain under control. Moreover, the 
target step is not at all influenced by the particular primal-dual feasible pair. As a 
consequence, for an implementation of a full-step target-following method the required 
running time may give rise to some disappointment. 

It then becomes tempting to take larger target-updates. An obvious improvement 
would be to relate the target move to the primal-dual feasible pair and to make the 
move as large as possible while keeping proximity to the primal-dual feasible pair 
under control; in that case a full Newton step still yields a new primal-dual feasible 
pair closer to the target and the process may be repeated. This enhancement of the 
full-step strategy into the so-called adaptive step or maximal step strategy does not 
improve the overall theoretical complexity bound, but it has a dramatic effect on the 
efficiency, especially on the asymptotic convergence rate.^^ 

Despite this nice asymptotic result, the steps in the adaptive-step method may in 
general be too short to produce a really efficient method. In practical applications it 
is often wise to work with larger target-updates. One obvious shortcoming of a large 

^^ In a recent paper [125], Gonzaga showed that the maximal step method — with some additional 
safeguard steps — is asymptotically quadratically convergent; i.e., in the final iterations the duality 
gap converges to zero quadratically. Gonzaga also showed that the iterates converge to the analytic 
centers of the optimal sets of (P) and (D). 
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target-update is that the full Newton step may cause infeasibility. To overcome this 
difficulty one must use a damped Newton step. The progress is then measured by 
the primal-dual barrier logarithmic function (l)^{x,s) analyzed in Section 10.5. Using 
the results of that section, iteration bounds for the damped Newton method can be 
derived for large-update versions of the target sequences dealt with in this chapter. 
In accordance with the results in Chapter 7 for the logarithmic barrier central-path-
following method, the iteration bounds are always a factor y ^ worse than those for 
the full-step methods. We feel that it goes beyond the aim of this chapter to give a 
detailed report of the results obtained in this direction. We refer the reader to the 
references mentioned in the course of this chapter.^^ 

^^ In this connection it may be useful to mention again the book of Jansen [151], which contains a 
thorough treatment of the target-following approach. Jansen also deals with methods using large 
target-updates. He provides some additional examples of traceable target sequences that can be 
used to simplify drastically the analysis of existing methods, such as the cone-afRne-scaling method 
of Sturm and Zhang [260] and the shifted barrier method of Freund [84]. These results can also be 
found in Jansen et al. [158]. 
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The Dual Newton Method 

12.1 Introduct ion 

The results in the previous sections have made clear that the image of a given target 
vector w > 0 under the target map ^PD{W) can be computed provided that we are 
given some positive primal-dual pair (x^s). If the given pair (x, 5) is such that xs 
is close to w, Newton's method can be applied to the weighted KKT system (9.2). 
Starting at (x, s) this method generates a sequence of primal-dual pairs converging to 
^PD{W). The distance from the pair (x, s) to w is measured by the proximity measure 
5{xs,w) in (10.4): 

e - / X 1 \\W — XS\ 

o[xs,w) : 2y/i[nm (w) xs 

If 5{xs,w) < l / \ /2 then the primal-dual method converges quadratically to ^PD{W). 

For larger values of 5{xs, w) we could realize a linear convergence rate by using damped 
Newton steps of appropriate size. The sketched approach is called primal-dual because 
it uses search steps in both the x-space and the 5-space at each iteration. 

The aim of this chapter and the next is to show that the same goal can be realized 
by moving only in the primal space or the dual space. Assuming that we are given a 
positive primal feasible solution x, a primal method moves in the primal space until 
it reaches x{w). Similarly, a dual method starts at some given dual feasible solution 
{y,s) with 5 > 0, and moves in the dual space until it reaches {y{w),s{w)). We deal 
with dual methods in the next sections, and consider primal methods in the next 
chapter. In both cases the search direction is obtained by applying Newton's method 
to a suitable weighted logarithmic barrier function. The general framework of a dual 
target-following algorithm is described on page 260. The underlying target sequence 
starts at w^ and ends at w. 

12.2 T h e we ighted dual barrier funct ion 

The search direction in a dual method is obtained by applying Newton's method to 
the weighted dual logarithmic barrier function (j)^(y), given by 

^'(^) •= M ^ (^b^y + J2wa^ssj , (12.1) 
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Generic Dual Target-following Algorithm 

Input: 
A dual feasible pair (7/̂ , s^) such that y^ = y (w^) ; s^ = s {w^y, 
a final target vector w. 

begin 
y := y^; s = s^;w := w^; 
while w is not 'close' to w do 
begin 

replace w by the next target in the sequence; 
while (^,5) is not 'close' to {y{w),s{w)) do 
begin 

apply Newton steps at (7/, 5) to the target w 
end 

end 
end 

with s = c — A^y. In this section we prove that (t)^{y) attains its minimal value at 
y{w). In the next section it turns out that (t)^{y) is strictly convex. The first property 
can easily be derived from the primal-dual logarithmic barrier function (j)^ used in 
Section 10.5. With w fixed, we consider (/)̂  at the pair {x{w)^s). Starting from (9.4), 
page 221, and using x{w)^s = (Fx{w) — b^y and x{w)s{w) = w we write 

n n 

max(i(;) (j)w{x{w),s) = x{w)^s — /Z^J logXj{w)sj — e^w -\- /Z^J \ogWj 

n n 

= x{w)^s — 2^ '^j log Sj — e^w -\- 2^ '^j log Sj (w) 

n n 

= c^x{w) — b^y — 2^ '^j log Sj — e^w -\- \ ^ Wj log 5̂  (w) 

n 

= min (w) (j)^{y) + c^x{w) — e^w -\- V^'^j \ogSj{w). 
j = i 

Since w is fixed, this shows that m.ii].{w) (j)f^^{y) and indix{w)(j)uj{x{w),s) differ by a 
constant. Since (j)w{x{w),s) attains its minimal value at s{w), it follows that (/)^(^) 
must attain its minimal value at y{w)} 

^ Exercise 77 For each positive primal-dual pair (x,s), prove that 

(t)w{x,s) = (pw(x,s(w)) -\-(pw(x(w),s). 
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1 2 . 3 D e f i n i t i o n o f t h e d u a l N e w t o n s t e p 

Let y be dual feasible and w > ^. We denote the gradient of (t)^{y) at y by g^{y) and 
the Hessian by H^{y). These are 

mm [w) ^ ^ 

and 

Ht{y) ••= — V ^ AWS-'A^, 
mm [w) 

as can be easily verified. Note tha t H^{y) is positive definite. It follows tha t (t)^{y) is 
a strictly convex function. 

The Newton step at y is given by 

Ay = -Ht{y)-'gt{y) = {AWS-^A^)~' {b - AWs-'). (12.2) 

Since y{w) is the minimizer of (j)^{y) we have /\y = 0 if and only if ^ = y{w). We 
measure the proximity of y with respect to y{w) by a suitable norm of AT/, namely 
the norm induced by the positive definite matr ix H^{y): 

We call this the Hessian norm of Ay. We show below tha t it is an appropriate 
generalization of the proximity measure used in Section 6.5 (page 114) for the analysis 
of the dual logarithmic barrier approach. More precisely, we find tha t both measures 
coincide if w is on the central path . 

Using the definition of the Hessian norm of Ay = —H^{y)~^g^{y) we may write 

SHy, w) = ^AyTHd(y)Ay = ^gtiyV Hi{y)-^ gi{y). (12.3) 

R e m a r k III . 15 The dual proximity measure d^{y,w) can be characterized in a different 
way as follows: 

6 {y,w) = — ^ ^ ^ ^ = min <\\d ^ Ix ) 
^/m\n(iii) a; III V sj Y^min (w) 

where 

Ax : 

d : = ^ . (12.4) 
s 

We want to explain this here, because later on, for the primal method this characterization 
provides a natural way of defining a primal proximity measure. 

Let X satisfy Ax = b. We do not require x to be nonnegative. Replacing b by Ax in the 
above expression (12.2) for Ay and using d from (12.4), we obtain 

A^ = (AD^A^y^ (Ax - AWs-^) . 

This can be rewritten as 

Ay = {AD^A'')-' ADd-' {x - ws-') = {AD^A'^) " ' AD ^ ^ ^ . 
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The corresponding displacement in the slack space is given by As = —A^Ay. This implies 

^2 / . T \ - 1 
dAs : 

This makes clear that —dAs is equal to the orthogonal projection of the vector (sx — w) /^/w 
into the row space of AD. Hence, we have 

dAs -
sx{s,w) — w 

Vw 
where 

x{s, w) = argmin 

Lemma 111.16 below implies 

6'^{y,w) 

inc. \ 

Y^min (w) 

: Ax = b 

WdAsW. 

}• 

The claim follows. 

1 2 . 4 F e a s i b i l i t y o f t h e d u a l N e w t o n s t e p 

Let y~^ result from the Newton step at y: 

y^ :=y^Ay. 

If we define 
As := -A^Ay, 

the slack vector for y~^ is just s -\- As, as easily follows. The Newton step is feasible if 
and only if 5 + As > 0. It is convenient to introduce the vector v according to 

V := 
w 

min (w) 
(12.5) 

Note tha t v > e and v = e if and only if w is on the central path. Now we can prove 
the next lemma. From this lemma it becomes clear tha t 5^{y,w) coincides with the 
proximity measure 5{y,jii), defined in (6.7), page 114, if w = fie. 

L e m m a III .16 

vAs 
s 

> 
\As\ 

s 
> 

\As\ 
s 

If S^{y, w) < 1 then y* = y ^ Ay is dual feasible. 

Proof: Using (12.3) and the above expression for H^{y), we write 

5%y,wf = /\y^Ht{y)/\y. 1 

min {w) 
I^y'^AWS-'^A^/ly. 
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Replacing A^Ay by —As and also using the definition (12.5) of v, we get 

263 

Thus we obtain 

S'^iy,wf=As'^V^S-^As 

5''iy,w) 

vAs 

\vAs 
s 

> 
\As\ 

s 
> 

\As\ 
s 

The first inequality follows because v > e, and the second inequality is trivial. This 
proves the first part of the lemma. For the second part, assume S'^iy.w) < 1. Then 
we derive from the last inequality in the first part of the lemma that \As\ < 5, which 
implies s -\- As > 0. The lemma is proved. • 

12.5 Quadrat ic convergence 

The aim of this section is to generalize the quadratic convergence result of the dual 
Newton method in Theorem 11.21, page 114, to the present case.^ 

Theorem III .17 S'^iy^.w) < 5'^{y,wf. 

Proof: By definition 

5\y+,wf=gi{y+fHi{y+)-'gt{y+). 

The main part of the proof consists of the calculation of H^{y^) and gf^iy^)-
It is convenient to work with the matrix 

B'=AV{S^ASy^. 

Using B we write 
Hi{y'') = AV^ {S + A6')"^ A^ = BB^. 

Note that BB^ is nonsingular because A has full row rank. For g^{y~^) we may write 

- 1 
nd (n,+ (y^) min (w) 

- 1 
min (w) 

{b-AW{s^As)-^) 

b-AWs-^^AW 
s s -\- As 

The first two terms form g^jiy). Replacing W in the third term by min (i(;) y^, we 
obtain 

r.d (,,+ {y^)=gt{y)-AV' 
As 

5 (5 + As) 

^ An alternative proof of Theorem III. 17 can be given by generalizing the proof of Theorem 11.21; 
this approach is followed in Jansen et al. [157] and also in the next chapter, where we deal with 
the analogous result for primal target-following methods. The proof given here seems to be new, 
and is more straightforward. 
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Since 

we get 

gi{y) = -Ht{y)Ay = -AV^S-^A^Ay = AV^S-^As 

r,d / „ + (y+) = AV 
5^ S {s -\- As) 

AV' 
{AsY 

52 (5 + As) 

The definition of B enables us to rewrite this as 

gi(y+) = BV (^^^ . 

Substituting the derived expressions for H^{y^) and g^{y~^) in the expression for 
S^{y^,w)'^ we find 

S^{y+,wf K^ B^BBT'BV(^\ 

Since B^ [BB^) 5 is a projection matrix,^ this implies 

5^{y^,w)' < V 

whence 

5\y+,w)< 

As 

V 

V 
As 

V 
As 

As < 
\As\ 

s loo 1 

\VAs\ 
s 

Finally, using Lemma III. 16, the theorem follows. D 

12.6 T h e d a m p e d dual N e w t o n m e t h o d 

In this section we consider a damped Newton step to a target vector i(; > 0 at an 
arbitrary positive dual feasible y with positive slack vector s = c — A^y. We use the 
damping factor a and move from y to y~^ = y -\- a Ay. The resulting slack vector is 
5+ = c — A^y~^. Obviously 5+ = s-\-aAs, where As = —A^Ay. We prove the following 
generalization of Lemma 11.38. 

Theorem III.18 Let S = 5^{y^w). If a = l/{Sc{w)-\-S) then the damped Newton step 
of size a is feasible and 

c^t{y)-c^t{y^)>Sc{w)^ 
Sc{w)J ' 

^ It may be worth mentioning here how the proof can be adapted to the case where A does not 
have full row rank. First, 6^{y^w) can be redefined by replacing the inverse of the Hessian matrix 
H^{y) in (12.3) by its generalized inverse. Then, in the proof of Theorem III.17 we may use the 
generalized inverse of BB^ instead of its inverse. We then also have that 

B'^{BB'^yB 

is a projection matrix and hence we can proceed in the same way. 
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Proo f : Defining /\ := (j)^{y) — (j)^{y^)^ we have 

265 

-1 

min {w) 
b^y - b^y^ - ^ " ^ i log 

i=l 

or equivalently, 

- — - -ab^Ay - V ^^ log ( 1 
i^As 

Using the definition of the function tjj, we can write this as 

. / X -ab^Ay - V ^ W - > 
aAsj 

Thus we obtain 

A 
1 ( iT \ rj. As v-^ , f aAsi 

—- ab Ay + aw > Wiip 
imiiiw) \ s ^-^ 

The first two terms between the outer brackets can be reduced to OL min (w)b^. To this 
end we write 

b^Ay + w^ — = (^ - AWs~^)^ Ay = - min {w) g^{y)^Ay. 

Since Ay = -H^{y)-^gi{y), we get 

b Ay -\- w — = mm iw)o , 

proving the claim. Using the same argument as in the proof of Theorem I I I . l l , it can 
easily be understood tha t the sum between the brackets at tains its maximal value if all 
the coordinates of the vector aAs/s are zero except one, and the nonzero coordinate, 
for which Wj must be maximal, is equal to minus the norm of this vector. Thus we 
obtain 

A > 
1 

min (w) 

aS'^ — Sc{w) ip ( —a 

amm{w)5 — max (i(;) V̂  ( — ô  

As 

As 

Now also using Lemma III. 16 and the monotonicity of ^p we obtain 

A>aS'^- Sc{w) V̂  {-aS) = aS'^ + Sc{w) {aS + log (1 - aS)). 

It is easily verified tha t the right-hand side expression is maximal if ô  = l/{5c{w)-\-5). 
Substitution of this value yields 

A>S^Sc{w)\ogi 1 
ScH^S 

S-Sc{w)\ogi 1 + 
Sc{w) 
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This can be written as 

A > Sc{w) 

completing the proof. 

Sc{w) 
log 1 

Sc{w) 
5c{w)il) 

6c{w)J ' 

D 

12.7 Dua l t ar ge t -updat ing 

When analysing a dual target-following method we need to quantify the effect of 
an update of the target on the proximity measure. We derive the dual analogue of 
Theorem III. 13 in this section. We assume that (T/, S) is dual feasible and S = S^{y, w) 
for some target vector w, and letting w"^ be any other target vector we derive an 
upper bound for 6^{y^w*). We have the following result, in which 6 {w*^w) measures 
the 'distance' from w'' to w according to the primal-dual proximity measure introduced 
in (10.4): 

6{w'' ̂ w) := 
2Y^min (w) 

w -w^ (12.6) 

Theorem III.19 

S\y,wn< 
^/m\n{w) 

Proof: By definition 6^{y^w*) satisfies 

8\y,w'') = | |4*(?/)L.^(^)-i = 

This implies 

5'^{y,w)^25(w\w) 

-1 
min {w*) 

{h-AWs-^) 
11! * ^^ ^ 

(v)-
6\y,w*) = . \ ^. \\b - AWs-' -A{W*- W)s-'\\^, 

Using the triangle inequality we derive from this 

We have^ 

nnn [w ) 

y 

AW*S-^A 2 AT 1 

min (w*) 

min (w) 

mm 

. , -mm I — I Hfjy)' 

min (i(;*) 

AWS-^A'^ 

^ The meaning of the symbol ' ^ ' below is as follows. For any two square matrices P and Q we write 
P y Q (or P ^ Q) if the matrix P — Q is positive semidefinite. If this holds and Q is nonsingular 
then P must also be nonsingular and Q~^ :< P~^. This property is used here. 
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Hence 
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w 

w^ 
Ht{y)-'-

We use this inequahty to estimate the first term in the above estimate for 5^{y^w*): 

imii{w) II ^ 

min (i(;*) 'M\\H^ AvY < 
min (i(;) /min(i(;*) 
min(i(;*)y min(i(;) 

w 
w^ 

la"^ (y)\\ 

min {w) 

w^ 
5\y,w). 

y min (w*) 

For the second term it is convenient to use the positive vector 'u* defined by 

w"" 
y min (i(;*)' 

and the matrix B defined hy B = AS~^. Then we have 

Hi,{y) = B{V*fB^ 

and 
A{W'' -W)s-^ =B{w* -w). 

so we may write 

l^(^*-^)«"ii^(,)- {B {w - w*)f (^B {V*f B'^j B{w-w*) 

((y*)-' (w - w*)Y H (v*)-^ {w - w*), 

where 

H = {BV*f (B {V*f B^) BV*. 

Clearly, H = H^. Thus, iJ is a projection matrix, whence H < I. Therefore, 

A{W^-W)s-%, < ( y * ) - ^ ( ^ - ^ * ) =min (^* ) w -w^ 

The last equality follows by using the definition of v^. Thus we obtain 

min('w;*) "^^^" " ^ ^ ii^:^*(2/)' ^min(i(;*) 

Substituting the obtained bounds we arrive at 

5Hy,w*)< 
I min (w) 

min (i(;*) !(;* 
S'iy.w)^ 

1 

^/mhl{nF) 
w -w^ 



268 III Target-following Approach 

Finally, using the definition of the primal-dual proximity measure S {w* ̂ w)^ according 
to (10.4), we may write 

1 w — w 

/w^ 

25 {w^ ,w) Y^min (w) 

Y^min (w*) Y^min (w*) 

and the theorem follows. 

In the special case where w^ = {1 — 0)w the above result reduces to 

(12.7) 

D 

Moreover, if u; = /le, this gives 

\w\\ 
y l̂ — 0 niin (w) J 1 

' Vfa,»)+^ii'"ii 
min (w) J 

S'{y,w*)<y--^{S^{y,w) + 0^) 
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The Primal Newton Method 

13.1 Introduct ion 

The aim of this chapter is to show that the idea of a target-following method can also be 
realized by moving only in the primal space. Starting at a given positive primal feasible 
solution X a primal method moves in the primal space until it reaches x{w) where 
w denotes an intermediate (positive) target vector. The search direction follows by 
applying Newton's method to a weighted logarithmic barrier function. This function is 
introduced in the next section. Its minimizer is precisely x{w). Hence, by taking (full or 
damped) Newton steps with respect to this function we can (approximately) compute 
x{w). The general framework of a primal target-following algorithm is described below. 

Generic Primal Target-following Algorithm 

Input: 
A primal feasible vector x^ such that x^ = x (^w^); 
a final target vector w. 

begin 
X := x^; w := w^; 
while w is not 'close' to w do 
begin 

Replace w by the next target in the sequence; 
while X is not 'close' to x{w) do 
begin 

Apply Newton steps at x to the target w 
end 

end 
end 

The underlying target sequence starts at w^ and ends — via some intermediate target 
vectors — at w. 
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13.2 T h e we ighted primal barrier funct ion 

The search direction in a primal method is obtained by applying Newton's method to 
the weighted primal barrier function given by 

rjx) := — 1 ^ Ux-pw,logxA . (13.1) 

We first establish that (/)^(x) attains its minimal value at x{w). This easily follows 
by using the barrier function (/)̂  in the same way as for the dual weighted barrier 
function. Starting from (9.4), on page 221, and using x^s{w) = c^x — b^y{w) and 
x{w)s{w) = w we write 

n n 

max(i(;) (j)u;{x,s{w)) = x^s{w) — /Z^J ^^^XjSj{w) — e^w -\- /Z^J l^gi^j 

n n 

= x^s{w) — 2^ '^j log Xj — e^w -\- 2^ '^j log Xj(w) 

n n 

= c^x — 2^ '^j log Xj — b^y{w) — e^w -\- \ ^ Wj log Xj (w) 

n 

= min (w) (j)^ (x) — b^y{w) — e^w -\- \ ^ Wj log Xj (w). 

This implies that x{w) is a unique minimizer of (/)^(x). 

13.3 Def ini t ion of t h e primal N e w t o n s t e p 

Let X be primal feasible and let w > 0. We denote the gradient of (/> (̂x) at x by g^{x) 
and the Hessian by H^{x). These are 

and 

H^{x) := —l—WX-^ = V^X-\ 
mm [w) 

where V = diag('u), with v as defined in (12.5) in the previous chapter. Note that 
H^{x) is positive definite. It follows that (i)^{x) is a strictly convex function. 

The calculation of the Newton step Ax is a little complicated by the fact that we 
want X + Ax to stay in the affine space Ax = h. This means that Ax must satisfy 
A/\x = 0. The Newton step at x is then obtained by minimizing the second-order 
Taylor polynomial at x subject to this constraint. Thus, Ax is the solution of 

min [/\x^gl{x)^\/\x^Hl^{x)/\x : AAx = 0 I . 
Ax [ 2 J 
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The optimahty conditions for this minimization problem are 

A/\x 0, 

where the coordinates of î  G IR"̂  are Lagrange multipliers. We introduce the scaling 
vector d according to 

d'r-
X 

fw 

Observe that H]P^{X) = D ^/min (w). The optimality conditions can be rewritten as 

-d~^ Ax ^ mm {w){AD)^u = d (c -—) 

AD{d-^Ax) 0, 

which shows that —d ^Ax is the orthogonal projection of d{c — w/x) into the null 
space of AD: 

-d-^Ax = PAD(d(c--)) =^ AX = -DPAD xc — w 
w 

(13.2) 

R e m a r k III .20 When w = /j.e we have d = xl-^fjl. Since AD and AX have the same null 
space, we have PAD — PAX- Therefore, in this case the Newton step is given by 

Ax - - — XPAX ( ^^~^^ -XPAX ( — - e 

This search direction is used in the so-called primal logarithmic barrier method, which is 
obtained by applying the results of this chapter to the case where the targets are on the 
central path. It is the natural analogue of the dual logarithmic barrier method treated in 
Chapter 6. • 

We introduce the following proximity measure to quantify the distance from x to 
x{w): 

6P{x,w) ^=^ min <̂  \\d (s ) 
m(w) y.s III \ x) Y^min {w) 

: A^y i (13.3) 

This measure is inspired by the measure (6.8) for the dual logarithmic barrier method, 
introduced in Section 6.5.^ Let us denote by s{x,w) the minimizing 5 in (13.3). 

Lemma III.21 We have 

b^{x,w) 
vAa 

y^inm{w) 

X s{x,w) — w 

w 

Proof: For the proof of the first equality we eliminate 5 in (13.3) and write 

Qinj L i f s - —)\\ : A^y^s = c\ = min | U f c - —) - DA^y\\\ . 
y,s l\\ \ X / W ) y I W \ X / W) 

m m • 

^ Similar proximity measures were used in Roos and Vial [245], and Hertog and Roos [142] for primal 
methods, and in Mizuno [212, 214] and Jansen et al. [159] for primal-dual methods. 
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Let y denote the solution of the last minimization problem. Then 

d ?)^-^^+--(K-?)) 
Thus we obtain 

From (13.2), 

Hence we get 

P A D ( ^ ( C - ^ ) ) =-d-'Ax. 

X 

1 

Y^min (w) 
\\d-^Ax\ 

1 

Y^min (w) 

y/w/\x 

X 
= 

\vAx 
X 

proving the first equality in the lemma. The second equality in the lemma follows from 
the definition of s{x,w).'^ • 

From the above proof and (13.2) we deduce that 

d-^Ax = - ^ ^ ( ^ ' ^ - ^ . (13.4) 
'w 

Also observe that the lemma implies that, just as in the dual case, the proximity 
measure is equal to the 'Hessian-norm' of the Newton step: 

SP{x,w) = \\Ax\\^,^^y 

13.4 Feasibil i ty of t h e primal N e w t o n s t e p 

Let x+ result from the Newton step at x: 

x~^ := X -\- Ax. 

The Newton step is feasible if and only if x -\- Ax > 0. Now we can prove the next 
lemma. 

Lemma III.22 If 6^{x^w) < 1 then x* = x + Ax is primal feasible. 

Proof: From Lemma nL21 we derive 

SP{x,w) 
\vAx 

X 
> 

\Ax\ 
X 

> 
\Ax\ 

X 

Hence, if SP{X,W) < 1, then \Ax\ < x, which implies x -\- Ax > 0. The lemma follows. 
D 

Exercise 78 If 6P(X,W) < 1 then s(x,w) is dual feasible. Prove this. 
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1 3 . 5 Q u a d r a t i c c o n v e r g e n c e 

We proceed by showing tha t the primal Newton method is quadratically convergent. 

T h e o r e m III .23 SP{X^,W) < SP{X,W)'^. 

Proof: Using the definition of 5^{x~^ ,w) we may write 

SP{x^,w) 
1 

< 

< 

^/mhl(w) 

1 

1 

x~^s{x~^,w) — w 

x~^s{x,w) — w 

w 

Denote 5 := s{x,w). From (13.4) we obtain 

;\\X~^S{X,W) — W\\. 

sAx = sdd~^Ax = —ds 

This implies 

\\x~^s — w\\ = \\{x -\- Ax)s — w\\ = 

Combining the above relations, we get 

1 \\ f xs — w 

X s — w X s{x s — w) 

w 

xs — w 

w 

xs{xs — w) 

w 

{xs — wY 

w 

This completes the proof. 

< 
y min(i(;) 

xs — w SP{x,wy 

D 

1 3 . 6 T h e d a m p e d p r i m a l N e w t o n m e t h o d 

In this section we consider a damped primal Newton step to a target vector w > 0 at 
an arbitrary positive primal feasible x. The damping factor is again denoted by a and 
we move from x to x~^ = x -\- a Ax. After Theorem III. 18 it will be no surprise tha t 
we have the following result. 

T h e o r e m III .24 Let S = SP{X,W). If a = l/{Sc{w) + S) then the damped Newton 
step of size a is feasible and 

rjx)-rjx+)>5,{w)^p 
Sciw) 
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Proof: Defining A := (/)^(x) — (/)^(x+), we have 

1 

min (w) 
(F X C^X~^ -\- 2_. ^i log 

i=l 

X^ 

Xi 

or equivalently, 

A . , , -OLC^ A X + > Wi\og\\A 
mm [w] \ ^-^ \ Xi 

otlS^Xi . f a/\xi 

Using the definition of the function V̂ , this can be rewritten as 

A = 

Thus we obtain 

A 

^ ( T^ ^ f 
—,——— -ac Ax + > Wi\ 
mm \w) \ ^ \ 

1 
OLC A x + OLW > . '^iy 

i=l 
X Xi min (w) 

We reduce the first two terms between the outer brackets to o^min (w) S'^: 

-c Ax -\- w = — c Ax, 
X \ X / 

and from (13.2), 

i^-^y Ax w d{c--j PAD[dl^c 

2 

w 

AD {"i'-m k-^AxIr. 

Since d = x / y ^ this implies 

(c j Ax = min (w) S'^, 

proving the claim. The sum between the brackets can be estimated in the same way 
as for the dual method. Thus we obtain 

A > 
1 

min (w) 

aS'^ — Sc{w) V̂  ( —a 

a min (w) S'^ — max (w) V̂  ( —a 

Ax 

Ax 

yielding exactly the same lower bound for A as in the dual case. Hence we can use 
the same arguments as we did there to complete the proof. • 
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1 3 . 7 P r i m a l t a r g e t - u p d a t i n g 

We derive the primal analogue of Theorem III. 19 in this section. We assume tha t x is 
primal feasible and 6 = 6^{x^w) for some target vector w. For any other target vector 
w* we need to derive an upper bound for 6^{x^w*). The result is completely similar 
to Theorem III. 19, but the proof must be adapted to the primal context. 

T h e o r e m III .25 

5P{x,w'') < 

Proof: By Lemma III.21, 

5P{x,w'') 
Y^min (i(;*) 

5P{x,w)^25(w\w) . 

X s{x^w'') — w* 

/w^ 

where s{x, w"^) satisfies the affine dual constraint A^y-\-s = c and minimizes the above 
norm. Hence, since s{x,w) satisfies the affine dual constraint, replacing s{x,w'^) by 
s{x,w) we obtain 

SP{x,w'') < 
1 

1 

X s{x,w) — w^ 

/w^ 

X s{x, w) — w -\- w — w^ 

Using the triangle inequality we derive from this 

5P{x,w'') < 
^/mhl{nF) 

xs{x,w) — w 

Y^min (w*) 
w -w^ 

The second term can be reduced by using (12.7) and then the theorem follows if the 
first term on the right satisfies 

1 

^/mhl{w^ 

xs{x,w) — w 
< 

I min (w) 
min (i(;*) 

w 

This inequality can be obtained by writing 

1 

Y^min (w*) 

X s{x,w) — w 

/w^ 

< 

1 

Y^min (w*) 

1 

Y^min (w*) 

SP{x,w). 

"w X s{x,w) — w 

(13.5) 

/w^ 

w 
w* 

w 

xs{x,w) — w 

I min (w) 

min (w*) w^ 
5^{x,w). 

Hence the theorem follows. D 
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Application to the Method of 
Centers 

14.1 Introduction 

Shortly after Karmarkar published his projective algorithm for linear optimiz­
ation, some authors pointed out possible links with earlier literature. Gill et 
al. [97] noticed the close similarity between the search directions in Karmarkar's 
algorithm and in the logarithmic barrier approach extensively studied by Fiacco 
and McCormick [77]. At the same time, Renegar [237] proposed an algorithm with 
0{^/nL) iterations, an improvement over Karmarkar's algorithm. Renegar's scheme 
was a clever implementation of Huard's method of centers [148]. Again, there were clear 
similarities, but equivalence was not established. For a while, the literature seemed 
to develop in three approximately independent directions. The first stream dealt with 
extensions of Karmarkar's algorithm and was identified with the notion of projective 
transformation and projective space. ̂  This is the topic of the next chapter. The second 
stream of research was a revival and a new interpretation of the logarithmic approach. 
We amply elaborated on that approach in Part II of this book. The third stream 
prolonged Renegar's contribution. Not so much has been done in this framework.^ 

After a decade of active research, it has become apparent that the links between 
the three approaches are very tight. They only refiect different ways of looking at the 
same thing. From one point of view, the similarity between the method of centers 
and the logarithmic barrier approach is striking. In both cases, the progress towards 
optimality is triggered by a parameter that is gradually shifted to its optimal value. 
The iterations are performed in the primal, dual or primal-dual spaces; they are made 
of Newton steps or damped Newton steps that aim to catch up with the parameter 
variation. The parameter updates are either small enough to allow full Newton steps 
and the method is of a path-following type with an 0{y^L) iteration bound; or, the 
updates are large and the method performs line searches along Newton's direction 
with the aim of reducing a certain potential. The parameter in the logarithmic barrier 
approach is the penalty coefficient attached to the logarithm; in the method of centers, 
the parameter is a bound on the optimal objective function value. In the logarithmic 
barrier approach, the parameter is gradually moved to zero. In the method of centers, 

^ For survey papers, we refer the reader to Anstreicher [17, 24], Goldfarb and Todd [109], 
Gonzaga [123, 124], den Hertog and Roos [142] and Todd [265]. 

^ In this connection we cite den Hertog, Roos and Terlaky [143] and den Hertog [140]. 
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the parameter is monotonically shifted to the optimal value of the LO problem. 
A similar link exists between Renegar's method of centers and the variants 

of Karmarkar's method introduced by de Ghellinck and Vial [95] and Todd and 
Burrell [266]. Those variants use a parameter — a lower bound in case of a 
minimization problem — that is triggered to its optimal value. If this parameter 
is kept fixed, the projective algorithm computes an analytic center^ that is the dual 
of the center used by Renegar. Consequently, there also exist path-following schemes 
for the projective algorithm, see Shaw and Goldfarb [254], and Goffin and Vial [103]; 
these are very close to Renegar's method. 

In this chapter we concentrate on the method of centers. Our aim is to show that the 
method can be described and analyzed quite well in the target-following framework.^ 

14.2 Description of Renegar's method 

The method of centers (or center method) can easily be described by considering the 
barrier function used by Renegar.^ Assuming the knowledge of a strict lower bound z 
for the optimal value of the dual problem [D) he considers the function 

(i>R{v, z) := -q \og{h^y - z ) - ^ log ^ii 

i=l 

where q is some positive number and s = c — A^y. His method consists of finding 
(an approximation of) the minimizer y{z) of this barrier function by using Newton's 
method. Then the lower bound z is enlarged to 

z = z^O{b^y{z)-z) (14.1) 

^ The computation of analytic centers can be performed via variants of the projective algorithm. In 
this connection, we cite Atkinson [29] and Goffin and Vial [102]. 

^ The method of centers has an interest of its own. First, the approach formalizes Huard's scheme 
and supports Huard's intuition of an efficient interior-point algorithm. There are also close links 
with Karmarkar's method that are made explicit in Vial [285]. Second, the method of centers 
offers a natural framework for cutting plane methods. Cutting plane methods could be described 
in short as a way to solve an LO problem with so many (possibly infinite) inequality constraints 
that we cannot even enumerate them in a reasonable computational time. The only possibility is 
to generate them one at a time, as they seem needed to insure feasibility eventually. Generating 
cuts from a center, and in particular, from an analytic center, appears to be sound from both 
the theoretical and the practical point of views. The idea of using analytic centers in this context 
was alluded to by Sonnevend [257] and fully worked out by Goffin, Haurie and Vial [99]. See 
du Merle [209] and Gondzio et al. [115] for a detailed description of the method, and e.g., Bahn et 
al. [31] and Goffin et al. [98] for results on large scale programs. Let us mention that the complexity 
analysis of a conceptual method of analytic centers was given first by Atkinson and Vaidya [30] 
and Nesterov [225]. An implementable version of the method using approximate analytic centers 
is analyzed by Goffin, Luo and Ye [100], Luo [186], Ye [312], Goffin and Sharifi-Mokhtarian [101], 
Altman and Kiwiel [7], Kiwiel [168], and Goffin and Vial [104]. Besides, to highlight the similarity 
between the method of centers and the logarithmic barrier approach it is worth noting that 
logarithmic barrier methods also allow a natural cutting plane scheme based on adding and deleting 
constraints. We refer the reader to den Hertog [140], den Hertog, Roos and Terlaky [145], den Hertog 
et al. [141] and Kaliski et al. [164]. For a complexity analysis of a special variant of this method 
we refer the reader to Luo, Roos and Terlaky [187]. 

^ The notation used here differs from the notation of Renegar. This is partly due to the fact that 
Renegar dealt with a solution method for the primal problem whereas we apply his approach to 
the dual problem. 
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for some positive 6 such that z is again a strict lower bound for the optimal value and 
the process is repeated. Renegar showed that this scheme can be used to construct an 
e-solution of {D) in at most 

iterations, where the superscript ^ refers to initial values, as usual. In this way he was 
the first to obtain this iteration bound. 

The algorithm can be described as follows. 

Renegar's Method of Centers 

Input: 
A strict lower bound z^ for the optimal value of {D)] 
a dual feasible y^ such that y^ is 'close' to y{z^); 
a positive number q > yjn\ 
an update parameter ^, 0 < ^ < 1. 

begin 
y :=y^]z := z^; 

while h^y — z > £ do 
begin 

z = z^e{h^y-z)] 
while y is not 'close' to y{z) do 
begin 

Apply Newton steps at y aiming at y{z) 
end 

end 
end 

14.3 Targets in Renegar ' s m e t h o d 

Let us now look at how this approach fits into the target-following concept. First we 
observe that (J)R can be considered as the barrier term in a weighted barrier function 
for the dual problem when we add the constraint h^y > z to the dual constraints and 
give the extra constraint the weight q. Giving the extra constraint the index 0, and 
indexing the other constraints by 1 to n as usual, we have the vector of weights 

w = (^ ,1 ,1 , . . . , ! ) . 

The second observation is that Renegar's barrier function is exactly the weighted dual 
barrier function (j)^ (cf. (12.1) on page 259) for the problem 

{DR) max {{fy : A^y + 5 = c, -iFy + 5̂  = - z , 5 > 0, 5^ > O} . 
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The feasible region of this problem is just the feasible region of (D) cut by the objective 
constraint b^y > z. Since the objective function is trivial, each feasible point is optimal. 
As a consequence, the weighted central path of (DR) is a point and hence this point, 
which is the minimizer of (^R, is just the weighted-analytic center (according to w) 
of the feasible region of (D) cut by the objective constraint (cf. Theorem III.5 on 
page 229). 

The dual problem of (DR) is the following homogeneous problem: 

(PR) min {c^x - x^z : Ax - x^b = 0, x > 0, x^ > O} . 

Applying Theorem III.l (page 222), we see that the optimality conditions for 
(l>R{y^ z) = (t)i{y) are given by 

(14.2) 

Ax - x^b 
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X > 0 , 
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(14.3) 
i>" u^ y — z 

Hence, defining 

we get 

Ax = 6, ^ > 0, 

(14.4) 

xs = iiz e, 

where 
h^ oil y\ — r 

(14.5) 

with y{z) denoting the minimizer of Renegar's barrier function <j)R{y). We conclude 
that y{z) can be characterized in two ways. First, it is the weighted-analytic center 
of the feasible region of {D) cut by the objective constraint b^y > z and, second, it 
is the point on the central path of (D) corresponding to the above barrier parameter 
value fiz' Figure 14.1 depicts the situation. 

In the course of the center method the lower bound z is gradually updated to the 
optimal value of (D) and after each update of the lower bound the corresponding 
minimizer y{z) is (approximately) computed. Since y{z) represents the dual part of 
the primal-dual pair belonging to the vector /i^e in the i(;-space, we conclude that the 
center method can be considered as a central-path-following method. 
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F i g u r e 14 .1 T h e center me thod according to Renegar . 

14.4 Analys i s of t h e center m e t h o d 

It will be clear that in the analysis of his method Renegar had to deal with the question 
of how far the value of the lower bound z can be enlarged — according to (14.1) — 
so that the minimizer y of (l)R{y,z) can be computed efficiently; hereby it may be 
assumed that the minimizer y of (j)R{y,z) is known.^ The answer to this question 
determines the speed of convergence of the method. As we know, the answer depends 
on the proximity (^(/i^e, /i^e) of the present target vector /i^e to the new target vector 
/i^e. Thus, we have to estimate the proximity (^(/i^e,/i^e), where z is given by (14.1). 
Further analysis below is a little complicated by the fact that the new target vector 
/i^e is not known, since 

fJ^z 
b^y{z) 

depends on the unknown minimizer y{z) of (j)R{y^z). To cope with this complication 
we need some further estimates. 

Let {x{z)^y{z)^s{z)) denote the solution of (14.4), so it is the point on the central 
path of (P) and {D) corresponding to the strict lower bound z for the optimal value. 
Then the duality gap at this point is given by 

c^x{z) — h^y{z) = nfiz 
\h^y{z) 

As far as the numerical procedure for the computation of the minimizer of Renegar's barrier 
function is concerned, it may be clear that there are a lot of possible choices. Renegar presented 
a dual method in [237]. His search direction is the Newton direction for minimizing (^R. In our 
framework this amounts to applying the dual Newton method for the computation of the primal-
dual pair corresponding to the target vector w for the problems {PR) and (DR); this method has 
been discussed in Section 12.2. Obviously, the same goal can be achieved by using any efficient 
computational — primal, dual or primal-dual — method for the computation of the primal-dual 
pair corresponding to the target vector /x^e for (P) and (D). 
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This identity can be written as 

f t ^ = ^ ^ = l + ^. (14.6) 
¥y[z)-z q q 

Denoting the optimal value by z* we have c^x{z) > z*. Hence 

z — z < ( l + ^)(6^y(^)-^) . 

Also observe that when we know x{z) and y{z) then the lower bound z can be 
reconstructed: solving z from (14.6) and (14.5) respectively we get 

{n^q)h^y{z)-qc^x{z) j. 
z = = h y{z) - qfi^. 

n 

For the updated lower bound z we thus find the expression 

z = b^y{z) -qii^^O {b^y{z) - z) = b^y{z) - q/j.^ + Oq/j.^ = b^y{z) - {I - 0) q/j.^. 

Since b^y{z) is a lower bound for the optimal value, this relation makes clear that we 
are able to guarantee that z is a strict lower bound for the optimal value only if ^ < 1. 

Lemma III.26 The dual objective value b^y{z) is monotonically increasing, whereas 
the primal objective value c^x{z) and b^y{z) — z are monotonically decreasing if z 
increases^ 

Proof: We first prove the second part of the lemma. To this end we use the weighted 
primal barrier function for (PR), 

n 

(j)^^^{x,x^) = c^x — xPz — qlogxP — y^ log Xj. 
i=l 

The dependence of this function on the lower bound z is expressed by the correspond­
ing subindex. Now let z and z be two strict lower bounds for the optimal value of 
(P) and {D) and z > z. Since (x{z)^xP{z)) minimizes (j)^ ^{x^x^) and (x{z)^xP{z)) 
minimizes (/)^^^(x,x^) we have 

0^,, {x{z),x\z)) < C . {x{z),x\z)) , <Pl^, {x{z),x\z)) < <Pl^, {x{z),x\z)) . 

Adding these inequalities, we get 

C . (x(z),xO(z)) + C {x{-z),x\-z)) < C . {x{-z),x\-z)) + K,^, (x{z),x\z)) . 

Evaluating the expressions in these inequalities and omitting the common terms on 
both sides — the terms in which the parameters z and z do not occur — we find 

-x\z)z - x\z)z < -x\z)z - x\z)z, 

^ This lemma is taken from den Hertog [140]. The proof below is a slight variation on his proof. The 
proof technique is due to Fiacco and McCormick [77] and can be applied to obtain monotonicity 
of the objective value along the central path in a much wider class of convex problems. We refer 
the reader to den Hertog, Roos and Terlaky [144] and den Hertog [140]. 
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or equivalently, 
{z - z) {x\z) - x\z)) >0. 

This implies x^{z) — x^{z) > 0, or 

x\z) >x\z). 

By (14.3) this is equivalent to 

h^y{z) — z < h^y{z) — z. 

Thus we have shown that b^y{z) — z is monotonically decreasing if z increases. This 
implies that jiz is also monotonically decreasing if z increases. The rest of the lemma 
follows because along the central path the dual objective value is increasing and the 
primal objective value is decreasing. The proof of this property of the central path 
can be found in Remark II.6 (page 95). • 

Now let z be given by (14.1). Then we may write 

c^x{z) - z c^x{z) - z - 9 (h^y{z) - z) 

c^x{z) — z c^x{z) — z 

By the above lemma we have c^x{z) < (Fx{z). Hence, using also (14.6) we get 

c^xjz) -z ^^ 0 {b^yjz) -z) _^ eg 
c^x{z) — z ~ c^x{z) — z n -\- q 

Using (14.6) once more we derive 

b^y{z) — z c^x{z) — z 
h^y{z) — z c^x{z) — 

and so 
h^y{z) - z ^ ^ Oq 
b^y{z) — z n -\- q 

Therefore we obtain the following relation between fi^ and /i^: 

M.- < ( 1 - - ^ ) A .̂. (14.7) 

For the moment we deviate from Renegar's approach by taking as a new target the 
vector 

where w = jiz^- Instead of Renegar's target vector /i^e we use iD as a target vector. 
Due to the inequality (14.7) this means that we slow down the progress to optimality 
compared with Renegar's approach. We show, however, that the modified strategy 
still yields an 0{y^L) iteration bound, just as Renegar's approach. Assuming n > 4, 
the argument used in Section 11.2 implies that 
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Hence, when 

(14.9) 

the primal-dual pair belonging to the target w can be computed efficiently, to any 
desired accuracy. 

Since the barrier parameter, and hence the duality gap, at the new target is reduced 
by the factor 1 — Oq/ (n + q) we obtain an e-solution after at most 

n-\-q ^ e^w^ ^^ e^w^ 
—-— log = V ^ log 

Oq s s 

iterations. Here w^ denotes the initial point in the w-spsice. 
Note that the parameter q disappeared in the iteration bound. In fact, the above 

analysis, based on the updating scheme (14.8), works for every positive value of q and 
gives the same iteration bound for each value of q. 

On the other hand, when using Renegar's scheme, the update goes via the strict 
lower bound z. As we established before, it is then necessary to keep ^ < 1. So 
Renegar's approach only works ifq satisfies n-\-q < q^/n. This amounts to the following 
condition on q\ 

q > —=—- > ̂ fn. 
Vn- 1 

Renegar, in [237], recommended q = n and 0 = 1/ (l3y/^). Den Hertog [140], who 
simplified the analysis significantly, used q > 2 y ^ and 0 = 1/ (Sy^). In both cases 
the iteration bound is of the same order of magnitude as the bound derived above.^ 

14.5 Adaptive- and large-update variants of the center method 

In the logarithmic barrier approach, we used a penalty parameter to trigger the 
algorithm. By letting the parameter go to zero in a controlled way, we could drive 
the pairs of dual solutions to optimality. The crux of the analysis was the updating 
scheme: small, adaptive or large updates, with results of variable complexity. Small or 
adaptive updates allow relatively small reductions of the duality gap — by a factor 
1 — O {l/^/n) — in 0{1) Newton steps between two successive updates, and achieve 
global convergence in 0{y^L) iterations. Large updates allow sharp decreases of the 
duality gap — by a factor 1 — B (1) — but require more Newton steps (usually as 
many as 0{n)) between two successive updates and lead to global convergence in 
0{nL) iterations. A similar situation occurs for target-following methods, where the 
algorithm is triggered by the targets; the target sequence can be designed such that 
similar convergence results arise for small, adaptive and large updates respectively. 

The method of this chapter, the (dual) center method of Renegar, has a different 
triggering mechanism: a lower bound on the optimal objective value. The idea is to 

8 For g = n we obtain from (14.9) 6 = 2 /Vn and for q > 2 ^ we get 6> < 1/2 + 1/Vn. These 
values for 6 are larger than the respective values used by Renegar and Den Hertog. We should 
note however that this is, at least partly, due to the fact that the analysis of both Renegar and 
den Hertog is based on the use of approximate central solutions whereas we made the simplifying 
assumption that exact central solutions are computed for each value of /x^. 
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move this bound up to the point where the objective is set near to its optimal value. For 
any such lower bound z the dual polytope A^y < c is cut by the objective constraint 
}?- y > z and the (ideal) new iterate is a weighted-analytic center of the cut polytope. 
The weighting vector t reats all the constraints in A^y < c equally but it gives extra 
emphasis to the objective constraint by the factor q. Enlarging q, pushes the new 
iterate in the direction of the optimal set. This opens the way to adaptive- and large-
update versions of Renegar's method. Appropriate values for q can easily be found. 
To see this it suffices to recall from (14.7) tha t the duality gap between two successive 
updates of the lower bound reduces by at least the factor 

1 - ^ . 

For example, q = n and 0 = 1/2 give a reduction of the duality gap by at least 3/4. 
It is clear tha t the reduction factor for the duality gap can be made arbitrarily small 
by choosing appropriate values for q and ^ (0 < ^ < 1). We then get out of the 
domain of quadratic convergence, but by using damped Newton steps we can reach 
the new weighted-analytic center in a controlled number of steps. From this it will 
be clear tha t the updates of the lower bound can be designed in such a way tha t 
adaptive- or large-update versions of the center method arise and tha t the complexity 
results will be similar to those for the logarithmic barrier method. These ideas can 
be worked out easily in the target-following framework. In fact, if Renegar's method 
is modified according to the updat ing scheme (14.8), the results immediately follow 
from the corresponding results for the logarithmic barrier approach.^ 

Adaptive and large-update variants of the center method are analyzed by den Hertog [140]. 
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Karmarkar's Projective Method 

15.1 Introduction 

It has been pointed out before that recent research in interior-point methods for LO 
has been motivated by the appearance of the seminal paper [165] of Karmarkar in 
1984. Despite its extraordinary power of stimulation of the scientific community, Kar­
markar's so-called projective method seemed to remain a very particular method, 
remotely related to the huge literature to which it gave rise. Significantly many papers 
appeared on the projective algorithm itself,^ but the link with other methods, in 
particular Renegar's, has not drawn much attention up to recently.^ The decaying 
interest for the primal projective method is also due to a poorer behavior on solving 
practical optimization problems.^ In this chapter we provide a simplified description 
and analysis of the projective method and we also relate it to the other methods 
described in this book. 

Karmarkar considered the very special problem 

(PK) min {c^x : Ax = 0, e^x = n, x > O} , 

where, as before, A is wci m x n matrix of rank m, and e denotes the all-one vector. 
Karmarkar made two seemingly restrictive assumptions, namely that the optimal value 
c^x* of the problem is known and has value zero, and secondly, that the all-one vector 
e is feasible for (PK). Note that the problem (PK) is trivial if c^e = 0. Then the 
all-one vector e is an optimal solution. So we assume throughout that this case is 
excluded. As a consequence we have 

Je > 0. (15.1) 

^ Papers in that stream were written by Anstreicher [14, 15, 16, 18, 19, 20, 21, 22, 23, 24], Freund [83, 
85], de Ghellinck and Vial [95, 96], Goffin and Vial [102, 103], Goldfarb and Mehrotra [105, 106, 107], 
Goldfarb and Xiao [110], Goldfarb and Shaw [108], Shaw and Goldfarb [254], Gonzaga [117, 119], 
Roos [239], Vial [282, 283, 284], Xu, Yao and Chen [300], Yamashita [301], Ye [304, 305, 306, 307], 
Ye and Todd [315] and Todd and Burrell [266]. We also refer the reader to the survey papers 
Anstreicher [17, 24], Goldfarb and Todd [109], Gonzaga [123, 124], den Hertog and Roos [142] and 
Todd [265]. 

2 See Vial [285, 286]. 

^ In their comparison between the primal projective method and a primal-dual method, Fraley and 
Vial [80, 81] concluded to the superiority of the later for solving optimization problems. However, 
it is worth mentioning that the projective algorithm has been used with success in the computation 
of analytic centers in an interior-point cutting plane algorithm; in particular, Bahn et al. [31] and 
Goffin et al. [98] could solve very large decomposition problems with this approach. 
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Later on it is made clear that the model (PK) is general enough for our purpose. 
If it can be solved in polynomial time then the same is true for every LO problem. 

15.2 The unit simplex S^ in W 

The feasible region of (PK) is contained in the unit simplex in K^. This simplex plays 
a crucial role in the projective method. We denote it by E^: 

Eri = {x elV^ : e^x = n, X > 0} . 

Obviously^ the all-one vector e belongs to E^ and lies at the heart of it. The sphere 
in K^ centered at e and with radius p is denoted by B{e,p). The analysis of the 
projective method requires knowledge of the smallest sphere 5(e, R) containing E^ as 
well as the largest sphere B{e^r) whose intersection with the hyperplane e^x = n is 
contained in E^. 

It can easily be understood that R is equal to the Euclidean distance from the center 
e of E^ to the vertex (n, 0 , . . . , 0). See Figure 15.1, which depicts E3. We have 

Figure 15.1 The simplex E3. 

R = V(n - 1)2+ ( n - 1 ) 1 2 = ^ n ( n - l ) . 

Similarly, r is equal to the Euclidean distance from e to the center of one of the faces 

^ It might be worthwhile to indicate that the dimension of the polytope E^ is n — 1, since this is the 
dimension of the hyperplane e^x = n, which is the smallest afhne space containing En-
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of E^, such as (0, ^ ^ , . . . , ^ ^ ) , and therefore 

' l + ( n - l ) ( ^ - l ' ' 
,n — 1 / V ^ — 1 

Assuming n > 1, we thus have 

R n-l 

15.3 T h e inner-outer sphere b o u n d 

As usual, let V denote the feasible region of the given problem (PK). Then we may 
write V as 

V = nn{x eW : X > 0} , 

where O is the afhne space determined by 

n = {x eW : Ax = 0, e^x = n} . 

Now consider the minimization problem 

min {c X : x G 0 n 5 ( e , r ) } . 

This problem can be solved explicitly. Since Q is an affine space containing the center 
e of the sphere B{e,r), the intersection of the two sets is a sphere of radius r in a 
lower-dimensional space. Hence the minimum value of c^x over Q H B{e^r) occurs 
uniquely at the point 

z^ := e — rp, 

where p is the vector of unit length whose direction is obtained by projecting the vector 
c into the linear space parallel to Q. Similarly, when x runs through Q H 5(e, R), the 
minimal value will be attained uniquely at the point 

z'^ := e — Rp. 

Since 
n n 5(e,r) c p c o n 5(e, R), 

and the minimal value over V is given as zero, we must have 

c^z^ < 0 <c^z^. 

This can be rewritten as 

c^e — Rc^p < 0 < c^e — rc^p. 

The left inequality and (15.1) imply 

^T^ 
T 

c'p> — >0. 
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Hence, 

7^1 T' T' T' ^ T' I i T ^ 
c X =ce — rcp<ce— —c e = 1 c e. 

^ - R \ n-lj 
Thus, start ing at the feasible point e we may construct in this way the new feasible 
point z^ whose objective value, compared with the value at e, is reduced by the factor 
l - l / ( n - l ) . 

At this stage we note tha t we want the new point to be positive. The above procedure 
may end at the boundary of the simplex. This can be prevented by introducing a step-
size a e (0,1) and using the point 

z := e — arp 

as the new iterate. Below a ^ 1/2 will tu rn out to be a good choice. The objective 
value is then reduced by the factor 

rv 
1 -

- 1 

It is clear tha t the above procedure can be used only once. The reduction factor for 
the objective value is 1 — r/R, where r/R is the ratio between the radius of the largest 
inscribed sphere and the radius of the smallest circumscribed sphere for the feasible 
region. This ratio is maximal at the center e of the feasible region. If we approach the 
boundary of the region the ratio goes to zero and the reduction factor goes to 1 and 
we cannot make enough progress to get an efficient method. 

Here Karmarkar made a brilliant contribution. His idea is to transform the problem 
to an equivalent problem by using a projective transformation tha t maps the new 
iterate back to the center e of the simplex E^. We describe this transformation in the 
next section. After the transformation the procedure can be repeated and the objective 
value is reduced by the same factor. After sufficiently many iterations, a feasible point 
can be obtained with objective value as close to zero as we wish. 

1 5 . 4 P r o j e c t i v e t r a n s f o r m a t i o n s o f H^ 

Let d > 0 he any positive vector. Wi th IR^ denoting the set of nonnegative vectors in 
]R^, the projective transformation Td : IR^ \ {0} -^ E^ is defined by 

Td 
ndx ndx 

d^x e^ (dx)' 

Note tha t Td can be decomposed into two transformations: a coordinate-wise scaling 
X ^^ dx and a global scaling x ^ nx/e^x. The first transformation is defined for 
each X, and is linear; the second transformation — which coincides with Tg — is 
only defined if e^x is nonzero, and is nonlinear. As a consequence, Td is a nonlinear 
transformation. 

It may easily be verified tha t Td maps the simplex E^ into itself and tha t it is 
invertible on E^; the inverse on E^ is simply 

_ nd~^x 

e^id-^x)' 
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The projective transformation has some important properties. 

Proposition IV. 1 For each d > 0 the projective transformation Td is a one-to-one 
map of the simplex E^ onto itself The intersection of E^ with the linear subspace 
{x : Ax = 0} is mapped to the intersection of E^ with another subspace of the 
same dimension, namely {x : AD~^x = O}. Besides, the transformation is positively 
homogeneous of degree zero; that is, for any X > 0, 

Td{\x)=Td{x). 

Proof: The first statement is immediate. To prove the second statement, let x G E^. 
Then Ax = 0 if and only if Ad~^dx = 0, which is equivalent to AD~'^Td{x) = 0. This 
implies the second statement. The last statement is immediate from the definition. • 

Now let z be a feasible and positive point. For any nonzero x e V there exists a 
unique <f G E^ such that x = Tz (<f). We have Ax = 0 if and only if AZ£^ = 0 and 

Hence the problem (PK) can be reformulated as 

min \ ^^^,J : AZ£, = 0, e^^ = ^, ^ > 0 I . 
[ e^(zO J 

Note that the objective of this problem is nonlinear. But we know that the optimal 
value is zero and this can happen only if (Zc) <f = 0. So we may replace the nonlinear 
objective by the linear objective (Zc) £^ and, changing the variable £^ back to x, we 
are left with the linear problem 

{PKS) min Uzcf x : AZx = 0, e^x = n, x > 0 j . 

Note that the feasibility of z implies Az = 0, whence AZe = 0, showing that e is 
feasible for the new problem. Thus we can use the procedure described in Section 15.3 
to construct a new feasible point for the transformed problem so that the objective 
value is reduced by a factor 1 — a/ {n — 1). The new point is obtained by minimizing 
the objective over the inscribed sphere with radius ar: 

mm < (Zc) X : AZx = 0, e^x = n, \\x — e|| < ar>. 

15.5 The projective algorithm 

We can now describe the algorithm as follows. 
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Projective Algorithm 

Input: 
An accuracy parameter s > 0. 

begin 
X : = e; 

while c^x > £ do 
begin 

z := argmin^ Uxcf ^ : AX^ = 0, e^^ = n, ||^ - e|| < ô r j ; 
x:=T,{z); 

end 
end 

As long as the objective value at the current iterate x is larger than the threshold 
value £, the problem is rescaled by the projective transformation T^-i. This makes the 
all-one vector feasible. Then the new iterate z for the transformed problem is obtained 
by minimizing the objective value over the inscribed sphere with radius ar. After this 
the inverse of the map T^-i — that is T^ — is applied to z and we get a point that 
is feasible for the original problem (PK) again. This is repeated until the objective 
value is small enough. Figure 15.2 depicts one iteration of the algorithm. 

optimal solution 
Ax = 0 

optimal solution 

AX^ = 0 

Figure 15.2 One iteration of the projective algorithm (x = x ). 

In the next section we derive an iteration bound for the algorithm. Unfortunately, the 
analysis of the algorithm cannot be based on the reduction of the objective value in 
each iteration. This is because the objective value is not preserved under the projective 
transformation. This is the price we pay for the linearization of the nonlinear problem 
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after each projective transformation. Here, again, Karmarkar proposed an elegant 
solution. The progress of the method can be measured by a suitable potential function. 
We introduce this function in the next section. 

15.6 The Karmarkar potential 

Karmarkar used the following potential function in the analysis of his method. 

n 

(I^K (x) = n log c^x — 2_^ log Xi. 
i=l 

The usefulness of this function depends on two lemmas. 

Lemma IV.2 If x G T^n then 

T ^ f^K{x) 
c X < exp ' 

Proof: Since e^x = n, using the geometric-arithmetic-mean inequality we may write 

E l , e X . 

log Xi < n log = n log 1 = 0. 
n i=l 

Therefore 
n 

4^K (x) = n log c^x — 2^ log Xi> n log c^x, 

which implies the lemma. • 

Lemma IV.3 Let x and z be positive vectors in E^ and y = Tx{z). Then 

(j)K {x) - (j)K (y) = nlog J. + V l o g 
(^c) z ^^, 

Proof: First we observe that (J)K{X) is homogeneous of degree zero in x. In other 
words, for each positive A we have 

As a consequence we have 

/ TIXZ \ 
(t)K{y) = (t)K {Tx{z)) =(I)K { -^FT^ ] =^K (XZ) , 

as follows by taking A = n/e^{xz). Therefore, 

J' n 

(t)K{x) -(t)K{y) = (t)K{x) -(t)K{xz) = n l o g ^ T y r - ^ log ^ , 
C \XZj . XiZi 
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from which the lemma follows. • 

Applying the above lemma with z = e — arp we can prove tha t each iteration of 
the projective algorithm decreases the potential by at least 0.30685 when choosing a 
appropriately. 

L e m m a I V . 4 Taking a = 1/(1 + r ) , each iteration of the projective algorithm 
decreases the potential function value by at least 1 — log 2 = 0.30685. 

Proof: By Lemma IV.3, at any iteration the potential function value decreases by 
the amount 

. ^ (Xc) e ^^ 
A = n log rj. + > logz^ 

( ^ c ) z ^^, 

Recall tha t Xc is the objective vector in the transformed problem. Since the objective 
value of the transformed problem is reduced by at least a factor 1 — ar/R and 
z = e — arp, we obtain 

n 

A > - n log (l - ^ ^ + ^ log (1 - arpi). (15.2) 
i=l 

For the first term we write 

_ / ar\ (otr . / ar\\ anr . / ar\ o / / ^ ^ \ 

Here, and below we use the function V̂  as defined in (5.5), page 92. The second term 
in (15.2) can be writ ten as 

n n n 

2^ log (1 — arpi) = —are^p — \ ^ V̂  {—arpi) = — \ ^ V̂  {—arpi). 

Here we have used the fact tha t e^p = 0. By the right-hand side inequality in (6.24), 
on page 134, the above sum can be bounded above by V̂  {—ar \\p\\). Since ||p|| = 1 we 
obtain 

A > ar^ '^^^ \~~D) ~ ^ (—Q^r). 

Omitt ing the second term, which is nonnegative, we arrive at 

A > ar^ — tjj {—ar) = ar^ -\- ar -\- log (1 — ar). 

The right-hand side expression is maximal if ô  = 1/(1 + r ) . Substitution of this value 
yields 

A > r + log I 1 — j = r — log (1 + r) = V̂  ( r ) . 

Since r = y^n/{n — 1) > 1 we have V̂  (r) > V̂  (1) = 1 — log 2, and the proof is complete. 
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15.7 I terat ion b o u n d for t h e project ive a lgor i thm 

The convergence result is as fohows. 

Theorem IV.5 After no more than 

T 
n , & e log 

V^(l) ^ e 

iterations the algorithm stops with a feasible point x such that (Fx < e. 

Proof: After k iterations the iterate x satisfies 

CI)K{X) - cl)K{e) < -ktlj{l). 

Since (pxi^) = nlogc-^e, 
(J)K{X) < n\ogc e — kil){l). 

Using Lemma IV.2, we obtain 

c^x < exp 
/^(I)K{X)\ /nlogc^e-/ i :V^(l) \ 

The stopping criterion is thus certainly met as soon as 

exp f !!i^g£!£^Ml) ̂  < ,. 

Taking logarithms of both sides we get 

nlogc^e — kilj{l) < nloge, 

or equivalently, 
T 

n . c e 
k > -TTrlog , 

V^(l) s 
which yields the bound in the theorem. • 

15.8 Discuss ion of t h e special format 

The problem (PK) solved by the Projective Method of Karmarkar has a special format 
that is called the Karmarkar format. Except for the so-called normalizing constraint 
e^x = n, the constraints in (PK) are homogeneous. Furthermore, it is assumed that 
the optimal value is zero and that some positive feasible vector is given.^ We may 

^ In fact, Karmarkar assumed that the ah-one vector e is feasible, but it is sufficient if some given 
positive vector w is feasible. In that case we can use the projective transformation T^-i as defined 
in Section 15.4, to transform the problem to another problem in the Karmarkar format and for 
which the all-one vector is feasible. 
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wonder how the Projective Method could be used to solve an arbitrary LO problem 
tha t is not given in the Karmarkar format.^ 

Clearly problem (PK) is in the s tandard format and, since its feasible region is 
contained in the unit simplex E^ in K^, the feasible region is bounded. Finally, since 
the all-one vector is feasible, (PK) satisfies the interior-point condition. In this section 
we first show tha t a problem (P) in s tandard format can easily be reduced to the Kar­
markar format whenever the feasible region V of (P) is bounded and the interior-point 
condition is satisfied. Secondly, we discuss how a general LO problem can be put in 
the format of (PK). 

Thus, let the feasible region V of the s tandard problem 

(P) min {c^x : Ax = 6, x > O} 

be bounded and let it contain a positive vector. Now let the pair (^, s) be optimal for 
the dual problem 

(D) max {b^y : A^y + 5 = c, 5 > O} . 

Then we have, for any primal feasible x, 

s^x = c^x — b^y. 

So s^x and c^x differ by the constant b^y and hence the problem 

(P ' ) min {s^x : Ax = b, x > O} 

has the same optimal set as ( P ) . Since s is dual optimal, the optimal value of (P^) is 
zero. Since the feasible region V is bounded, we deduce from Corollary 11.14 tha t the 
row space of the constraint matr ix A contains a positive vector. Tha t is, there exists 
a A G K"^ such tha t 

A^X > 0. V 

Now, defining 
6̂  A, 

we have for any feasible x. 

^x = (A^X) X = X^Ax = X^b V X 

The first assumption on a known optimal value for a problem in the Karmarkar format was removed 
by Todd and Burrell [266]. They used a simple observation that for any (̂ , the objective c^x — C 
is equivalent to (c — {C,/n)e)^x. If C = C*? the optimal value of problem (PK), the assumption 
of a zero optimal value is verified for the problem with the new objective. If C < C*? Todd and 
Burrell were able to show that the algorithm allows an update of the lower bound C by a simple 
linear ratio test after finitely many iterations; the overall procedure has the same complexity as the 
original algorithm of Karmarkar. The second assumption of a known interior feasible solution was 
removed by Ghellinck and Vial [95] by using a different projective embedding. They also used the 
same parametrization as Todd and Burrell and thus produced the first combined phase I - phase 
II interior-point algorithm, simultaneously resolving optimality and feasibility. They also pointed 
out that the projective algorithm was truly a Newton method. The update of the bound in their 
method is done by an awkward quadratic test. Fraley [79] was able to replace the quadratic test by 
a simpler linear ratio test. To remain consistent with Part I of the book, we shall not dwell upon 
those approaches, but rather use a homogeneous self-dual embedding, and analyze the behavior of 
Karmarkar algorithm on the embedding problem. 
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Since there exists a positive primal feasible x and v is positive, it follows tha t 
1/ = v^x > 0. We may write 

uAx = ub = (v^x) b = b (v^x) = (bv^) x. 

Hence, 

Defining 

we conclude tha t 

{uA - bv^) x = 0. 

A' := uA - bv^, 

V = ix : A'^x = 0, v^x = iy\ , 

and hence (P^) can be reformulated as 

(P ' ) min {s^x : A'x = 0, v^x = z/, x > O} , 

where u > 0. This problem can be rewritten as 

(P'O min I (sv-^)^ X : ( A V " ^ ) x = 0, e^x = n, x > 0 j , 

where the new variable x relates to the old variable x according to x = nvx/v. Since 
(P) satisfies the interior-point condition, this condition is also satisfied by {P'). Hence, 
the problem {P") is not only equivalent to the given s tandard problem (P) , but 
it satisfies all the conditions of the Karmarkar format: except for the normalizing 
constraint the constraints are homogeneous, the optimal value is zero, and some 
positive feasible vector is given. Thus we have shown tha t any s tandard primal problem 
for which the feasible set is bounded has a representation in the Karmarkar f o r m a t / 

Our second goal in this section is to point out tha t any given LO problem can 
be transformed to a problem in the Karmarkar format. Here we use some results 
from Chapter 2. First, the given problem can be put in the canonical format, 
where all constraints are inequality constraints and the variables are nonnegative (see 
Appendix D. l ) . Then we can embed the resulting canonical problem — and its dual 
problem — in a homogeneous self-dual problem, as described in Section 2.5 (cf. (2.15)). 
Thus we arrive at a problem of the form 

min {{fx : Mx > 0, x > O} , 

where M is skew-symmetric ( M = —M^) and we need to find a strictly complementary 
solution for this problem. We proceed by reducing this problem to the Karmarkar 
format. 

First we use the procedure described in Section 2.5 to embed the above self-dual 
problem in a self-dual problem tha t satisfies the interior-point condition. As before, 
let the vector r be defined by 

r := e — Me. 

^ It should be noted that this statement has only theoretical value; to reduce a given standard 
problem with bounded feasible region to the Karmarkar format we need a dual feasible pair (y, s) 
with s > 0; in general such a pair will not be available beforehand. 
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Now consider the self-dual model in K^^^ given by 

0 

1 
M r X 

[^\ 
+ 0 

n + 1 
> 

0 

0 

X 

[^\ 
> 0 

Taking 

we get 

{x,0 = {eA), 

M X 
+ 0 

n + 1 
= 

Me^r 

-r^e -\- n -\-1 

as can easily be verified. By introducing the surplus vector (5,?^), we can write the 
inequality constraints as equality constraints and get the equivalent problem 

mm e : 
M 

0 

X 
-

5 

V 
= 

0 

- n - 1 
1 

X 
1 

s 

_ V _ 
>o (15.3) 

We replaced the objective (n + 1)^ by ^; this is allowed since the optimal objective is 
0. Note that the all-one vector ((x,(f, 5,?̂ ) = (e, l ,e, 1)) is feasible for (15.3) and the 
optimal value is zero. When summing up all the constraints we obtain 

e^Mx -\- e^r^ — e^s — r^x V 1. 

Since r = e — Me and e^Me = 0, this reduces to 

e^x + e^5 + ^ + ?̂  = (n + 1)(1 + ^). (15.4) 

We can replace the last equality constraint in (15.3) by (15.4). Thus we arrive at the 
problem 

mm < 
M r 

e^ 1 

- / 0 
e^ 1 

0 
(n + l ) ( l •0 

5 

X 

5 

_ V _ 

\ 

> 0 \ 

) 

(15.5) 

Instead of this problem we consider 

min < e : 

^ 

M r -I 0 

e^ 1 e^ 1 

X 

s 

_ V . 

= 
0 

2(n + l) 
5 

X 

s 

_ 7] 

> 0 > . (15.6) 

We established above that the all-one vector is feasible for (15.5); obviously this implies 
that the all-one vector is also feasible for (15.6). It follows that the problem (15.6) 
is in the Karmarkar format and hence it can be solved by the projective method. 
Any optimal solution (x*,<f*, 5*,?^*) of (15.6) has <f* = 0. It is easily verified that 
(x*,<f*,5*,'^*) /2 is feasible for (15.5) and also optimal. 
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Thus we have shown how any given LO problem can be embedded into a problem 
that has the Karmarkar format and for which the all-one vector is feasible. We should 
note however that solving the given problem by solving the embedding problem 
requires a strictly complementary solution of the embedding problem. Thus we are 
left with an important question, namely, does the Projective Method yield a strictly 
complementary solution? A positive answer to this question has been given by 
Muramatsu and Tsuchiya [223]. Their proof uses the fact that there is a close relation 
between Karmarkar's method and the primal affine-scaling method of Dikin^when 
applied to the homogeneous problem obtained by omitting the normalizing constraint 
in the Karmarkar format. The next two sections serve to highlight this relation. We 
first derive an explicit expression for the search direction in the Projective Method. The 
result is that this direction can be interpreted as a primal logarithmic barrier direction 
for the homogeneous problem. Then we show that the homogeneous problem has 
optimal value zero and that any strictly complementary solution of the homogeneous 
problem yields a solution of the Karmarkar format. 

15.9 Expl ic i t express ion for t h e Karmarkar search direct ion 

It may be surprising that in the discussion of Karmarkar's approach there is no mention 
of some issues that were crucial in the methods discussed in the rest of this book. The 
most striking example of this is the complete absence of the central path in Kar­
markar's approach. Also, whereas the search direction in all the other methods is 
obtained by applying Newton's method — either to a logarithmic barrier function 
or to the centering conditions — the search direction in the Projective Method is 
obtained from a different perspective. The aim of this section is to derive an explicit 
expression for the search direction in the Projective Method. In this way we establish 
a surprising relation with the Newton direction in the primal logarithmic method for 
the homogeneous problem arising when the normalizing constraint in the Karmarkar 
format is neglected. 

Let X be a positive vector that is feasible for (PK). Recall from Section 15.5 that 
the new iterate x+ in the Projective Algorithm is obtained from x+ = Tx{z) where 

z = argmin^ {{^cf C • ^^C = 0, e^C = n, U - 4 < ar\ . 

Here r denotes the radius of the maximal inscribed sphere in the simplex E^ and a is 
the step-size. From this we can easily derive that^ 

z = e -\- aAz, 

where 

Az = argmin^^ {{^cf A^ : AXA^ = 0, e^A^ = 0, ||A^|| = r j . 

^ For a brief description of the primal affine-scaling method of Dikin we refer to the footnote on 
page 339. 

^ We assume throughout that c^x is not constant on the feasible region of (PK). With this 
assumption the vector z is uniquely defined. 
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By writing down the first-order optimafity conditions for this minimization problem 
we obtain 

AX/\z = 0 

e^Az = 0 

Xc = XA^y^ae^rjAz (15.7) 

||Az|| = r, 

where cr, 7̂  G IR and y G K"^. Multiplying the third equation from the left by AX and 
using the first equation and 

AXe = Ax = 0, (15.8) 

we get 
AX^c = AX^A^y, 

whence 
y={AX^A^y'AX^c. 

Substituting this in the third equation of (15.7) gives 

ae + r]Az = Xc- XA^ {AX'^A^)'^ AX^c 

(l- {AXf [AX^A^y^ Ax) Xc 

PAX {XC) . (15.9) 

Taking the inner product with e on both sides, while using e^Az = 0 and e^e = n, 
we get 

na = C^PAX (XC) . 

Since AXe = 0, according to (15.8), e belongs to the null space of AX and hence 

PAX (e) = e. (15.10) 

Using this we write 

C^PAX (XC) = {Xcf PAX (e) = {Xcf e = c^x. (15.11) 

Thus we obtain na = c^x. Substituting this in (15.9) we get 

T / T 

r]Az = PAX (XC) - ^ ^ e = PAX iXC-^^ e 
n \ n 

The second equality follows by using (15.10) once more. Up to its sign, the value of 
the factor r] now follows from ||Az|| = r. This implies 

Az = ±r-, ) — ^ . (15.12) 
AX ( X c - ^ e ) 

Here we assumed that the vector 

X := PAX ( X C - — e) = PAX {XC) - — e (15.13) 
n I n 
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is nonzero. This is indeed true. We leave this fact as an exercise to the reader.^^The 
sign in (15.12) fohows by using that we are minimizing {Xc) Az. So we must have 
(Xc) Az < 0. In this respect the following observation is crucial. By using the 
Cauchy-Schwarz inequality we may write 

c^x = {Xcf e = {Xcf PAX (e) = e^PAX {XC) < ̂  \\PAX {XC)\\ . 

Note that this inequality holds with equality only if PAX (XC) is a scalar multiple of e. 
This would imply that Az is a scalar multiple of e. Since e^Az = 0 and || Az|| = r > 0 
this case cannot occur. Thus we obtain 

As a consequence, 

\\PAX ( X c ) | | > ^ . 

{XcfPAx{Xc)-^^{Xc 
n 

\\PAx{Xc)f-^-^>0. 

{Xcf PAX [Xc-

We conclude from this that (Xc) Az < 0 holds only for the minus sign in (15.12). 
Thus we find 

We proceed by deriving an expression for x~^. We have 

nxz nx {e-\-aAz) f nx {e-\-aAz) ^ rp / \ ^^^ ^^ (̂  + aAz) / 
^ ^ ""^^'^^^z^ x^ie^aAz) = ̂  + (̂  x^ (e + aAz) 

So the displacement in the x-space is given by the expression between the brackets. 
This expression can be reduced as follows. We have 

nx (e -\- aAz) nx (e -\- aAz) — x^ (e-\- aAz) x nx (Az) — x^ (Az) x 
— X ^ ^ a . 

x^ (e + aAz) x^ (e + aAz) x^ (e + aAz) 

Here we used that e^x = n. Hence we may write 

x~^ = X -\- aAx, 

where 

^^^!M^l^^fiM^^ (15.15) 
x^ (e + aAz) ^ ^ 

Using (15.14) the enumerator in the last expression can be reduced as follows: 

Exercise 79 Show that the assumption (15.1) impUes that c^x is positive on the (relative) interior 
of the feasible region of (PK). Derive from this that the vector x is nonzero, for any feasible x 
with X > 0. 

file:////Pax
file:////Pax
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Using the definition (15.13) of % and e^x = n, we may write 

{x^X) e — nx = {x^PAX (-^C) — (Fx) e — UPAX (-^C) + (c^x) e 

{X^PAX {XC)) e - UPAX (XC) 

Xc^ 
nil PAX 

^^.-P,,iXc)^ (15.16) 

T / A ^ \ ™ '^^/^ VTl f Xc\ 

where 

So we have 

nx{/\z)-x'{/\z)x=^-^XPAx ( e - — ) . 
11x11 V /̂  y 

Substituting this relation in the above expression (15.15) for Ax gives 

Thus we have found an explicit expression for the search direction Ax used in the 
Projective Method of Karmarkar.^^ Note that this direction is a scalar multiple of 

V ^ 

and that this is precisely the primal logarithmic barrier direction^^ at x for the barrier 
parameter value /i, given by (15.16), for the homogeneous problem 

{PKH) min [c^x : Ax = 0, x > O} . 

Note also that problem {PKH) arises when the normalizing constraint in {PK) is 
neglected. We consider the problem {PKH) in more detail in the next section. 

15.10 T h e h o m o g e n e o u s Karmarkar format 

In this section we want to point out a relation between the primal logarithmic barrier 
method when applied to the homogeneous problem {PKH) and the Projective Method 
of Karmarkar. It is assumed throughout that {PK) satisfies the assumptions of the 
Karmarkar format. Recall that {PKH) is given by 

{PKH) min [c^x : Ax = 0, x > O} . 

We first show that the optimal value of {PKH) is zero. Otherwise there exists a 
nonnegative vector x satisfying Ax = 0 such that c^x < 0. But then 

e^ X 

^^ Show that c^Ax, with Ax given by (15.17), is negative if and only if 

{c^x) X^PAX (XC) > n \\PAX {Xc)f . 

12 See Remark III.20 on page 271. 

file:////Pax
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is feasible for (PK) and satisfies c^Te{x) < 0, contradicting the fact that the optimal 
value of (PK) is zero. The claim follows. ̂ ^ 

It is clear that any optimal solution of (PK) is nonzero and optimal for (PKH). So 
(PK) will have a nonzero optimal solution x. Now, if x is optimal then Xx is optimal 
as well for any nonnegative A. Therefore, since (PKH) has a nonzero optimal solution, 
the optimal set of (PKH) is unbounded. This implies, by Corollary 11.12 (page 102), 
that the dual problem (DKH) of (PKH), given by 

(DKH) max {O^y : A^y + 5 = c, 5 > O} , 

does not contain a strictly feasible solution. Thus, (DKH) cannot satisfy the interior-
point condition. As a consequence, the central paths of (PKH) and (DKH) do not 
exist. 

Note that any nonzero feasible solution x of (PKH) can be rescaled to Te(x) so 
that it becomes feasible for (PK). All scalar multiples Ax, with A > 0, are feasible for 
(PKH), so we have a one-to-one correspondence between feasible solutions of (PK) 
and feasible rays in (PKH). Therefore, we can neglect the normalizing constraint 
in (PK) and just look for a nonzero optimal solution of (PKH). The behavior of 
the affine-scaling direction on (PKH) has been carefully analyzed by Tsuchiya and 
Muramatsu [273]. The results of this paper form the basis of the paper [223] by 
the same authors in which they prove that the Projective Method yields a strictly 
complementary solution of (PK).^"^ 

^^ A diflFerent proof of the claim can be obtained as follows. The dual problem of (PK) is 

(DK) max {o^y + nC : A^y + Ce + s = c, s > o} . 

This problem has an optimal solution and, due to Karmarkar's assumption, its optimal value is 
zero. Thus it follows that (y, Q is optimal for (DK) if and only if (̂  = 0 and y is an optimal solution 
of 

(DKH) max {o^y : A^y + s = c, s > o] . 

By dualizing (DKH) we regain the problem (PKH), and hence, by the duality theorem the optimal 
value of (PKH) must be zero. 

^^ Exercise 80 Let x be feasible for (PKH) and positive and let /x > 0. Then, defining the number 
(5(x,/i) by 

(5(x,/i) := min < e : A^y-\-s = c>, 
y,s III /i II J 

we have 6(x, fj.) > 1. Prove this. 



16 

More Properties of the Central 
Path 

16.1 Introduct ion 

In this chapter we reconsider the self-dual problem 

(SP) min {q^x : Mx>-q,x>0}, 

where the matrix M is of size n x n and skew-symmetric, and the vector q is 
nonnegative. 

We assume that the central path of (SP) exists, and our aim is to further investigate 
the behavior of the central path, especially as /i tends to 0. As usual, we denote the 
/i-center by x(/i) and its surplus vector by 5(/i) = s{x{jii)). From Theorem 1.30 (on 
page 45) we know that the central path converges to the analytic center of the optimal 
set SV* of (SP). The limit point x* and 5* := 5(x*) form a strictly complementary 
optimal solution pair, and hence determine the optimal partition of (SP), which is 
denoted by TT = {B,N). 

We first deal with the derivatives of x(/i) and 5(/i) with respect to /i. In the next 
section we prove their existence. In Section 16.2.2 we show that the derivatives are 
bounded, and we also investigate the limits of the derivatives when fi approaches zero. 

In a final section we show that there exist two homothetic ellipsoids that are centered 
at the /i-center and which respectively contain, and are contained in, an appropriate 
level set of the objective value q^x. 

16.2 Der ivat ives a long t h e central pa th 

16.2.1 Existence of the derivatives 

A fundamental result in the theory of interior point methods is the existence and 
uniqueness of the solution of the system 

F{w,x, s) 
Mx ^ s-q 

xs — w 



308 IV Miscellaneous Topics 

for all positive w}The solution is denoted by x{w) and s{w). 

R e m a r k I V . 6 It is possible to give an elementary proof of the fact that the equation 
F{w, x,s) = 0 cannot have more than one solution. This goes as follows. Let x^, s^ and x^, s^ 
denote two solutions of the equation. Define Ax := x^ — x^, and As := s^ — s^. Then it 
follows from Mx^ + s^ = Mx'^ -^ s^ = q that 

MAx + As = 0. 

Since M is skew symmetric it follows that Ax^As = — Ax^MAx = 0, so 

e^(AxAs) = 0. (16.1) 

From x^s^ = x^s^ = w we derive that if x] = x'^ holds for some j then also s] = s'^, and vice 
versa. In other words, 

{Ax)j =0^ {As)j = 0 , j = 1, • • •, n. (16.2) 

Also, if x^ < x'^j for some j , then s] > s^, and if x] > x'^ then s] ^ s^- Thus we have 

(Ax). (As). < 0 , j = lr--,n. 

Using (16.1) we obtain 
(Ax). (As). = 0, j = l,---,n. 

This, together with (16.2) yields that (Ax)j = 0 and (As)j = 0, for each j . Hence we conclude 
that Ax = As = 0. Thus we have shown x^ = x^ and s'^ = s^, proving the claim.^ • 

Wi th z = (x, 5), the gradient matr ix (or Jacobian) of F{w, x, 5) with respect to z is 

\/zF{w,x,s) 
M I 

S X 

where S and X are the diagonal matrices corresponding to x and 5, respectively. This 
matr ix is independent ofw and depends continuously on x, s and is nonsingular. Hence 
we may apply the implicit function theorem.^ Since F{w, x, s) is infinitely many times 
diflFerentiable the same is t rue for x{w) and s{w), and we have 

dx 
dw 
ds 
dw 

= 
'MI' 

S X 

- 1 
0 

On the central pa th we have w = fie, with /i G (0, 00). Let us consider the more 
general situation where w is Si function of a parameter t, such tha t w{t) > 0 for all 
t e T with T an open interval T C IR^. Moreover, we assume tha t w is in the class 
C^ of infinitely diflFerentiable functions. Then the first-order derivatives of x{t) and 
s{t) with respect to t are given by 

x'{t) 

s'it) 

M I 

Sit) Xit) 

0 
w'it) 

(16.3) 

^ This result follows from Theorem II.4 if K; = /xe. For arbitrary K; > 0 a proof similar to that of 
Theorem III.l can be given. 

^ A more general result, for the case where M is a so-called Po-matrix, is proven in Kojima et 
al. [175]. 

3 Cf. Proposition A.2. 
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Changing notation, and denoting x\t) by x^^\ and similar for 5 and w, using induction 
we can easily obtain the higher-order derivatives. Actually, we have 

M I 

S{t) X{t) 

-1 r 
0 

w 

where 

If w is analytic in t then so are x and 5.^ 
When applying the above results to the case where x = x(/i) and 5 = 5(/i), with 

/i G (0,00), it follows tha t all derivatives with respect to fi exist and tha t x and 5 
depend analytically on fi. 

16.2.2 Boundedness of the derivatives 

Recall tha t the point x(/i) and its surplus vector 5(/i) are uniquely determined by the 
system of equations 

Mx^q 
xs 

5, X > 0, 5 > 0, 

fie. 
(16.4) 

Taking derivatives with respect to /i in (16.4) we find, as a special case of (16.3), 

(16.5) 
Mx 

xs -\- sx 

s 

e. 

The derivatives of x(/i) and 5(/i) with respect to /i are now denoted by x and s 
respectively. In this section we derive bounds for the derivatives.^ These bounds are 
used in the next section to study the asymptotic behavior of the derivatives when fi 
approaches zero. Since we are interested only in the asymptotic behavior, we assume 
in this section tha t /i is bounded above by some fixed positive number jH. 

Table 16.1. (page 310) summarizes some facts concerning the order of magnitude of 
the components of various vectors of interest. We are interested in the dependence on 
/i. All other problem dependent da ta (like the condition number asp, the dimension 
n of the problem, etc.) are considered as constants in the analysis below. 

From Table 16.1. we read tha t , e.g., x^( / i ) = B ( l ) and XN{IJL) = 0{1). For the 
meaning of the symbols B and O we refer to Section 1.7.4. See also page 190. It is 
important to stress tha t the constants hidden in the order symbols are independent 

^ This follows from an extension of the implicit function theorem. We refer the reader to, e.g., 
Fiacco [76], Theorem 2.4.2, page 36. See also Halicka [137], Wechs [290] and Zhao and Zhu [321]. 

^ We restrict ourselves to first-order derivatives. The asymptotic behavior of the derivatives has been 
considered by Adler and Monteiro [3], Witzgall, Boggs and Domich [294] and Ye et al. [313]. We 
also mention Giiler [131], who also considers the higher-order derivatives and their asymptotic 
behavior, both when /x goes to zero and when /x goes to infinity. A very interesting result in his 
paper is that all the higher-order derivatives vanish if /x approaches infinity, which indicates that 
the central path is asymptotically linear at infinity. 
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1 

2 

3 

4 

5 

Vector 

x(/i) 

5(/i) 

d{fl) 

±(/i) 

5(/i) 

B 

6(1) 

e(/i) 

^ ( * ) 

^(1) 

0{1) 

N 

e(/i) 

6(1) 

e(v^) 
0{1) 

0{1) 

Table 16.1. Asymptotic orders of magnitude of some relevant vectors. 

of the vectors x, 5 and of the value /i of the barrier parameter. They depend only on 
the problem da ta M and q and the upper bound p for /i. 

The statements in the first two lines of the table almost immediately follow from 
Lemma 1.43 on page 57. For example, fovieB the lemma states nxi{fi) > asp, where 
(Jsp is the condition number of (SP). This means tha t x^(/i) is bounded below by a 
constant. But, since x^(/i) is bounded on the finite section 0 < fi < ft of the central 
path, as a consequence of Lemma L9 (page 24), Xi{fi) is also bounded above by a 
constant. This justifies the statement Xi{fi) = 6 ( 1 ) . Since, Xi{fi)si{fi) = /i, this also 
implies Si{fi) = S{fi). This explains the first two lines for the 5 -pa r t . The estimates 
for the A^-parts of x^(/i) and 5^(/i) are derived in the same way. 

The third line shows order estimates for the vector d{jii), given by 

d{fi) 
5 ( / i ) ' 

These estimates immediately follow from the first two lines of the table. It remains to 
deal with the last two lines in the table, which concern the derivatives. 

In the rest of this section we omit the argument fi and write simply x instead of 
x{fi). This gives no rise to confusion. We start by writing the second equation in (16.5) 
in a different way. Dividing both sides by y ^ , and using tha t xs = fie we get 

ds -\- d X 
V ^ ' 

(16.6) 

Note tha t the orthogonality of x and s — which is immediate from the first equation 
in (16.5) since M is skew-symmetric 
orthogonal as well. Hence we have 

implies tha t the vectors ds and d ^x are 

\\ds\r^\\d-^x 

Consequently 

. I |2 

v^ 
n 

M , . M V ^ II , 1 . 1 1 V ^ 

IH|<^, ll^-HI<^-
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This impl ies 

^/n II 7-1 II \P^ 

The third line in the table gives ds = 6(l /y/ / i ) . This together with the left-hand side 
inequality implies 5^ = 0(\). Similarly, the right-hand side inequality implies that 
^N = ^(1)- Thus we have settled the derivatives of the small coordinates. 

It remains to deal with the estimates for the derivatives of the large coordinates, 
XB and 5AT. This is the harder part. We need to characterize the scaled derivatives d's 
and d~^x in a different way. 

Lemma IV.7 Let x he any vector in IR^ and s = s{x). Then 

1 _ d ^x 

ds / i 
(MD - D - i ) 

ds 

d-^x 

Here P( (MD -D-i) denotes the orthogonal projection onto the null space of the matrix 
[MD — D~^), where D is the diagonal matrix of d.^ 

Proof: Letting / denote the identity matrix of size n x n, we multiply both sides 
in (16.6) by DMD - I. This gives 

(DMD - I) (ds + d-^x) = (DMD - I) 
V ^ ' 

By expanding the products we get 

DMx -ds^ DMD'^s - d'^x = DMD— —. 
v^ v^ 

With Mx = s this simplifies to 

DMD'^s - d-^x = DMD , 

and this can be rewritten as 

V ^ 
d ^x DMD-

-DM^D(— 

DMD'^S = DMD ( — 

Vv̂  
ds 

ds 

^ Exercise 81 Using the notation of Lemma IV.7, let x run through all vectors in H^ . Then the 
vector 

ds 
d-^x 

runs through an affine space parallel to the row space of the matrix MD —D~^ . This space 

intersects the null space of MD —D~^ in a unique point. Using this, prove that there exists 
a vector x in R ^ such that 

lixs{ii) 

lisx{ii) 

x{ii)s 

s{ii)x^ 

where s = s(x). 
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Using this we write 

e 

d-

ds 
D i ^ - d s 

MD -D-^ ^ oi^-ds 
Vv̂  

This shows that the vector on the left belongs to the row space of the matrix 
[MD — D~^Y Observing that, on the other hand, 

MD -D-^ 
d ^x 

ds 

which means that the vector of scaled derivatives 

d~^x 

ds 
(16.7) 

belongs to the null space of the matrix (^MD — D ^), we conclude that the vector 
(16.7) can be characterized as the orthogonal projection of the vector 

e 

into the null space of (^MD — D ^). In other words. 

d ^x 

ds (MD - D - i ) e 

Since xs = fie, we may replace the vector e by y^xsjjl. Now using that y ^ = ds 
d~^x, we get 

d ^x 

ds 
— P(MD - D - i ) 

ds 

Finally, let x be any vector in K^ and 5 = s{x). Then we may write 

ds ds d{s — s) 

d~^ {x — x) 

-DM^ {x - x) 

d~^ {x — x) 

DM {x - x) 

d~^ {x — x) 

The last vector is in the row space of 

(MD - D - i ) 
ds 

d-^x 

MD -D-^ 

(MD -D-

MD -D-^ 

and hence we have 

ds 

{x — x). 
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proving the lemma. 

Using Lemma IV.7 with x = x* and 5 = 5* we have 

313 

D 

/ i 
ds 

argmm^^^^j^. 
ds* - h 

d-^x* - k 
MD -D-^ OV. 

Hence, the unique solution of the above least squares problem is given by 

h = jiid~^x, k = fids. 

The left-hand side of the constraint in the problem can be split as follows: 

M^D^ -D-} N 
KB 

kN 
MNDN -D-^ 

hN 

ks 
0. 

Substituting the optimal values for HN and ks we find tha t hs and kN need to satisfy 

MNDN -D-^ MBDB -D-^ 
KB 

kN 
- / i 

- / i 

dJxN ^N 

dBSB 

MN -IB 
XN 

SB 

Since x ^ = 0 and 5^ = 0 we obtain the following characterization of the derivatives 
for the large coordinates: 

argmm;,^ .^ 
|_ A^TV J 

||2 

MBDB 

d^^XB 

dNSN 

-DN'] 
hB 

[kN 
= - /^ M, N 

XN 

SB 

Now let z = (ZB^ZN) be the least norm solution of the equation 
(16.^ 

MB -I N 

Then we have 

ZB 

ZN 

ZB 

ZN 

Mf 

MN -IB 

^N M, N 

XN 

SB 

XN 

SB 

where Mp ^N 

obvious tha t 

denotes the pseudo-inverse^ of the matr ix 

hB = d^ ZB, kN = dNZN 

Mf LN 

(16.9) 

. It is 

^ See Appendix B. 



314 IV Miscellaneous Topics 

is feasible for (16.8). It follows tha t 

lldNSN 
< 

dN^N 

From Table 16.1. we know tha t d^^ = B ( y ^ ) and d^ = B(y//i) , so it follows tha t 

<e(v^) fid^^xs 

jidjsfSjsf 

ZB 

ZN 

Moreover, we have already established tha t 

XN = 0{1), SB = 0{1). 

Hence, using also (16.9), 

where the constant in the order symbol now also contains the norm of the matr ix 
{MB —IN) {MN —IB)- Note tha t this matrix, and hence also its norm, depends 
only on the da ta of the problem. Substitution yields, after dividing both sides by /i. 

d^^XB 

djySN 

Using once more d^ = B(y//i) and djy = B ( y ^ ) , we finally obtain 

completing the proof of the estimates in the table. 

XB 

SN 

16.2.3 Convergence of the derivatives 

Consider the second equation in (16.5): 

Recall tha t x and s are orthogonal. Since xs = /ie, the vectors xs and sx are orthogonal 
as well, so this equation represents an orthogonal decomposition of the all-one vector 
e. It is interesting to consider this decomposition as ji goes to zero. This is done in the 
next theorem. Its proof uses the results of the previous section, which are summarized 
in Table 16.1.. 

T h e o r e m I V . 8 / / ji approaches zero, then xs and sx converge to complementary 
{0,1]-vectors. The supports of their limits are B and N, respectively. 

Proof: For each index i we have 

'^i^i ~r Sj^Xi 1. 
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Now let i e B and let fi approach zero. Then Si -^ 0. Since Xi is bounded, it follows 
tha t SiXi -^ 0. Therefore, XiSi -^ 1. Similarly, if i G N, then Xi -^ 0. Since Si is 
bounded, XiSi -^ 0 and hence SiXi -^ 1. This implies the theorem. • 

The next theorem is an immediate consequence of Theorem IV.8 and requires no 
further proof. It establishes tha t the derivatives of the small variables converge if fi 
approaches zero.^ 

T h e o r e m IV .9 We have lim^jo ^A^ = (5^) ^ and lim^jo ^^ = (^^)" D 

1 6 . 3 E l l i p s o i d a l a p p r o x i m a t i o n s o f l e v e l s e t s 

In this section we discuss another property of /i-centers. Namely, tha t there exist two 
homothetic ellipsoids tha t are centered at the /i-center and which respectively contain, 
and are contained in, an appropriate level set of the objective function q^x. In this 
section we keep /i > 0 fixed. 

For any K > 0 we define the level set 

M K {x : X > 0, s{x) = Mx^q>0, q^x < K} . (16.10) 

Since q^x{ii) = nfi^ we have x(/i) G A i x if and only if nfi < K. Note tha t Aio 
represents the set of optimal solutions of (SP), since q^x < 0 if and only if q^x = 0. 
Hence Mo = SV\ 

For any number r > 0 we also define the ellipsoid 

S{fi,r) := < X 
X 

x(/ i ) 

|2 1 
\ ^ - e \ 
5 ( / i ) 

< H 

Note tha t the norms in the defining inequality of this ellipsoid vanish if x = x(/i), so 
the analytic center x(/i) is the center of the ellipsoid <f ( / i , r ) . 

T h e o r e m IV.IO S{fi, 1) C M (i(n+^^ and Aio C «f (/i, n) . 

Proof: Assume x G <f (/i, 1). We denote s{x) simply by 5. To prove the first inclusion 
we need to show tha t x > 0, 5 = s{x) > 0 and q^x < fi{n-\- y ^ ) -

To simplify the notation we make use once more of the vectors hx and hs introduced 
in Section 6.9.2, namely 

hx 
X 

or equivalently. 

x{fi) 

X — x{jil) 

x(/i) 

e, hs e, (16.11) 

Theorem IV.9 gives only the limiting values of the derivatives of the small variables and says nothing 
about convergence of the derivatives for the large coordinates. For this we refer to Giiler [131], who 
shows that all derivatives converge when /x approaches zero along a weighted path. In fact, he 
extends this result to all higher-order derivatives and he gets similar results for the case where /x 
approaches infinity. 
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Obviously, h^ and hs are orthogonal. Hence, defining 

h := hx + /is, 

we find 

Hence \\hx\\ < 1. We easily see tha t this implies x > 0. Similarly, \\hs\\ < 1 implies 
5 > 0. Thus it remains to show tha t q^x < /J.{n -\- \ /n ) - Since 

[h^ + e) [hs + e) = . . . . = — , 
x{fi)s{fi) fi 

and on the other hand 

{hx + e) {hs + e) = h^hs -^ h^ ^ hs ^ e = h^hs + /i + e, 

we get 
xs 

h= e-h^hs. (16.12) 

Taking the inner product of both sides with the all-one vector, while using once more 
tha t hx and hs are orthogonal, we arrive at 

T T 
e h = e e = n. (16.13) 

This gives 
q^x = fi (n -\- e"^/i) . 

Finally, applying the Cauchy-Schwarz inequality to e^h, while using \\h\\ < 1, we get 

q^x < fi{n^ ||e||) = fi {n ^ Vn) , 

proving the first inclusion in the theorem. 
To prove the second inclusion, let x be optimal for (SP). Then q^x = 0, and hence, 

from (16.13), e^h = —n. Since x > 0 and 5 > 0, (16.11) gives hx > —e and hs > —e. 
Thus we find h > — 2e. Now consider the maximization problem 

max hhf : e^h =-n, h > -2e\ , (16.14) 

and let /i be a solution of this problem. Then, for arbitrary i and j , with I < i < j < n, 
hi and hj solve the problem 

max {h^ -\- h^ : hi -\- hj = hi -\- hj, hi > —2, hj > —2} , 

We easily understand tha t this implies tha t either hi = —2 or hj = —2. Thus, h 
must have n — 1 coordinates equal to —2 and the remaining coordinate equal to 
—n — (n — 1)(—2) = n — 2, and hence, 

\\h\\^ = ( n - l ) 4 + ( n - 2 ) 2 = n ^ 

Therefore, \\h\\ < n. This means tha t x G S{fi,n), and hence the theorem follows.^ • 

^ Exercise 82 Using the notation of this section, prove that 
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Partial Updating 

17.1 Introduct ion 

In this chapter we deal with a technique that can be apphed to almost every 
interior-point algorithm to enhance the theoretical efficiency by a factor ^Jn. The 
technique is called partial updating, and was introduced by Karmarkar in [165]. His 
projective algorithm, as presented in Chapter 15, needs 0{nL) iterations and 0{n^) 
arithmetic operations per iteration. Thus, in total the projective algorithm requires 
0{n^L) arithmetic operations. Karmarkar showed that this complexity bound can 
be reduced to 0{ii?-^L) arithmetic operations by using partial updating. It has since 
become apparent that the same technique can be applied to many other interior-point 
algorithms with the same effect: a reduction of the complexity bound by a factor ^/n^ 

The partial updating technique can be described as follows. In an interior-point 
method for solving the problems (P) and {D) — in the standard format of Part II 
— each search direction is obtained by solving a linear system involving a matrix of 
the form AD^A^, where the scaling matrix D = diag (d) is a positive diagonal matrix 
depending on the method. In a primal-dual method we have D^ = XS~^, in a primal 
method D = X, and in a dual method D = S~^. The matrix D varies from iteration 
to iteration, due to the variations in x and/or s. We assume that A is m x n with 
rank m. Without partial updating the computation of the search directions requires 
at each iteration 0{n^) arithmetic operations for factorization of the matrix AD^A^ 
and only 0{ii?) operations for all the other required arithmetic operations. 

Although the matrix AD^A^ varies from iteration to iteration, it seems reasonable 
to expect that the variations are not too large, and that the matrix at the next iteration 
is related in some sense to the current matrix. In other words, the calculation of the 
search direction in the next iteration might benefit from earlier calculations. In some 
way, that goal is achieved by the use of partial updating. 

To simplify the discussion we assume for the moment that at some iteration the 
scaling matrix is the identity matrix / and at the next iteration D. Then, if â  denotes 
the i-th column of A, we may write 

n n n 

AD'^A^ = ^ dfaiaj = ^ a^aj + ^ (^^ - l) caaj-
i=l i=l i=l 

1 See for example Anstreicher [20], Anstreicher and Bosch [25, 26], Bosch [46], Bosch and Anstrei-
cher [47], den Hertog, Roos and Vial [146], Gonzaga [118], Kojima, Mizuno and Yoshise [177], 
Mehrotra [204], Mizuno [213], Monteiro and Adler [219], Roos [240], Vaidya [276] and Ye [306]. 
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Hence 

AD^A' = AA' + Y, {d1 - 1) aia] T 

1 

showing that AD^A^ arises by adding the n rank-one matrices ((if — l) aiaf to AA^. 
Now consider the hypothetical situation that di = 1 for every i, except for z = 1. Then 
we have 

AD^A"" = AA^ + {d\ - 1) a iaf 

and AD'^A^ is a so-called rank-one modification of AA^. By the well known Sherman-
Morrison formula^ we then have 

. 2 , T N - i _ / , , T N - i ,,2 iN {AA'ry^ ataj {AA^^Y^ 
{AD^A')~={AA^)~-{dl-l) 

I + {d\ - I) a1 {AAT)-^ ai 

This expression makes clear that the inverse of AD^A^ is equal to the inverse of AA^ 
plus a scalar multiple of the rank-one matrix vv^, where 

v = {AA''y\i. 

We say that (^AD'^A^^ is a rank-one update of (^AA^^ . The computation of a 
rank-one update requires 0{n^) arithmetic operations, as may easily be verified. 

In the general situation, when all the entries of d differ from 1, the inverse of the 
matrix AD'^A^ can be obtained by applying n rank-one updates to the inverse of 
AA^. This still requires 0{n^) arithmetic operations. 

The underlying idea for the partial updating technique is to perform only those 
rank-one updates that correspond to coordinates i of d for which \df — l | exceeds 
some threshold value. A partial updating algorithm maintains an approximation d 
of d and uses AD^A^ instead of AD^A^; the value of di is updated to its correct 
value if it deviates too much from d^. Each update of an entry in d necessitates 
modification of the inverse (or factorization) of AD^A^. But each such modification 
can be accomplished by a rank-one update, and this requires only 0{n^) arithmetic 
operations.^ The success of the partial updating technique comes from the fact that 
it can reduce the total number of rank-one updates in the course of an algorithm by 
a factor ^/n. 

The analysis of an interior-point algorithm with partial updating consists of two 
parts. First we need to show that the modified search directions, obtained by using 
the scaling matrix d instead of (i, are sufficiently accurate to maintain the polynomial 
complexity of the original algorithm; this amounts to showing that the modified 
algorithm has a worst-case iteration count of the same order of magnitude as the 

Exercise 83 Let Q, R, S,T be matrices such that the matrices Q and Q + RS^ are nonsingular 
and R and S are n x k matrices of rank k < n. Prove that 

(Q + RS^)-^ = Q-i - Q-^R(I + S^Q-^R)-^S^Q-\ 

The Sherman-Morrison formula arises by taking R = S = a, where a is a nonzero vector [136]. 
^ We refer the reader to Shanno [251] for more details of rank-one updates of a Cholesky factorization 

of a matrix of the form AD^A^. 
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original algorithm. Then, secondly, we have to count the total number of rank-one 
updates in the modified algorithm. 

As indicated above, the partial updating technique can be applied to a wide class of 
interior-point algorithms. Below we demonstrate its use only for the dual logarithmic 
barrier method with full Newton steps, which was analyzed in Chapter 6. 

17.2 Modified search direction 

Recall from Exercise 35 (page 111) that the search direction in the dual logarithmic 
barrier method is given by 

Ay={AS-^A^y'f--AS-hy 

More precisely, this is the search direction at y, with s = c — A^y > 0, and for the 
barrier parameter value /i. In the sequel we use instead 

Ay = (^AS-^A^y' f- - AS-'eY 

where s is such that s = Xs with 

Â  G ( - , c r j , 1 < z < n , (17.1) 

for some fixed real constant a > 1. The corresponding displacement in the 5-space is 
given by 

As = -A^Ay = -A^ (^AS-^A^) " ' ( - - AS-'e\ . (17.2) 

Letting x be such that Ax = b we may write 

rs-'As = - {AS-'Y (^AS-^A'^Y' AS-'A [^ - e 

showing that —s~^As equals the orthogonal projection of the vector 

into the row space of the matrix AS~^. Since the row space of the matrix AS~^ is 
equal to the null space of HS, where H is the same matrix as used in Chapter 6 — 
and defined in Section 5.8, page 111 — we have 

§-'As = -P~ A - - e . (17.3) 

Note that if A = e then the above expression coincides with the expression for the 
dual Newton step in (6.1). Defining 

x(5,/i) = argmin^ i r ^ l ^) * ^ ^ ̂  ^ ( ' i'^'^-^) 
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and using the same arguments as in Section 6.5 we can easily verify tha t 

sx{s, fi) j^,sx{s,fi) _^ 

yielding the following expression for the modified Newton step: 

A, 

s~^As = A ( e 
/ i 

(17.5) 

1 7 . 3 M o d i f i e d p r o x i m i t y m e a s u r e 

The proximity of 5 to 5(/i) is measured by the quanti ty 

I A s I 
(5(5,/i) := (17.6) 

From (17.5) it follows tha t the modified Newton step As vanishes if and only if 
sx{s, ji) = /ie, which holds if and only if x(5, ji) = x(/i) and 5 = 5(/i). As a consequence 
we have 

(5(5, /i) = 0 < ^ ^ 5 = S{IJL). 

An immediate consequence of (17.4) and (17.5) is 

^ ( 5 , / i ) A e 
sx{s, fi) 

/ i 
mm A ( ^ - e : Ax = by (17.7) 

The next lemma shows tha t the modified proximity S{s, fi) has a simple relation with 
the s tandard proximity measure (5(5,/i). 

L e m m a IV. 11 

Proof: Using (17.7) and max 

S{s,fi) = 

< 1 

On the other hand we have 

(5(5,/i) = 

< 

(J 
^ u \ ^ D , ^ y ^ ^ u \ ^ o . ^j. 

(A) < (7 we may write 

A(e-^fe^) 

^lloo 
5 x ( 5 , / i ) 

e 

< 
Lf_sx{.s,f,)\\ 

< (7(5(5,/i). 

5 x ( 5 , / i ) 
e 

1 /̂  1 
l̂ "'l oo K, 

< 

5 

A - i A ( e - ^ ^ ) 

x(5. 
- ) \ < (7(5(5,/i). 

This implies the lemma. 

The next lemma generalizes Lemma IL26 in Section 6.7. 

D 
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L e m m a I V . 1 2 Assuming S{s,fi) < 1, let 5+ be obtained from s by moving along the 
modified Newton step As at s for the barrier parameter value ji, and let /i+ = (1 — 6)ii. 
Assuming that 5+ is feasible, we have 

5{s+,^i+)<aJ5{s,^i)^ + eh {a^-l)~5{s,^Ji) 

{1-9Y 

Proof: By definition, 

5{s ̂ ^ ji^) = min < 
/ i ^ 

Ax = b 

Substituting for x the vector x{s,jii) and replacing /i+ by / i ( l 
following inequality: 

K^-0) 
Simplifying the notation by using 

h:--
As _ As 

s Xs' 

we may rewrite (17.5) as 

Using this and (17.9) we get 

sx (5,/i) = /i (e — A ^h) . 

we obtain the 

(17.8) 

(17.9) 

(17.10) 

5^x(5, / i ) (5 + As) x{s, /i) = (5 + Xsh) x{s, ji) 

(e + \h) sx{s^ ji) = fi{e -\- Xh) (e — X~^h) . 

Substi tuting this into (17.8) we obtain 

(e + A / i ) ( e - A - i / i ) 
(5(5+, / i+)< 

This can be rewritten as 

/i2 + (A - A- i ) h 

S{s+,ii+)< 

The triangle inequality now yields 

(e - /i2) (A - A- i ) h 

S{s+,^i+)< 
> (e - fe^) 

1 

( A - A - i ) / i 

1 
(17.11) 

The first norm resembles (6.12) and, since \\h\\ < 1, can be estimated in the same way. 
This gives 

2̂ H^-h') 
1 

< 
(i-^r 
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For the second norm in (17.11) we write 

( A - A - i ) / i | 
<| |A-A-i | l ^ ^ < 

( a - a - ) 

Substituting the last two bounds in (17.11), while using \\h\\ = ^(s,/x), we find 

5is\,-)<^5is,,r + ^^-^ + ^ T^e • 

Finally, Lemma IV.11 gives (5(5+,/i+) < (J5{S~^, jii~^) and the bound in the lemma 
follows. • 

Lemma IV.13 Let n > 3. Using the notation of Lemma IV. 12 and taking a = 9/8 
and 0 = l / (6yn) , we have 

and the new iterate 5+ is feasible. 

Proof: The implication in the lemma follows by substituting the given values in the 
bound for (5(5+,/i+) in Lemma IV.12. If n > 3 this gives 

^(5+,/i+) < 0.49644 < 0.5, 

yielding the desired result. By Lemma IV.11 this implies (5(5+,/i+) < a/2 = 9/16. 
From this the feasibility of 5+ follows. • 

The above lemma shows that for the specified values of the parameters a and 0 
the modified Newton steps keep the iterates close to the central path. The value of 
the barrier update parameter 6 in Lemma IV. 13 is a factor of two smaller than in 
the algorithm of Section 6.7. Hence we must expect that the iteration bound for an 
algorithm based on these parameter values will be a factor of two worse. This is the 
price we pay for using the modified Newton direction. On the other hand, in terms of 
the number of arithmetic operations required to reach an e-solution, the gain is much 
larger. This will become clear in the next section. 

The modified algorithm is described on page 323. 
Note that in this algorithm the vector A may be arbitrarily at each iteration, subject 

to (17.1). The next theorem specifies values for the parameters r, 0 and a for which 
the algorithm is well defined and has a polynomial iteration bound. 

Theorem IV.14 If r = 1/2, 0 = l / (6y^) and a = 9/8, then the Dual Logarithmic 
Barrier Algorithm with Modified Full Newton Steps requires at most 

6v^log 

iterations. The output is a primal-dual pair (x, 5) such that x^s < 2s. 
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Dual Log. Barrier Algorithm with Modified Full Newton Steps 

Input: 
A proximity parameter r, 0 < r < 1; 
an accuracy parameter s > 0; 
{y^, s^) G P and / > 0 such that S{s^,/j.^) < r; 
a barrier update parameter ^, 0 < ^ < 1; 
a threshold value a, a > 1. 

begin 
5 : = 5^; /i : = /i^; 

while nfi > (1 — 0)s do 
begin 

Choose any A satisfying (17.1); 
5 := 5 + As, As from (17.2); 
/ i : = ( l - ^ ) / i ; 

end 
end 

Proof: According to Lemma IV. 13 the algorithm is well defined. The iteration bound 
is an immediate consequence of Lemma L36. Finally, the duality gap of the final iterate 
can be estimated as follows. For the final iterate 5 we have S{s, fi) < 1/2, with nfi < e. 
Taking x = x{s,jii) it follows from (17.10) that 

s^x{s, ji) = nji — fih^X~^. 

Since 
h^X-^\ < \\X~^\\ \\h\\ < aS{s,fi)Vn < 9n/16 < n, 

we obtain 
5 x{s, fi) < 2n/i < s. 

The proof is complete. • 

17.4 A l g o r i t h m w i t h rank-one u p d a t e s 

We now present a variant of the algorithm in the previous section in which the vector 
A used in the computation of the modified Newton step is prescribed. See page 324. 

Note that at each iteration the vector s is updated in such a way that the vector A 
used in the computation of the modified Newton step satisfies (17.1). As a consequence, 
the iteration bound for the algorithm is given by Theorem IV. 14. Hence, the algorithm 
yields an exact solution of (D) in O {y/nL) iterations. Without using partial updates 
— which corresponds to giving the threshold parameter a the value 1 — the bound for 
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Full Step Dual Log. Barrier Algorithm with Rank-One Updates 

Input: 
A proximity parameter r, r = 1/2; 
an accuracy parameter s > 0; 
{y^, s^) G P and / > 0 such that (^(s^ / ) < r; 
a barrier update parameter 0,0 = l / (6v^) ; 
a threshold value a, a = 9/8. 

begin 
5 : = 5^; /i : = /i^; 5 = 5; 
while nfi > (1 — 0)s do 
begin 

A : = 55"-* ;̂ 
5 := 5 + As, As from (17.2); 
for z := 1 to n do 
begin 

end 

M : = ( I - ^ ) M ; 
end 

end 

the total number of arithmetic operations becomes O (n^'^L). Recall that the extra 
factor n^ can be interpreted as being due to n rank-one updates per iteration, with 
O (n^) arithmetic operations per rank-one update. 

The total number of rank-one updates in the above algorithm is equal to the number 
of times that a coordinate of the vector 5 is updated. We estimate this number in the 
next section, and we show that on the average it is not more than O (y^) per iteration, 
instead of n. Thus the overall bound for the total number of arithmetical operations 
becomes O {n^L). 

17.5 Count of t h e rank-one u p d a t e s 

We need to count (or estimate) the number of times that a coordinate of the vector 
s changes. Let 5^ and s^ denote the values assigned to 5 and to 5, respectively, at 
iteration k of the algorithm. We use also the superscript ^ to refer to values assigned 
to other relevant entities during the k-th. iteration. For example, the value assigned to 
A at iteration k is denoted by Â  and satisfies 

Â  = ^ , k>l. 
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Moreover, denoting the modified Newton step on iteration k by As^, we have 

As^ = s^ - s^-^ = t-^h^ = X^s^-^h\ k>l. (17.12) 

Note that the algorithm is initialized so that 5^ = 5^ and these are the values of 5 and 
5 just before the first iteration. 

Now consider the i-th coordinate of 5. Suppose that 5̂  is updated at iteration 
ki > 0 and next updated at iteration k2 > ki. Then the updating rule implies that 
the sequence 

^fei + l ^fei+2 ^ko-l 

s'' ~^k^+l•• ~fe.-2 ' ~k,-l 

has the property that the last entry lies outside the interval (1/cr, cr) whereas all the 
other entries lie inside this interval. Since 

5 ^ = 5 ^ = 5 ^ + ^ = . . . = 5,^^-^ 

we can rewrite the above sequence as 

Hence, with 

the sequence 

has the property 

and 

p^ 

^fei + 1 ^fei+2 ^k2-l ^k2 

: = 5 ^ + ^ 0<j<K:=k2-l 

P o , P i , . . . , P K 

^ ^ f - , ^ , 1<J<K 

Po \o- J 

(17.13) 

(17.14) 

(17.15) 

(17.16) 

(17.17) 

Our estimate of the number of rank-one updates in the algorithm depends on a 
technical lemma on such sequences. The proof of this lemma (Lemma IV. 15 below) 
requires another technical lemma that can be found in Appendix C (Lemma C.3). 

Lemma IV. 15 Let a > 1 and let po,Pi, • • • ,PK be a finite sequence of positive 
numbers satisfying (17.16) and (17.17). Then 

K-l 

E Pj+i-Pj 

Pj 
> 1 

1 
(17.18) 

Proof: We start with K = 1. Then we need to show 

Pi -po 
Po 

^ - 1 
Po 

> 1 . 
a 
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If P i /po < 1 / ^ ^^^^ 

and if p i /po ^ cr then 

^ - 1 
Pi 1 

1 - — > 1 - -
PO CF 

Pi 

PO 
1 Pi 

PO 
1 > c r - l > 1 

1 

(J 

We proceed with K > 2. It is convenient to denote the left-hand side expression 
on (17.18) by ^(po,Pi , • • • ^PK)- We start with an easy observation: if Pjj^i = Pj for 
some j (0 < j < K) then g{po,Pi, • • • , P K ) does not change if we remove p^+i from 
the sequence. So without loss of generality we may assume tha t no two subsequent 
elements in the given sequence po,Pi, • • • ,PK are equal. 

Now let the given sequence po,Pi, • • • ,PK be such tha t g{po,Pi, • • • IPK) is minimal. 
For 0 < j < K we consider the two terms in g{po,Pi, • • • ,PK) tha t contain pj. The 
contribution of these two terms is given by 

Pj-Pj-i 

Pj-i 

Pj+i-Pj 

Pj 
1 Pj 

Pj-i 
1 Pj-i 

Pj 

Pj-i 

(17.19) 

Since po,Pi , • • • ^PK minimizes g{po,Pi, - - - ^PK), when fixing pj-i and Pj+i , Pj must 
minimize (17.19). If p^+i < Pj-i then Lemma C.3 (page 437) implies tha t 

Pj 1 or Pj Pj+i 

Pj-i Pj-i Pj-i 

This means tha t 

Pj =Pj-i ^^Pj =Pj+i-

Hence, in this case the sequence has two subsequent elements tha t are equal, which 
has been excluded above. We conclude tha t p^+i > Pj-i- Applying Lemma C.3 once 
more, we obtain 

Pj _ jPj+i 

Pj-i \l Pj-i' 

Thus it follows tha t 

Pj-i < Pj = ^/Pj-iPj+i < Pj+i 
for each j , 0 < j < K , showing tha t the sequence po^Pi, • • • IPK is strictly increasing 
and each entry pj in the sequence, with 0 < j < K , is the geometric mean of the 
surrounding entries. This implies tha t the sequence pj/p^^l < j < K, is geometric 
and we have 

Pi 

Po 

where 

a 

l<j<K, 

> 1. 

In tha t case we must have PK > cr and hence a satisfies a^ > a. Since 

K-l 

^ ( P O , P I , . . . , P K ) E Pj+i 

Pj 
1 

K-l 

E ( Q ^ - 1 ) = K ( Q ^ - 1 ) , 
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the inequality in the lemma follows if 

K{a-l)>l 
a K ' 

This inequality holds for each natural number K and for each real number a > 1. 
This can be seen by reducing the right-hand side as follows: 

1 
1 v ^ 1 _ ( Q ^ - 1 ) ( Q ^ ^ - I + . . . + Q̂  + 1 ) 

a 
K ^.K vK 

{a - 1) {a-^ + Q^"^ . . + a-^) < K {a - 1). 

This completes the proof. 

Now the next lemma follows easily. 

D 

L e m m a IV. 16 Suppose that the component Si of s is updated at iteration ki and next 
updated at iteration k2 > ki. Then 

k2-l 

E 
k=ki 

A«*+' 
a 

where AsJ^^"^ denotes the i-th coordinate of the modified Newton step at iteration k-\-l. 

Proof: Applying Lemma IV. 15 to the sequence Po,Pi, • • • ,PK defined by (17.14) we 
get 

1 
k2-l 

E 
k=k\ 

5?+^ - 5? 
> 1 

Since 5^+^ — s^ = As^^^ by definition, the lemma follows. D 

T h e o r e m I V . 1 7 Let N denote the total number of iterations of the algorithm and Ui 
the total number of updates of Si. Then 

^ n i < QNy/n. 
i=l 

Proof: Recah from (17.12) tha t 

Hence, for 1 < z < n. 
A5?+i 

s^ 

Now Lemma IV. 16 implies 

N N-1 

Af+ift?+i. 

EÎ '̂ 'l = EI^^'^^'l^-4i-^ 
k=l k=0 
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Taking the sum over i we obtain 

N n 
a E-^^yzjEEm\-

i=l k=l i=l 

The inner sum can be bounded above by 

YlX^h^l <aY\h^\ =a||/i^|L <a\\h^\\V^. 
i=\ i=l 

Since \\h^\\ = ^(5^,/i^) < r we obtain 

a — 1 ^-^ a — 1 
i=l k=l 

Substituting the values of a and r specified in the algorithm proves the theorem. • 

Finally, using the iteration bound of Theorem IV. 14 and tha t each rank-one update 
requires 0{ii?) arithmetic operations, we may state our final result without further 
proof. 

T h e o r e m IV. 18 The Full Step Dual Logarithmic Barrier Algorithm with Rank-One 
Updates requires at most 

36n^ log ^ ^ 
s 

arithmetic operations. The output is a primal-dual pair (x, 5) such that x^s < 2s. 
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A/\x 

A^Ay + As 

sAx -\- xAs 

= 0, 

= 0, 

Aw, 

Higher-Order Methods 

18.1 Introduct ion 

In a target-following method the Newton directions Ax and As to a given target 
point w in the i(;-space/ and at a given positive primal-dual pair (x,5), are obtained 
by solving the system (10.2): 

(18.1) 

where Aw = w — xs. Recall that this system was obtained by neglecting the second-
order term Ax As in the third equation of the nonlinear system (10.1), given by 

AAx = 0, 

A^Ay^As = 0, (18.2) 

sAx -\- xAs -\- AxAs = Aw. 

An exact solution — (A^x, A^y, A^s) say — of (18.2) would yield the primal-dual pair 
corresponding to the target w, because 

{x + A^x) {s + A^s) = w, 

as can easily be verified. Unfortunately, finding an exact solution of the nonlinear 
system (18.2) is hard from a computational point of view. Therefore, following a 
classical approach in mathematics when dealing with nonlinearity, we linearize the 
system, and use the solutions of the linearized system (18.1). Denoting its solution 
simply by (Ax, AT/, A S ) , the primal-dual pair {x + Ax, s + As) satisfies 

{x + Ax) {s + As) =w - Ax As, 

and hence, the 'error' after the step is given by Ax As. Thus, this error represents the 
price we have to pay for using a solution of the linearized system (18.1). We refer to 
it henceforth as the second-order effect. 

^ We defined the ly-space in Section 9.1, page 220; it is simply the interior of the nonnegative orthant 
in W. 
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Clearly, the second-order effect strongly depends on the actual da ta of the problem 
under consideration.^ 

It would be very significant if we could eliminate the above described second-order 
effect, or at least minimize it in some way or another. One way to do this is to use 
so-called higher-order methods.^ The Newton method used so far is considered to be a 
first-order method. In the next section the search directions for higher-order methods 
are introduced. Then we devote a separate section (Section 18.3) to the estimate of the 
(higher-order) error term E^{a), where r > 1 denotes the order of the search direction 
and a the step-size. The results of Section 18.3 are applied in two subsequent sections. 
In Section 18.4 we first discuss and extend the definition of the primal-dual Dikin 
direction, as introduced in Appendix E for the self-dual problem, to a primal-dual 
Dikin direction for the problems (P) and (D) in s tandard format. Then we consider 
a higher-order version of this direction, and we show tha t the iteration bound can 
be reduced by the factor y ^ without increasing the complexity per iteration. Then, 
in Section 18.5 we apply the results of Section 18.3 to the primal-dual logarithmic 
barrier method, as considered in Chapter 7 of Par t II. This section is based on a 
paper of Zhao [320]. Here the use of higher-order search directions does not improve 
the iteration bound when compared with the (first-order) full Newton step method. 
Recall tha t in the full Newton step method the iterates stay very close to the central 
path. This can be expressed by saying this method keeps the iterates in a 'narrow 
cone' around the central path. We shall see tha t a higher-order method allows the 
iterates to stay further away from the central path, which makes such a method a 
'wide cone' method. 

18.2 Higher-order search direct ions 

Suppose tha t we are given a positive primal-dual pair (x, s) and we want to find the 
primal-dual pair corresponding to w := xs -\- Aw for some displacement Aw in the 
w-spsice. Our aim is to generate suitable search directions Ax and As at {x,s). One 
way to derive such directions is to consider the linear line segment in the w-spsice 
connecting xs with w. A parametric representation of this segment is given by 

xs -\- aAw, 0 < Q̂  < 1. 

In the w-spa.ce the ideal situation is that the curve (x + a Ax) (s + a As) , 0 < CK < 1, moves from 
xs in a straight line to the target K;. As a matter of fact, the second-order effect 'blows' the curve 
away from this straight line segment. Considering CK as a time parameter, we can think of the 
iterate (x + aAx) (s + aAs) as the trajectory of a vessel sailing from xs to w and of the second-
order effect as a wind blowing it away from its trajectory. To reach the target w the bargeman 
can put over the helm now and then, which in our context is accomplished by updating the search 
direction. In practice, a bargeman will anticipate the fact that the wind is (locally) constant and he 
can put the helm in a fixed position that prevents the vessel being driven from its correct course. 
It may be interesting to mention a computer game called Schiet Op^^, designed by Brinkhuis 
and Draisma, that is based on this phenomenon [51]. It requires the player to find an optimal path 
in the w-space to the origin. 

The idea of using higher-order search directions as presented in this chapter is due to Monteiro, 
Adler and Resende [220], and was later investigated by Zhang and Zhang [318], Hung and Ye [150], 
Jansen et al. [160] and Zhao [320]. The idea has been applied also in the context of a predictor-
corrector method by Mehrotra [202, 205]. 

http://w-spa.ce
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To any point of this segment belongs a primal-dual pair and we denote this pair by 
{x{a),s{a)).^ Since x{a) and s{a) depend analytically^ on a there exist x̂ ^̂  and 5^^\ 
with z = 0 , 1 , . . . , such that 

oo oo 

x{a) = Y^ x^^a\ s{a) = ^ s^'^a\ 0 < ô  < 1. (18.3) 

Obviously, x{0) = x = x^^^ and 5(0) = s = s^^\ From Ax{a) = 6, for each a G [0,1], 
we derive 

Ax^^^ = b, Ax^^ = 0 , i>l. (18.4) 

Similarly, there exist unique 7/̂ ^̂  and 5^^\ z = 0 , 1 , . . . , such that 

Furthermore, from 

X(Q^)5(Q^) = X5 + a/\w^ 

by expanding X(Q^) and s{a) and then equating terms with equal powers of ô , we get 
the following relations: 

x^^h^^^ = xs (18.6) 

x^'h^'^^s^'^x^'^ = Aw (18.7) 
k 

^x^'h^^-'^ = 0, A: = 2 , 3 , . . . . (18.8) 

The first relation implies once more that x^^^ = x and 5̂ ^̂  = 5. Using this and (18.4), 
(18.5) and (18.7) we obtain 

Ax^^^ = 0 

A V ^ + 5 ( I ) = 0 (18.9) 

sx^^'' -\- xs^^'' = Aw. 

^ In other chapters of this book xia) denotes the a-center on the primal central path. To avoid any 
misunderstanding it might be appropriate to emphasize that in this chapter X{OL) — as well as S{OL) 
— has a different meaning, as indicated. 

^ Note that xipt) and sia) are uniquely determined by the relations 

Ax{a) 

^yia) ^ sia) 

X (OL) S(OL) 

= 
= 
= 

b, x>0, 

c, s > 0, 

xs + aAw. 

Obviously, the right-hand sides in these relations depend linearly (and hence analytically) on a. 
Since the Jacobian matrix with respect to a of the left-hand sides is nonsingular, the implicit 
function theorem (cf. Proposition A.2 in Appendix A) implies that x(a),y(a) and s(a) depend 
analytically on a. See also Section 16.2.1. 
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This shows that x̂ ^̂  and 5̂ ^̂  are just the primal-dual Newton directions at (x, 5) for 
the target w = xs^/\w.^ Using (18.4), (18.5) and (18.8) we find that the higher-order 
coefficients x^^\y^^^ and s^^\ with A: > 2, satisfy the linear system 

Ax^^^ = 0 
^T^(fe)+5(fe) = 0 (18.10) 

k-

sx^^^ + xs^^^ •Y,x^'^s^^~'\ A: = 2,3, 

thus finding a recursive expression for the higher-order coefficients. The remarkable 
thing here is that the coefficient matrix in (18.10) is the same as in (18.9). This has the 
important consequence that as soon as the standard (first-order) Newton directions 
x̂ ^̂  and 5̂ ^̂  have been calculated from the linear system (18.9), the second-order 
terms x^'^^ and 5̂ ^̂  can be computed from a linear system with the same coefficient 
matrix. Having x^'^^ and s^'^\ we can compute x^^^ and s^^\ and so on. Hence, from a 
computational point of view the higher-order terms x^^^ and s^^\ with A: > 2, can be 
obtained relatively cheaply. 

Assuming that the computation of the Newton directions requires 0{n^) arithmetic 
operations, the computation of each subsequent pair (x^^^s^^^) of higher-order 
coefficients requires 0{n^) arithmetic operations. For example, if we compute the 
pairs (x^^\ 5̂ ^̂ ) for k = 1, 2 , . . . , n, this doubles the computational cost per iteration. 
There is some reason to expect, however, that we will obtain a more accurate search 
direction; this may result in a speedup that justifies the extra computational burden 
in the computation. 

By truncating the expansion (18.3), we define the primal-dual Newton directions of 
order r at {x,s) with step-size a by 

r r 

A^'^x := ^x^'^a\ A^'^5 :=^s^'^a\ (18.11) 
i=i i=i 

Moving along these directions we arrive at 

X^(Q^) := X + A^'^x, 5^(Q^) := s + A^'^5. 

Recall that we started this section by taking w = xs -\- Aw as the target point in the 
w-spdice. Now that we have introduced the step-size a it is more natural to consider 

w{a) := xs -\- aAw 

as the target. In the following lemma we calculate x^{a) s^{a), which is the next iterate 
in the w-spsice, and hence obtain an expression for the deviation from the target w{a) 
after the step. 

Exercise 84 Verify that y^-^^ can be solved from (18.9) by the formula 

y^^^ = - (^AXS-^A^y^ AS-^Aw. 

This generalizes the expression for the logarithmic barrier direction in Exercise 35, page 111. Given 
y(i)^ 5(1) and x^^^ follow from 

,(1) = - ^ T j ^ d ) , ^(1) = 5 - 1 {Aw - x^d) ) . 
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Lemma IV. 19 

2r / r 
x^ (a) s^ (a) = xs-\-aAw-\- \ . ^ / . 

k=r-\-l \i=k—r 

^{i) ^{k-i) 

Proof: We may write 

r 

and we have a similar expression for s'^{a). Therefore, 

x'^{a)s'^{a) = l^x^'^a'] l^s^'^aA . (18.12) 
^^=0 / \^=o 

The right-hand side can be considered as a polynomial in a of degree 2r. We consider 
the coefficient of ô ^ for 0 < A: < 2r. If 0 < A: < r then the coefficient of a^ is given by 

E 
^=0 

^{i)^{k-i) 

By (18.8), this expression vanishes if A: > 2. Furthermore, if A: = 1 the expression is 
equal to Aw, by (18.7) and if A: = 0 it is equal to xs, by (18.6). So it remains to 
consider the coefficient of a^ on the right-hand side of (18.12) for r + 1 < A: < 2r. For 
these values of k the corresponding coefficient in (18.12) is given by 

E ^{i)^{k-i) ^ 

i=k—r 

Hence, collecting the above results, we get 

2r / r \ 

fe=r+l \i=k—r / 

This completes the proof. • 

In the next section we further analyze the error term 

2r / r \ 

E'^ia) '= Y "^i Yl ^̂ '̂ ^̂ "̂'̂  • (18-14) 
fe=r+l \i=k — r / 

We conclude this section with two observations. First, taking r = 1 we get 

E\a)=a^x^^h^^^ =a^AxAs, 

where Ax and As are the standard primal-dual Newton directions at (x, 5). This is in 
accordance with earlier results (see, e.g., (10.12)). If we use a first-order Newton step 
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then the error is of order two in a. In the general case, of a step of order r, the error 
term E^{a) is of order r + 1 in ô . 

The second observation concerns the orthogonality of the search directions in the x-
and 5-spaces. It is immediate from the first two equations in (18.9) and (18.10) tha t 

T 
x^i)] 50-)= 0, V z > l , V j > l . 

As a consequence, 

and also, from Lemma IV. 19, 

(A^ '^x) ' A^'^5 = 0, 

\ ^ .r (X^(Q^)) s^{a)=e {xs ^ a/\w) = e w{a). 

Thus, after the step with size ô , the duality gap is equal to the gap at the target w{a). 
Figure 18.1 illustrates the use of higher-order search directions. 

W2 

target 

start 

4 

Figure 18.1 Trajectories in the i(;-space for higher-order steps with r = 1, 2, 3, 4, 5. 
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18.3 Analys i s of t h e error t e r m 

The main task in the analysis of the higher-order method is to estimate the error term 
E^{a), given by (18.14). Our first estimation is very loose. We write 

2r 

\\E^{a)\\ < ^ a'^ 
k=r-\-l 

E 
i=k — r 

^{i) ^{k-i) 
2r r 

fe=r+l i=k—r 

\{i)^{k-i) (18.15) 

and we concentrate on estimating the norms in the last sum. We use the vectors d and 
V introduced in Section 10.4: 

, V = v ^ -

Then the third equation in (18.9) can be rewritten as 

V 

and the third equation in (18.10) as 

k-l 

d-'x^'^ + ds^'^ = -V-' Yl ^^'^^^'~'^^ A: = 2 , 3 , . . . . 

(18.16) 

(18.17) 

(18.18) 
i=i 

Since x̂ ^̂  and 5̂ ^̂  are orthogonal for A: > 1, the vectors d x̂̂ ^̂  and ds^^'' are 
orthogonal as well. Therefore, 

Hence, defining 

we have for each A: > 1, 

k> 1. 

(18.19) 

d-V^) -
g(fe) 

' dsW - ^w 

and as a consequence, for 1 < z < A: — 1 we may write 

^ ( . ) , ( / c - . ) d-^x^'Us^^-'^\ < \\d-^x^'^\ \\ds^^-'^ < .(i) Jk-i) 

Substitution of these inequalities in the bound (18.15) for E^{a) yields 

2r 

\\E^ia)\\ < E "' E Iĥ ' 
fe=r+l i=k—r 

Jk-i) 

(18.20) 

(18.21) 

We proceed by deriving upper bounds for Ik^^ l̂l , A: > 1. 
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Lemma IV.20 For each k > 1, 

Jk) 
< ^k \\v~ 

ik-l 
r(l) 

where the integer sequence ^1,^2, •• • is defined recursively by cpi = 1 and 

k-l 

^k = y ^^i^k-i-
i=l 

(18.22) 

(18.23) 

Proof: The proof is by induction on k. Note that (18.22) holds trivially if A: = 1. 
Assume that (18.22) holds for ||̂ ^̂ ^ || if 1 < ^ < A:. We complete the proof by deducing 
from this assumption that the lemma is also true for \\q^^^ ||. For k > 2 we obtain from 
the definition (18.19) of ^(^) and (18.18) that 

k-i 
Jk) --̂ E X « 5 ( ' ^ - ' ) . 

Hence, using (18.20), 

i=i 

k-i 
-rik) < I Moo / ^ 

,ii) 

i=l 

Jk-i) 

At this stage we apply the induction hypothesis to the last two norms, yielding 

k-i 
-rik) < I _ 1 | | Y ^ II _ 1 

I Moo / ^ ~ '' M 

\i-l ,(1) ^k-i \\V 
\k-i-l 

.(1) 
k — i 

which can be simplified to 

Jk) 
< y-

ik-l 
.k-l 

n E ̂i^k-

i=i 

Finally, using (18.23) the lemma follows. 

The solution of the recursion (18.23) with cpi = 1 is given by^ 

1 / 2A:-2 

D 

A: V A: - 1 

This enables us to prove our next result. 

Lemma IV.21 For each A: = r + 1 , . . . , 2r, 

(18.24) 

El 
i=k — r 

Jk-i) 
-,2k-3 

< 
ik-2 

.(1) 

^ E x e r c i s e 8 5 P r o v e t h a t (18.24) is t h e so lu t ion of t h e recurs ion in (18.23) sat isfying ipi = 1 (cf., 
e.g., Liu [184]). 

file:///k-i-l
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Proof: Using Lemma IV.20 we may write 

i=k — r 

which is equivalent to 

r 

i=k — r 

< E ^i K̂  
\i-l 

7(1) 

Jk-i) < \\v~ 
\k-2 

^k-i \\V 

1̂ E 

\k-i-l 
.(1) 

k — i 

^i^k-

For the last sum we use again a loose bound: 

r k—1 

^ ^i^k-i < ^(Pi^Pk-i = ^k-

i=k — r i=l 

Using (18.24 ) and k > 2 we can easily derive tha t 

22fe-3 

^k < k>2. 

Substituting this we obtain 

E k Jk-i) < 
l2 fe-3 

k \v 
\k-2 

i=k — r 

proving the lemma. 

Now we are ready for the main result of this section. 

T h e o r e m I V . 2 2 We have 

2r 

7(1) 

\E' 

Proof: From (18.21) we recall tha t 

2r 

iî '-(a)ii < E "' E h 
k=r-\-l i=k — r 

2k-3 M - 1 1 1 ^ - 2 .(1) 

(i) Jk-i) 

D 

Replacing the second sum by the upper bound in Lemma IV.21 and using tha t k > r-\-l 
in the first sum, we obtain the result. • 

18.4 Appl ica t ion to t h e primal-dual Dik in direct ion 

18.4-1 Introduction 

The Dikin direction, described in Appendix E, is one of the directions tha t can be used 
for solving the self-dual problem. In the next section we show tha t its definition can 

file:///k-i-l
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easily be adapted to problems (P) and (D) in standard format. It will become clear 
that the analysis of the self-dual model also applies to the standard model and vice 
versa. Although we don't work it out here, we mention that use of the (first-order) 
Dikin direction leads to an algorithm for solving the standard model that requires at 
most 

rn log ^— 

iterations, where (x^,5^) denotes the initial primal-dual pair, e is an upper bound 
for the duality gap upon termination of the algorithm and r an upper bound for the 
distance of the iterates to the central path.^ The complexity per iteration is C^(n^), as 
usual. This is in accordance with the bounds in Appendix E for the self-dual model. By 
using higher-order versions of the Dikin direction the complexity can be improved by a 

r - l 

factor {rn) ^̂  . Note that this factor goes to y^rn if r goes to infinity. The complexity 
per iteration is 0{n^ + rn^). Hence, when taking r = n, the complexity per iteration 
remains 0{n^). In that case we show that the iteration bound is improved by the 
factor y^rn. When r = C^(l), which can be assumed without loss of generality, we 
obtain the iteration bound 

O v ^ log ^ ^ , 

which is the best iteration bound for interior point methods known until now. 

18.4-2 The (first-order) primal-dual Dikin direction 

Let (x, s) be a positive primal-dual pair for (P) and (D) and let Ax and As denote 
displacements in the x-space and the 5-space. Moving along Ax and As we arrive at 

x~^ := X -\- Ax, s~^ := s -\- As. 

The new iterates will be feasible if 

AAx = 0, A^Ay + As = 0, 

where Ay represents the displacement in the ^/-space corresponding to As, and both 
x+ and 5+ are nonnegative. Since Ax and As are orthogonal, the new duality gap is 
given by 

(x+) 5+ = x^s + x^As + s^Ax. 

Originally, the Dikin direction was introduced for the standard format. See Jansen, Roos and 
Terlaky [156]. 
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Replicating Dikin's idea, just as in Section E.2, we replace the nonnegativity conditions 
by the condition^ 

Ax As 
X S 

< 1. 

This can be rewritten as 

< 1 , 

showing that the new iterates are sought within an ellipsoid, called the Dikin ellipsoid 
at the given pair (x, s). Since our aim is to minimize the duality gap, we consider the 
optimization problem 

min <̂  e^ {sAx + xAs) : AAx = 0, A^Ay + As = 0, 
Ax As 

X S 
< 1 (18.25) 

The crucial observation is that (18.25) determines the displacements Ax and As 
uniquely. The arguments are almost the same as in Section E.2. Using the vectors 
d and v in (18.16), x and s can be rescaled to the same vector v: 

d~^x = V, ds = V. 

As usual, we rescale Ax and As accordingly to 

da: := d~^Ax, ds := dAs. (18.26) 

Then 

and moreover, 

Ax dx As ds 
X V ^ S V 

Ax As = dxds. 

Dikin introduced the so-called primal afRne-scaling direction at a primal feasible x (x > 0) by 
minimizing the primal objective c^ (x + Ax) over the ellipsoid 

Ax 
< 1, 

subject to AAx = 0. So the primal affine-scaling direction is determined as the unique solution of 

{c^A X : AAx = 0, 
Ax 

< 1 

Dikin showed convergence of the primal affine-scaling method ([63, 64, 65]) under some non-
degeneracy assumptions. Later, without nondegeneracy assumptions, Tsuchiya [268, 270] proved 
convergence of the method with damped steps. Dikin and Roos [66] proved convergence of a full-
step method for the special case that the given problem is homogeneous. Despite many attempts, 
until now it has not been possible to show that the method is polynomial. For a recent survey 
paper we refer the reader to Tsuchiya [272]. The approach in this section seems to be the natural 
generalization to the primal-dual framework. 
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Also, the scaled displacements d^ and ds are orthogonal. Now the vector occurring in 
the ellipsoidal constraint in (18.25) can be reduced to 

Ax As dx -\- ds 

X S V ' 

Moreover, the variable vector in the objective of problem (18.25) can be writ ten as 

fAx As\ 
sAx -\- xAs = xs \ = V [dx -\- ds). 

\ X S J 

With 
d^ :=dx^ds, (18.27) 

the vectors dx and ds are uniquely determined as the orthogonal components of d^ in 
the null space and row space of AD, so we have 

dx = PAD{d^) (18.28) 

ds = d^-dx. (18.29) 

Thus we can solve the problem (18.25) by solving the much simpler problem 

\ T 1 W d^n 

mm <vdu 

The solution of (18.30) is given by 

< U . (18.30) 

\y\\ \\xs\\ • 

It follows tha t dx and ds are uniquely determined by the system 

ADdx = 0 

{ADf dy^ds = 0 

In terms of the unsealed displacements this can be rewritten as 

where 

AAx 

A^Ay + As 

sAx -\- xAs 

in — lid,... — — 

= 

= 

= 

V^ 

0 

0 

Aw, 

_{xs)^ 

(18.31) 

- - - - - \\v^- Ml ' ('^-^2) 
We conclude tha t the solution of the minimization problem (18.25) is uniquely 
determined by the linear system (18.31). Hence the (first-order) Dikin directions Ax 
and As are the Newton directions at (x, 5) corresponding to the displacement Aw 
in the w-spsice, as given by (18.32). We therefore call Aw the Dikin direction in the 
w-spdice. 

In the next section we consider an algorithm using higher-order Dikin directions. 
Using the estimates of the error term E^{a) in the previous section we analyze this 
algorithm in subsequent sections. 
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18.4-3 Algorithm using higher-order Dikin directions 

For the rest of this section, Aw denotes the Dikin direction in the w-spdice as given 
by (18.32). For r = 1,2,... and for some fixed step-size a that is specified later, the 
corresponding higher-order Newton steps of order r at (x, s) are given by (18.11). The 
iterates after the step depend on the step-size a. To express this dependence we denote 
them as x{a) and s{a) as in Section 18.2. We consider the fohowing algorithm. 

Higher-Order Dikin Step Algorithm for the Standard Model 

Input: 
An accuracy parameter s > 0; 
a step-size parameter a, 0 < a < 1; 
a positive primal-dual pair (x^,5^). 

begin 
X : = x^; 8 : = s^; 

while x^s > £ do 
begin 

X := x{a) = X -\- A^'^x; 
s :=s{a) = 5 +A^'^5 

end 
end 

Below we analyze this algorithm. Our aim is to keep the iterates (x, s) within some 
cone 

max (xs) 
6c[xs) = —^-—- < r 

mm [xs) 

around the central path, for some fixed r > 1; r is chosen such that 

Scix^'s'') < r. 

18.4-4 Feasibility and duality gap reduction 

As before, we use the superscript + to refer to entities after the higher-order Dikin 
step of size a at (x, s). Thus, 

x+ := x{a) = X + A^'^x, 

5+ := s{a) = s + A^'^5, 

and from Lemma IV. 19, 

x~^s~^ = x{a)s{a) = xs -\- aAw -\- E^(a), (18.33) 

where the higher-order error term E^(a) is given by (18.14). 
The step-size a is feasible if the new iterates are positive. Using the same (simple 

continuity) argument as in the proof of Lemma E.2, page 455, we get the following 
result. 
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L e m m a I V . 2 3 If a is such that x{a)s{a) > 0 for all a satisfying 0 < a < a, then 
the step-size a is feasible. 

Lemma IV.23 implies tha t the step-size a is feasible if 

xs + aAw + E'^{a) > 0, 0 < a < a. 

At the end of Section 18.2 we established tha t after the step the duality gap at tains 
the value e^ {xs -\- aAw). This leads to the following lemma. 

L e m m a I V . 2 4 / / the step-size a is feasible then 

a 
(x+) s^<[l--=]x^s. 

Proof: We have 

(x+) + \ ^ o + — ^ ^ / ^ ^ ^\^^^ 
5 ' = e I xs — a- X s — a \\xs\\ . 

xs 

The Cauchy-Schwarz inequality implies 

\/n \/n Jn 

and the lemma follows. D 

18.4-5 Estimate of the error term 

By Theorem IV.22 the error term E^{a) satisfies 

; ( r + i ) 
\\E^{a)\\<^j:^ £ a''2''^\\v-'\ k-2 

oo 
fe=r+l 

T(1 ) 

In the present case we have, from (18.19), (18.17) and (18.32), 

, (1) 
Aw 

Wv'W 
Hence 

Therefore, 

y ( l ) < ll̂ ll Iblloo = n i a x ( i ; ) . 

.(1) < 
max (v) / max (xs) 

min (v) y min (xs) 
y^Sc{xs) < V r . 

Substi tuting this we get 

1 
2r 

ll̂ ''(«)ll < ;(r + i) k=r-\-l 

k min {xs) 

" 8 ( r + l ) 

2r 

g E (4«x/̂ ) 
fe=r+l 

(18.34) 
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18.4-6 Step size 

Assuming 6c{x^s) < r , with r > 1, we estabhsh a bound for the step-size a such tha t 
this property is maintained after a higher-order Dikin step. The analysis fohows the 
same hues as the analysis in Section E.4 of the algorithm for the self-dual model with 
first-order Dikin steps. As there, we derive from 6c{x^ s) < r the existence of positive 
numbers r i and r2 such tha t 

Tie < xs < r2e, with r2 = r r i . (18.35) 

Without loss of generality we take 

Ti = min(x5) . 

The following lemma generalizes Lemma E.4. 

L e m m a I V . 2 5 Let r > 1. Suppose that Sc{xs) < r and let r i and T2 he such that 
(18.35) holds. If the step-size a satisfies 

{\\xs\\ 1 1 J2TIJT\ 

then we have 6c{x'^s'^) < r. 

Proof: Using (18.33) and the definition of ^w we obtain 

Qj {'J'Sl 
X+5+ = x(a)s(a) = X5 + a/\w + E'^(a) = xs ^—^—h E^(a). 

\\xs\\ 

Using the first bound on a in the lemma, we can easily verify tha t the map 

at'^ 
t ^ t - \\xs\\ 

is an increasing function for t G [0,r2]. Application of this map to each component of 
the vector xs gives 

It follows that 

( - ~\\xs\\, 
\ e < xs -

a (xs) 

( -
e. 

Hence, assuming for the moment tha t the Dikin step of size a is feasible, we certainly 
have (5(x+5+) < r if 
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Since r2 = r r i , this reduces to 

Since T2 — rr^ = (r — 1) rir2 we can divide by r — 1, thus obtaining 

arir2 

xs 
-e^E'^ia) >0. 

This inequality is certainly satisfied if 

| |xs|| | |£;'-(a)||<aTiT2. 

Using the upper bound (18.34) for E^{a) it follows that we have S{x~^s~^) < r if ô  is 
such that 

||x5||min(x5) ^ . ^\k ^ 

8V + 1) ^ ^̂ ""̂ ^ -'"^'^'' 

Since min (xs) = r i , this inequality simplifies to 

\\xs\\ 2r 

— Y^ (4Q^A/r) < ar2. 

\r-\-l 

8(r + l) 

The second bound in the lemma implies that Aay^ < 1. Therefore, the last sum is 
bounded above by 

k=r-\-l 

Substituting this we arrive at the inequality 

8(r + l) ^ ""^-

Omitting the factor r / ( r + 1), we can easily check that this inequaUty certainly holds 
if 

which is the third bound on a in the lemma. Thus we have shown that for each step-
size a satisfying the bounds in the lemma, we have S{x~^s~^) < r. But this implies that 
the coordinates of x+5+ do not vanish for any of these step-sizes. By Lemma IV.23 
this also implies that the given step-size a is feasible. Hence the lemma follows. • 

file:///r-/-l
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18.4-7 Convergence analysis 

With the result of the previous section we can now derive an upper bound for the 
number of iterations needed by the algorithm. 

Lemma IV.26 Let 4/n < r < 4n. Then, with the step-size 

1 
a = 

the Higher-Order Dikin Step Algorithm for the Standard Model requires at most 

4 v ^ y ^ log ^ ^ — 

iterations}^ The output is a feasible primal-dual pair (x, 5) such that 6c{xs) < r and 
x^s < e. 

Proof: Initially we are given a feasible primal-dual pair (x^, 5 )̂ such that 6c{x^s^) < 
r. The given step-size a guarantees that these properties are maintained after each 
iteration. This can be deduced from Lemma IV.25, as we now show. It suffices to show 
that the specified value of a meets the bound in Lemma IV.25. Since r n > 4 we have 

1 

showing that a meets the second bound. Since \\xs\\ < r^^Jn we have 

2 W ^ ^ 27jV^ ^ 2 v ^ ^ 2 

\\xs\\ T2^n 

which implies that a also meets the third bound in Lemma IV.25. Finally, for the first 
bound in the lemma, we may write 

2T2 ~ 2T2 2T - 4 v ^ ' 

The last inequality follows because r < An. Thus we have shown that a meets the 
bounds in Lemma IV.25. As a consequence, the property Sc{xs) < r is maintained 
during the course of the algorithm. This also implies that the algorithm is well defined 
and, hence, the only remaining task is to derive the iteration bound in the lemma. By 
Lemma IV.24, each iteration reduces the duality gap by a factor 1 — ^, where 

' When r = 1 the step-size becomes 

2TVn' 

which is a factor of 2 smaller than the step-size in Section E.5. As a consequence the iteration 
bound is a factor of 2 worse than in Section E.5. This is due to a weaker estimate of the error 
term. 
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Hence, by Lemma 1.36, the duality gap satisfies x^s < e after at most 

1 , nil 0 
4 v r n 

m , ix^) s 
l o g ^ ^ 

0 

iterations. This completes the proof. • 

Recall tha t each iteration requires O (n^ + rn 
of this section we take the order r of the search direction equal to r = n. Then the 
complexity per iteration is still O (n^) just as in the case of a first-order method. The 
iteration bound of Lemma IV.26 then becomes 

^) arithmetic operations. In the rest 

Now, assuming r < 4n, we have 

rn , {x') 
l o g ^ ^ 

rn < xPn. 

The last expression is maximal for n = 3 and is then equal to L44225. Thus we may 
state without further proof the following theorem. 

T h e o r e m I V . 2 7 Let A/n < r < An and r = n. Then the Higher-Order Dikin Step 
Algorithm for the Standard Model stops after at most 

{x^fs^ 
Gy^rn log 

iterations. Each iteration requires 0{n^) arithmetic operations. 

For r = 2, which can be taken without loss of generality, the iteration bound of 
Theorem IV.27 becomes 

C) K / ^ lo^ 

which is the best obtainable bound. 

( .0 ) 

1 8 . 5 A p p l i c a t i o n t o t h e p r i m a l - d u a l l o g a r i t h m i c b a r r i e r m e t h o d 

18.5.1 Introduction 

In this section we apply the higher-order approach to the (primal-dual) logarithmic 
barrier method. If the target value of the barrier parameter is /i, then the search 
direction in the i(;-space at a given primal-dual pair (x, s) is given by 

/\w = fie — xs. 

We measure the proximity from (x, s) to the target fie by the usual measure 

S{xs, fi) 
1 

2 v ^ 

fie — xs (18.36) 
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In this chapter we also use an infinity-norm based proximity of the central path, 
namely 

(5oo(^5,/i) := max max 
V ^ 

Recall from Lemma 11.62 tha t we always have 

Soo{xs,fi) < p{S{xs,fi)). 

(18.37) 

(18.38) 

Just as in the previous section, where we used the Dikin direction, our aim is to consider 
a higher-order logarithmic barrier method tha t keeps the iterates within some cone 
around the central path. The cone is obtained by requiring tha t the primal-dual pairs 
(x, s) generated by the method are such tha t there exists a /i > 0 such tha t 

5{xs, fi) < r , and 8oo{xs,ii) < C (18.39) 

where r and C denote some fixed positive numbers tha t specify the 'width' of the cone 
around the central pa th in which the iterates are allowed to move. 

When C = P(T) it follows from (18.38) tha t 

S{XS, fl) < T Soo{xS,fl) < ( . 

Hence, the logarithmic barrier methods considered in Par t II fall within the present 
framework with ( = p{r). The full Newton step method considered in Par t II uses 
r = l / \ / 2 . In the large-update methods of Par t II the updates of the barrier parameter 
/i reduce /i by a factor 1 — ^, where ^ = C^(l). As a consequence, after a barrier update 
we have S{xs,fi) = 0{y^). Hence, we may say tha t the full Newton step methods in 
Par t II keep the iterates in a cone with r = 0{1), and the large-update methods in 
a wider cone with r = 0{y^). Recall tha t the method using the wider cone — the 
large-update methods — are multistep methods. Each single step is a damped (first-
order) Newton step and the progress is measured by the decrease of the (primal-dual) 
logarithmic barrier function. 

In this section we consider a method tha t works within a 'wide' cone, with 
r = 0{y^) and ( = 0{1), but we use higher-order Newton steps instead of damped 
first-order steps. The surprising feature of the method is tha t progress can be controlled 
by using the proximity measures S{xs, ji) and 6oo{xs^ ji). We show tha t after an update 
of the barrier parameter a higher-order step reduces the proximity 6{xs^ ji) by a factor 
smaller than one and keeps the proximity Soo{xs,fi) under a fixed threshold value 
C > 2. Then the barrier parameter value can be decreased to a smaller value while 
respecting the cone condition (18.39). In this way we obtain a 'wide-cone method ' 
whose iteration bound is C^(y^loglog (^x^)^s^/s). Each iteration consists of a single 
higher-order Newton step. 

Below we need to analyze the effect of a higher-order Newton step on the proximity 
measures. For tha t purpose the error term must be estimated. 

18.5.2 Estimate of the error term 

Recall from Lemma IV. 19 tha t the error term E^{a) is given by 

| ^ ' - ( a ) | | < 
1 ^'' 

+1) ."^, ;(r + i) 
h ^oh II —111 k — 2 
^2^ \\v \\ 

k=r-\-l 

.(1) (18.40) 
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where v = y/ocs. In the present case, (18.19) and (18.17) give 

Q^ /\W fie — XS 

xs 

Hence, using (18.36) and denoting S{xs,fi) by S, we find 

.(1) 2y^5 < 2y^r. 

Furthermore by using (18.37) and putting S^Q :— S^Q {xs.fi) we have 

1 

Substituting these in (18.40) we get 

8(r + l)<5S 

11 

2r 

^ - ( a ) | | < /^ ^ (Sa^^^f < ^ _ ^ ^ (8arCf . (18.41) 

Below we always make the natural assumption that a <1. Moreover, 6 and 6oo always 
denote S{xs,fi) and Soo{xs,fi) respectively. 

Lemma IV.28 Let the step-size be such that a < 1/ {855oo). Then 

WE'-ian < 

Proof: Since SaSS^o < 1, we have 

2r 

rfi (8Q^(5(5OO) 

7Ti sK 

r + l 

^ {8a55^)^ <r{8a55^) r + l 

fe=r+l 

Substitution in (18.41) gives the lemma. D 

Corollary IV.29 Let 5 < r, 5oo < C and a < 1/ {STQ. Then 

\\E^{a)\\ < 
r + l 8Ĉ  

r + l 

11 PQJ. 7̂  — 1 the derived bound for the error term gives LE-'^(I) < 4/i(5^, as follows easily. It is 
interesting to compare this bound with the error bound in Section 7.4 (cf. Lemma 11.49), which 
amounts to LE-'^(I) < /i(5^ v ^ . Although the present bound is weaker by a factor of 2 ^ 2 for r = 1, 
it is sharp enough for our present purpose. It is also sharp enough to derive an 0{^/n) complexity 
bound for r = 1 with some worse constant than before. Our main interest here is the case where 
r > 1. 
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18.5.3 Reduction of the proximity after a higher-order step 

Recall from (18.13) that after a higher-order step of size a we have 

x^{a)s^{a) = X5 + a/\w + E^{a) = xs -\- a{jiie — xs) -\- E^{a). 

We consider 
w{a) := xs -\- a{jiie — xs) 

as the (intermediate) target during the step. The new iterate in the w-spdice is denoted 
by w{a), so 

w{a) = x^{a)s^{a). 

As a consequence, 
w{a) = w{a) + E'^{a). (18.42) 

The proximities of the new iterate with respect to the /i-center are given by 

S{w{a),/j.) Iw{a) / i 

w{a) 

and 

Soo{w{a),/j.) 
w{a) 

Ideally the proximities after the step would be S{w{a),fi) and Soo{w{a), fi). We first 
derive an upper bound for S{w{a),fi) and Soo{w{a), fi) respectively in terms of r, ( 
and the step-size a. 

Lemma IV.30 We have 

(i) 5{w{a),jii) < Vl — a 5, 

(ii) Soo{w{a),fi) < A/Q^ + (1 - a)S'^. 

Proof: It is easily verified that for any positive vector w, by their definitions (18.36) 
and (18.37), both S{w,fi)'^ and Soo{w,fi)'^ are convex functions ofw. Since 

w{a) = xs -\- a {fie — xs) = a (fie) + (1 — a)xs, 0 < ô  < 1, 

w{a) is a convex combination of fie and xs. Hence, by the convexity of 5{w, fi)'^, 

5{w{a),fi)'^ < a 5{fie,fi)'^ -\- {1 — a) 5{xs,fi)'^. 

Since 5{fie, /i) = 0, the first statement of the lemma follows. 

The proof of the second claim is analogous. The convexity of Soo{xs, fi)'^ gives 

5oo{w{a),fi)'^ < a Sooif^e, fi)'^ -^ {1 - a) S^oixs, fi)'^. 

Since 5oo{fie, fi) = 1, the lemma follows. • 
It is very important for our purpose that when the pair (x, 5) satisfies the cone 

condition (18.39) for /i > 0, then after a higher-order step at (x, 5) to the /i-center. 
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the new iterates also satisfy the cone condition. The next corollary of Lemma IV.30 
is a first step in this direction. It shows that w{a) satisfies the cone condition. Recall 
that w{a) = w{a) if the higher-order step is exact. Later we deal with the case where 
the higher-order step is not exact (cf. Theorem IV.35 below). This requires careful 
estimation of the error term E^{a). 

Corollary IV.31 Let 5 < r and 5oo < C, with C > 2. Then we have 

(i) S{w{a),fi) <yT^^T< (1 - f )r ; 

(ii) 6^{w{a),fi) < y^a^{l-a)e < (l - f ) C < C-

Proof: The first claim is immediate from the first part of Lemma IV.30, since 6 < r 
and Vl ~ ^ < 1 — <^/2. For the proof of the second statement we write, using the 
second part of Lemma IV.30 and C > 2, 

A/Q^ + (1 - a)Sl^ < Vc^ + (1 - a)e < \la^ + (1 - a)e 
e 

3Q^ 
, ) C ' < ( 1 

3Q^ )c.c 

Thus the corollary has been proved. D 

The next lemma provides an expression for the 'error' in the proximities after the 
step. We use the following relation, which is an obvious consequence of (18.42): 

w{a) w{a) 

Lemma IV.32 Let a he such that 

\E-{a) 

w{a) 
< 

w{a) 

A / 5 - 1 

(18.43) 

Then we have 

(i) 5{w{a),ii) < 5{w{a),ii) + y^l -^ 5{w{a),iiY 

(ii) Soo{w{a),fi) < Soo{w{a),fi) (l 

Proof: Using (18.43) we may write 

w(a) 

S{w{a),fi) = -
I w{a) 

w{a) 
/ i 

w{a) w{a) 

To simplify the notation we omit the argument a in the rest of the proof and we 
introduce the notation 

X:--
w{a) 
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so that 
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5{w{a), fi) ^<-^)-Vf<-^r' 

^Ji^^ + >••|-^/i (' + >•)'' 

Since 

appHcation of the triangle inequality gives 

1 

+ A/f (̂  + A) (e + A)-

5{w{a),jii) < 5{w{a),jii) -\- ((e + A ) * - e ) - ^ g ( ( e + A) 

Denoting the z-th coordinate of the vector under the last norm by z ,̂ we have 

^. = # ( ( i + A . ) ^ - i ) - # ( ( i + A . r * - i ) . 

This implies 

. (18.44) 

Zi < (l + Xi)^ -1 (1 + A,)-

The hypothesis of the lemma implies |A |̂ < (\/5 — l) /2 . Now using some elementary 
inequalities/^ we get 

\zi\<J-\Xi\ 
V /̂  

|A«| |A.|. 

Since 

and 

,1L] = 4 + f . / ^ - . / i i | < 4 -
/ i w. 

w 
fl 

1 1 

# V w\ 

|2 1 
< 

loo 1 

w hi 

fl \j W 
A5{w{a)^ jiY 

we conclude that 

Hence 

\z,\ < 2^1 ^5{w{a),fiY |A,|, l<i< n. 

\\z\\<2^lTmaU^\\\\\. 

2̂ Exercise 86 Prove the following inequalities: 

(i + A)i - 1 

(i + A ) - i - 1 

|A|, - 1 < A < 1 , 

l - \ / 5 
|A| < A < 1. 
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Substituting this in (18.44) proves the first statement of the lemma. 
The proof of the second statement in the lemma is analogous. We write 

Soo{w{a),fi) 
/ i 

w{a) 

/ i 

w{a) w{a) 

V w{a) 

11^ 
V '̂  

1 oo 1 

iy(<-^>-'-)| 

loo 

loo 

(e + A)"i - e < 

Using again the results of Exercise 86 we can simplify this to 

(5oo(^(<^),/i) < 

= (5oo(^(<^),/i) ( 1 + 
w{a) 

proving the lemma. 

The following corollary easily follows from Lemma IV.32 and Corollary IV.31. 

Corollary IV.33 Let 5 <r and 5oo < C, with (> 2. If a is such that 

D 

E^{a) 

w{a) 
< 

A / 5 - 1 

then we have 

(i) 8{w{a),ii) < ( l - f ) r + A/rT72 

(n) 5oo(t^(a),M) < (1 - fa ) ( l + \ % ^ \ ^ C 

We proceed by finding a step-size a that satisfies the hypothesis of Lemma IV.32 
and Corollary IV.33. 

Lemma IV.34 With 5 and ( as in Corollary IV.33, let the step-size a he such that 
a < l/(8rC). Then 

E'^ia) 
w{a) 

< 
8(r + l) 

Sô rC) r + l 

and a satisfies the hypothesis of Lemma IV. 32 and Corollary IV. 33. 

Proof: We may write 

E''{a) 

w{a) 
< 

w{a) 
\E^a) fie 

w{a) 
\\E^a)\\<^\\E^a)\\, 

fl 
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where the last inequahty fohows from Corohary IV.31. Now using Corohary IV.29 we 
have 

E'^ia) 

w{a) ^WTT)^"'^^^ 
r+1 

proving the first part of the lemma. The second part follows from the first part by 
using 8ar( < 1: 

E'-(a) 

w{a) 
< 

E^{a) 

w{a) 
< 

1) 
< 

A / 5 - 1 

completing the proof. 

Equipped with the above results we can prove the next theorem. 

Theorem IV.35 Let S <r, S^c <C, with ( > 2, and a < l/(8rC). Then 

D 

r+1 . (i) 6{w{a),fi) < (1 - f ) r + ^^y^T^^(SarC) 

(ii) S^{w{a),fi) < (1 - la) ( l + ^ ^ {SarCY^'^ C-

Proof: For the given step-size the hypothesis of Corollary IV.33 is satisfied, by 
Lemma IV.34. From Lemma IV.34 we also deduce the second inequality in 

E'^ia) 

w{a) 
< 

E'^ia) 

w{a) 
< 

8(r + l) 
(SarC) r+1 

Substituting these inequalities in Corollary IV.33 yields the theorem. D 

18.5.4 The step-size 

In the sequel the step-size a is given the value 

1 
a 

8rCA7(r + l ) C A / r T ^ 
(18.45) 

where 6 = S{xs,fi) < r and S^o = Soo{xs,fi) < (. It is assumed that ( > 2. The 
next theorem makes clear that after a higher-order step with the given step-size a the 
proximity 5 is below a fixed fraction of r and the proximity 5^^ below a fixed fraction 
ofC-

Theorem IV.36 / / the step-size is given by (18.45) then 

Moreover, 

S^{w{a),fi) < (^1- | j C-



354 IV Miscellaneous Topics 

Proof: The proof uses Theorem IV.35. This theorem applies because for the given 
value of a we have 

1 1 

" = — -R' 

(18.46) 

8 rCy( r + l ) C V r T ^ 

whence SQ^T^ < 1. Hence, by the first statement in Theorem IV.35, 

5(^(a),M) < ( l - I ) r + ^ ^ ^ v / r T 7 ^ ( 8 a r C ) ' - + ' . 

The second term on the right can be reduced by using the definition of a: 

(r + l ) C A / r T ^ 

a ra 
2 (r + 1)̂  

r^ + 1 
2(r + l)2^ a r. 

This proves the first statement. The second claim follows in a similar way from the 
second statement in Theorem IV.35: 

Soo{w{a),fi) < 

< 

< 

< 

( l -

( l -

( l -

( l -

( l -

( l -

r)( 
r)i 
r)( 
r)( 
r)( 
f)c-

(r + l) 

r SarC 

(r + 1) (r + 1)CVTT7^ 

ar 
(r + 1 ) 2 ^ 1 ^ 7 2 c 

i + J")C 

In the last but one inequality we used that r / ( r + 1)^ is monotonically decreasing if r 
increases (for r > 1). • 

18.5.5 Reduction of the barrier parameter 

In this section we assume that S = S{xs, jj) <T^ where r is any positive number. After 
a higher-order step with step-size ô , given by (18.45), we have by Theorem IV.36, 

where 

5{w{a),ii)<{l-p)5, 

air'^ + 1) 
(i- 2(r + l )2 ' 

(18.47) 



IV.18 Higher-Order Methods 355 

Below we investigate how far fi can be decreased after the step while keeping the 
proximity S less than or equal to r. Before doing this we observe that 

Soo{xS,fl) 

is monotonically decreasing as fi decreases. Hence, we do not have to worry about S^ 
when /i is reduced. Defining 

/ i + ._ ( l - ^ ) / i , 

+ \ 13 we first deal with a lemma that later gives an upper bound for 5{w{a), fi^). 

Lemma IV.37 Let (x, 5) be a positive primal-dual pair and suppose fi > 0. If 
5 := 5{xs,jii) and /i+ = (1 — ^)/i then 

S{xs,fi'^) < 

Proof: By the definition of 5{xs, /i^), 

26 ^Oy^ 

2VY^ ' 

(5(x5,/i^) 
/i+e 

/i+e 

xs 

To simplify the notation in the proof we use u = y^xsjji. Then we may write 

(5(x5,/i^) 
1 VY^u-^ Vl - 0 {u - u-^) + 

Ou 

A / T ^ 

Using the triangle inequality and^^ also 

\\u\\ < \\u-u~'^\\ +A/n = 2(5 + v ^ , 

we get 

^ ' ^ ^ " 2 v T ^ ^ " 2 v T ^ ^ 2 v T ^ ^ 

proving the lemma. D 

^^ A similar result was derived in Lemma 11.54, but under the assumption that x^s = nil. This 
assumption will in general not be satisfied in the present context, and hence we have a weaker 
bound. 

^^ Exercise 87 For each positive number ^ we have 

\i\< 
1 

1. 

Prove this and derive that for each positive vector u the following inequality holds: 
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Theorem IV.38 Let S = S{xs,fi) < r, S^o = Soo{xs,fi) < (, with ( > 2. Taking 
first a higher-order step at (x^s), with a according to (18.4-5), and then updating the 
harrier parameter to fi^ = {1 — 6)IJL, where 

- ^^^ - - ( ^ ^ + ^) (18.48) 
2r + v ^ (r + l)2(2r + v ^ ) ' 

we have 5{w{a), jii~^) < r and 5oo{w{a), jii~^) < (. 

Proof: The second part of Theorem IV.36 implies that after a step of the given 
size 5oo{w{a), fi) < (. We established earlier that 5oo monotonically decreases when /i 
decreases. As a result we have Soo{w{a), fi~^) < (. Now let us estimate S{w{a), fi~^). 
After a higher-order step with step-size a as given by (18.45), we have by the first 
part of Theorem IV.36, 

5{w{a), n)<(l- ^ ^ ^ ) S{xs, n) = {l- 13) 5, 

with f3 as defined in (18.47). Also using Lemma IV.37 we obtain 

+, ^ 25{w{a),fi) + e^ ^2{i-13)5 +ey^ 
'("(")''^ ) ^VT^e 2VT^e • 

Since 5 <T,we certainly have S{w{a), ii~^) < T if 

2{1-P)T + 0 ^ ^ 
/ ^ T. 

2yT^ 

This inequality can be rewritten as 

2(1 - (3)r + Oy^ < 2rVl - 0. 

Using Vl — 0 > 1 — 0 the above inequality certainly holds if 

2 ( l - / 3 ) r + 6 ' v ^ < 2 r ( l - 6 ' ) . 

It is easily verified that the value of 0 in (18.48) satisfies this inequality with equality. 
Thus the proof is complete. • 

18.5.6 A higher-order logarithmic harrier algorithm 

Formally the logarithmic barrier algorithm using higher-order Newton steps can be 
described as below. 
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Higher-Order Logarithmic Barrier Algorithm 

Input: 
A natural number r, the order of the search directions; 
a positive number r, specifying the cone; 
a primal-dual pair (x^,5^) and /i^ > 0 such that S{x^s^,/j.^) < r. 
C:=max(2,(5oo(x'50,/)); 
a step-size parameter ô , from (18.45); 
an update parameter 6^ from (18.48); 
an accuracy parameter £ > 0; 

begin 
X : = x^] s : = 5^; /i : = /i^; 

while x^s > £ do 
begin 

X := x{a) = X -\- A^'^x; 
5 : = 5 ( Q ^ ) = 5 + A ^ ' ^ 5 ; 

/i : = (1 — ^)/i 
end 

end 

A direct consequence of the specified values of the step-size a and update parameter 
0 is that the properties 5{xs, fj) <T and 6^{xs^ /i) < C îre maintained in the course of 
the algorithm. This follows from Theorem IV.38 and makes the algorithm well-defined. 

18.5.7 Iteration hound 

In the further analysis of the algorithm we choose 

r = y/n and r = n. 

At the end of each iteration of the algorithm we have 

S{xs, fi) <r = ^/n. 

As a consequence (cf. Exercise 62), 

x^s < ( 1 + -1^-p- j n/i = (1 + 2p {^/n)) n/i < 4 (l + ^/n) n/j.. 

Hence x^s < s holds if 

4 (l + v ^ ) nfi < £, 

or 
s 

4(l + v^)' 
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Recall that at each iteration the barrier parameter is reduced by a factor 1 — 0, with 

^ ar{r^ + 1) ^ a{n^ + 1) a 
(r + 1)2 (2r + v^ ) 3(n + 1)2 - 6 * ^ ^ ^ 

The last inequality holds for all n > 1. Using Lemma 1.36 we find that the number of 
iterations does not exceed 

- l o g ^ '- . 
a £ 

Substituting a in (18.45) and r = y ^ , we get 

- = 48Cv^ y (n + 1)CVTT^. 

For n > 1 we have 

^J{n^l)^/TT^ < 2A/2 = 2.8284, 

with equality only if n = 1. Thus we find 

- < 1 3 6 C ' ^ v ^ . 
a 

Thus we may state the next theorem without further proof. 

Theorem IV.39 The Higher-Order Logarithmic Barrier Algorithm needs at most 

136 C ^ V^ log 
£ 

iterations. Each iteration requires 0{n^) arithmetic operations. The output is a primal-
dual pair (x, 5) such that x^s < £. 

When starting the algorithm on the central path, with fi^ = (x^) 5^/n, we have C = 2. 
In that case Soo{xs, /i) < 2 at each iteration and the iteration bound of Theorem IV.39 
becomes 

544 V^ log ' ( ^ + f ) " ^ ° =0(V^ l o g ^ ) . (18.50) 

In fact, as long as ( = 0{1) the iteration bound is given by the right-hand expression 
in (18.50). Note that this bound has the same order of magnitude as the best known 
iteration complexity bound. 

When (x^, 5 )̂ is far from the central path, the value of ( may be so large that the 
iteration bound of Theorem IV.39 becomes very poor. Note that ( can be as large as 

p(r), which would give an extra factor O (n^^ j in (18.50). However, a more careful 

analysis yields a much better bound, as we show in the next section. 

18.5.8 Improved iteration hound 

In this section we consider the situation where the algorithm starts with a high value 
of C,. Recall from the previous section that if r = ^Jn then C, is always bounded by 
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C ^ p{V^) = 0{y^). Now the second part of Theorem IV.36 imphes that after a 
higher-order step at (x, 5) to the /i-center we have 

Reducing /i to /i+ = {1 — 0)fi we get 

5 o o W a ) , M + ) < ( l - ^ ) ( l - | ) C . 

Now using the lower bound (18.49) for 0 it fohows that 

5 o o H a ) , M + ) < ( l - f ) ( l - | ) c . 

Since 0 < a < 1 we have (l - f ) (l - f ) < (l - f ) • Hence 

Substituting the value of a, while using 

8 ^^/(n + 1) C A / T T ^ < 8 ^ ( n + l ) p ( v ^ ) A / r T ^ < 55, 

we obtain 

220rC 220 Vn ' 

showing that 5oo{xs,jii) decreases by at least 1/(220y^) in one iteration. Obviously, 
we can redefine ( according to 

( := max (2, SoQ{w{a), /j.'^)) < max I 2, c ' 220v^ 

in the next iteration and continue the algorithm with this new value. In this way ( 
reaches the value 2 in no more than 

2 2 0 v ^ ( C ^ - 2 ) =C)(C^v^) 

iterations, where (^ = Soo{x^s^, fi^). From then on ( keeps the value 2, and the number 
of additional iterations is bounded by (18.50). Hence we may state the following 
improvement of Theorem IV.39 without further proof. 

Theorem IV.40 The Higher-Order Logarithmic Barrier Algorithm needs at most 

^fc^v^ + v^log^ 0̂ / r , / r i„^4v^n/i^ 

iterations. Each iteration requires 0{n^) arithmetic operations. The output is a primal-
dual pair (x, 5) such that x^s < s. 

In this theorem /i^ denotes the value of the barrier parameter attained at the first 
iteration for which C = 2. Obviously, /i^ < /i^. 
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Parametric and Sensitivity 
Analysis 

19.1 Introduction 

Many commercial optimization packages for solving LO problems not only solve the 
problem at hand, but also provide additional information on the solution. This added 
information concerns the sensitivity of the solution produced by the package to pert­
urbations in the data of the problem. In this chapter we deal with a problem (P) in 
standard format: 

(P) min {c^x : Ax = b, x>0} . 

The dual problem (D) is written as 

(D) max {b^y : A^y + 5 = c, 5 > O} . 

The input data for both problems consists of the matrix A, which is of size m x n, 
and the vectors b G IR"̂  and c G K^. The optimal value of (P) and (D) is denoted by 
Zyi(6, c), with ZA{b, c) = — 00 if (P) is unbounded and (D) infeasible, and ZA{b, c) = 00 
if (D) is unbounded and (P) infeasible. If (P) and (D) are both infeasible then Zyi(6, c) 
is undefined. We call ZA the optimal-value function for the matrix A. 

The extra information provided by solution packages concerns only changes in the 
vectors b and c. We also restrict ourselves to such changes. It will follow from the 
results below that ZA{b,c) depends continuously on the vectors b and c. In contrast, 
the effect of changes in the matrix A is not necessarily continuous. The next example 
provides a simple illustration of this phenomenon.^ 

Example IV.41 Consider the problem 

min {x2 : axi + X2 = 1, xi > 0, X2 > 0} , 

where ô  G K. In this example we have A = {a 1), b = (1) and c = (0 1)^. We can 
easily verify that ZA{b,c) = 0 if ô  > 0 and ZA{b,c) = 1 if ô  < 0. Thus, if ZA{b,c) is 
considered a function of ô , a discontinuity occurs at ô  = 0. (} 

Thus, the dependence of ZA{b,c) on the entries in b and c is more simple than the 
dependence of ZA{b, c) on the entries in A. 

^ For some results on the effect of changes in A we refer the reader to Mills [210] and Gal [89]. 
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We develop some theory in this chapter for the analysis of one-dimensional 
parametric perturbations of the vectors b and c. Given a pair of optimal solutions 
for (P) and (D), we present an algorithm in Section 19.4.5 for the computation 
of the optimal-value function under such a perturbation. Then, in Section 19.5 we 
consider the special case of sensitivity analysis, also called postoptimal analysis. This 
classical topic is treated in almost all (text-)books on LO and implemented in almost 
all commercial optimization packages for LO. We show in Section 19.5.1 that the so-
called ranges and shadow prices of the coefficients in b and c can be obtained by solving 
auxiliary LO problems. In Section 19.5.3 we briefly discuss the classical approach to 
sensitivity analysis, which is based on the use of an optimal basic solution and the 
corresponding optimal basis. Although the classical approach is much cheaper from a 
computational point of view, it yields less information and can easily be misinterpreted. 
This is demonstrated in Section 19.5.4, where we provide a striking example of the 
inherent weaknesses of the classical approach. 

19.2 Preliminaries 

The feasible regions of (P) and (D) are denoted by 

V := {x : Ax = b, x>0}, 

V := {{y,s) : A^y ^ s = c, s >{)] . 

Assuming that (P) and {D) are both feasible, the optimal sets of (P) and {D) are 
denoted by P* and V*. We deflne the index sets B and N by 

B := {% : Xi> {) for some x G P*} , 

N := {% : Si>^ for some {y, s) G P*} . 

The Duality Theorem (Theorem IL2) implies that B n N = 0, and the Goldman-
Tucker Theorem (Theorem IL3) that 

PUAr = {l, 2, . . . , n}. 

Thus, B and N form a partition of the full index set. This (ordered) partition, denoted 
by TT = {B,N), is the optimal partition of problems (P) and (D). It is obvious that 
the optimal partition depends on b and c. 

19.3 Optimal sets and optimal partition 

In the rest of this chapter we assume that b and c are such that (P) and (D) have 
optimal solutions, and TT = (P, N) denotes the optimal partition of both problems. By 
deflnition, the optimal partition is determined by the sets of optimal solutions for (P) 
and (D). In this section it is made clear that, conversely, the optimal partition provides 
essential information on the optimal solution sets P* and V*. The next lemma follows 
immediately from the Duality Theorem and is stated without proof. 
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L e m m a I V . 4 2 Let x* G V* and {y*,s*) G P * . Then 

V* = {x : xeV, x^s* = 0} , 

P * = {{y,s) : ( 7 / , 5 ) G P , 5 ^ x * = 0 } . 

As before, we use the notation XB and XN to refer to the restriction of a vector 
X G IR^ to the coordinate sets B and N respectively. Similarly, As denotes the 
restriction of A to the columns in B and AN the restriction of A to the columns 
in N. Now the sets V* and V* can be described in terms of the optimal partit ion. 

L e m m a I V . 4 3 Given the optimal partition {B,N) of (P) and (D), the optimal sets 
of both problems are given by 

{x : X eV, XN = 0} , 

{{y,s) : {y,s)eV,SB=0}. 

Proof: Let x*, 5* be any strictly complementary pair of solutions of (P) and (D), and 
(x, 5) an arbitrary pair of feasible solutions. Then, from Lemma IV.42, x is optimal 
for (P) if and only if x^s* = 0. Since 5^ = 0 and 5 ^ > 0, we have x^s* = 0 if and 
only if XN = 0, thus proving tha t P * consists of all primal feasible x for which XN = 0. 
Similarly, if (7/, 5) G P then this pair is optimal if and only if s^x* = 0. Since x ^ > 0 
and x^ = 0, this occurs if and only if SB = 0, thus proving tha t P * consists of all 
dual feasible 5 for which 55 = 0. • 

To illustrate the meaning of Lemma IV.43 we give an example. 

E x a m p l e I V . 4 4 Figure 19.1 shows a network with given arc lengths, and we ask for 
a shortest pa th from node 5 to node t. 

Denoting the set of nodes in this network by V and the set of arcs by E, any pa th 
from 5 to t can be represented by a 0-1 vector x of length \E\, whose coordinates are 
indexed by the arcs, such tha t Xg = 1 if and only if arc e belongs to the path. The 
length of the pa th is then given by 

eeE 

CpXp (19.1) 

Figure 19.1 A shortest path problem. 
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where Cg denote the length of arc e, for all e e E. Furthermore, denoting e = (v^w) 
if arc e points from node v to node w (with v e V and w e V), and denoting x^ by 
Xyw, X will satisfy the following balance equations: 

vev 

vev 

vev 
^vt 

1 

vev 

1 

ueV\{s,t} (19.2) 

Now consider the LO problem consisting of minimizing the linear function (19.1) 
subject to the linear equality constraints in (19.2), with all variables Xg, e G E, 
nonnegative. This problem has the s tandard format: it is a minimization problem 
with equality constraints and nonnegative variables. Solving this problem with an 
interior-point method we find a strictly complementary solution, and hence the optimal 
parti t ion of the problem. In this way we have computed the optimal parti t ion ( 5 , N) 
of the problem. Since in this example there is a 1-to-l correspondence between the 
arcs and the variables, we may think of B and Â  as a parti t ion of the arcs in the 
network. 

F i g u r e 19 .2 T h e opt imal par t i t ion of the shortest p a t h problem in Figure 19.1. 

In Figure 19.2 we have drawn the network once more, but now with the arcs in B 
solid and the arcs in N dashed. The meaning of Lemma IV.43 is tha t any pa th from 
5 to t using only solid arcs is a shortest path, and all shortest paths use exclusively 
solid arcs. In other words, the set B consists of all arcs in the network which occur in 
some shortest pa th from 5 to t and the set N contains arcs in the network which do 
not belong to any shortest pa th from s to t.'^ (} 

2 Exerc i se 88 Consider any network with node set V and arc set E and let s and t be two distinct 
nodes in this network. If all arcs in the network have positive length, then the set B, consisting of 
all arcs in the network which occur in at least one shortest path from s to t, does not contain a 
(directed) circuit. Prove this. 
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The next result deals with the dimensions of the optimal sets V* and V*. Here, as 
usual the (affine) dimension of a subset of IR is the dimension of the smallest affine 
subspace in IR containing the subset. 

Lemma IV.45 We have 

dimP* = \B\-i3iik{AB) 

dimP* = m — iQiv\i{AB)' 

Proof: The optimal set of (P) is given by 

P* = {x : Ax = b, XB > 0, XTV = 0} , 

and hence the smallest affine subspace of K^ containing P* is given by 

{x : ABXB = b, XN = 0} . 

The dimension of this affine space is equal to the dimension of the null space of AB • 
Since this dimension is given by \B\ — rank(74^), the ffist statement follows. 

For the proof of the second statement we use that the dual optimal set can be 
described by 

This is equivalent to 

P* = {{y, s) : A^y = CB, A%y ^ SN = CN, SB = 0, SAT > O} . 

The smallest affine subspace containing this set is 

{{y, s) : A^y = CB, A%y ^ SN = CN, 5 ^ = 0 } . 

Obviously SN is uniquely determined by y, and any y satisfying A^y = CB yields 
a point in this affine space. Hence the dimension of the affine space is equal to the 
dimension of the null space of A^. Since m is the number of columns of A^, the 
dimension of the null space of A^ equals m — rank (AB)- This completes the proof. • 

Lemma IV.45 immediately implies that (P) has a unique solution if and only if 
rsink(AB) = \B\. Clearly this happens if and only if the columns in AB are linearly 
independent. Also, (D) has a unique solution if and only if rank{AB) = m, which 
happens if and only if the rows in AB are linearly independent.^ 

^ It has become common practice in the literature to call the problem (P) degenerate if (P) or 
(D) have multiple optimal solutions. Degeneracy is an important topic in LO. In the context 
of the Simplex Method it is well known as a source of difficulties. This is especially true when 
dealing with sensitivity analysis. See, e.g., Gal [90] and Greenberg [128]. But also in the context 
of interior-point methods the occurrence of degeneracy may influence the behavior of the method. 
We mention some references: Gonzaga [120], Giiler et al. [132], Todd [263], Tsuchiya [269, 271], 
Hall and Vanderbei [138]. 



366 IV Miscellaneous Topics 

19.4 Parametr ic analys is 

In this section we start to investigate the effect of changes in b and c on the optimal-
value function ZA{b,c). We consider one-dimensional parametric perturbations of b 
and c. So we want to study 

ZA(6 + /3A6,C + 7 A C ) 

as a function of the parameters (3 and 7, where Ab and Ac are given perturbation 
vectors. From now on the vectors b and c are fixed, and the variations come from 
the parameters f3 and 7. In fact, we restrict ourselves to the cases that the variations 
occur only in one of the two vectors b and c. In other words, taking 7 = 0 we consider 
variations in f3 and taking /3 = 0 we consider variations in 7. 

If 7 = 0, then (Pp) will denote the perturbed primal problem and (Dp) its dual. 
The feasible regions of these problems are denoted by V13 and P/3. Similarly, if /3 = 0, 
then (-D7) will denote the perturbed dual problem and (P^) its dual and the feasible 
regions of these problems are V^ and Vj. Observe that the feasible region of (Dp) is 
simply V and the feasible region of (P^) is simply V. We use the superscript * to refer 
to the optimal set of each of these problems. 

We assume that b and c are such that (P) and (D) are both feasible. Then Zyi(6, c) 
is well defined and finite. It is convenient to introduce the following notations: 

b{f3) := b + /3A6, c(7) := c + 7AC, 

/(/3):=z^(6(/3),c), ^ ( 7 ) : = ^ A ( ^ C ( 7 ) ) . 

Here the domain of the parameters f3 and 7 is taken as large as possible. Let us consider 
the domain of / . This function is defined as long as ZA{b{f3),c) is well defined. Since 
the feasible region of (Dp) is constant when (3 varies, and since we assume that (Dp) 
is feasible for /3 = 0, it follows that (1 /̂3) is feasible for all values of (3. Therefore, 
/(/3) is well defined if the dual problem (Dp) has an optimal solution and f{f3) is not 
defined (or infinity) if the dual problem (Dp) is unbounded. By the Duality Theorem 
it follows that f{f3) is well defined if and only if the primal problem (Pp) is feasible. 
In exactly the same way it can be understood that the domain of g consists of all 7 
for which (D^) is feasible (and (P^) bounded). 

Lemma IV.46 The domains of f and g are convex. 

Proof: We give the proof for / . The proof for g is similar and therefore omitted. 
Let /3i, /32 G dom (/) and /3i < f3 < (32. Then /(/3i) and /(/32) are finite, which means 
that both Vp^ and Vp^ are nonempty. Let x^ G Vp^ and x^ G Vp^- Then x^ and x^ 
are nonnegative and 

Now consider 

Ax^ = b^ /3i A6, Ax'^ = b^ (32Ab. 

1 , /3-/3i . 2 n _ {(32-(3)x'^{(3-(3i)x^ 

"" ^132-13^'' "^ ̂ ~ f32-f3i 
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Note tha t x is a convex combination of x^ and x^ and hence x is nonnegative. We 
proceed by showing tha t x ^V(3. Using tha t A (x^ — x^) = {(32 — (3i) Ab this goes as 
follows: 

Ax 

Pi)Ab 

P2 -

6 + /3iA6 + 

Pi 

-Pi' 

b + /3iA6 + (/3 -

b + /3A5. 

A {x^ - x^ 

- Pi) A6 

This proves tha t (Pp) is feasible and hence f3 G dom ( / ) , completing the proof. • 

The domains of / and g are in fact closed intervals on the real line. This follows 
from the above lemma, and the fact tha t the complements of the domains of / and g 
are open subsets of the real line. The last s tatement is the content of the next lemma. 

L e m m a I V . 4 7 The complements of the domains of f and g are open subsets of the 
real line. 

Proof: As in the proof of the previous lemma we omit the proof for g because it 
is similar to the proof for / . We need to show tha t the complement of dom ( / ) is 
open. Let f3 ^ dom ( / ) . This means tha t (Dp) is unbounded. This is equivalent to the 
existence of a vector z such tha t 

A^z < 0, (6 + pAbf z>0. 

Fixing z and considering /3 as a variable, the set of all f3 satisfying the strict inequality 
is an open interval. For all (3 in this interval (Dp) is unbounded. 

Hence the domain of / is open. This proves the lemma. • 

A consequence of the last two lemmas is the next theorem, which requires no further 
proof. 

T h e o r e m I V . 4 8 The domains of f and g are closed intervals on the real line."^ • 

E x a m p l e I V . 4 9 Let (D) be the problem 

max {y2 : ?/2 < ! } • 
y={yi,y2) 

In this case b = (0,1) and c = (1). Note tha t (D) is feasible and bounded. The set 
of all optimal solutions consists of all (^i, 1) with yi G IR. Now let Ab = (1,0), and 
consider the effect of replacing b hj b-\- /3A6, and let f{(3) be as defined above. Then 

/(/3) = max {y2 + f3yi : ?/2 < 1} • 
y={yi,y2) 

^ To avoid misunderstanding we point out that a singleton {a} (a G R) is also considered as a closed 
interval. 
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We can easily verify tha t the perturbed problem is unbounded for all nonzero (3. Hence 
the domain of / is the singleton {0}.^ (} 

19.4-1 The optimal-value function is piecewise linear 

In this section we show tha t the functions f{(3) and ^(7) are piecewise linear on their 
domains. We start with ^(7) . 

T h e o r e m I V . 5 0 ^(7) is continuous, concave and piecewise linear. 

Proof: By definition, 

^(7) = min {c{j)^x : x G P } . 

For each 7 the minimum value is at tained at the central solution of the perturbed 
problem (P7). This solution is uniquely determined by the optimal parti t ion of (P7). 
Since the number of partit ions of the full index set {1, 2 , . . . , n} is finite, we may write 

^(7) = min {c(7) x : x G T } , 

where T is a finite subset of V. For each x G T we have 

c(7)"^x = (F X + 7Ac"^x, 

which is a linear function of 7. Thus, ^(7) is the minimum of a finite set of linear 
functions.^ This implies tha t ^(7) is continuous, concave and piecewise linear, proving 
the theorem. • 

T h e o r e m I V . 5 1 /(/3) is continuous, convex and piecewise linear. 

Proof: The proof goes in the same way as for Theorem IV.50. By definition, 

/ ( / 3 ) = m a x { 6 ( / 3 f 7 / : y eV] . 

For each (3 the maximum value is at tained at a central solution {y*^s*) of {D). Now 
5* is uniquely determined by the optimal parti t ion of {D) and h{l3)^y* is constant for 
all optimal 7/*. Associating one particular 7/* with any possible slack 5* arising in this 
way, we obtain tha t 

/ ( / 3 ) = m a x { 5 ( / 3 f y : yeS), 

where 5 is a finite subset of V. For each y G S, we have 

b{pfy = b^y + pAb^y, 

^ Exercise 89 With (D) and /(/?) as defined in Example IV.49 we consider the effect on the domain 
of / when some constraints are added. When the constraint yi > 0 is added to (D), the domain of 
/ becomes (—oo, 0]. When the constraint yi < 0 is added to (D), the domain of / becomes [0, oo) 
and when both constraints are added the domain of / becomes (—oo, oo). Prove this. 

^ Exercise 90 Prove that the minimum of a finite family of linear functions, each defined on the 
same closed interval, is continuous, concave and piecewise linear. 
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which is a linear function of f3. This makes clear tha t /(/3) is the maximum of a finite 
set of linear functions. Therefore, f{(3) is continuous, convex and piecewise linear, as 
required. • 

The values of (3 where the slope of the optimal-value function f{(3) changes are 
called break points of / , and any interval between two successive break points of / is 
called a linearity interval of f. In a similar way we define break points and linearity 
intervals for g. 

E x a m p l e I V . 5 2 For any 7 G IR consider the problem (P^) defined by 

(Pj) min x i + ( 3 + 7)x2 + (1 - 7)^3 

S.t. X i + X 2 + X 3 = 4 , X i , X 2 , X 3 > 0 . 

In this case b is constant and the perturbat ion vector for c = (1, 3,1) is 

Ac = ( 0 , 1 , - 1 ) . 

The dual problem is 

(D^) max {Ay : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7} . 

From this it is obvious tha t the optimal value is given by 

^(7) = 4 m i n ( l , 3 + 7 ,1 - 7 ) . 

The graph of the optimal-value function ^(7) is depicted in Figure 19.3. Note tha t 

9h) 

Figure 19.3 The optimal-value function ^(7). 

^(7) is piecewise linear and concave. The break points of g occur for 7 = —2 and 

7 = 0. 0 
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19.4-2 Optimal sets on a linearity interval 

For any (3 in the domain of / we denote the optimal set of (P/3) by Vp and the optimal 
set of (Dp) by P^. 

Theorem IV.53 If f{f3) is linear on the interval [f3i,f32], where f3i < (32, then the 
dual optimal set V^ is constant (i.e. invariant) for (3 G (/3i,/32). 

Proof: Let ^ G (/3i,/32) be arbitrary and let ^ G P | be arbitrary as well. Since y is 
optimal for (Dp) we have 

and, since y is dual feasible for all /3, 

b{Pify = b^y + PiAb^y < /(/3i), b{(32fy = b^y + p2Ab^y < f ^ -

Hence we find 

/(/3i) - f{B) > (A - B) Ab^y, fm - fiP) > {P2 - P) Ab^y. 

The linearity of / on [/3i,/32] implies 

fiP) - /(/?i) _ /(fe) - fW 
P-I3i P2-P 

Now using that /32 — /3 > 0 and /3i — /3 < 0 we obtain 

Ab-y < mtiM ^ m-m) < ^,Ty_ 
P2-P /3-/3i -

Hence, the last two inequalities are equalities, and the slope of / on the closed interval 
[/3i,/32] is just Ab^y. This means that the derivative of / with respect to (3 on the 
open interval (/3i,/32) satisfies 

f{p)=Ab^y, V/?e(/3i,/?2), 

or equivalently, 

/(/3) = b^y + pAb^y = b {(if y, V/3 e {(3up2) • 

We conclude that y is optimal for any (Dp) with (3 G (/3i,/32). Since y was arbitrary 
in P | , it follows that 

^QT)*^, V/?e(/3i,/?2). 

Since ^ was arbitrary in the open interval (/3i, /32), the above argument applies to any 
/3 G (/3i,/32); so we also have 

P ^ c p ; , V / 3 G ( / 3 I , / 3 2 ) . 

We may conclude that V% C V% and P | C P | , which gives V% = V%. The theorem 
follows. • 

The above proof reveals that Ab^y must have the same value for all y e V^ and for 
all f3 G (/3i,/32). So we may state the following. 
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Corollary IV.54 Under the hypothesis of Theorem IV.53, 

/'(/3) = A5^y, V/3 G {Pufi^), Vy G P^. 

By continuity we may write 

f{p)=b^y + PAb^y = b{pfy, V/? G [/?i,/32]. 

This immediately implies another consequence. 

Corollary IV.55 Under the hypothesis of Theorem IV.53 let Pf̂ ^ Q\ := V*^ for 
arbitrary (3 G (/3i,/32). Then 

In the next result we deal with the converse of the implication in Theorem IV.53. 

Theorem IV.56 Let /3i and (32 > Pi be such that V*^^ = P^^. Then V*^ is constant 
for all (3 G [/3i,/32] and f{(3) is linear on the interval [/3i,/32]. 

Proof: Let y e V^^^ = V^^. Then 

/(/3i) = 6(/3if ^, fm = b{p2fy. 

Consider the linear function h: 

h{p) = b{pf y = {b + pAbf y, V/3 G [A,/Ja]. 

Then h coincides with / at /3i and /32. Since / is convex this implies 

f{P)<HP), V/3G[/?i,/?2]. 

Now y is feasible for all f3 G [/3i, /32]. Since f{f3) is the optimal value of (Dp), it follows 
that 

/(/3) > bipfy = {b + (3Abf y = h{p). 

Therefore, / coincides with h on [/3i,/32]. As a consequence, / is linear on [/3i,/32] and 
y is optimal for (Dp) whenever f3 G [/3i,/32]. Since y is arbitrary in T)% = T)% this 
implies that T)% = VZ is a subset of P^ for any f3 G (/3i, /32). By Theorem IV.53, and 
Corollary IV.55 we also have the converse inclusion. The dual optimal set on (/3i,/32) 
is therefore constant, and the proof is complete. • 

Each of the above results about f{f3) has its analogue for ^(7). We state these results 
without further proof.^ The omitted proofs are straightforward modifications of the 
above proofs. 

Theorem IV.57 If g{j) is linear on the interval [71,72]; where 71 < 72, then the 
primal optimal set V* is constant for 7 G (71,72)-

^ Exerc i se 91 Prove Theorem IV.57, Corollary IV.58, Corollary IV.59 and Theorem IV.60. 



372 IV Miscellaneous Topics 

Corollary IV.58 Under the hypothesis of Theorem IV.57, 

^^(7)=Ac^x, V7G (71,72), V x G p ; . 

Corollary IV.59 Under the hypothesis of Theorem IV.57 let Vf ^ := V* for 

arbitrary 7 G (71,72)- Then 

' (71,72) — ^ 7 1 ' ' (71,72) — ^ 72* 

Theorem IV.60 Let 71 anti 72 > 71 6e s-i/c/i that V*^ = P*^. Then V* is constant 
for all 7 G [71,72] ĉ ^̂  ^(7) is linear on the interval [71,72]. 

19.4-3 Optimal sets in a break point 

Returning to the function / , we established in the previous section that if /3 G dom (/) 
is not a break point of / then the quantity Ab^y is constant for ah y e V^. In this 
section we will see that this property is characteristic for 'nonbreak' points. 

If the domain of / has a right extreme point then we may consider the right 
derivative at this point to be 00, and if the domain of / has a left extreme point 
the left derivative at this point may be taken as —00. Then /3 is a break point of / if 
and only if the left and the right derivatives of / at /3 are different. This follows from 
the definition of a break point. Denoting the left and the right derivatives by /i(/3) 
and / ^ (/3) respectively, the convexity of / implies that at a break point f3 we have 

/:(/3) </;(/?). 

If dom (/) has a right extreme point, it is convenient to consider the open interval 
at the right of this point as a linearity interval where both / and its derivative are 
00. Similarly, if dom (/) has a left extreme point, we may consider the open interval 
at the left of this point as a linearity interval where / is 00 and its derivative —00. 
Obviously, these extreme linearity intervals are characterized by the fact that on the 
intervals the primal problem is infeasible and the dual problem unbounded. The dual 
problem is unbounded if and only if the set V^ of optimal solutions is empty. 

Lemma IV.61 ^ Let /3, (3~ and /3+ belong to the interior of dom (/) such that /3+ 
belongs to the open linearity interval just to the right of (3 and (3~ to the open linearity 
interval just to the left of (3. Moreover, let y^ G P^+ and y~ G I^%-- Then 

f_{P) = min {Ab^y : y G V^} = Ab^y-
y ^ 

/;(/3) = max {Ab^y : yeV}}= Ab^y+. 

Proof: We give the proof for f^{f3). The proof for fL{f3) goes in the same way and 
is omitted. Since y~^ is optimal for Vl+ we have 

(5 + (3+Abfy+ = /(/3+) >{b + (3+Abfy, Vy e V}. 

^ This lemma can also be obtained as a special case of a result of Mills [210]. His more general result 
gives the directional derivatives of the optimal-value function with respect to any 'admissible' 
perturbation of A, b and c; when only b is perturbed it gives the same result as the lemma. 
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We also have y^ G P^, from Theorem IV.53 and Corollary IV.55. Therefore, 

(5 + (iMf y+ = (h + (3Abf y, Vy e V}. 

Subtracting both sides of this equality from the corresponding sides in the last 
inequality gives 

(/3+ - /3) A5^y+ > (/3+ - /3) A5^y, Vy G P ; . 

Dividing both sides by the positive number /3+ — /3 we get 

A6^7/+ > M^y, yy e V;, 

thus proving that 
max (Ab^y : y e VI) = Ab^y^. 

y 

Since f^{P) = Ab^y~^, from Corollary IV.54, the lemma follows. • 

The above lemma admits a nice generalization that is also valid if f3 is an extreme 
point of the domain of / . 

Theorem IV.62 Let (3 G dom (/) and let x* be any optimal solution of (Pp). Then 
the derivatives at (3 satisfy 

f'_i(3) = min \Ab^y : A^y + 5 = c, 5 > 0, 5^x* = O} 
y,s 

fUp) = max {Ab^y : A^y + 5 = c, 5 > 0, 5^x* = O} . 

Proof: As in the previous lemma, we give the proof for f^{P) and omit the proof for 
/i(/3). Consider the optimization problem 

m a x ^ ^ ^ ^ - • ^^- I ^ - - ^->n .T^* 
y,s 

: {Ab^y : A^y + 5 = c, 5 > 0, 5^x* = O} . (19.3) 

First we establish that if f3 belongs to the interior of dom (/) then this is exactly the 
same problem as the maximization problem in Lemma IV.61. This follows because if 
A^y + 5 = c, 5 > 0, then (T/, 5) is optimal for (Dp) if and only if 5^x* = 0, since x* 
is an optimal solution of the dual problem (P/3) of (1 /̂3). If /3 belongs to the interior 
of dom (/) then the theorem follows from Lemma IV.61. Hence it remains to deal 
with the case where f3 is an extreme point of dom (/). It is easily verified that if f3 is 
the left extreme point of dom (/) then we can repeat the arguments in the proof of 
Lemma IV.61. Thus it remains to prove the theorem if f3 is the right extreme point of 
dom (/). Since f^{(3) = 00 in that case, we need to show that the above maximization 
problem (19.3) is unbounded. 

Let f3 be the right extreme point of dom (/) and suppose that the problem (19.3) is 
not unbounded. Let us point out first that (19.3) is feasible. Its feasible region is just 
the optimal set of the dual (Dp) of (Pp). Since (Pp) has as an optimal solution, (Dp) 
has an optimal solution as well. This implies that (Dp) is feasible. Therefore, (19.3) 
is feasible as well. Hence, if (19.3) is not unbounded, the problem itself and its dual 
have optimal solutions. The dual problem is given by 

min {c^C ' AC = Ab,C^ Ax* > O} . 



374 IV Miscellaneous Topics 

We conclude that there exists a vector (^ G IR^ and a scalar A such that A(^ = 
A6, (f + Ax* > 0. This implies that we cannot have ^i < 0 and x* = 0. In other 
words, 

Hence, there exists a positive £ such that x := x^ -\- s^ > 0. Now we have 

Ax = A (x* + s^) = Ax"" ^sA^ = b^{f3^s) Ab. 

Thus we find that (Pp-^^) admits x as a feasible point. This contradicts the assumption 
that f3 is the right extreme point of dom(/) . We conclude that (19.3) is unbounded, 
proving the theorem. • 

The picture becomes more complete now. Note that Theorem IV.62 is valid for any 
value of f3 in the domain of / . The theorem reestablishes that at a 'nonbreak' point, 
where the left and right derivative of / are equal, the value of Ab^y is constant when y 
runs through the dual optimal set V^. But it also makes it clear that at a break point, 
where the two derivatives are different, Ab^y is not constant when y runs through the 
dual optimal set P L Then the extreme values of Ab^y yield the left and the right 
derivatives of / at f3; the left derivative is the minimum and the right derivative the 
maximal value of Ab^y when y runs through the dual optimal set V^. 

It is worth pointing out another consequence of Lemma IV.61 and Theorem IV.62. 
Using the notation of the lemma we have the inclusions 

-D;- C V;, D;+ C D;, 

which follow from Corollary IV.55 if f3 is not an extreme point of dom (/). If f3 is the 
right extreme point then T)Z+ is empty, and if it is the left extreme point then VZ- is 
empty as well; hence the above inclusions hold everywhere. Now suppose that /3 is a 
nonextreme break point of / . Then letting y run through the set VZ- we know that 
Ab^y is constant and equal to the left derivative of / at /3, and if y runs through VZ+ 
then Ab^y is constant and equal to the right derivative of / at /3 and, finally, if y 
runs through V^ then Ab^y is not constant. Thus the three sets must be mutually 
different. As a consequence, the above inclusions must be strict. Moreover, since the 
left and the right derivatives at f3 are different, the sets VZ- and T)Z+ are disjoint. 
Thus we may state the following. 

Corollary IV.63 Let (3 be a nonextreme break point of f and let /3+ and f3~ be as 
defined in Lemma IV.61. Then we have 

vy c p;, p;+ c p;, v;. n p;+ = 0, 

where the inclusions are strict.^ 

^ Exercise 92 Using the notation of Lemma IV.61 and Corollary IV.63, we have 

D ; _ U D ; + C D ; . 

Show that the inclusion is always strict. (Hint: use the central solution of {D^).) 
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Two other almost obvious consequences of the above results are the following 
corollaries.^^ 

Corol lary I V . 6 4 Let (3 he a nonextreme break point of f and let /3+ and f3~ be as 
defined in Lemma IV.61. Then 

Vy ={yeVl : Ab^y = Ab^y-} , V}^ ={yeV} : Ab^y = Ab^y+} . 

Corol lary I V . 6 5 Let (3 be a nonextreme break point of f and let /3+ and (3~ be as 
defined in Lemma IV.61. Then 

dim P* _ < dim P^ , dim P* + < dim P^ . 

R e m a r k I V . 6 6 It is interesting to consider the dual optimal set V^ when p runs from 
—oo to oo. To the left of the smallest break point (the break point for which p is minimal) 
the set T>^ is constant. It may happen that T>^ is empty there, due to the absence of optimal 
solutions for these small values of f3. This occurs if (i^/3) is unbounded (which means that 
(P/3) is infeasible) for the values of f3 on the farthest left open linearity interval. Then, at the 
first break point, the set D^ increases to a larger set, and as we pass to the next open linearity 
interval the set V^ becomes equal to a proper subset of this enlarged set. This process repeats 
itself at every new break point: at a break point of / the dual optimal set expands itself, and 
as we pass to the next open linearity interval it shrinks to a proper subset of the enlarged 
set. Since the derivative of / is monotonically increasing when f3 runs from —00 to 00, every 
new dual optimal set arising in this way differs from all previous ones. In other words, every 
break point of / and every linearity interval of / has its own dual optimal set.^^ • 

We state the dual analogues of Lemma IV.61 and Theorem IV.62 and their 
corollaries without further proof.^^ 

L e m m a I V . 6 7 Let 7 , 7 " and 7+ belong to the interior of dom.{g), 7+ to the open 
linearity interval just to the right of 7, and 7 " to the open linearity interval just to 
the left of-f. Moreover, let x+ G V*+ and x' G P * _ . Then 

gL{j) = max{Ac"^x : x G P * } = Ac^x 

gL(j) = m i n J A c x : x G P * } = Ac x~^. 

T h e o r e m I V . 6 8 Let 7 G dom (^) and let (7/*, 5*) be any optimal solution of (D^). 
Then the derivatives at 7 satisfy 

gL(j) = max{Ac"^x : Ax = 6, x > 0, x^s^ = O} 
X ^ ^ 

^^(7) = min {Ac x : Ax = b, x > 0, x 5* = O} . 

10 Exercise 93 Prove Corollary IV.64 and Corollary IV.65. 

^̂  Exercise 94 The dual optimal sets belonging to two different open linearity intervals of / are 
disjoint. Prove this. (Hint: use that the derivatives of / on the two intervals are different.) 

12 Exercise 95 Prove Lemma IV.67, Theorem IV.68, Corollary IV.69, Corohary IV.70 and Coroha-
ry IV.71. 
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Corollary IV.69 Let j be a nonextreme break point of g and let 7+ and 7 " be as 
defined in Lemma IV.67. Then 

V*- c p;, p;+ c p;, V*- n p;+ = 0, 

where the inclusions are strict.^^ 

Corollary IV.70 Let j be a nonextreme break point of g and let 7+ and j ~ be as 
defined in Lemma IV.67. Then 

V;- ={xeV; : Ac^x = Ac^x-} , V;+ = {xeV; -. AC^X = Ac^x+} . 

Corollary IV.71 Let j be a nonextreme break point of g and let 7+ and j ~ be as 
defined in Lemma IV. 67. Then 

dim P;_ < dim V;, dim P;+ < dim V;. 

The next example illustrates the results of this section. 

Example IV.72 We use the same problem as in Example IV.52. For any 7 G IR the 
problem (P^) is defined by 

(Pj) min xi + (3+ 7)x2 + (1 - 7)^3 

S.t. X i + X 2 + X 3 = 4 , ^ 1 , ^ 2 , ^ 3 > 0 , 

and the dual problem is 

(D^) max {Ay : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7} . 

The perturbation vector for c = (1, 3,1) is 

Ac = ( 0 , 1 , - 1 ) . 

The graph of g is depicted in Figure 19.3 (page 369). The break points of g occur at 
7 = —2 and 7 = 0. 

For 7 < —2 the optimal solution of (P^) is x = (0,4, 0), and then Ac?- x = 4. At the 
break point 7 = — 2 the primal optimal solution set is given by 

{x = (xi,X2,0) : x i+X2 = 4, xi > 0, X2 > 0} . 

The extreme values of Ac?x on this set are 4 and 0. The maximal value occurs for 
X = (0,4, 0) and the minimal value for x = (4, 0, 0). Hence, the left and right derivatives 
of ^ at 7 = —2 are given by these values. If — 2 < 7 < 0 then the optimal solution of 
the primal problem is given by x = (4, 0,0) and Ac?x = 0, so the derivative of ^ is 0 
in this region. At the break point 7 = 0 the primal optimal solution set is given by 

[x = (xi, 0, xs) : xi + X3 = 4, xi > 0, X3 > 0} . 

The extreme values of Ac^x on this set are 0 and —4. The left and right derivatives 
of ^ at 7 = 0 are given by these values. The maximal value occurs for x = (4, 0, 0) 
and the minimal value for x = (0,0,4). Observe that in this example the primal 
optimal solution set at every break point has dimension 1, whereas in the open linearity 
intervals the optimal solution is always unique. (} 

' Exercise 96 Find an example where V* = 0 and VZ 7̂  < 
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19.4-4 Extreme points of a linearity interval 

In this section we assume that ^ belongs to the interior of a linearity interval [/3i, /32]. 
Given an optimal solution of (-D )̂ we show how the extreme points /3i and /32 of the 
linearity interval containing P can be found by solving two auxiliary LO problems. 

Theorem IV.73 Let ^ be arbitrary and let (7/*,5*) be any optimal solution of {D^). 
Then the extreme points of the linearity interval [/3i,/32] containing ^ follow from 

f3i = mm {f3 : Ax = b^ fSAb, x > 0, x^ s* = O} 

(32 = max {(3 : Ax = b^ fSAb, x > 0, x^5* = O} . 
I3,x 

Proof: We only give the proof for /3i.^^ Consider the minimization problem 

min {/3 : Ax = b ^ /3A6, x > 0, x^5* = 0} . (19.4) 

We first show that this problem is feasible. Since (-D )̂ has an optimal solution, its 
dual problem (Pp) has an optimal solution as well. Letting x be optimal for (Pg), we 
can easily verify that f3 = ^ and x = x are feasible for (19.4). 

We proceed by considering the case where (19.4) is unbounded. For any (3 < P 
there exists a vector x that satisfies Ax = 6 + /3A6, x > 0, x^s* = 0. Now {y*^s*) 
is feasible for {Df^) and x is feasible for (P/3). Since x^s* = 0, x is optimal for 
(P/3) and {y*^s*) is optimal for {Df^). The optimal value of both problems is given 
by b{(3)^y* = b^y* + (3/Sh^y*. This means that (3 belongs to the linearity interval 
containing p. Since this holds for any f3 < ^, the left boundary of this linearity 
interval is —00, as it should be. 

It remains to deal with the case where (19.4) has an optimal solution, say (/3*,x*). 
We then have Ax* = 6 + /3*A6 = 6(/3*), so x* is feasible for (P^*). Since (^*,5*) 
is feasible for (1 /̂3*) and x*^s* = 0 it follows that x* is optimal for (P/3*) and 
(7/*, 5*) is optimal for {Df^*). The optimal value of both problems is given by 
b{f3*)^y* = b^y* + f3*Ab^y*. This means that /3* belongs to the linearity interval 
containing ^, and it follows that /3* > /3i. 

On the other hand, from Corollary IV.55 the pair (7/*, 5*) is optimal for (Dp^). Now 
let X be optimal for (Pp^). Then we have 

Ax = b{f3i) = 6 + /3iA6, x > 0, x^5* = 0, 

which shows that the pair (/3i,x) is feasible for the above minimization problem. This 
implies that (3* < (3i. Hence we obtain that (3* = (3i. This completes the proof. • 

If ^ is not a break point then there is only one linearity interval containing ^, and 
hence this must be the linearity interval [/3i,/32], as given by Theorem IV.73. 

It is worth pointing out that if ;5 is a break point there are three linearity intervals 
containing ^, namely the singleton interval [^,^] and the two surrounding linearity 
intervals. In the singleton case, the linearity interval [/3i,/32] given by Theorem IV.73 
may be any of these three intervals, and which one it is depends on the given optimal 

^^ Exercise 97 Prove the second part (on f32) of Theorem IV.73. 
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solution (7/*, 5*) of (Dp). It can easily be understood tha t the linearity interval at 
the right of ^ will be found if (7/*, 5*) happens to be optimal on the right linearity 
interval. This occurs when /Sh^y* = f^{^), due to Corollary IV.64. Similarly, the 
linearity interval at the left of P will be found if (7/*, 5*) is optimal on the left linearity 
interval and this occurs when /SJD^y* = / i ( / 5 ) , also due to Corollary IV.64. Finally, if 

/ : ( ^ ) < A 6 V < / ; ( ^ ) , (19.5) 

then we have /3i = /32 = /5 in Theorem IV.73. The last situation seems to be most 
informative. It clearly indicates tha t ;5 is a break point of / , which is not apparent 
in the other two situations. Knowing tha t ;5 is a break point of / we can find the 
two one-sided derivatives of / at ;5 as well as optimal solutions for the two intervals 
surrounding P from Theorem IV. 62. In the light of this discussion the following result 
is of interest. It shows tha t the above ambiguity can be avoided by the use of strictly 
complementary optimal solutions. 

T h e o r e m I V . 7 4 Let P he a break point and let (7/*, 5*) he a strictly complementary 
optimal solution of (Dp). Then the numbers (3i and (32 given by Theorem IV. 73 satisfy 

A = /32 = ^. 

Proof: If (7/*, 5*) is a strictly complementary optimal solution of {D^) then it uniquely 
determines the optimal parti t ion of {D^) and this parti t ion differs from the optimal 
partit ions corresponding to the optimal sets of the linearity intervals surrounding p. 
Hence (7/*, 5*) does not belong to the optimal sets of the linearity intervals surrounding 
p. From Corollary IV.64 it follows tha t Ab^y* satisfies (19.5), and the theorem follows. 

D 

It is not difficult to state the corresponding results for g. We do this below, omitting 
the proofs, and then provide an example of their use.^^ 

T h e o r e m I V . 7 5 Let j be arbitrary and let x"^ be any optimal solution of {P^). Then 
the extreme points of the linearity interval [71,72] containing 7 follow from 

71 = min {7 : A^y + 5 = c + 7AC, 5 > 0, s^x* = O} 

72 = max {7 : A ^ T / + 5 = c + 7AC, 5 > 0, 5^x* = O} . 

T h e o r e m I V . 7 6 Let j be a break point and let x* be a strictly complementary 
optimal solution of (P^). Then the numbers 71 and ^2 given by Theorem IV. 75 satisfy 

71 = 72 = 7-

E x a m p l e I V . 7 7 We use the same problem as in Example IV.72. Using the notation 
of Theorem IV. 75 we first determine the linearity interval for 7 = —1. We can easily 
verify tha t x = (4,0,0) is optimal for (P-i). Hence the extreme points 71 and 72 of 
the linearity interval containing 7 follow by minimizing and maximizing 7 over the 
region 

{7 : 7 / < l , 7 / < 3 + 7 , 7 / < l - 7 , 4 ( l - 7 / ) = 0 } . 

1̂  Exerc i se 98 Prove Theorem IV.75 and Theorem IV.76. 
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The last constraint implies 7/ = 1, so the other constraints reduce to 1 < 3 + 7 and 
1 < 1 — 7, which gives —2 < 7 < 0. Hence the linearity interval containing 7 = — 1 is 
[ -2 ,0] . 

When 7 = 1, X = (0, 0,4) is optimal for (P i ) , and the linearity interval containing 
7 follows by minimizing and maximizing 7 over the region 

{7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(1 - 7 - 7/) = 0} . 

The last constraint implies 7/ = 1 — 7. Now the other constraints reduce to 1 — 7 < 1 
and 1 — 7 < 3 + 7, which is equivalent to 7 > 0. So the linearity interval containing 
7 = 1 is [0, 00). 

When 7 = —3, x = (0,4, 0) is optimal for (P -3) , and the linearity interval containing 
7 follows by minimizing and maximizing 7 over the region 

{7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(3 + 7 - 7/) = 0} . 

The last constraint implies y = 3 + 7 , and the other constraints reduce to 3 + 7 < 1 and 
3 + 7 < 1 — 7, which is equivalent to 7 < —2. Thus, the linearity interval containing 
7 = —3 is (—00, —2]. 

Observe tha t the linearity intervals just calculated agree with Figure 19.3. 
Finally we demonstrate the use of Theorem IV.76 at a break point. Taking 7 = 0, 

we see tha t x = (4, 0, 0) is optimal for ( P Q ) , and we need to minimize and maximize 7 
over the region 

{7 : 7 / < l , 7 / < 3 + 7 , 7 / < l - 7 , 4 ( l - 7 / ) = 0 } . 

This gives —2 < 7 < 0 and we find the linearity interval [—2,0] left from 0. This is 
because x = (4,0,0) is also optimal on this interval. Recall from Example IV.72 tha t 
the optimal set at 7 = 0 is given by 

{x = (xi , 0, X3) : xi -\- xs = A, xi > 0, X3 > 0} . 

Thus, instead of the optimal solution x = (4, 0, 0) we may equally well use the strictly 
complementary solution x = (2, 0, 2). Then we need to minimize and maximize 7 over 
the region 

{7 : 7 / < l , 7 / < 3 + 7 , 7 / < l - 7 , 2 ( l - 7 / ) + 2 ( l - 7 - 7 / ) = 0 } . 

The last constraint amounts to j = 2 — 2y. Substitution in the third constraint yields 
y < —l-\-2yory > 1. Because of the first constraint we get y = 1, from which it 
follows tha t 7 = 0. Thus, 71 = 72 = 0 in accordance with Theorem IV.76. (} 

19.4-5 Running through all break points and linearity intervals 

Using the results of the previous sections, we present in this section an algorithm tha t 
yields the optimal-value function for a one-dimensional perturbat ion of the vector b 
or the vector c. We first deal with a one-dimensional perturbat ion of 6 by a scalar 
multiple of the vector Ab; we state the algorithm for the calculation of the optimal-
value function and then prove tha t the algorithm finds all break points and linearity 
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intervals. It will then be clear how to t reat a one-dimensional perturbat ion of c; we 
state the corresponding algorithm and its convergence result without further proof. 
We provide examples for both cases. 

Assume tha t we are given optimal solutions x* of (P) and (7/*, 5*) of (D). In the 
notation of the previous sections, the problem (Pp) and its dual (Dp) arise by replacing 
the vector b by b{(3) = b-\-(3Ab; the optimal value of these problems is denoted by /( /3). 
So we have /(O) = c^x* = 6^7/*. The domain of the optimal-value function is (—00, 00) 
and /(/3) = 00 if and only if (Dp) is unbounded. Recall from Theorem IV.51 tha t f{f3) 
is convex and piecewise linear. Below we present an algorithm tha t determines / on the 
nonnegative part of the real line. We leave it to the reader to find some straightforward 
modifications of the algorithm, yielding an algorithm tha t generates / on the other 
part of the real line.^^ The algorithm is as follows.^^ 

T h e O p t i m a l Value Func t ion /(/3), (3 > 0 

Input : 
An optimal solution (7/*, 5*) of (D); 
a perturbat ion vector Ab. 

b e g i n 
k := l;y^ := y*;s^ = 5*; ready:=false; 
whi le not ready do 
b e g i n 

Solve max^,^ {(3 : Ax = b ^ /3A6, x > 0, x^s^-'^ = O}; 
if this problem is unbounded: ready: = t r u e 
else let {(3k, x^) be an optimal solution; 
b e g i n 

Solve max^^5 {Ab^y : A^y + 5 = c, 5 > 0, s^x^ = O}; 
if this problem is unbounded: ready := t rue 
else let (y^^s^) be an optimal solution; 
k :=k^l; 

e n d 
e n d 

e n d 

The next theorem states tha t the above algorithm finds the successive break points 
of / on the nonnegative part of the real line, as well as the slopes of / on the successive 
linearity intervals. 

T h e o r e m I V . 7 8 The algorithm terminates after a finite number of iterations. If K 
is the number of iterations upon termination then /3i , /32, . . . ,/3x dre the successive 

^^ Exercise 99 When the two maximization problems in the algorithm are changed into minimiza­
tion problems, the algorithm yields the break points and linearity intervals for negative values of 
(3. Prove this. 

^^ After the completion of this section the same algorithm appeared in a recent paper of Monteiro 
and Mehrotra [221] and the authors became aware of the fact that these authors already published 
the algorithm in 1992 [207]. 
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break points of f on the nonnegative real line. The optimal value at jSk {I < k < K) 
is given by c^x^ and the slope of f on the interval {(3k, (3k-\-i) {I < k < K) by Ab^y^. 

Proof: In the first iteration the algorithm starts by solving 

max {(3 : Ax = b -\- /3A6, x > 0, x^ s^ 
f3,x 

where 5^ is the slack vector in the given optimal solution {y^,s^) = (7/*,5*) of 
(D) = (Do). This problem is feasible, because (P) has an optimal solution x* and 
(/3, x) = (0,x*) satisfies the constraints. Hence the first auxiliary problem is either 
unbounded or it has an optimal solution (/3i,x^). By Theorem IV.73 /3i is equal to 
the extreme point at the right of the linearity interval containing 0. If the problem 
is unbounded (when /3i = oo) then / is linear on (0, oo) and the algorithm stops; 
otherwise /3i is the first break point to the right of 0. (Note tha t it may happen tha t 
/3i = 0. This certainly occurs if 0 is a break point of / and the start ing solution (T/*, 5*) 
is strictly complementary.) Clearly x^ is primal feasible at /3 = /3i. Since (y^^s^) is 
dual feasible at /3 = /3i and {x^)^s^ = 0 we see tha t x^ is optimal for (P/^J. Hence 
/ ( A ) = c^x^. Also observe tha t (y^^s^) is dual optimal at /3i. (This also follows from 
Corollary IV.55.) 

Assuming tha t the second half of the algorithm occurs, when the above problem has 
an optimal solution, the algorithm proceeds by solving a second auxiliary problem, 
namely 

max {Ab^y : A^y + 5 = c, 5 > 0, s^x^ = O} . 
y,s 

By Theorem IV.62 the maximal value is equal to the right derivative of / at /3i. If the 
problem is unbounded then /3i is the largest break point of / on (0, oo) and f{f3) = oo 
for /3 > /3i. In tha t case we are done and the algorithm stops. Otherwise, when the 
problem is bounded, the optimal solution (y^^s^) is such tha t Ab^y^ is equal to the 
slope on the linearity interval to the right of /3i, by Lemma IV.61. Moreover, from 
Corollary IV.64, {y^,s^) is dual optimal on the open linearity interval to the right of 
/3i. Hence, at the start of the second iteration {y^,s^) is an optimal solution at the 
open interval to the right of the first break point on [0, oo). Thus we can start the 
second iteration and proceed as in the first iteration. Since each iteration produces a 
linearity interval, and / has only finitely many such intervals, the algorithm terminates 
after a finite number of iterations. • 

E x a m p l e I V . 7 9 Consider the primal problem 

(P) m i n { x i + X 2 + X3 : Xi - X2 = 0, X3 = 1, x = (xi,X2,X3) > 0} 

and its dual 

(D) max {7/2 : - 1 < ^1 < 1, ^2 < 1} • 

Hence, in this case we have 

A 1 
0 

- 1 
0 

0 " 
1 

1 C = 

" 1 " 

1 
1 

, b = 

i - - , 

0 
1 
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We perturb the vector 6 by a scalar multiple of 

Ab = 

to 

6(/3) = b + pAb -
" 0 " 

1 
+ /3 

1 

- 1 
= 

and use the algorithm to find the break points and linearity intervals of f{(3) = 
z{b{p),c). 

Optimal solutions of (P) and (D) are given by 

x* = (0,0,1), r = (0,l), s* = (1,1,0). 

Thus, entering the first iteration of the algorithm we consider 

max {(3 : xi — X2 = /3, X3 = 1 — /3, x > 0, xi + X2 = 0} . 

From X > 0, xi + X2 = 0 we deduce that xi = X2 = 0 and hence /3 = 0. Thus we find 
the first break point and the optimal value at this break point: 

,T^l / 3 i = 0 , xi = (0,0,1), f{f3i) = Jx 

We proceed with the second auxiliary problem: 

1. 

max {yi-y2 : - 1 < ^1 < 1, ^2 < 1, 1 - ?/2 = 0} . 
y 

It follows that 7/2 = 1 and yi — y2 = yi — I is maximal if yi = 1. Thus we find an 
optimal solution {y^, s^) for the linearity interval just to the right of /3i and the slope 
of / on this interval: 

yi = ( l , l ) , si = (0,2,0), / ; ( / 3 i ) = A 6 V = 0 . 

In the second iteration the first auxiliary problem is 

max {/3 : xi — X2 = /3, X3 = 1 — /3, x > 0, 2x2 = 0} , 
f3,x 

which is equivalent to 

max{/3 : /3 = xi , /3 = 1 — X3, x > 0, X2 = 0} . 
f3,x 

Clearly the maximum value of (3 is attained at xi = 1 and X3 = 0. Thus we find the 
second break point and the optimal value at this break point: 

/32 = 1, ^1 = (1,0,0), f{(32) = c^x T^2 1. 

The second auxiliary problem becomes 
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/W 

0^ -i 

Figure 19.4 The optimal-value function /(/3). 

max {yi-y2 : -1 < yi < 1, y2 < I, I - Vi = 0}, 

which is equivalent to 

:{1 -? /2 : ?/2 < 1, ?/i = 1 } . 

Clearly this problem is unbounded. Hence /^(/32) = oo and we are done. For larger 
values of (3 the primal problem (Pp) becomes infeasible and the dual problem (Dp) 
unbounded. 

We proceed by calculating /(/3) for negative values of/3. Using Exercise 99 (page 380, 
the first auxiliary problem, in the first iteration, becomes simply 

min {(3 : x i — X2 = /3, X3 = 1 — /3, x > 0, x i + X2 = 0} . 

We can easily verify tha t this problem has the same solution as its counterpart , when 
we maximize /3. This is due to the fact tha t /3 = 0 is a break point of / . We find, as 
before, 

A = 0 , x' = (0 ,0 ,1) , /(/3i) = c^x' = 1. 

We proceed with the second auxiliary problem: 

min {yi - 7/2 : - 1 < ^1 < 1, ^2 < 1, 1 - ?/2 = 0} . 

Since 7/2 = 1 we have yi — y2 = yi — ^ and this is minimal if yi = —1. Thus we find 
an optimal solution {y^, s^) for the linearity interval just to the left of /3i = 0 and the 
slope of / on this interval: 

yi = ( - l , l ) , ŝ  = (2,0,0), f_{Pi) = Ab^y, = -2. 
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In the second iteration the first auxiliary problem becomes 

min {/3 : x i — X2 = /3, X3 = 1 — /3, x > 0, 2xi = 0} , 
(3,x 

which is equivalent to 

min {j3 : (3 = —X2, /3 = 1 — X3, x > 0, x i = 0} . 
(3,x 

Obviously this problem is unbounded. This means tha t /(/3) is linear on the negative 
real line, and we are done. Figure 19.4 (page 383) depicts the optimal-value function 
/(/3) as just calculated. () 

When the vector c is per turbed by a scalar multiple of Ac to c(7) = c + 7AC, 
the algorithm for the calculation of the optimal value function ^(7) can be stated as 
follows. Recall tha t g is concave. Tha t is why the second auxiliary problem in the 
algorithm is a minimization problem.^^ 

T h e O p t i m a l Value Func t ion ^(7), 7 > 0 

Input : 
An optimal solution x* of (P) ; 
a perturbat ion vector Ac. 

b e g i n 
ready:=false; 
Ic * 1 • O^^ * rf*^ * 

whi le not ready do 
b e g i n 

Solve max^^^^5 {7 : A^y + 5 = c + 7AC, 5 > 0, s^x^~^ = O}; 
if this problem is unbounded: ready: = t r u e 
else let (7^,7/^,5^) be an optimal solution; 
b e g i n 

Solve miua; {Ac^x : Ax = 6, x > 0, x^s^ = O}; 
if this problem is unbounded: ready: = t r u e 
else let x^ be an optimal solution; 

e n d 
e n d 

e n d 

The above algorithm finds the successive break points of g on the nonnegative real 
line as well as the slopes of g on the successive linearity intervals. The proof uses 

^̂  Exercise 100 When the maximization problem in the algorithm is changed into a minimization 
problem and the minimization into a maximization problem, the algorithm yields the break points 
and linearity intervals for negative values of 7. Prove this. 
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arguments similar to the arguments in the proof of Theorem IV. 78 and is therefore 
omitted. 

Theorem IV.80 The algorithm terminates after a finite number of iterations. If K 
is the number of iterations upon termination then 71,72, • • • , 7 K ĉ ê the successive 
break points of g on the nonnegative real line. The optimal value â  7^ (1 < A: < K) 
is given by b^y^ and the slope of g on the interval (7^,7^+1) (1 < A: < K) by Ac^x^. 

D 

The next example illustrates the use of the above algorithm. 

Example IV.81 In Example IV.72 we considered the primal problem 

(P) min{xi + 3x2 + X3 - xi + X2 + X3 = 4, xi,X2,X3 > 0} 

and its dual problem 

(D) max{% : y < 1, y < 3, y < 1} , 

with the perturbation vector 

Ac = (0,1,-1) 

and we calculated the linearity intervals from Lemma IV.67. This required the 
knowledge of an optimal primal solution for each interval. Theorem IV.80 enables 
us to find these intervals from the knowledge of an optimal solution x* of (P) only. 

Entering the first iteration of the above algorithm with x* = (4, 0,0) we consider 

max {7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(1 - 7/) = 0} . 

We can easily see that y = 1 is optimal with 7 = 0. Thus we find the first break point 
and the optimal value at this break point: 

71 = 0 , y' = 1, s' = (0,2,0), ^(71) = b^y' = 4. 

The second auxiliary problem is now given by: 

min {x2 - xs : xi + X2 + X3 = 4, xi, X2, xs > 0, 2x2 = 0} . 
X 

It follows that X2 = 0 and X2 — X3 = —xs is minimal if X3 = 4 and xi = 0. Thus we 
find an optimal solution x^ for the linearity interval just to the right of 71 and the 
slope of g on this interval: 

^1 = (0,0,4), 5 ; ( 7 i ) = A c ^ x i = - 4 . 

In the second iteration the first auxiliary problem is 

max {7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(1 - 7 - 7/) = 0} . 
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It follows that 7/ = 1 — 7 and the problem becomes equivalent to 

max{7 : 1 — 7 < 1 , 1 — 7 < 3 + 7, 7/ = l— 7 } . 

Clearly this problem is unbounded. Hence g is linear for values of 7 larger than 71 = 0. 
We proceed by calculating ^(7) for negative values of 7. Using Exercise 100 

(page 384), the first auxiliary problem, in the first iteration, becomes simply 

min {7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(1 - 7/) = 0} . 
7,2/ 

Since y = 1 this is equivalent to 

min {7 : —2 < 7 < 0, 7/ = 1} , 
7,2/ 

so the first break point and the optimal value at this break point are given by 

71 = - 2 , y^ = 1, s^ = (0, 0, 2), ^(71) = h^y^ = 4. 

The second auxiliary problem is now given by: 

max{x2-X3 : xi + X2 + X3 = 4, xi,X2,X3 > 0, 2x3 = 0} , 
X 

which is equivalent to 

max {x2 : Xi + X2 = 4, xi, X2 > 0, X3 = 0} . 
X 

Since X2 is maximal if xi = 0 and X2 = 4 we find an optimal solution x^ for the 
linearity interval just to the left of 71 and the slope of g on this interval: 

a;i = (0,4,0), g'_{j,) = Ac^x'= 4. 

In the second iteration the first auxiliary problem is 

min {7 : 7/ < 1, 7/ < 3 + 7, 7/ < 1 - 7, 4(3 + 7 - 7/) = 0} . 
7,2/ 

It follows that 7/ = 3 + 7 and the problem becomes equivalent to 

min {7 : 3 + 7 < l , 3 + 7 < l — 7, 7/ = 3 + 7 } . 
7,2/ 

Clearly this problem is unbounded. Hence g is linear for values of 7 smaller than 
71 = —2. This completes the calculation of the optimal-value function ^(7) for the 
present example. We can easily check that the above results are in accordance with 
the graph of ^(7) in Figure 19.3 (page 369).^^ (} 

^^ Exercise 101 In Example IV.81 the algorithm for the computation of the optimal-value function 
g('y) was initialized by the optimal solution x* = (4, 0, 0) of (P) . Execute the algorithm once more 
now using the optimal solution x* = (2, 0, 2) of (P) . 
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19.5 Sensitivity analysis 

Sensitivity analysis is the special case of parametric analysis where only one coefficient 
of 6, or c, is perturbed. This means that the perturbation vector is a unit vector. The 
derivative of the optimal-value function to a coefficient is called the shadow price and 
the corresponding linearity interval the range of the coefficient. When dealing with 
sensitivity analysis the aim is to find the shadow prices and ranges of all coefficients 
in b and c. Of course, the current value of a coefficient may or may not be a break 
point. In the latter case, when the current coefficient is not a break point, it belongs 
to an open linearity interval and the range of the coefficient is just this closed linearity 
interval and its shadow price the slope of the optimal-value function on this interval. 
If the coefficient is a break point, then we have two shadow prices, the left-shadow 
price, which is the left derivative of the optimal-value function at the current value, 
and the right-shadow price, the right derivative of the optimal-value function at the 
current value.^^ 

19.5.1 Ranges and shadow prices 

Let X* be an optimal solution of (P) and (7/*,5*) an optimal solution of {D). With 
Ci denoting the z-th unit vector {1 < i < m), the range of the z-th coefficient hi 
of h is simply the linearity interval of the optimal-value function ZA{h + f3ei,c) that 
contains zero. From Theorem IV.73, the extreme points of this linearity interval follow 
by minimizing and maximizing f3 over the set 

{/3 : Ax = b^ pci, X > 0, x^s* = O} . 

With bi considered as a variable, its range of hi follows by minimizing and maximizing 
bi over the set 

{bi : Ax = b,x>0, x^5* = O} . (19.6) 

The variables in this problem are x and bi. For the shadow prices of bi we use 
Theorem IV.62. The left- and right-shadow prices of bi follow by minimizing and 
maximizing efy = i/i over the set 

{Vi : A^y + 5 = c, 5 > 0, 5^x* = O} . (19.7) 

Similarly, the range of the j-th coefficient Cj of c is equal to the linearity interval of the 
optimal-value function ZA{b,c-\- jCj) that contains zero. Changing Cj into a variable 
and using Theorem IV. 75, we obtain the extreme points of this linearity interval by 
minimizing and maximizing Cj over the set 

{cj : A^y + 5 = c, 5 > 0, 5^x* = O} . (19.8) 

^° Sensitivity analysis is an important topic in the application oriented literature on LO. Some relevant 
references, in chronological order, are Gal [89], Gauvin [93], Evans and Baker [72, 73], Akgiil [6], 
Knolmayer [173], Gal [90], Greenberg [128], Rubin and Wagner [247], Ward and Wendell [288], 
Adler and Monteiro [4], Mehrotra and Monteiro [207], Jansen, Roos and Terlaky [153], Jansen, 
de Jong, Roos and Terlaky [152] and Greenberg [129]. It is surprising that in the literature on 
sensitivity analysis it is far from common to distinguish between left- and right-shadow prices. One 
of the early exceptions was Gauvin [93]; this paper, however, is not mentioned in the historical 
survey on sensitivity analysis of Gal [90]. 
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In this problem the variables are the vectors y and s and also Cj. For the shadow 
prices of Cj we use Theorem IV.68. The left- and right-shadow prices of Cj follow by 
minimizing and maximizing e j x = Xj over the set 

[xj : Ax = h,x>{), x^5* = 0} . (19.9) 

Some remarks are in order. If hi is not a break point, which becomes evident if the 
extreme values in (19.6) both differ from 6 ,̂ then we know tha t the left- and right-
shadow prices of hi are the same and these are given by y^. In tha t case there is no 
need to solve (19.7). On the other hand, when hi is a break point, it is clear from 
the discussion following the proof of Theorem IV.73 tha t there are three possibilities. 
When the range of hi is determined by solving (19.6) the result may be one of the 
two linearity intervals surrounding hi] in tha t case y* is the shadow price of hi on 
this interval. This happens if and only if the given optimal solution T/* is such tha t 
yl is an extreme value in the set (19.7). The third possibility is tha t the extreme 
values in the set (19.6) are both equal to hi. This certainly occurs if y* is a strictly 
complementary solution of {D). In each of the three cases it becomes clear after (19.6) 
is solved, tha t hi is a break point, and the left- and right-shadow prices at hi can be 
found by determining the extreme values of (19.7). Clearly similar remarks apply to 
the ranges and shadow prices of the coefficients of the vector c. 

19.5.2 Using strictly complementary solutions 

The formulas for the ranges and shadow prices of the coefficients of h and c can be 
simplified when the given optimal solutions x* of (P) and (7/*,5*) of {D) are strictly 
complementary. Let {B,N) denote the optimal parti t ion of (P) and (D). Then we 
have x ^ > 0, x ^ = 0 and 5^ = 0, 5 ^ > 0. As a consequence, we have x^5* = 0 in 
(19.6) and (19.9) if and only if XN = 0. Similarly, s^x* = 0 holds in (19.7) and (19.8) 
if and only if 5^ = 0. 

Using this we can reformulate (19.6) as 

{hi : Ax = h, XB> 0, x^v = 0} , (19.10) 

and (19.7) as 

{y, : A^y^s = c,SB = 0, SN>0}. (19.11) 

Similarly, (19.8) can be rewritten as 

{cj : A^y + 5 = c, 55 = 0, SAT > 0} , (19.12) 

and (19.9) as 

{xj : Ax = h, XB> 0, XN = 0}. (19.13) 
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We proceed with an example.^^ 

E x a m p l e I V . 8 2 Consider the (primal) problem (P) defined by 

min xi -\- 4x2 -\- xs -\- 2x4 + 2x5 

S.t. - 2 x i + X2 + X3 + X5 -XQ = 0 

Xi + X2 - X3 + X4 -Xr = 1 

Xi , X2, X3, X4, X5, X6, X7 > 0. 

The dual problem (D) is 

max 
s.t. 

y2 

-^yi 

Vi 

yi 

yi 

-yi 

+ 
+ 
-

y2 

y2 

y2 

y2 

-y2 

< 

< 

< 

< 

< 

< 

< 

1 

4 

1 

2 

2 

0 

0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Problem {D) can be solved graphically. Its feasible region is shown in Figure 19.5 
(page 390). 

Since we are maximizing 7/2 in (-D), the figure makes clear tha t the set of optimal 
solutions is given by 

V* = {{yi,y2) : 0.5 < yi < 2, 2/2 = 2 } , 

and hence the optimal value is 2. Note tha t all slack values can be positive at an 
optimal solution except the slack value of the constraint ^ 2 ^ 2 . This means tha t the 
set N in the optimal parti t ion {B,N) equals N = { 1 , 2 , 3 , 5 , 6 , 7 } . Hence, B = {4}. 
Therefore, at optimality only the variable X4 can be positive. It follows tha t 

V* = {xeV : xi = X2 = Xs = Xs = XQ = Xr = 0} = {(0, 0, 0, 1, 0, 0, 0)} , 

and (P) has a unique solution: x = (0, 0, 0, 1, 0, 0, 0). 

2̂  Exercise 102 The ranges and shadow prices can also be found by solving the corresponding dual 
problems. For example, the maximal value of bi in (19.10) can be found by solving 

min {b^y : A^y > 0, yi = - l } 

and the minimal value by solving 

max {b^y : A^y < 0, yi = - l } . 

Formulate the dual problems for the other six cases. 
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y2 

(4) 

(6) w/ N^) 

> ^ ) ; 

> < 

(7) 

(5) ; 

0.5 1 1.5 
— ^ yi 

Figure 19.5 The feasible region of {D). 

The next table shows the result of a complete sensitivity analysis. It shows the 
ranges and shadow prices for all coefficients of h and c, where these vectors have their 
usual meaning. For each coefficient tha t is a break point we give the shadow price as a 
closed interval; the extreme values of this interval are the left- and right-shadow prices 
of the coefficient. In this example this happens only for hi. The range of a break point 
consists of the point itself; the table gives this point. On the other hand, for 'nonbreak 
points ' the range is a proper interval and the shadow price is a number. 

Coefficient 

6i = 0 

62 = 1 

Cl = l 

C2 = 4 

C3 = l 

C4 = 2 

C5 = 2 

C6 = 0 

C7 = 0 

Range 

0 

[0,^) 

[-2,^) 

[|,oo) 

hi,00) 
[0,3] 

[\,CG) 

[-2,^) 

[-2,^) 

Shadow prices 

[^2] 
2 

0 

0 

0 

1 

0 

0 

0 

We perform the sensitivity analysis here for hi and C4. 

R a n g e and s h a d o w prices for hi 

Using (19.10) the range of hi follows by minimizing and maximizing hi over the system 

0 
X4 

hi 
1. 
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The solution of this system is unique: X4 = 1 and bi = 0, so the range of bi is the 
interval [0,0]. This means tha t 61 = 0 is a break point. 

The left- and right-shadow prices of bi follow by minimizing and maximizing yi 
over y G V*. The minimal value is 0.5 and the maximal value 2, so the left- and 
right-shadow prices 0.5 and 2. 

R a n g e and s h a d o w price for C4 

The range of C4 is found by using (19.12). This amounts to minimizing and maximizing 
C4 over the system 

-^yi 

yi 

yi 

yi 

yi 

+ 
+ 
-

y2 

y2 

y2 

y2 

V2 

< 
< 

< 

= 
< 

> 

> 

1 

4 

1 

C4 

2 

0 

0. 

This optimization problem can easily be solved by using Figure 19.5. It amounts to 
the question of which values of 7/2 are feasible when the fourth constraint is removed 
in Figure 19.5. We can easily verify tha t all values of 7/2 in the closed interval [0, 3] 
(and no other values) satisfy. Therefore, the range of C4 is this interval. The shadow 
price of C4 is given by e^x = X4 = 1. (} 

19.5.3 Classical approach to sensitivity analysis 

Commercial optimization packages for the solution of LO problems usually offer the 
possibility of doing sensitivity analysis. The sensitivity analysis in many existing 
commercial optimization packages is based on the naive approach presented in first 
year textbooks. As a result, the outcome of the sensitivity analysis is often confusing. 
We explain this below. 

The 'classical' approach to sensitivity analysis is based on the Simplex Method for 
solving LO problems.^^ The Simplex Method produces a so-called basic solution of 

^^ With the word 'classical' we want to refer to the approach which dominates the literature, especially 
well known textbooks dealing with parametric and/or sensitivity analysis. This approach has led 
to the existing misuse of parametric optimization in commercial packages. This misuse is however 
a shortcoming of the packages and by no means a shortcoming in the whole existing theoretical 
literature. In this respect we want to refer the reader to Nozicka, Guddat, Hollatz and Bank [228]. 
In this book the parametric issue is correctly handled in terms of the Simplex Method, polyhedrons, 
faces of polyhedra etc. Besides parameterizing either the objective vector or the right-hand side 
vector, much more general parametric issues are also discussed. The following citation is taken 
from this book: Den qualitativen Untersuchungen in den meisten erschienenen Aufsatzen und 
Biichern liegt das Simplexverfahren zugrunde. ZwangslauRg unterliegen alle derartig gewonnenen 
Aussagen den Schwierigkeiren, die bei Beweisfiihrungen mit Hilfe der Simplexmethode im Falle der 
Entartung auftreten. In einigen Arbeiten wurde ein rein algebraischer Weg verfolgt, der in gewisse 
Spezialfallen zu Resultaten fiihrte, im allgemeinen aber bisher keine qualitative Analyse erlieferte. 
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the problem. It suffices for our purpose to know that such a solution is determined 
by an optimal basis. Assuming that A is of size m x n and rank (A) = m, a basis is 
a nonsingular m x m submatrix AB' of A and the corresponding basic solution x is 
determined by 

AB'XB' = ^, XN' = 0, 

where N' consists of the indices not in B'. Defining a vector y by 

and denoting the slack vector of 7/ by 5, we have SB' = 0. Since x^' = 0, it follows 
that xs = 0, proving that x and s are complementary vectors. Hence, if XB' and SN' 
are nonnegative then x is optimal for (P) and {y^s) is optimal for {D). In that case 
AB' is called an optimal basis for (P) and {D). A main result in the Simplex based 
approach to LO is that such an optimal basis always exists — provided the assumption 
that rank {A) = m \s satisfied — and the Simplex Method generates such a basis. For 
a detailed description of the Simplex Method and its underlying theory we refer the 
reader to any (text-)book on LO.^^ 

Any optimal basis leads to a natural division of the indices into m basic indices and 
n — m nonbasic indices, thus yielding a partition {B\ N^) of the index set. We call this 
the optimal basis partition induced by the optimal basis B\ Obviously, an optimal 
basis partition need not be an optimal partition. In fact, this observation is crucial as 
we show below. 

The classical approach to sensitivity analysis amounts to applying the 'formulas' 
(19.10) - (19.13) for the ranges and shadow prices, but with the optimal basis partition 
{B\N') instead of the optimal partition {B,N). It is clear that in general {B\N') 
is not necessarily the optimal partition because (P) and (D) may have more than 
one optimal basis. The outcome of the classical analysis will therefore depend on 
the optimal basis AB' • Hence, correct implementations of the classical approach may 
give rise to different 'ranges' and 'shadow prices'.^^ The next example illustrates this 
phenomenon. In a subsequent section a further example is given, where we apply 
several commercial optimization packages to a small transportation problem. 

Example IV.83 For problems (P) and (D) in Example IV.82 we have three optimal 
bases. These are given in the table below. The column at the right gives the 'ranges' 
for C4 for each of these bases. 

Basis 

1 

2 

3 

B' 

{1,4} 

{2,4} 

{4,5} 

'Range' for C4 

[1,3] 

[2,3] 

[1,2] 

We get three different 'ranges', depending on the optimal basis. Let us do the 
calculations for the first optimal basis in the table. The 'range' of C4 is found by 

^^ See, e.g., Dantzig [59], Papadimitriou and Steiglitz [231], Chvatal [55], Schrijver [250], Fang and 
Puthenpura [74] and Sierksma [256]. 

^^ We put the words range and shadow price between quotes if they refer to ranges and shadow prices 
obtained from an optimal basis partition (which may differ from the unique optimal partition). 
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using (19.12) with (B,N) such tha t B = B' = {1 ,4} . This amounts to minimizing 
and maximizing C4 over the system 

2?/i 

yi 

yi 

yi 

yi 

+ 
+ 
-

y2 

y2 

y2 

y2 

= 
< 

< 

= 
< 

> 

1 

4 

1 

C4 

2 

0 

y2 > 0. 

Using Figure 19.5 we can easily solve this problem. The question now is which values 
of 7/2 are feasible when the fourth constraint is removed in Figure 19.5 and the first 
constraint is active. We can easily verify tha t this leads to 1 < 7/2 < 3, thus yielding 
the closed interval [1,3] as the 'range' for C4. The other two 'ranges' can be found in 
the same way by keeping the second and the fifth constraints active, respectively. 

A commercial optimization package provides the user with one of the three ranges 
in the table, depending on the optimal basis found by the package. Observe tha t each 
of the three ranges is a subrange of the correct range, which is [0,3]. Note tha t the 
current value 2 of C4 lies in the open interval, whereas for two of the 'ranges' in the 
table, 2 is an extreme point. This might lead to the wrong conclusion tha t 2 is a break 
point of the optimal-value function. (} 

It can easily be understood tha t the 'range' obtained from an optimal basis parti t ion 
is always a subinterval of the whole linearity interval. Of course, sometimes the 
subinterval may coincide with the whole interval. For the shadow prices a similar 
statement holds. At a 'nonbreak point ' an optimal basis parti t ion yields the correct 
shadow price. At a break point, however, an optimal basis parti t ion yields one 'shadow 
price', which may be any number between the left- and the right-shadow price. The 
example in the next section demonstrates this behavior very clearly. 

Before proceeding with the next section we must note tha t from a computational 
point of view, the approach using an optimal basis parti t ion is much cheaper than using 
the optimal partit ion. In the latter case we need to solve some auxiliary LO problems 
— in the worst case four for each coefficient. When the optimal parti t ion (B,N) is 
replaced by an optimal basis parti t ion {B\N'), however, it becomes computationally 
very simple to determine the 'ranges' and 'shadow prices'. 

For example, consider the 'range' problem for bi. This amounts to minimizing and 
maximizing bi over the set 

{bi : Ax = 6, XB' > 0, XN' = 0} . 

Since AB' is nonsingular, it follows tha t 

XB' = A^}b, 

and hence the condition XB' > 0 reduces to 

A-}b > 0. 
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This is a system of m linear inequalities in the coefficient 6 ,̂ with i fixed, and hence its 
solution can be determined straightforwardly. Note tha t the system is feasible, because 
the current value of bi is such tha t the system is satisfied. Hence, the solution is a 
closed interval containing the current value of b^. 

19.5.4 Comparison of the classical and the new approach 

For the comparison we use a simple problem, arising when transport ing commodities 
(of one type) from three distribution centers to three warehouses. The supply values at 
the three distribution centers are 2, 6 and 5 units respectively, and the demand value 
at each of the three warehouses is just 3. We assume tha t the costs for t ransportat ion 
of one unit of commodity from a distribution center to a warehouse is independent 
of the distribution center and the warehouse, and this cost is equal to one (unit of 
currency). The aim is to meet the demand at the warehouses at minimal cost. This 
problem is depicted in Figure 19.6 by means of a network. The left three nodes in 
this network represent the distribution centers and the right three nodes the three 
warehouses. The arcs represent the t ransporta t ion routes from the distribution centers 
to the warehouses. The supply and demand values are indicated at the respective 
nodes. The t ransporta t ion problem consists of assigning 'fiow' values to the arcs in 

a i = 2 • i L j te#—• 3 = 61 

a2 = 6 

as = t 

Figure 19.6 A transportation problem. 

the network so tha t the demand is met and the supply values are respected; this must 
be done in such a way tha t the cost of the t ransportat ion to the demand nodes is 
minimized. Because of the choice of cost coefficients, the total cost is simply the sum 
of all arc fiow values. Since the total demand is 9, this is also the optimal value for 
the total cost value. Note tha t there are many optimal fiows; this is due to the fact 
tha t all arcs are equally expensive. So far, everything is trivial. 

Sens i t iv i ty t o d e m a n d and supp ly values 

Now we want to determine the sensitivity of the optimal value to perturbations of 
the supply and demand values. Denoting the supply values by a = (a i , a2 ,a3) and 
the demand values by b = (&i, 2̂5 ̂ 3)5 we can determine the ranges of these values by 
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hand. 
For example, when bi is changed, the total demand becomes 6 + 61 and this is the 

optimal value as long as such a demand can be met by the present supply. This leads 
to the condition 

6 + 61 < 2 + 6 + 5 = 13, 

which yields bi < 7. For larger values of bi the problem becomes infeasible. When 
bi = 0, the arcs leading to the first demand node have zero fiow value in any optimal 
solution. This means tha t 0 is a break point, and the range of bi is [0, 7]. Because of 
the symmetry in the network for the demand nodes, the range for 62 and 63 will be 
the same interval. 

When ai is changed, the total supply becomes 11 + a i and this will be sufficient as 
long as 

11 + a i > 9, 

which yields ai > —2. The directed arcs can only handle nonnegative supply values, 
and hence the range of ai is [0, 00). Similarly, the range for a2 follows from 

7 + a2 > 9, 

which yields the range [2, 00) for a2, and the range for as follows from 

8 + as > 9, 

yielding the range [1, 00) for as-
To compare these ranges with the 'ranges' provided by the classical approach, we 

made a linear model of the above problem, solved it using five well-known commercial 
optimization packages, and performed a sensitivity analysis with these packages. We 
used the following linear s tandard model: 

mm 

s.t. 

^13 

^12 

^22 

^32 

^21 

^22 

^23 

^13 

^23 

^33 

^31 

^32 

^33 

Si 

52 

53 

di 

d2 

ds 

^U' Si, dj > 0, ij = 1,2,3. 

The meaning of the variables is as follows: 

Si 

dn 

the amount of t ransport from supply node i to demand node j , 

excess supply at supply node z, 

shortage of demand at node j . 

where i and j run from 1 to 3. 



396 IV Miscellaneous Topics 

The result of the experiment is shown in the table below.^^ The columns correspond 
to the supply and the demand coefficients. Their current values are put between 
brackets. The rows in the table corresponding to the five packages^^ CPLEX, LINDO, 
PC-PROG, XMP and OSL show the 'ranges' produced by these packages. The last 
row contains the ranges calculated before by hand.^^ 

LO package 

CPLEX 

LINDO 

PC-PROG 

XMP 

OSL 

Correct range 

'Ranges' of supply and demand values 

ai(2) 

[0,3] 

[1,3] 

[0,^) 

[0,3] 

[0,3] 

[0,^) 

as (6) 

[4,7] 

[2,~) 

[6,7] 

[4,7] 

[2,^) 

a3(5) 

[1,~) 

[4,7] 

[3,6] 

[1,^) 

(—oo, oo) 

[1,^) 

6i(3) 

[2,7] 

[2,4] 

[2,5] 

[2,3] 

[2,7] 

[0,7] 

&2(3) 

[2,5] 

[1,4] 

[0,5] 

[2,3] 

[2,5] 

[0,7] 

&3(3) 

[2,5] 

[1,7] 

[2,5] 

[2,7] 

[2,5] 

[0,7] 

The table clearly demonstrates the weaknesses of the classical approach. Sensitivity 
analysis is considered to be a tool for obtaining information about the bottlenecks 
and degrees of freedom in the problem. The information provided by the commercial 
optimization packages is confusing and hardly allows a solid interpretation. For 
example, in our example problem there is obvious symmetry between the demand 
nodes. None of the five packages gives evidence of this symmetry. 

R e m a r k I V . 8 4 As stated before, the 'ranges' and 'shadow prices' provided by the classical 
approach arise by applying the formulas (19.10) - (19.13) for the ranges and shadow prices, 
but replacing the optimal partition {B,N) by the optimal basis partition {B\N'). Indeed, 
the 'ranges' in the table can be reconstructed in this way. We will not do this here, but to 
enable the interested reader to perform the relevant calculations we give the optimal basis 
partitions used by the packages. If the optimal basis partition is {B\ N'), it suffices to know 
the variables in B' for each of the five packages. These 'basic variables' are given in the next 
table. 

LO package 

CPLEX 

LINDO 

PC-PROG 

XMP 

OSL 

Basic variables 

^ 1 2 

a^ll 

a:22 

^ 1 3 

a:i2 

^ 2 1 

a:23 

a:23 

^ 2 1 

a:21 

^ 2 2 

a:31 

a:31 

^ 2 2 

a:22 

^ 2 3 

a:32 

^ 3 3 

^ 2 3 

a:23 

^ 3 1 

^ 3 3 

S i 

^ 3 3 

a:31 

S3 

S2 

S2 

S3 

S3 

^̂  The dual problem has a unique solution in this example. These are the shadow prices for the 
demand and supply values. All packages return this unique solution, namely 0 for the supply 
values — due to the excess of supply — and 1 for the demand values. 

26 PQJ, more information on these packages we refer the reader to Sharda [253]. 

^̂  The 'range' provided by the IBM package OSL (Optimization Subroutine Library) for as is not 
a subrange of the correct range; this must be due to a bug in OSL. The correct 'range' for the 
optimal basis partition used by OSL is [1, oo). 
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Note that CPLEX and OSL use the same optimal basis. The output of their sensitivity 
analysis differs, however. As noted before, the explanation of this phenomenon is that the 
OSL implementation of the classical approach must contain a bug. • 

The sensitivity analysis for the cost coefficients Cij is considered next. The results 
are similar, as we shall see. 

Sens i t iv i ty t o cost coefficients 

The current values of the cost coefficients Cij are all 1. As a consequence each feasible 
flow on the network is optimal if the sum of the flow values Xij equals 9. When one 
of the arcs becomes more expensive, then the flow on this arc can be rerouted over 
the other arcs and the optimal value remains 9. Hence the right-shadow price of each 
cost coefficient equals 0. On the other hand, if one of the arc becomes cheaper, then 
it becomes attractive to let this arc carry as much flow as possible. The maximal flow 
values for the arcs are 2 for the arcs emanating from the first supply node and 3 for 
the other arcs. Since for each arc there exists an optimal solution of the problem in 
which the flow value on tha t arc is zero, a decrease of 1 in the cost coefficient for the 
arcs emanating from the first supply node leads to a decrease of 2 in the total cost, 
and for the other arcs the decrease in the total cost is 3. Thus we have found the 
left- and right-shadow prices of the cost coefficients. Since the left- and right-shadow 
prices are all different, the current value of each of the cost coefficients is a break 
point. Obviously, the linearity interval to the left of this break point is (—oo, 1] and 
the linearity interval to the right of it is [1, oo). 

In the next table the 'shadow prices' provided by the five commercial optimization 
packages are given. The last row in the table contains the correct values of the left-
and right-shadow prices, as just calculated. 

LO package 

CPLEX 

LINDO 

PC-PROG 

XMP 

OSL 

Correct values 

'Shadow prices' of cost coefficients 

c i i 

0 

2 

0 

0 

0 

[2,0] 

Cl2 

2 

0 

0 

0 

2 

[2,0] 

Cl3 

0 

0 

0 

2 

0 

[2,0] 

C21 

2 

0 

0 

3 

2 

[3,0] 

C22 

1 

0 

3 

3 

1 

[3,0] 

C23 

3 

2 

1 

0 

3 

[3,0] 

C31 

1 

1 

3 

0 

1 

[3,0] 

C32 

0 

3 

0 

0 

0 

[3,0] 

C33 

0 

1 

2 

1 

0 

[3,0] 

Note tha t in all cases the 'shadow price' of a package lies in the interval between 
the left- and right-shadow prices. 

The last table shows the 'ranges' of the packages and the correct left- and right-hand 
side ranges for the cost coefficients.^^ It is easy to understand the correct ranges. For 
example, if c n increases then the corresponding arc becomes more expensive than the 
other arcs, and hence will not be used in an optimal solution. On the other hand, if 

^̂  In this table we use shorthand notation for the infinite intervals [l,oo) and (-00,1]. The interval 
[1,00) is denoted by [1, ) and the interval (-00,1] by ( ,1]. 
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cii decreases than it becomes attractive to use this arc as much as possible; due to 
the limited supply value (i.e., 2) in the first supply node a fiow of value 2 will be sent 
along this arc whatever the value of cn is. Considering C21, we see the same behavior if 
C21 increases: the arc will not be used. But if C21 G [0,1], then the arc will be preferred 
above the other arcs, and its fiow value will be 3. If C21 would become negative, then 
it becomes attractive to send even a fiow of value 6 along this arc, despite the fact 
that than the first demand node receives oversupply. So C21 = 0 is a break point. 

Note that if a 'shadow price' of a package is equal to the left or right-shadow price 
then the 'range' provided by the package must be a subinterval of the correct range. 
Moreover, if the 'shadow price' of a package is not equal to the left or right-shadow 
price then the 'range' provided by the package must be the singleton [1,1]. The results 
of the packages are consistent in this respect, as follows easily by inspection. 

LO package 

CPLEX 

LINDO 

PC-PROG 

XMP29 

OSL30 

Left range 

Right range 

'Ranges' of the cost coefficients 

C l l 

(,1] 

[1,) 

C12 

[1,) 

[1,1] 

(,1] 

[1,) 

Cl3 

[IJ 
[1,) 
[IJ 
(,1] 
[IJ 
(,1] 

[1,) 

C21 

[1,1] 

[1,) 

[1,) 

[0,1] 

[1,1] 
[0,1] 

[1,) 

C22 

[1,1] 

[1,) 

[0,1] 

[0,1] 

[1,1] 

[0,1] 

[1,) 

C23 

[0,1] 

[1,1] 

[1,1] 

[1,1] 

[1,1] 

[0,1] 

[1,) 

C31 

[1,1] 

[1,1] 

[0,1] 

[1,1] 

[0,1] 

[1,) 

C32 

[1,) 

[0,1] 

[1,) 

[1,) [0,1] 

[1,) 

C33 

[1,) 

[1,1] 

[1,1] 

[1,1] 

[1,) 

[0,1] 

[1,) 

19.6 C o n c l u d i n g r e m a r k s 

In this chapter we developed the theory necessary for the analysis of one-dimensional 
parametric perturbations of the vectors b and c in the standard formulation of the 
primal problem (P) and its dual problem (D). Given a pair of optimal solutions for 
these problems, we presented algorithms in Section 19.4.5 for the computation of the 
optimal-value function under such a perturbation. In Section 19.5 we concentrated on 
the special case of sensitivity analysis. In Section 19.5.1 we showed that the ranges and 
shadow prices of the coefiicients of b and c can be obtained by solving auxiliary LO 
problems. We also discussed how the ranges obtained in this way can be ambiguous, 
but that the ambiguity can be avoided by using strictly complementary solutions. 

We proceeded in Section 19.5.3 by discussing the classical approach to sensitivity 
analysis, based on the use of an optimal basic solution and the corresponding optimal 
basis. We showed that this approach is much cheaper from a computational point of 

^^ For some unclear reason XIVEP did not provide all ranges. The missing entries in its row are all 
equal to [l,oo). 

^° In Remark IV.84 it was established that OSL and CPLEX use the same optimal basis; nevertheless 
their 'ranges' for C12 and C23 are different. One may easily verify that these 'ranges' are (—00, 1] 
and [0,1] respectively. Thus, the CPLEX 'ranges' are consistent with this optimal basis and the 
OSL 'ranges' are not. 
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view. On the other hand, much less information is usually obtained and the information 
is often confusing. In the previous section we provided a striking example by presenting 
the sensitivity information provided by five commercial optimization packages for a 
simple t ransportat ion problem. 

The shortcomings of the classical approach are well known among experts in the 
field. At several places in the literature these experts raised their voices to warn of the 
possible implications of using the classical approach. By way of example we include a 
citation of Rubin and Wagner [247]: 

Managers who huild their own microcomputer Unear programming models 
are apt to misuse the resulting shadow prices and shadow costs. Fallacious 
interpretations of these values can lead to expensive mistakes, especially 
unwarranted capital investments. 

As a result of the unreliability of the sensitivity information provided by computer 
packages, the reputation of sensitivity analysis as a tool for obtaining information 
about the bottlenecks and degrees of freedom has suffered a lot. Many potential users 
of such information do not use it, because they want to avoid the pitfalls tha t are 
inherent in the classical approach. 

The theory developed in this chapter provides a solid base for reliable sensitivity 
modules in future generations of computer packages for LO. 



20 

Implementing Interior Point 
Methods 

20.1 Introduction 

Several polynomial interior-point algorithms were discussed in the previous chapters. 
Interior point algorithms not only provide the best theoretical complexity for LO 
problems but allow highly efficient implementations as well. Obviously not all 
polynomial algorithms are practically efficient. In particular, all full Newton step 
methods (see, e.g.. Section 6.7) are inefficient in practice. However variants like 
the predictor-corrector method (see Section 7.7) and large-update methods (see 
Section 6.9) allow efficient implementations. The aim of this chapter is to give some 
hints on how some of these interior point algorithms can be converted into efficient 
implementations. To reach this goal several problems have to be dealt with. Some 
of these problems have been at least partially discussed earlier (e.g., the embedding 
problem in Chapter 2) but need further elaboration. Some other topics (e.g., methods 
of sparse numerical linear algebra, preprocessing) have not yet been touched. 

By reviewing the various interior-point methods we observe that they are all based 
on similar assumptions and are built up from similar ingredients. We can extract the 
following essential elements of interior-point methods (IPMs). 

Appropriate problem form. All algorithms assume that the LO problem satisfies 
certain assumptions. The problem must be in an appropriate form (e.g., the 
canonical form or the standard form). In the standard form the coefficient matrix 
A must have full row rank. Techniques to bring a given LO problem to the desired 
form, and at the same time to eliminate redundant constraints and variables, 
are called preprocessing and are discussed in Section 20.3. 

Search direction. The search direction in interior-point methods is always a Newton 
direction. To calculate this direction we have to solve a system of linear 
equations. Except for the right-hand side and the scaling, this system is the 
same for all the methods. Computationally the solution of the system amounts 
to factorizing a square matrix and then solving the triangular systems by 
forward or backward substitution. The factorization is the most expensive part 
of an iteration. Without efficient sparse linear algebra routines, interior-point 
methods would not be practical. Various elements of sparse matrix techniques are 
discussed in Section 20.4. A straightforward idea for reducing the computational 
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cost is to reuse the same factorization. This leads to the idea of second- and 
higher-order methods discussed in Section 20.4.3. 

Interior point. The interior-point assumption is presupposed, i.e. that both the 
primal and the dual problem have a strictly positive (preferably centered) initial 
solution. Most LO problems do not have such a solution, but still have to be 
solved. A theoretically appealing and at the same time practical method is 
to embed the problem in a self-dual model, as discussed in Chapter 2. The 
embedding model is revisited and elaborated on in Section 20.5. 

Reoptimization. In practice it often happens that several variants of the same LO 
problem need to be solved successively. One might expect that the solution of an 
earlier version would be a good starting point for a slightly modified problem. 
For this so-called warm start problem the embedding model also provides a good 
solution as discussed in Section 20.5.2. 

Parameters: Step size, stopping criteria. The iterates in IPMs should stay in 
some neighborhood of the central path. Theoretically good step-sizes can result 
in hopelessly slow convergence in practice. A practical step-size selection rule 
is discussed. At some point, when the duality gap is small, the calculation is 
terminated. The theoretical criteria are typically far beyond today's machine 
precision. A practical criterion is presented in Section 20.6. 

Optimal basis identification. It is not an essential element of interior-point meth­
ods, but sometimes it still might be important^ to find an optimal basis. Then 
we need to provide the ability to 'cross over' from an interior solution to a basic 
solution. An elegant strongly polynomial algorithm is presented in Section 20.7. 

20.2 Prototype algorithm 

In most practical LO problems, in addition to the equality and inequality constraints, 
the variables have lower and upper bounds. Thus we deal with the primal problem in 
the following form: 

min \c X : Ax>h,x<hu,x>{)\, (20.1) 

where c^x^bu G K^, b G K"^, and the matrix A is of size m x n. Now its dual is 

max {b^y - b^y^ : A^y-yu<c,y> 0, ?/, > O} , (20.2) 
y,yu 

where y G K"^ and yu G K^. Let us denote the slack variables in the primal problem 
(20.1) by 

Z ^ j^X D, Zii ^ Oil '^ 

and in the dual problem (20.2) by 

s = c^yu- A^y, 

^ Here we might think about linear integer optimization when cutting planes are to be generated to 
cut oflF the current nonintegral optimal solution. 
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respectively. Here we assume not only that the problem pair satisfies the interior-point 
assumption, but also that a strictly positive solution {x, Zu, z^s^i/u^y) > 0 is given, 
satisfying all the constraints in (20.1) and (20.2) respectively. How to solve these 
problems without the explicit knowledge of an interior point is discussed in Section 
20.5. 

The central path of the pair of problems given in (20.1) and (20.2) is defined as 
the set of solutions (x(/i), ^^^(/i), z(/i)) > 0 and (5(/i),7/^i(/i),7/(/i)) > 0 for /i > 0 of the 
system 

(20.3) A^y 

Ax — z 

'^ ~r ^u 

-Vu^s 

xs 

^uVu 

zy 

= 

= 

= 

= 

= 

= 

^ 

K^ 
c, 

/ie. 

/ie. 

/ie. 

where e is the vector of all ones with appropriate dimension. 
Observe that the first three of the above equations are linear and force primal and 

dual feasibility of the solution. The last three equations are nonlinear. They become the 
complementarity conditions when /i = 0, which together with the feasibility constraints 
provides optimality of the solutions. The actual duality (or complementarity) gap g 
can easily be computed: 

g = x^s + z^yu + z^y, 

which equals (2n + m)fi on the central path . 
One iteration of a primal-dual algorithm makes one step of Newton's method applied 

to system (20.3) with a given /i; then /i is reduced and the procedure is repeated as 
long as the duality gap is larger than a predetermined tolerance. 

Given a solution (x^Zu^z) > 0 of (20.1) and (s^yu^y) > 0 of (20.2) the Newton 
direction for (20.3) is obtained by solving a system of linear equations. This system 
can be written as follows, where the ordering of the variables is chosen so that the 
structure of the coefficient matrix becomes apparent. 

(20.4) 

In making a step, in order to preserve the positivity of (x, Zu, z) and (5, yu^y), a step-
size a usually smaller than one (a damped Newton step) is chosen. 

Let us have a closer look at the Newton system. From the last four equations in 
(20.4) we can easily derive 

0 
4^ 
0 
0 
0 

z 

A 
0 
/ 

s 
0 
0 

- / 
0 
0 
0 
0 
Y 

0 
- / 
0 
0 

^u 
0 

0 
0 
/ 
0 

Yu 
0 

0 -
/ 
0 
X 
0 
0 

r AT/ 1 
Ax 
Az 

^yu 
Azu 

_ A s _ 

0 
0 
0 

jie — xs 
lie - Zuy^ 

fie — zy 

Azu 

As 

^yu 

Az 

-Ax, 

x~^{fie-

z-\fie-

y~^{fie-

- xs — 5Ax), 

^uyu yu^^u) 
-yz- zAy). 

z^ ^{lie - Zuyu + yuAx), (20.5) 
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With these relations, (20.4) reduces to 

where 

D^ 

A^ 

D^ = 

D-^ = 

r = 

h 

A 

- 5 - 2 

Ay 

Ax 

ZY-^ 

SX-^+Y^Z-^ 

y~^ilie-yz) 

Zu\l^ o _ ^uVu) 

r 

h 

X-' {fie-

(20.6) 

xs). 

The solution of the reduced Newton system (20.6) is the computationally most involved 
step of any interior point method. The system (20.6) in this form is a symmetric 
indefinite system and is referred to as the augmented system. If the second equation 
in the augmented system is multiplied by —1 a system with a positive definite (but 
unsymmetric) matrix is obtained. 

The augmented system (20.6) is equivalent to 

and 

Ax = D^{A^Ay-h) 

{AD^A^ ^D^)Ay = r^ AD^h. (20.7) 

The last equation is referred to as the normal equation.'^ The way to solve the systems 
(20.6) and (20.7) efficiently is discussed in detail in Section 20.4. 

After system (20.6) or (20.7) is solved, using formulas (20.5) we obtain the solution 
of (20.4). Now the maximal feasible step lengths ap for the primal (x, z, Zu) and ajj for 
the dual (s^y^i/u) variables are calculated. Then these step-sizes are slightly reduced 
by a factor a^ < 1 to avoid reaching the boundary. The new iterate is computed as 

^fe+i 

y 
fe+i 

aoapAx, 

^fe+l 

^/c+1 

tfu 

= z^^aoapAzu, 

= z^ -\- aoapAz, 

= s^ -\- aoaoAs, 

= y^^aoanAyu, 

(20.9) 

y aoanAy. 

After the step, the parameter /i is updated and the process is repeated. A prototype 
algorithm can be summarized as follows. 

^ Exercise 103 Show that if first Ay is calculated from the system (20.6) as a function of Ax the 
following formulas arise: 

Ay: -D-%AAx-r) 
and 

{A^D- D- 2) A x : A^ D-'r (20.8) 

Observe that this symmetric formulation allows for further utilization of the structure of the normal 
equation. We are free to choose between (20.7) and (20.8) depending on which has a nicer sparsity 
structure. 
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Prototype Primal—Dual Algorithm 

Input: 
An accuracy parameter £ > 0; 
(x^.z^.z^) and (s^.y^.y^); interior solutions for (20.1) and (20.2); 
parameter a^ < 1; /i^ > 0. 

begin 

while (2n + m)ii > e do 
begin 

reduce ji 
solve (20.4) to obtain (Ax, Az^ ,̂ Az, As, AT/̂ ,̂ AT/); 
determine ap and a^] 
update {x,Zu,z,yu,y,s) by (20.9) 

end 
end 

Before discussing all the ingredients in more detail we make an important observation. 
Solving a problem with individual upper bounds on the variables does not require 
significantly more computational effort than solving the same problem without such 
upper bounds. In both cases the augmented system (20.6) and the normal equation 
(20.7) have the same size. The extra costs per iteration arising from the upper bounds 
are just 0{n)^ namely some extra ratio tests to determine the maximal possible steps 
sizes and some extra vector manipulations (see equations (20.5)).^ 

20.3 Preprocess ing 

An important issue for all implementations is to transform the problem into an 
appropriate form, e.g., to the canonical form with upper bounded variables (20.1), and 
to reduce the problem size in order to reach a minimal representation of the problem. 
This aim is quite plausible. A smaller problem needs less memory to store, usually fewer 
iterations of the algorithm, and if the transformation reduces the number of nonzero 
coefficients or improves the sparsity structure then fewer drithmetic operations per 
iteration are needed. A minimal representation should be free of redundancies, implied 
variables and inequalities. In general it is not realistic to strive to find the minimal 
representation of a given problem. But by analysing the structure of the problem it is 
often possible to reduce the problem size significantly. In fact, almost all large-scale LO 
problems contain redundancies in practice. The use of modeling languages and matrix 
generators easily allows the generation of huge models. Modelers choose to formulate 
models that are easy to understand and modify; this often leads to the introduction 

^ Exercise 104 Check that the computational cost per iteration increases just by 0{n) if individual 
upper bounds are imposed on the variables. 
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of superfluous variables and redundant constraints. To remove at least most of these 
redundancies is, however, a nontrivial task; this is the aim of preprocessing. 

As we have already indicated, computationally the most expensive part of an 
interior-point iteration is calculating the search direction, to solve the normal equation 
(20.7) or the augmented system (20.6). Wi th a compact formulation the speedup can 
be signiflcant.^ 

20.3.1 Detecting redundancy and making the constraint matrix sparser 

By analysing the sparsity pat tern of the matr ix A, one can frequently reduce the 
problem size. The aim of the sparsity analysis is to reduce the number of nonzero 
elements in the constraint matr ix A] this is done by elementary matr ix operations. 
In fact, as a consequence, the sparsity analysis mainly depends on just the nonzero 
structure of the matr ix A and it is largely independent of the magnitude of the 
coeflicients. 

1. First we look for pairs of constraints with the same nonzero pat tern. If we have two 
(in-)equality constraints which are identical — up to a scalar multiplier — then 
one of these constraints is removed from the problem. If one of them is an equality 
constraint and the other an inequality constraint then the inequality constraint is 
dropped. If they are opposite inequalities then they are replaced by one equality 
constraint. 

2. Linearly dependent constraints are removed. (Dependency can easily be detected 
by using elimination.) 

3. Duplicate columns are removed. 
4. To improve the sparsity pat tern of the constraint matr ix A further we flrst put 

the constraints into equality form. Then by adding and subtracting constraints 
with appropriate multipliers, we can eliminate several nonzero entries.^ During 
this process we have to make sure tha t the resulting sparser system is equivalent 
to the original one. Mathematically this means tha t we look for a nonsingular 
matr ix Q G ]R"^^"^ such tha t the matr ix QA is as sparse as possible. Such sparser 
constraints in the resulting equivalent formulation 

QAx = Qb 

might be much more suitable for a direct application of the interior-point solver.^ 

^ Preprocessing is not a new idea, but has enjoyed much attention since the introduction of interior-
point methods. This is due to the fact that the realized speedup is often larger than for the Simplex 
Method. For further reading we refer the reader to, e.g., Brearley, Mitra and Williams [49], Adler et 
al. [1], Lustig, Marsten and Shanno [191], Andersen and Andersen [9], Gondzio [113], Andersen [8], 
Bixby [42], Lustig, Marsten and Shanno [193] and Andersen et al. [10]. 

^ As an illustration let us consider two constraints a^x = bk and ajx = bj where (T{ak) C a{aj). 

(Recall that a(x) = { i \ Xi ^ 0 }.) Now if we define 'dj = aj + Xa^ and bj = bj + Xb^, where A 
is chosen so that (T{aj) C criaj), then the constraint ajx = bj can be replaced by ajx = bj while 

the number of nonzero coefficients is reduced by at least one. 

^ Exact solution of this Sparsity Problem is an NP-complete problem (Chang and McCormick [54]) 
but efficient heuristics (Adler et al. [1], Chang and McCormick [54] and Gondzio [113]) usually 
produce satisfactory nonzero reductions in A. The algorithm of Gondzio [113], for example, looks 
for a row of A that has a sparsity pattern that is a subset of the sparsity pattern of other rows and 
uses it to eliminate nonzero elements from these rows. 
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20.3.2 Reducing the size of the problem 

In general, finding all redundancies in an LO problem is a more difficult problem than 
solving the problem; hence, preprocessing procedures use a great variety of simple 
inspection techniques to detect obvious redundancies. These techniques are very cheap 
and fast, and are applied repeatedly until the problem cannot be reduced by these 
techniques any more. Here we discuss a small collection of commonly used reduction 
procedures. 

1. Empty rows and columns are removed. 
2. A fixed variable {xj = Uj) can be substi tuted out of the problem. 
3. A row with a single variable defines a simple bound; after an appropriate bound 

update the row can be removed. 
4. We call variable Xj a free column singleton if it contains a single nonzero coefficient 

and there are neither lower nor upper bounds imposed on it. In this case the variable 
Xj can be substi tuted out of the problem. As a result both the variable Xj and the 
constraint in which it occurs are eliminated. The same holds for so-called implied 
free variables^ i.e., for variables for which implied bounds (discussed later on) are 
at least as tight as the original bounds. 

5. All the free variables can be eliminated by making them a free singleton column by 
eliminating all but one coefficient in their columns. Here we recall the techniques 
tha t were discussed in Theorem D. l in which the LO problem was reduced to 
canonical form. In the elimination steps we have to pay special at tention to the 
sparsity, by choosing elements in the elimination steps tha t reduce the number of 
nonzero coordinates in A or, at least, produce the smallest amount of new nonzero 
elements. 

6. Trivial lower and upper bounds for each constraint i are determined. If 

h= ^ ciijKj, and bi = ^ aijbuj, (20.10) 

then clearly 

< y^aijXj < bi. (20.11) 

Observe tha t due to the nonnegativity of x, for the bounds we have 6i_ < 0 < 6 .̂ 
If the inequalities (20.11) are at least as tight as the original constraint, then the 
constraint i is redundant. If one of them contradicts the original i-th constraint, then 
the problem is infeasible. In some special cases (e.g.: 'less than or equal to ' row with 
bi = bi, 'greater than or equal to ' row with bi = bi, or equality row for which bi 
is equal to one of the limits bi or bi) the constraint in the optimization problem 
becomes a forcing one. This means tha t the only way to satisfy the constraint is 
to fix all variables tha t appear in it on their appropriate bounds. Then all of these 
variables can be substi tuted out of the problem. 

From the constraint limits (20.10), implied variable bounds can be derived 
(remember, we have 0 < x < bu)- Assume tha t for an inequality constraint the 
bounds (20.11) are derived. Then for each k such tha t aik > 0 we have 

h + ciikXk < ^ ciijXj < bi 
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and for each k such that â ^ < 0 we have 

j 

Now the new implied bounds from row i are easily derived as 

Xk<u^ = {h - bi)/ciik for ah k : aik > 0, 

Xk^^k — '̂ fe + {^i ~ bi)/aik for all k : aik < 0-

If these bounds are tighter than the original ones, then the variable bounds are 
improved. 

8. Apply the same techniques to the dual problem. 

The application of all presolve techniques described so far often results in impressive 
reductions of the initial problem formulation. Once the solution for the reduced 
problem is found, we have to recover the complete primal and dual solutions for the 
original problem. This phase is called postprocessing. 

20.4 Sparse linear a lgebra 

As became clear in Section 20.2, the computationally most intensive part of an interior-
point algorithm is to solve either the augmented system (20.6): 

D^ 
A^ 

or the normal equation (20.7): 

A Ay 
Ax 

r 
h 

{AD^A^ + D^) Ay = q, 

(20.12) 

(20.13) 

where q = r -\- AD^h. At each iteration one of the systems (20.12) or (20.13) has to 
be solved. In the subsequent iterations only the diagonal scaling matrices D and D 
and the right-hand sides are changing. The nonzero structure of the augmented and 
normal matrices remains the same in all the iterations. For an efficient implementation 
it is absolutely necessary to design numerical routines that make use of this constant 
sparsity structure. 

20.4-1 Solving the augmented system, 

To solve the augmented system (20.12) a well-established technique, the Bunch-
Par lett factorization^ may be used. Observe that the coefficient matrix of (20.12) 
is nonsingular, symmetric and indefinite. The Bunch-Parlett factorization of the 
symmetric indefinite matrix has the form 

I?2 

AT 
A 

LKL' (20.14) 

^ For the original description of the algorithm we refer to Bunch and Parlett [53]. For further 
application to solving least squares problems we refer the reader to Arioli, Duff and de Rijk [27], 
Bjork [44] and Duff [68]. 
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for some permutat ion matr ix P , where A is an indefinite block diagonal matr ix with 
1 x 1 and 2 x 2 blocks and L is a lower triangular matrix. The factorization is basically 
an elimination (Gaussian) algorithm, in which we have to specify at each stage which 
row and which column is used for the purpose of elimination. 

In the Bunch-Par le t t factorization, to produce a sparse and numerically stable L 
and A at each iteration the system is dynamically analyzed. Thus it may well happen 
tha t at each iteration structurally different factors are generated. This means tha t 
in the choice of the element tha t is used for the elimination, both the sparsity and 
stability of the triangular factor are considered. Within these stability and sparsity 
considerations we have a great deal of freedom in this selection; we are not restricted 
to the diagonal elements (one possible trivial choice) of the coefficient matrix. The 
efficiency depends strongly on the heuristics used in the selection strategy. 

The relatively expensive so-called analyze phase is frequently skipped and the same 
structure is reused in subsequent iterations and updated only occasionally when the 
numerical properties make it necessary. A popular selection rule is detecting 'dense' 
columns and rows (with many nonzero coefficients) and eliminating first in the 
diagonal positions of D'^ and D~'^ in the augmented matr ix (20.12) corresponding 
to sparse rows and columns. The dense structure is pushed to the last stage of 
factorization as a dense window. In general it is unclear what threshold density should 
be used to separate dense and sparse structures. When the number of nonzeros in dense 
columns is significantly larger than the average number of entries in sparse columns 
then it is easy to determine a fixed threshold value. Whenever more complicated 
sparsity structures appear, more sophisticated heuristics are needed.^ 

20.4-2 Solving the normal equation 

The other popular method for calculating the search direction is to solve the normal 
equation (20.13). The method of choice in this case is the sparse Cholesky factorization: 

P {AD^A^ + D^) P^ = LAL^, (20.15) 

for some permutat ion matr ix P , where L is a lower triangular matr ix and A is a 
positive definite diagonal matrix. It is should be clear from the derivation of the 
normal equation tha t the normal equation approach can be considered as a special 
implementation of the augmented system approach. More concretely this means tha t 
we first eliminate either Ax or Ay by using all the diagonal entries of either D~^ or 
D^. Thus the normal equation approach is less fiexible but, on the other hand, the 
coefficient matr ix to be factorized is symmetric positive definite, and both the matr ix 
and its factors have a constant sparsity structure. 

The Cholesky factorization of (20.15) exists for any positive D^ and D^. The sparsity 
structure of L is independent of these diagonal matrices and hence is constant in all 
iterations if the same elimination steps are performed. Consequently it is sufficient 
to analyze the structure just once and determine a good ordering of the rows and 

^ To discuss these heuristics is beyond the scope of this chapter. The reader can find detailed 
discussion of the advantages and disadvantages of the normal equation approach in the next 
section and in the papers Andersen et al. [10], Duff et al. [69], Fourer and Mehrotra [78], Gondzio 
and Terlaky [116], Maros and Meszaros [195], Turner [275], Vanderbei [277] and Vanderbei and 
Carpenter [278]. 
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columns in order to obtain sparse factors. To determine such an ordering involves 
considerable computational effort, but it is the basis of a successful implementation 
of the Cholesky factorization in interior-point methods. This is the analyze phase. 
More formally, we have to find a permutat ion matr ix P such tha t the Cholesky 
factor of P(AD^A^ -\- D^)P^ is the sparsest possible. Due to the difficulty of this 
problem, heuristics are used in practice to find such a good permutation.^ Two efficient 
heuristics, namely the minimum degree and the minimum local fill-in orderings, are 
particularly useful in interior-point method implementations. These heuristics are 
described brieffy below. 

M i n i m u m degree order ing 

Since the matr ix to be factorized is positive definite and symmetric the elimination 
can be restricted to the diagonal elements. This limitation preserves the symmetry 
and positive definiteness of the Schur complement. Let us assume tha t in the k-th. 
step of the Gaussian elimination the z-th row of the Schur complement contains n^ 
nonzero entries. If this row is used for the elimination, then the elimination requires 

h = \{rn-l)\ (20.16) 

fioating point operations {flops). The number fi estimates the computational effort 
and gives an overestimate of the ffll-in tha t can result from the elimination. The best 
choice of row i at step k is the one tha t minimizes /^.^^ 

M i n i m u m local fill-in order ing 

Let us observe tha t , in general, fi in (20.16) considerably overestimates the number 
of ffll-ins at a given iteration of the elimination process because it does not take into 
account the fact tha t in many positions of the predicted ffll-in, nonzero entries already 
exist. It is possible tha t another candidate tha t seems to be worse in terms of (20.16) 
would produce less ffll-in because in the elimination, mainly existing nonzero entries 
would be updated. The minimum local ffll-in ordering takes locally the real ffll-in into 
account. As a consequence, each step is more expensive but the resulting factors are 
sparser. This higher cost has to be paid once in the analyze phase. 

D i s a d v a n t a g e s of t h e normal e q u a t i o n s approach 

The normal equations approach shows uniformly good performance when applied to 
the solution of the majority of linear programs. Unfortunately, it suffers from a serious 
drawback. The presence of dense columns in A might be catastrophic if they are not 
t reated with extra care. A dense column of A with k nonzero elements creates SL k x k 
dense submatrix (dense window) of the normal matr ix (20.13). Such dense columns 
do not seriously inffuence the efficiency of the augmented system approach. 

^ Yannakakis [302] proved that finding thie optimal permutation is an NP-complete problem. 

••̂^ The function fi is Markowitz's merit function [194]. Interpreting this process in terms of the 
elimination graph (cf. George and Liu [94]), we can see that it is equivalent to the choice of the 
node in the graph that has the minimum degree (this gave the name to this heuristic). 



I V . 2 0 I m p l e m e n t i n g In ter ior P o i n t M e t h o d s 411 

In order to handle dense columns efficiently the first step is to identify them. This 
typically means to chose a threshold value. If the number of nonzeros in a column 
is larger than this threshold, the column is considered to be dense, the remaining 
columns as sparse. Denoting the matr ix of the sparse columns in A by As and the 
matr ix of the dense columns by Ad, the equation (20.12) can be writ ten as follows. 

D' 

^l 
AT 

Ad 

-Df 
0 

As 

0 

-D-^ 

Ay 

Axd 

Ax, 

= 

r 

hd 

h. 

(20.17) 

After eliminating Axg 

Al 

-Dg '^{hg — A^dy) we get the equation 

Ad 
-D-

Ay 
Axd 

r -
hd 

AsD-^hs (20.18) 

Here the left-upper block of the coefficient matr ix is positive definite symmetric and 
sparse, thus it is easy to factorize efficiently. As the reader can easily see, this approach 
tries to combine the advantages of the normal equation approach and the augmented 
system approach.^^'^^ 

20.4-3 Second-order methods 

An a t tempt to reduce the computational cost of interior-point methods is based on 
trying to reuse the same factorization of either the normal matr ix or the augmented 
system. Both in theory and in practice, factorization is much more expensive than 
backsolve of triangular systems; so we can do additional backsolves in each iteration 
with different right-hand sides if these reduce the total number of interior-point 
iterations. This is the essential idea of higher-order methods. Our discussion here 
follows the present computational practice; so we consider only the second-order 

^^ An appealing advantage of the symmetric formulation of the LO problem is that in (20.18) the 
matrix D^ -{-AgD^ A^ is nonsingular. If one would use the standard Ax = b, x > 0 form, then we 
would have just AgD^ A^ which might be singular. To handle this unpleasant situation an extra 
trick is needed. For this we refer the reader to Andersen et al. [13] and also to Exercise 105. 

^'^ Exerc i se 105 Verify that (Ay, Axd) is the solution of 

AsD-'A^, Ad 
-D-

Ay 

Axd 

AsD-^hs 

hd 

if and only if (Ay, Axd, u) solves 

AsD] -'AT- -QQ^ Ad Q' 

Dd' 0 
0 / 

Ay 

Axd 

u 
= 

r^AsDs ^hs 

hd 

0 

with any matrix Q having appropriate dimension. Observe that by choosing Q properly (e.g. 
diagonal) the matrix AgD^ A^ + QQ^ is nonsingular. 
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predictor-corrector method that is implemented in several codes with great success.^^ 

Predictor-corrector technique 

This predictor-corrector method has two components. The first is an adaptive choice 
of the barrier parameter /i; the other is a second-order approximation of the central 
path . 

The first step in the predictor-corrector algorithm is to compute the primal-dual 
affine-scaling (predictor) direction. This is the solution of the Newton system (20.4) 
with /i = 0 and is indicated by A*̂ . It is easy to see that if a step of size a is taken 
in the affine-scaling direction, then the duality gap is reduced by a] i.e. if a large step 
can be made in this direction then significant progress is made in the optimization. If 
the feasible step-size in the affine-scaling direction is small, we expect that the current 
point is close to the boundary; thus centering is needed and /i should not be reduced 
too much. 

In the predictor-corrector algorithm, first the predicted duality gap is calculated 
that results from a step along the primal-dual affine-scaling direction. To this end, 
when the affine-scaling direction is computed, the maximum primal {a^) and dual 
(o f̂)) feasible step sizes are determined that preserve nonnegativity of {x^Zu^z) and 
{s,yu,y)- Then the predicted duality gap 

+iz + a%A^zfiy + a%A''y) 

is computed and is used to determine a target point 

2 

9a\ ga .20.19) 
n 

on the central path . Here ga/n relates to the central point with the same duality gap 
that the predictor affine step would produce, and the factor (ga/g) pushes the target 
further towards optimality in a way that depends on the achieved reduction of the 
predictor step. Now the second-order component of the predictor-corrector direction 
is computed. Ideally we would like to compute a step such that the next iterate is 
perfectly centered, i.e., 

{x-\-Ax){s-\-As) = /ie, 

{zu + Azu){yu + Ayu) = /ie, 
{z^Az){y^Ay) = fie, 

^^ The second-order predictor-corrector technique presented here is due to Mehrotra [205]; from a 
computational point of view the method is very successful. The higher than order 2 methods — 
discussed in Chapter 18 — are implementable too, but to date computational results with methods 
of order higher than 2 are quite disappointing. See Andersen et al. [10]. Mehrotra was motivated 
by the paper of Monteiro, Adler and Resende [220], who were the first to introduce the primal-dual 
affine-scaling direction and higher-order versions of the primal-dual affine-scaling direction; they 
elaborated on a computational paper of Adler, Karmarkar, Resende and Veiga [2] that uses the 
dual affine-scaling direction and higher-order versions of it. 
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or equivalently 

xAs -\- sAx = —xs -\- fie — AxAs, 

ZuAyu + Vu^Zu = -ZuVu + /ie - AzuAyu, 

zAy + yAz = —zy -\- fie — AzAy. 

Usually, in the computation of the Newton direction the second-order terms 

Ax As, AzuAyu, AzAy 

are neglected (recall (20.4)). Instead of neglecting the second-order term, the afhne 
directions 

A"x,A"5, A^'zuA'^yu, A^'zA^'y 

are used as the predictions of the second-order effect. One step of the algorithm can 
be summarized as follows. 

• Solve (20.4) with /i = 0, resulting in the affine step {A^x,A^Zu,A^z) and 
(A^s.A^yu^A^y). 

• Calculate the maximal feasible step lengths a^ and a^. 
• Calculate the predicted duality gap ga and fi by (20.19). 
• Solve the corrected Newton system 

AAx - Az = 0 

Ax + Azu = 0 

A^Ay - Ayu ^ As = 0 

xAs^sAx = -xs^ fie- A^'xA^'s, (20.20) 

ZuAyu + yuAzu = -Zuyu + /ie - A^'zuA'^yu, 

zAy + yAz = -zy ^ fie - A^'zA^'y. 

• Calculate the maximal feasible step lengths ap and an and make a damped step 
by using (20.9).^^ 

Finally, observe that a single iteration of this second-order predictor-corrector primal-
dual method needs two solves of the same large, sparse linear system (20.4) and (20.20) 
for two different right-hand sides. Thus the same factorization can be used twice. 

20.5 Start ing point 

The self-dual embedding problem is an elegant theoretical construction for handling 
the starting point problem. At the same time it can also be the basis of an efficient 
implementation. In this section we show that solving the slightly larger embedding 

^^ This presentation of the algorithm follows the paper of Mehrotra [205]. It differs from the 2-order 
method of Chapter 18. 
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problem does not increase the computational cost significantly.^^ Before presenting 
the embedding problem, we summarize some of its surprisingly nice properties. 

1. The embedding problem is self-dual: the dual problem is identical to the primal 
one. 

2. It is always feasible. Furthermore, the interior of the feasible set of the embedding 
problem is also nonempty; hence the optimal faces are bounded (from Theorem 
11.10). So interior-point methods always converge to an optimal solution. 

3. Optimality of the original problem is detected by convergence, independently of 
the boundedness or unboundedness of the optimal faces of the original problem. 

4. Infeasibility of the original problem is detected by convergence as well.^^ Primal, 
dual or primal and dual rays for the original problems are identified to prove dual, 
primal or dual and primal infeasibility (cf. Theorem 1.26). 

5. For the embedding problem a perfectly centered initial pair can always be 
constructed. 

6. It allows an elegant handling of the warm start problem. 
7. The embedding problem can be solved with any method tha t generates a strictly 

complementary solution; if the chosen method is polynomial, it solves the original 
problem with essentially the same complexity bound. Thus we can achieve the best 
possible complexity bounds for solving an arbitrary problem. 

Self-dual e m b e d d i n g 

We consider problems (20.1) and (20.2). To formulate the embedding problem we 
need to introduce some further vectors in a way similar to tha t of Chapter 2. We start 
with 

x^ >0, z^> 0, z^ > 0, 5^ > 0, y^ >0,y^ > 0, K.^ > 0, I9^ > 0, p^ > 0, z/̂  > 0, 

where f,z^,s^,y^ eW,y^,z^ eU"^ and /^^ i^^ p ^ z/̂  G IR are arbitrary. Then we 
define b G K"^, bu^c e K^ , the scaled error at the arbitrary initial interior solutions 
(recall the construction in Section 4.3), and parameters /3,7 G IR as follows: 

K = ^ ( 6 „ K ° - x O - z O ) 

b = ^ ( 6 K O - A X O + 20) 

P 

i . ( e K O + , o _ ^ T y O _ ^ 0 ) 

^^ Such embedding was first introduced by Ye, Todd and Mizuno [316] using the standard form 
problems (20.29) and (20.30). They discussed most of the advantages of this embedding and showed 
that Mizuno, Todd and Ye's [217] predictor-corrector algorithms solve the LO problem in 0(^/nL) 
iterations, yielding the first infeasible IPM with this complexity. Somewhat later Jansen, Roos and 
Terlaky [155] presented the self-dual problem for the symmetric form primal-dual pair in a concise 
introduction to the theory of LO based on IPMs. 

^^ The popular so-called infeasible-start methods detect unboundedness or infeasibility of the original 
problem by divergence of the iterates. 
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= ^K^y^' + (vuf^'u + ivYz' + ̂ V] + ̂ ^ > 0. 

It is worth noting that if x^ is strictly feasible for (20.1), K.^ = 1, z^ = Ax^ — b and 
z^ = bu — x^, then 6 = 0 and b^ = 0- Also if {y^,y^) is strictly feasible for (20.2), 
hi^ = 1 and s^ = c — A^y -\- y^, then c = 0. In some sense the vectors 6, bu and c 
measure the amount of scaled infeasibility of the given vectors x^, z^, z|], 5^, y^, y^. 

Now consider the following self-dual LO problem: 

(SP) nin 

s.t. 

Vu 

-^uVu 

buVu 

-A^y 

^b^y 

-b^y 

— X 

Ax 

T — & X 

+C^ X 

-^bu^ 

—b tv 

-\-c tv 

-13 n 

ji9 

-K^ 
-i-bi} 

-ci9 

+/3i? 

> 0 

> 0 

> 0 

> 0 

> - 7 

yu>0, y>0, X > 0, n>0, i}>0 

s°, y 
(SP). 

s^ = 

= y', yu — yu^ ^ -
Also note tha t if. 

e, y = --y"" = e, yu--

= ^ ^ 
e.g., 

= y'u 

Let us denote the slack variables for the problem (SP) by Zu^z^s^u and p 
respectively. By construction the positive solution 

, i} = i}^, ly = ly^, p = p^ is interior feasible for problem 
we choose x = x^ = e, z = z^ = e, Zu = z^ = e, s = 
= e, K. = K.^ = 1, i9 = i9^ = 1, z/ = z/O = 1, p = p^ = 1, 

then this solution with /i = 1 is a perfectly centered initial solution for problem (SP). 
The following theorem follows easily in the same way as Theorem 1.26.̂ ^ 

Theorem IV.85 The embedding (SP) of the given problems (20.1) and (20.2) has 
the following properties: 

(i) The self-dual problem {SP) is feasible and hence both primal and dual feasible. 
Thus it has an optimal solution. 

(a) For any optimal solution of (SP), î * = 0. 
(Hi) {SP) always has a strictly complementary optimal solution (7/*,7/*,x*, ^c*,!^*). 
(iv) If K^ > 0, then x*/^c* and (T/*,^/*)//^* are strictly complementary optimal 

solutions of (20.1) and (20.2) respectively, 
(v) If n* = 0, then either (20.1) or (20.2) or both are infeasible. 

Solving the embedding model needs just slightly more computation per iteration 
than solving problem (20.1). This small extra effort is the cost of having several 
important advantages: having a centered initial starting point, detecting infeasibility 
by convergence, applicability of any IPM without degrading theoretical complexity. 
The rest of this section is devoted to showing that the computation of the Newton 
direction for the embedding problem {SP) reduces to almost the same sized augmented 
(20.6) or normal equation (20.7) systems as in the case of (20.1). 

^^ Exercise 106 Prove this theorem. 
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In Chapter 3 the self-dual problem 

(SP) min {q^x : Mx>-q,x>0}, 

was solved, where M is of size nxn and skew-symmetric and q G IR^. Given an initial 
positive solution (x, s) > 0, where s = Mx + ^, a Newton step for problem (SP) with 
a value /i > 0 was given as 

As = MAx, 

where Ax is the solution of the system 

(M + X-^S)Ax = iix-^ - s. (20.21) 

Now we have to analyze how the positive definite system (20.21) can be efficiently 
solved in the case of problem (SP). For this problem we have x = {yu^y^x^n^'d)^ 
s = {zu, z, 5, z/, p) and 

M 

0 

0 

/ 

-bl 
"C 

0 

0 

-A^ 

b^ 

-W 

-I 

A 

0 
T 

-T 

K 
-b 

c 

0 

-/3 

-K 
b 

—c 

P 
0 

and q = 

0 

0 

0 

0 

_ ̂  _ 

Hence the Newton equation (20.21) can be written as 

Ay 

Ax 

AK 

Ai9 

"u ^u 

0 

/ 

-c 
bl 

0 

Y-^Z 

-A^ 

b^ 

-V 

-I 

A 

x-^s 
T 

-T C 

K 
-b 

c 
V 

- /? 

-K 
b 

—c 

/? 
P 
1^ 

fiy-^ - z 

flX~^ — S 

f^^- p 

(20.22) 

From the first and the second equation it easily follows that 

Ayu = YuZ-\Ax - buAn + KAi& + fiy'^ - z^) 

and 

Ay = YZ-^{-AAx + bAn - bAi} + fiy'^ - z). 

We simplify the notation by introducing 
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Then, by substi tuting the value of /\yu in (20.22) we find 18 

Y-^Z 

-A^ 

6^ 

-W 

A 

x-^s + w^ 
-c'-hlWu 

c^ + blW^ 

-b 

c - WJ)u 

ll+blWubu 

-/? - blWubu 

b 

-c + WuK 

13 - blWuK 

$+blWju 

Ay 

Ax 

An 

Ai^ 

r i 

^2 

^3 

_ ^4 _ 

, (20.23) 

where for simplicity the right-hand side elements are denoted by r i , . . . , r4. Now if we 
multiply the second block of equations (corresponding to the right-hand side r2) in 
(20.23) by —1, a system analogous to the augmented system (20.6) of problem (20.1) is 
obtained. The difference is tha t here we have two additional constraints and variables. 
For the solution of this system, the factorization of the matr ix may happen in the 
same way, but the last two rows and columns (these are typically dense) should be 
left to the last two steps of the factorization. A 2 x 2 dense window for (A/^:, A'd) then 
remains. 

If we further simplify (20.23) by substi tuting the value of Ay, the analogue to the 
normal equation system of the problem (SP) is produced. For simplicity the scalars 
here are denoted by ?^i, . . . , r̂ g and r s , re, rr.^^'^^ 

A^Z-^YA^X-^S^Z-^Y^ T], r]2 

V6 

m V6 

V7 V8 

Ax 

An 

Ai9 

= 

n 
re 

_ ^7 _ 

(20.24) 

IS Exercise 107 Verify that 

n 

19 Exercise 108 Verify that 

My 

,. 1 

-^ - s - iiiZu'^ -yu) 

-u + hl{y.Zu^ -yu) 

^i -p-^uif^^u^ -yu) 

and 

rs 

re 

r r 

m 
m 
m 
m 
m 
m 
V7 

V8 

= 
= 
= 

c-Wubu-A'Z-^ 

-c+Wubu+A^Z-

Yb 

-'Yb 

-c^ - hlWu - b^Z-^YA 

uti-^ + blWubu + b^Z-^Yb 

(3 - blWubu - b^Z 

c^ + blWu + b^Z-

-(3 - blWubu - b^ 

-'Yb 

'YA 

Z-^Yb 

p^-' + blWubu + b^Z-^Yb 

px ' - s-{pz^'-yu)+A^{pz ^-y) 

/XK"^ - zy + b^{pz-' - yu) - b^{pz'^ - y) 

/XT?" - ^u (P^n yu)^b^{pz ' 

^^ Exercise 109 Develop similar formulas for the normal equation if Ax is eliminated instead of 
Ay. Compare the results with (20.7) and (20.8). 
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20.5.1 Simplifying the Newton system of the embedding model 

As mentioned with respect to the augmented system, we easily verify that the 
difference between the normal equations of problem (20.1) and the embedding problem 
{SP) is that here two additional constraints and variables are present. Note that the 
last two rows and columns in (20.23) and (20.24) are neither symmetric nor skew-
symmetric. The reader might think that these two extra columns deteriorate the 
efficiency of the algorithm (it requires two additional back-solves for the computation 
of the Newton direction) and hence make the embedding approach less attractive 
in practice. However, the computational cost can easily be reduced by a simple 
observation. First, note that for any interior solution {yu,y, ,x, Hi,i}) the duality gap 
(see also Exercise 10 on page 35) is equal to 

Second, remember that in Lemma 11.47 we have proved that in a primal-dual method 
the target duality gap is always reached after a full Newton step. Since the duality 
gap on the central path with the value fi equals to 

2(m + 2n + 2)/i 

and thus, the target duality gap is determined by the target value /i+ = (1 — ^)/i, the 
step A'd can directly be calculated. 

Ai^ = î + - î  = ^ ~ ^ ( m + 2n + 2) = ^ ( m + 2n + 2) 
7 7 

As a result we conclude that the value of Ai} in (20.24) is known, thus it can simply 
be substituted in the Newton system and the system (20.23) reduces to almost the 
original size. This simplification allows to implement IPMs based on the self-dual 
embedding model efficiently, the cost per iteration is only one extra back-solve. 

20.5.2 Notes on warm start 

Many practical problems need the solution of a sequence of similar linear programs 
where small perturbations are made to b and/or c (possibly also in A). As long as these 
perturbations are small, we naturally expect that the optimal solutions are not far from 
each other and restarting the optimization from the solution of the old problem (warm 
start) should be more efficient than solving the problem from scratch.^^ 

The difficulty in the IPM warm start comes from the fact that the old optimal 
solution is very close to the boundary (this is a necessity since all optimal solutions in 
an LO problem are on the boundary of the feasible set) and well centered. This point, 
in the perturbed problem, still remains close to the boundary or becomes infeasible, 
but even if it remains feasible it is very poorly centered. Consequently, the IPM 
makes a long sequence of short steps because the iterates cannot get away from the 
boundary. Therefore for an efficient warm start we need a well-centered point close to 

'^^ Some early attempts to solve such problems are due to Freund [84] who uses shifted barriers, and 
Polyak [234] who applies modified barrier functions. For further elaboration of the literature see, 
e.g., Lustig, Marsten and Shanno [193], Gondzio and Terlaky [116] and Andersen et al. [10]. 
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the old optimal one or an efficient centering method (to get far from the boundary) 
to overcome these difficulties. These two possibilities are discussed briefly below. 

Independent of the approach chosen it would be wise to save a well-centered almost 
optimal solution (say, with 10~^ relative duality gap) that is still sufficiently far away 
from the boundary. 

• Centered solutions for warm start in (SP) embedding. Among the specta­
cular properties of the (SP) embedding listed in the previous section, the ability to 
construct always perfectly centered initial interior points was mentioned. The old 
well-centered almost optimal solution x*, z*, ^*, 5*, y*, ^*, /̂ *, '̂ *, p*, T^* can 
be used as the initial point for embedding the perturbed problem. As we have seen 
in Section 20.5, 6, c,/3 and 7 can always be redefined so that the above solution 
stays well centered. The construction allows simultaneous perturbations of 6, b^, 
c and even the matrix A. Additionally, it extends to handling new constraints or 
variables added to the problem (e.g., in buildup or cutting plane schemes). In these 
cases, we can keep the solution for the old coordinates (let fi be the actual barrier 
parameter) and set the initial value of the new complementary variables equal to 
y//i. This results in a perfectly centered initial solution. 

• Efficient centering. If the old solution remains feasible, but is badly centered, we 
might proceed with this solution without making a new embedding. The common 
approach is to use a path-following method for the recentering process; it uses 
targets on the central path . Because of the weak performance of Newton's method 
far off the central path, this approach is too optimistic for a warm start. The target-
following method discussed in Part III (Section 11.4) offers much more flexibility 
in choosing achievable targets, thus leading to efficient ways of centering. A target 
sequence that improves centrality allows larger steps and therefore speeds up the 
centering and, as a consequence, the optimization process.^^ 

20.6 Parameters : s tep-s ize , s topp ing criteria 

20.6.1 Target-update 

The easiest way to ensure that all iterates remain close to the central path is to 
decrease /i by a very small amount at each iteration. This provides the best theoretical 
worst-case complexity, as we have seen in discussing full Newton step methods. These 
methods demonstrate hopelessly slow convergence in practice and their theoretical 
worst-case complexity is identical to their practical performance. 

In large-update methods the barrier parameter is reduced much faster than the theory 
suggests. To preserve polynomial convergence of these methods in theory, several 
Newton steps are computed between two reductions of ji (update of the target) until 
the iterate is in a sufficiently small neighborhood of the central path . In practice this 
multistep strategy is ignored and at each reduction of /i, at each target-update, only 
one Newton step is made. A drawback of this strategy is that the iterates might get 

^^ Computational results based on centering target sequences are presented in Gondzio [114] and 
Andersen et al. [10]. 
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far away from the central pa th or from the target point, and the efficiency of the 
Newton method might deteriorate. A careful strategy for updat ing fi and for step-
length selection reduces the danger of this negative scenario. 

At an interior i terate the current duality gap is given by 

g = x^s + z^yu + z^y, 

which is equal to (2n + m)fi if the iterate is on the central path . The central point 
with the same duality gap as the current i terate belongs to the value 

_ x^s + z^yu + z^y 

2n -\- m 

The target fi value is chosen so tha t the target duality gap is significantly smaller, but 
does not put the target too far away. Thus we take 

Â new = (1 - ef^'+J^uVu + Z^y^ 
2n -\- m 

where 6 G [0,1]. The value ^ = 0 corresponds to pure centering, while 6 < 1 aims to 
3 • 
4-reduce the duality gap. A solid but still optimistic update is ^ — - ^^ 

20.6.2 Step size 

Although there is not much supporting theory, current implementations use very large 
and different step-sizes in the primal and dual spaces.^^ All implementations use a 
variant of the following strategy. First the maximum possible step-sizes are computed: 

ap := max {Q^ > 0 : (x, z, ẑ )̂ + Q^(AX, Az, Az^^) > 0}, 

and aD := max {ô  > 0 : {s,y,yu) ^ a{As, Ay, Ayu) > 0}, 

and these step-sizes are slightly reduced by a factor ao = 0.99995 to ensure tha t the 
new point is strictly positive. Although this aggressive, i.e. very large, choice of ao 
is frequently reported to be the best, we must be careful and include a safeguard to 
handle the case when a^ = 0.99995 turns out to be too aggressive. 

20.6.3 Stopping criteria 

Interior point algorithms terminate when the duality gap is small enough and the 
current solution is feasible for the original problems (20.1) and (20.2), or when the 

^^ In the published literature, iteration counts larger than 50 almost never occur and most frequently 
iteration numbers around 20 are reported. Taking this number as a target iteration count and 
assuming that (in contrast to the theoretical worst-case analysis) Newton's method provides iterates 
always close to the target point, we can calculate how large the target-update (how small (1 — 0)) 
should be to reach the desired accuracy within the required number of iterations. Thus, for a 
problem with 10^ variables and a centered initial solution with /x = 1 and aiming for a solution 
with 8 digits of accuracy, we have to reduce the duality gap by a factor of lO-*̂ ^ in 20 iterations. 
By straightforward calculation we can easily verify that the value ^ = | is an appropriate choice 
for this purpose. 

^^ Kojima, Megiddo and Mizuno [174] proved global convergence of a primal-dual method that allows 
such large step-sizes in most iterations. 
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infeasibility is small enough. The practical tolerances are larger than the theoretical 
bounds that guarantee identification of an exact solution; this is a common drawback 
of all numerical algorithms for solving LO problems. To obtain a sensible solution the 
duality gap and the measure of infeasibility should be related to the problem data. 
Relative primal infeasibility is related to the length of the vectors b and bu, dual 
infeasibility is related to the length of the vector c, and the duality gap is related to 
the actual objective value. A solution with p digits relative accuracy is guaranteed by 
the stopping criteria presented here: 

M^^^-^<10-P and W^±^l^M<io-P^ (20.26) 
l + ll̂ ll " l + ll̂ .ll " ^ ^ 

\\c- A^y^yu - s 

l + l|c|| 

\c^x - {b^y - blyu 

1 + Ic^xl 

< 10-^, (20.27) 

< 10-^. (20.28) 

An 8-digit solution (p = 8) is typically required in the literature. Let us observe 
that conditions (20.26-20.28) still depend on the scaling of the problem and somehow 
use the assumption that the coefficients of the vectors 6, b^^ c are about the same 
magnitude as those of the matrix A — preferably near 1. 

An important note is needed here. The theoretical worst-case bound C^(y^log^) 
is still far from computational practice. It is still extremely pessimistic; in practice 
the number of iterations is something like C^(logn). It is rare that the current 
implementations of interior-point methods use more than 50 iterations to reach an 
8-digit optimal solution. 

20.7 Opt imal basis identif ication 

20.7.1 Preliminaries 

An optimal basis identification procedure is an algorithm that generates an optimal 
basis and the related optimal basic solutions from an arbitrary primal-dual optimal 
solution pair. In this section we brieffy recall the notion of an optimal basis. In order 
to ease the discussion we use the standard format: 

min {c^x : Ax = b, x>0} , (20.29) 

where c, x, G K^, b G K"^, and the matrix A is of size m x n. The dual problem is 

max {b^y : A^y + 5 = c, 5 > O} , (20.30) 

where y G IR"̂  and s G K^. We assume that A has rank m. A basis A^ is a nonsingular 
rank m submatrix of A, where the set of column indices of A^ is denoted by B. A 
basic solution of the primal problem (20.29) is a vector x where all the coordinates in 
Af = { l , . . . , n } — 23 are set to zero and the basis coordinates form the unique solution 
of the equation A^XB = b. The corresponding dual basic solution is defined as the 
unique solution of A^y = c^, along with 5^ = 0 and sj\f = cj\f — Ajj-y. It is clear from 
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this definition that a primal-dual pair (x, s) of basic solutions is always complementary, 
and hence, if both x and s are feasible, they are primal and dual optimal, respectively. 
A basic solution is called primal (dual) degenerate if at least one component of xs 
{sj\f) is zero. 

There might be two reasons in practice to require an optimal basic solution for an 
LO problem. 

1. If the given problem is a mixed integer LO problem then some or all of the variables 
must be integer. After solving the continuous relaxation we have to generate cuts 
to cut off the nonintegral optimal solution. To date, such cuts can be generated 
only if an optimal basic solution is available.^^ Up till now there has been only one 
attempt to design a cut generation procedure within the interior-point setting (see 
Mitcheh [211]). 

2. In practical applications of LO, a sequence of slightly perturbed problems often 
has to be solved. This is the case in combinatorial optimization when new cuts 
are added to the problem or if a branch and bound algorithm is applied. Also if, 
e.g., in production planning models the optimal solutions for different scenarios 
are calculated and compared, we need to solve a sequence of slightly perturbed 
problems. When such closely related problems are solved, we expect that the 
previous optimal solution can help to solve the new problem faster. Although some 
methods for potentially efficient warm start were discussed in Section 20.5.2, in 
some cases it might be advantageous in practice to use Simplex type solvers initiated 
with an old optimal basis. 

In this section we describe how an optimal basis solution can be obtained from any 
optimal solution pair of the problem. 

20.7.2 Basis tableau and orthogonality 

We introduce brieffy the notions of basis tableau and pivot transformation and we 
show how orthogonal vectors can be obtained from a basis tableau. Let A be the 
constraint matrix, with columns aj for 1 < j < n, and let A^ be a basis chosen from 
the columns of A. The basis tableau Q^ corresponding to B is defined by the equation 

ABQ^ = A. (20.31) 

Because this gives no rise to confusion we write below Q instead of Q^. The rows of 
Q are naturally indexed by the indices in B and the columns by 1, 2, . . . , n. If z G 23 
and j = 1, 2, . . . , n the corresponding element of Q is denoted by qij. See Figure 20.1 
(page 423). It is clear that Qij is the coefficient of â  in the unique basis representation 
of the vector GJ : 

For j G B this implies 

Qij 
1 if i = j , 

0 otherwise, 

^^ The reader may consult the books of Schrijver [250] and Nemhauser and Wolsey [224] to learn 
about combinatorial optimization. 
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ieB < 

Figure 20.1 Basis tableau. 

Thus, if j G B, the corresponding column in Q is a unit vector with its 1 in the row 
corresponding to j . Hence, by a suitable reordering of columns Qs — the submatrix 
of Q consisting of the columns indexed by B — becomes an identity matrix. It is 
convenient for the reasoning if this identity matrix occupies the first m columns. 
Therefore, by permuting the columns of Q by a permutation matrix P we write 

QP I QM (20.32) 

where Qj\f denotes the submatrix of Q arising when the columns of Qs are deleted. 
In the next section, where we present the optimal basis identification procedure, 

we will need a well-known orthogonality property of basis tableaus.^^ This property 
follows from the obvious matrix identity 

Because of (20.32) this can be written as 

QP 

QM 

-I 

QN 

-I 
0. 

Defining 

R 
QN 

-I 

(20.33) 

(20.34) 

we have rankQ = m^ ranki? = n — m and QR = 0. We associate with each index a 
vector in K^ as follows. If i e B, q'^'^^ will denote the corresponding row of Q and if 
j G A/" then g'Q) is the corresponding column of R. 

Clearly, the vectors q^'^\ i ^ B, span the row space of Q = Q^ and the vectors g'Q), 
j G A/", span the column space of R. Since these spaces are orthogonal, they are each 

' See, e.g., Rockafellar [238] or Klafszky and Terlaky [171]. 
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others orthogonal complement. Note that the row space of Q is the same as the row 
space of A. We thus see that the above spaces are independent of the basis B. 

Now let As' be another basis for A and let g'/ N denote the vector associated with 
an index j ^B'. Then the aforementioned orthogonality property states that 

, « ± ^0-) 

for alH G 23 and j ^ B'. This is an obvious consequence of the observation in the 
previous paragraph. 

It is well known that the basis tableau for B' can be obtained from the tableau for 
B by performing a sequence of pivot operations. A pivot operation replaces a basis 
vector a ,̂ z G 23 by a nonbasic vector a^, j ^ B 27 

Example IV.86 For better understanding let us consider a simple numerical exam­
ple. The following two basic tableaus can be transformed into each other by a single 
pivot. 

«5 

a4 

ai 

2 

-1 

(12 

1 

-1 

as 

3 

4 

a4 as 

0 1 

1 0 

a2 

a4 

ai 

2 

1 

a2 

1 

0 

as 

3 

7 

a4 

0 

1 

«5 

1 

1 

It is easy to check that for the first tableau g'(s) = (0, 0, —1,4, 3) and for the second 
tableau q^^^ = (1, 0, 7,1,1), and that these vectors are orthogonal. 28,29 D 0 

20.7.3 The optimal basis identification procedure 

Given any complementary solution, the algorithm presented below constructs an 
optimal basis in at most n iterations.^^ Since the iteration count and thus the number 
of necessary arithmetic operations depends only on the dimension of the problem and 
is independent of the actual problem data, the algorithm is called strongly polynomial. 

The algorithm can be initialized with any optimal (and thus complementary) 
solution pair (x, s). This pair defines a partition of the index set as follows: 

B = {i\ Xi>0}, N = {i >0} , {i : Xi 0}. 

^^ Exerc i se 110 Let i e B, where A^ is a basis. For any j ^ B show that B' = (B\ {i}) U {j} 
also defines a basis, and the tableau for B' can be obtained from the tableau for B by one pivot 
operation. 

^^ Exerc i se 111 For each of the tableaus in Example IV.86, give the permutation matrix P and the 
matrix R according to (20.33) and (20.34). 

^^ Exerc i se 112 For each of the tableaus in Example IV.86, give a full bases of the row space of the 
tableau and of its orthogonal complement. 

^° The algorithm discussed here was proposed by Megiddo [201]. He has also proved that an optimal 
basis cannot be constructed only from a primal or dual optimal solution in strongly polynomial 
time unless there exists a strongly polynomial algorithm for solving the LO problem. The problem 
of constructing a vertex solution from an interior-point solution has also been considered by 
Mehrotra [203]. 
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As we have seen in Section 3.3.6, interior-point methods produce a strictly comple­
mentary optimal solution and hence such a solution gives a parti t ion with T = 0. But 
below we deal with the general case and we allow T to be nonempty. 

The optimal basis identification procedure consists of three phases. In the first phase 
a so-called maximal basis is constructed. A basis of A is called maximal with respect 
to (x,5) if 

• it has the maximum possible number of columns from As, 
• it has the maximum possible number of columns from {AB, AT). 

Then, in the second and third phases, independently of each other, primal and dual 
elimination procedures are applied to produce primal and dual feasible basic solutions 
respectively. 

Note tha t a maximal basis is not unique and not necessarily primal and /or dual 
feasible. A maximal basis can be found by the following simple pivot algorithm. 
Because of the assumption rank (A) = m, all the artificial basis vectors {ei, • • •, e ^ } 

Init ial basis 

Input : 
Optimal solution pair {x,s) and the related parti t ion {B,N,T); 
artificial basis a^+i = e i , • • •, a ^ + ^ = e^ ; 
23 = {n + 1, • • • , n + m } . 

O u t p u t : 
A maximal basis B C {1, • • •, n } . 

b e g i n 
whi l e Qij ^ 0 , i > n, j G AB d o 
b e g i n 

pivot on position {i,j) {ai leaves and aj enters the basis); 
B:= {B\{i}) ^J{J}. 

e n d 
whi l e qij ^ 0 , i > n, j G AT do 
b e g i n 

pivot on position (z, j ) (a^ leaves and GJ enters the basis); 
B:={B\{{})u{j}. 

e n d 
w h i l e Qij ^ 0 , i > n, j e AN d o 
b e g i n 

pivot on position (z, j ) (a^ leaves and GJ enters the basis); 
B:=iB\{i})U{j}. 

e n d 
e n d 

are eliminated from the basis at termination. Since the AB part is investigated first, 
the number of basis vectors from AB is maximal; similarly the number of basis vectors 
from [A^,^^^] is also maximal. In a practical implementation, special at tention must 



426 I V M i s c e l l a n e o u s T o p i c s 

be given to the selection of the pivot elements in the above algorithm. Typically there 
is lot of freedom in the pivot selection, since a large number of leaving and/or entering 
variables could be selected at each iteration.^^ The structure of the basis tableau 
resulting from the algorithm is visualized in Figure 20.2. Note that the tableau is 
never computed in practice; just the basis, in a factorized form. The tableau form is 
used just to ease the explanation and understanding. 

i G BnB 

ieBnT 

i eBnN 

AB 

1 

1 

0 

0 

AT 

1 

1 

0 

AN 

1 

1 

F i g u r e 2 0 . 2 Tableau for a raaximal basis. 

We proceed by a primal and a dual phase, performed independently of each other. 
They make the basis primal and dual feasible, respectively. 

Observe that in the elimination step of the first while-loop of the primal phase the 
columns of A- are dependent. Hence there exists a nonzero solution of A-XB = 0.̂ ^ In 
the elimination step the 'maximal' property of the basis is lost, but it is restored in the 
second while-loop. As we can see, the Primal phase works only on the ( A-, A-) part 
of the matrix A. In fact it reduces the A- part to an independent set of column vectors. 
At termination the maximal basis is primal feasible and x is the corresponding primal 
feasible basic solution, i.e., XB = A^^b > 0 and xj\f = 0. The number of eliminations in 
the first while-loop is at most \B\ — rank (B) and the number of pivots in the second 
while-loop is also at most \B\ — rank (5) . 

The Dual phase presented below works on the {AT, AN) part. It reduces AN and 
extends AT SO that no vector from AN remains in the basis. 

Note that in the elimination step of the first while-loop the rank of [A^,^—] 
is less than m.^^ In the elimination step the 'maximal' property of the basis is 

^^ We would like to choose always the pivot element that produces the least fill-in in the inverse basis. 
For this pivot selection problem many heuristics are possible. It can at least locally be optimized by, 
e.g., the heuristic Markowitz rule (recall Section 20.4). Implementation issues related to optimal 
basis identification procedures are discussed in Andersen and Ye [11], Andersen et al. [10] and 
Bixby and Saltzman [43]. 

^^ In fact, an appropriate x can be read from the tableau. Because of the orthogonality property any 
vector q(^j^ for j E B — B can be used. In a practical implementation the tableau is not available; 
only the (factorized) basis matrix Qjg is available. But then a vector ĝ )̂ can be obtained by 
computing a single nonbasic column of the tableau. 

^^ For an appropriate s we can choose any vector q^'^^ ior i E N H B; so only one row of the tableau 
has to be computed at each execution of the first while-loop. 
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Primal phase 

Input: 
Optimal solution pair (x, 5) and the related partition (B^N^T); 
maximal basis B. 

Output: 
A maximal basis B C {1, • • •, n}; 

optimal solution (x,5), partition (B^N^T) with B C B. 

begin 
while B ^B do 
begin 

begin 
let X be such that A-x- = 0, x- = 0, x ^ 0; 
eliminate a(t least one) coordinate of x, let x := x — i^x > 0; 

B:=(7(x), f : = { ! , . . . , n } \ ( 5 UTV); 

end 
while qij ^ 0 , i ef nB, j e B do 
begin 

pivot on position (z, j ) (a^ leaves, GJ enters the basis); 
B:=iB\{i})U{j}. 

end 
end 

end 

lost but is restored in the second while-loop. At termination the maximal basis 
is dual feasible and s is the corresponding dual feasible basic solution, i.e., sj\f = 
cj\f — AJJ'{A^^)^CB and s^ = 0. The number of eliminations in the first while-loop is 
at most m — rank {AB, AT) and the number of pivots in the second while-loop is also 
at most m — rank {AB, AT). 

To summarize, by first constructing a maximal basis and then performing the primal 
and dual phases, the above algorithm generates an optimal basis after at most n 
iterations. First we need at most m pivots to construct the maximal basis, then in the 
primal phase \B\ — rank (5) and in the dual phase m — rsiiik {AB, AT) pivots follow. 
Finally, to verify the n-step bound, observe that after the initial maximal basis is 
constructed, each variable might enter the basis at most once. 

20.7.4 Implementation issues of basis identification 

In the above basis identification algorithm it is assumed that a pair of exact 
primal/dual optimal solutions is known. This is never the case in practice. Interior 
point algorithms generate only a sequence converging to optimal solutions and because 
of the finite precision of computations the solutions are neither exactly feasible nor 
complementary. Somehow we have to make a decision about which variables are 
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D u a l phase 

Input: 
Optimal solutions (x,5), partition (B^N^T); 
maximal basis B. 

Output: 
A maximal basis 23 C {1, • • •, n}; 

optimal solution (x, 5), partition (5 , N, T) with N r\B = ^. 

begin 
while i V n i 3 ^ 0 do 
begin 

begin 
let 5 be such that 5 = A^y^ ^BUT ^ ^' ^ T̂  ^' 
eliminate a(t least one) coordinate of 5, let s := s — i^s > 0; 

N:=ais), T •.= {!,• •-,71} \I^B UN j ; 

end 
while Qij ̂ 0 , i e NnB, j ef do 
begin 

pivot on position (z, j ) (a^ leaves, GJ enters the basis); 
B:=iB\{t})U{j}. 

end 
end 

end 

positive and which are zero at the optimum. 
Let (x, y, s) be feasible and {x)^s < e. Let us make a guess for the optimal partition 

of the problem as 

B = {i\xi>Si} and N = {i\xi <Si}. 

Now we can define the following perturbed problem^^ 

minimize {^x : Ax = 6, x > O} , (20.35) 

where 
b = ABXB-, CB = A^y and CN = A%y ^ SN-

Now the vectors (x, y, 5), where y = y and 

Xi ieB, I 0 i e B, 
and Si= { (20.36) 

0 ieN y Si i e N 

^ This approach was proposed by Andersen and Ye [11]. 
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are strictly complementary optimal solutions of (20.35).^^ If e is small enough, 
then the parti t ion ( 5 , N) is the optimal parti t ion of (20.29) (recall the results of 
Theorem 1.47 and observe tha t the proof does not depend on the specific algorithm, 
just on the centrality condition and the stopping precision). Thus problems (20.29) 
and (20.35) share the same parti t ion and the same set of optimal bases. As an 
optimal complementary solution for (20.35) is available, the above basis identification 
algorithm can be applied to this per turbed problem. The resulting optimal basis, 
within a small margin of error (depending on e), is an optimal basis for (20.29). 

20.8 Avai lable software 

After twenty years of intensive research, IPMs are now well understood both in theory 
and practice. As a result a number of sophisticated implementations exist of IPMs for 
LO. Below we give a list of some of these codes; some of them contain both a Simplex 
and an IPM solver. They are capable to solve linear problems on a P C in some minutes 
tha t were hardly solvable on a super computer fifteen years ago. 

C P L E X ( C P L E X / B A R R I E R ) (CPLEX Optimization, Inc.). For information 
contact h t t p : / / w w w . c p l e x . c o m . 

CPLEX is leading the market at this moment. It is a most complete and robust 
package. It contains a primal and a dual Simplex solver, an efficient interior-point 
implementation with cross-over,^^ a good mixed-integer code, a network and a qua­
dratic programming solver. It is supported by most modelling languages and available 
for most platforms. 

X P R E S S - M P (DASH Optimization). For information contact the vendor's W E B 
page: h t t p : / / w w w . d a s h o p t i m i z a t i o n . c o m . 

An excellent package including Simplex and IPM solvers. It is almost as complete 
as CPLEX. 

C L P (The LO solver on COIN-OR). For more information contact 
h t t p : / / w w w . c o i n - o r . o r g / c g i - b i n / c v s w e b . c g i / C O I N / C l p / . 

COIN-OR's LO package is writ ten by the IBM Lo team. Like CPLEX, CLP contains 
both Simplex and IPM solvers. It is capable to solve linear and quadratic optimization 
problems. 

L O Q O . Available from h t t p : / / w w w . p r i n c e t o n . e d u / ~ r v d b / . 
LOQO is developed by Vanderbei (Department of Operations Research and 

Financial Engineering, Princeton University, Princeton, NJ 08544, USA). It is a 
robust implementation of a primal-dual infeasible-start IPM for convex quadratic 
optimization. LOQO is a commercial package, like CPLEX and OSL, but it is available 
for academic purposes for a modest license fee. 

^^ Producing a reliable guess for the optimal partition is a nontrivial task. The simple method 
presented by (20.36) seems to work reasonably well in practice. See El-Bakry, Tapia and 
Zhang [71, 70]. However, Andersen and Ye [11] report good results by using a more sophisticated 
indicator to predict the optimal partition (B, A )̂ based on the primal-dual search direction. 

^^ Close to optimality the solver rounds the IPM solution to a (not necessarily optimal) basic solution 
and switches to the Simplex solver, that generates an optimal basic solution. 

http://www.cplex.com
http://www.dashoptimization.com
http://www.coin-or.org/cgi-bin/cvsweb.cgi/COIN/Clp/
http://www.princeton.edu/~rvdb/
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H O P D M . Available from 
http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html. 

H O P D M is developed by Gondzio (School of Mathematics, The University of 
Edinburgh, Edinburgh, Scotland). It implements a higher order primal-dual method. 
It is in the public domain — in a form of FORTRAN source files — for academic 
purposes. 

B P M P D . Available from h t t p : / / w w w . s z t a k i . h u / ~ m e s z a r o s / b p m p d / . 
Meszaros' B P M P D , is an implementation of a primal-dual predictor-corrector IPM 

including both the normal and augmented system approach. The code is available as 
an executable file for academic purposes. 

L I P S O L . Available from h t t p : / / w w w . c a a m . r i c e . e d u / ~ y z h a n g / . 
Zhang's LIPSOL is writ ten in MATLAB and FORTRAN. It is an implementation 

of the primal-dual predictor-corrector method. One of its features is the use of the 
MATLAB programming language, which makes its use relatively easy. 

P C x . Available from h t t p : / / w w w - f p . m c s . a n l . g o v / o t c / T o o l s / P C x / . 
This code was developed by Czyzyk, Mehrotra and Wrightat the Argonne National 

Lac, Chicago.. It is a s tand alone C implementation of an infeasible primal-dual 
predictor corrector IPM. PCx is freely available, but is not public domain software 

M c I P M . Available from h t t p : / / w w w . c a s . m c m a s t e r . c a / ~ o p l a b / i n d e x . h t m l . 
This code was developed at the Advanced Optimization Lab, McMaster University 

by Zhu, Peng and Terlaky. McIPM is writ ten in MATLAB and C. It is a unique 
implementation of a Self-Regular primal-dual predictor-corrector IPM and it is based 
on the self-dual embedding model. The use of the MATLAB makes its use relatively 
easy. It is freely available under an open source license. 

More information about codes for linear optimization, either for commercial or research 
purposes, are available at the World Wide Web site of LP FAQ (LP Frequently Asked 
Questions) at 

• http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html 

• ftp://rtfm.mit.edu/pub/usenet/sci.answers/linear-programming-faq 

http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
http://www.sztaki.hu/~meszaros/bpmpd/
http://www.caam.rice.edu/~yzhang/
http://www-fp.mcs.anl.gov/otc/Tools/PCx/
http://www.cas.mcmaster.ca/~oplab/index.html
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html
ftp://rtfm.mit.edu/pub/usenet/sci.answers/linear-programming-faq
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Some Results from Analysis 

In Part II we need a result from convex analysis. We include its elementary proof in 
this appendix for the sake of completeness. A closely related result can be found in 
Bazaraa et al. [37] (Theorem 3.4.3 and Corollary 1, pp. 101-102). Recall that a subset 
C of W& is ca 
containing C. 
C of W& is called relatively open if C is open in the smallest affine subspace of W& 

Proposition A . l Let f : D ^ IR be a dijjerentiable function, where D C ]R^ is an 
open set, and let C be a relatively open convex subset of D such that f is convex on 
C. Moreover, let C denote the subspace parallel to the smallest affine space containing 
C. Then, x* G C minimizes f over C iff 

Vf{x*)±C. (A.l) 

Proof: Since / is convex on C, we have for any x, x* € C, 

f{x) > f{x*) + Vf{x*f{x-x*). 

Since x — x* G £, the sufficiency of condition (A.l) follows immediately. To prove the 
necessity of (A.l), consider Xt = x* + t (x —x*), with t G IR. The convexity of C implies 
that if 0 < t < 1, then Xt G C. Moreover, since C is open, we also have Xt ^ C when 
t > —a for some positive a. Since / is differentiable, we have 

Vnx*fix-xn = l i m ^ ( - * ) - ^ ( - * ) = l i m ^ ( - * ) - ^ ( - * ) . 

Now let X* G C minimize / . Since f{xt) > / (^*) , letting t ^ 0 we have that the ffist 
limit must be nonnegative, and the second nonpositive. Hence both limits are zero. So 
we have \/f{x*f{x - x*) = 0, Vx G C. Thus (A.l) follows. D 

At several places in the book we mention the implicit function theorem. There 
exists many forms of this theorem. See, e.g., Franklin [82], Buck [52], Fiacco [76] or 
Rudin [248]. We cite here a version of Bertsekas [40] (Proposition A.25, pp. 554).^ 

Proposition A.2 (Implicit Function Theorem) Let f : ]R''+"^ ^ IV^ be a 
function of w e K^ and z G IR"̂  such that: 

^ In fact, Proposition A.25 in Bertsekas [40] contains a typo. It says that / : ]R^+"^ -^ R^ instead 
of / : ]R^+^ ^ R ^ . 
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(i) There exist iD G IR"̂  and z G K"^ such that f {w,z) = 0 . 
(ii) f is continuous and has a continuous and nonsingular gradient matrix (or 

Jacobian) \/zf{w,z) in an open set containing {w,z). 

Then there exists open sets S^ ^ H^ and Sz ^ K"^ containing w and z, respectively, 
and a continuous function (j) : S^ ^ Sz such that z = (l){w) and f {w, </>('";)) = 0 for 
all w G S^. The function (j) is unique in the sense that if w G S^, z G Sz, and 
f {w, z) = 0, then z = (j){w). Furthermore, if for some p > 0, f is p times continuously 
differentiable the same is true for (j), and we have 

V 0 H = - ( V , / {w, ̂ {w)))-^ V^f {w, 4>{w)). 
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Pseudo-inverse of a Matrix 

We are interested in the least norm solution of the linear system of equations 

Ax = b, 

where A is SLU m x n matrix of rank r, and b G IR" .̂ We assume that a solution exists, 
i.e., b belongs to the column space of A. 

First we consider the case where r = n. Then the columns of A are linearly 
independent and hence the solution is unique. It is obtained by premultiplication 
of the system by A^: A^Ax = A^b. Since A^A is nonsingular we find 

x = {A^A)-^A^b {r = n). 

We proceed with the case where r = m < n. Then Ax = b has multiple solutions. 
The least norm solution is characterized by the fact that it is orthogonal to the null 
space of A. So in this case the solution belongs to the row space of A and hence can 
be written as x = A^X, A G K"^. This implies that AA^X = b. This time AA^ is 
nonsingular, and we obtain that A = {AA^)~^b^ whence 

x = A^{AA^)-H {r = m). 

Finally we consider the general case, without making any assumption on the rank of 
A. We start by decomposing A as follows: 

A = AiA2, 

where Ai is an TTI x r matrix of rank r, and ^2 is an r x n matrix of rank r. 
There are many ways to realize such a decomposition. One way is the well-known 
LU decomposition of A} 

Now Ax = b can be rewritten as A1A2X = b. Since Ai has full column rank we are 
in the first situation, and hence it follows that 

Thus our problem is reduced to finding a least norm solution of the last system. Since 
A2 has full row rank we are now in the second situation, and hence it follows that 

x = Al{A,Al)-\AlA,)-^A^,h. 

^ See, e.g., the book of Strang [259]. 
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Thus we have found the least norm solution of Ax = b. Defining the matrix A'^ 
according to 

A+ = A^{A,A^r\AjA^)-'Aj, (B.l) 

we conclude that the least norm solution of Ax = b is given by x = A'^b. 
The matrix 4̂+ is called the pseudo-inverse of A. We can easily verify that 4̂+ 

satisfies the following relations: 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

Theorem B. l The equations (B.2) to (B.5) determine A'^ uniquely. 

Proof: We already have seen that a solution exists. Suppose that we have two 
solutions, Xi and X2 say. From (B.2) and (B.5) we derive that XiAA^ = A^, and 
X2AA^ = A^. So (Xi - X2)AA^ = 0. This implies (Xi - X2)AA^{Xi - Xs)^ = 0, 
and hence we must have (Xi — X2)A = 0. This means that the columns of Xi — X2 
belong to the left null space of A. On the other hand (B.3) and (B.4) imply that 
AXiXf = Xf, and AX2XJ = X j . Hence A(XiXf - X2XJ) = X f - X j . This 
means that the columns of Xi — X2 belong to the column space of A. Since the 
column space and the left null space of A are orthogonal this implies that Xi = X2. 

D 

There is another interesting way to describe the pseudo-inverse A'^ of A, which 
uses the so-called singular value decomposition (SVD) of A. Let r denote the rank 
of A, and let Ai, A2, • • •, Â  denote the nonzero (hence positive) eigenvalues of AA^. 
Furthermore, let Qi and Q2 denote orthogonal matrices such that the first r columns 
of Qi constitute a basis of the column space of A, and the first r columns of Q2 
constitute a basis of the row space of A. Then, if E denotes the m x n matrix whose 
only nonzero elements are E n , E22, • • •, E^^, with 

/Xi, 1 < z < r, 

then we have 
A = QiEQ^. 

This is the SVD of A, and the numbers Ci, 1 < i < r are called the singular values 
of A. 

Using Theorem B.l we can easily verify that E+ is the n x m matrix whose only 
nonzero elements are the first r diagonal elements, and these are the inverses of the 
singular values of A. Then, using Theorem B.l once more, we can easily check that 
4̂+ is given by 

A^ = Q2S+Qf. 



Appendix C 

Some Technical Lemmas 

Lemma C.l Let A be an m x n matrix with columns Aj and b a vector of dimension 
m such that the set 

S :={x : Ax = b,x>^} 

is bounded and contains a positive vector. Moreover, let all the entries in A and b be 
integral. Then for each i, with I < i < n, 

max {xi : x e S} > 
n;=iP,ir 

Proof: Observe that each column Aj of A must be nonzero, due to the boundedness 
of S. Fixing the index i, let x G S he such that Xi is maximal. Note that such an x 
exists since S is bounded. Moreover, since S contains a positive vector, we must have 
Xi > 0. Let J be the support of x: 

J = {j : Xj > 0} . 

We assume that x is such that the cardinality of its support is minimal. Then the 
columns of the submatrix Aj of A are linearly independent. This can be shown as 
follows. Let there exist a nonzero vector A G IR^ such that 

and Afc = 0 for each k ^ J. Then AX = 0. Hence, if s is small enough, x ± sX has 
the same support as x and is positive on J. Moreover, x ± sX e S. Since the i-th 
coordinate cannot exceed Xi it follows that Â  = 0. Since S is bounded, at least one 
of the coordinates of A must be negative, because otherwise S would contain the ray 
X -\- sX^s > 0. By increasing the value of s until one of its coordinates reaches zero 
we get a vector in S with less than \J\ nonzero coordinates and for which the i-th 
coordinate still has value Xi. This contradicts the assumption that x has minimal 
support among such vectors, thus proving that the columns of the submatrix Aj of A 
are linearly independent. 

Now let AKJ he any nonsingular submatrix of Aj. Here K denotes a suitable subset 
of the row indices 1, 2, • • •, m of A. Then we have 

AKJXJ = bx, 
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since the coordinates Xj of x with j ^ J are zero. We can solve Xi from this equation 
by using Cramer's rule. ^ This yields 

X^=P4^. (C.l) 

where A'xj denotes the matrix arising from A^j by replacing the i-th column by bx-
We know that Xi > 0. This implies IdetA^jl > 0. Since all the entries in the matrix 
A'xj ^^^ integral the absolute value of its determinant is at least 1. Thus we find 

1 
Xi > 

\detA KJ\ 

Now using that |det AKJ\ is bounded above by the product of the norms of its columns, 
due to the well-known Hadamard inequality^ for determinants, we find^ 

Xi > ^ ^ T > ^ ;--—7 > 
UjejUKjW -UjejUjW " n ; = i P . i 

The second inequality is obvious and the last inequality follows since A has no zero 
columns and hence the norm of each column of A is at least 1. This proves the lemma. 

D 

We proceed with a proof of the two basic inequalities in (6.24) on page 134. The 
proof uses standard techniques for proving elementary inequalities.^ 

Lemma C.2 Let z G IR ,̂ and a>0. Then each of the two inequalities 

i^{a\\z\\)<^{az)<i^{-a\\z\\) 

holds whenever the involved expressions are well defined. The left (right) inequality 
holds with equality if and only if one of the coordinates of z equals \\z\\ ( —\\z\\, 
respectively) and the remaining coordinates are zero. 

Proof: Fixing z we introduce 

gia):=^ia\\z\\) 

and 
n 

G{a) := ^ (az) = ^ V̂  (azi), 

where a is such that az > —e and ô  ||^|| > —1. Both functions are twice differentiable 
with respect to a. Using that tjj^t) = 1 — 1/t we obtain 

-azi 

^ The idea of using Cramer's rule in this way was applied first by Khachiyan [167]. 

2 cf. Section 1.7.3. 

^ The idea of using Hadamard's inequality for deriving bounds on the coordinates of Xi from (C.l) 
was applied earlier by Klafszky and Terlaky [170] in a similar context. 

^ The proof is due to Jiming Peng [232]. 

file:///detA
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and 

(i + «ll^lir ' ^ ' tti^ + cyzif' 
Now consider the case where a>0. Then using Zi < \\z\\ we may write 

n 2 ^ 2 II l |2 

G"ia) = y ^ ^ ^ > y '-^ 2 = — 2 = 5"(«)-

So G{a) — g{a) is convex for a >0. Since 

^(0) = G{0) = 0, ^^(0) = G\0) = 0 (C.2) 

it follows that G{a) > g{a) if ô  > 0. This proves the left hand side inequality in the 
lemma. 

The right inequality follows in the same way. Let ô  > 0 be such that e -\- az > 0 
and 1 — a \\z\\ > 0. Using 1 + azi > 1 — a \\z\\ > 0 we may write 

G"{a) = y — ^ L < y — i — = — N ^ ^ .^_^y 

This implies that G{a) — g{—a) is concave for a > 0. Using (C.2) once more we obtain 
G{a) < g{—a) if a > 0, which is the right hand side inequality in the lemma. 

Note that in both cases equality occurs only if z | = ||z|| for some i. Since the 
remaining coordinates are zero in that case, the lemma follows. • 

We proceed with another technical lemma that is used in the proof of Lemma IV. 15 
in Chapter 17 (page 325). 

Lemma C.3 Let p be a positive number and let f : 1R+ -^ 1R+ be defined by 

f{x):=\l-x\ + 1-P 

If p > I then f attains its minimal value at x = y^, and if 0 < p < 1 then f attains 
its minimal value at x = 1 and at x = p. 

Proof: First consider the case p > 1. If x < 1 then we have 

fix) = 1 — X ^ 1 = X. 
X X 

Hence, if x < 1 the derivative of / is given by 

f{x) = - 4 - 1 < 0. 

Thus, / is monotonically decreasing if x < 1. If x > p then we have 

/ ( x ) = x — 1 + 1 = X 
X X 
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and the derivative of / is given by 

proving tha t / is monotonicahy increasing if x > p. For 1 < x < p we have 

f{x) = x - l + - - l = x + - - 2 . 

Now the derivative of / is given by 

and the second derivative by 

/'(^) = 1 - : ! 

fix) = I > 0. 
Hence / is convex if x G [l ,p] . Pu t t ing f\x) = 0 we get x = y/p, proving the first part 
of the lemma. 

The case p < 1 is t reated as follows. If x < p then 

jix) = I — X -\ 1 = X, 
X X 

and, as before, / is monotonicahy decreasing. If x > 1 then 

jix) = X — 1 -\-l = X 
X X 

and / is monotonicahy increasing. Now let p < x < 1. Then 

f(x) = l - x ^ l - - = 2 - x - - . 
X X 

Hence / is concave if x G [p, 1], and / has local minima at x = p and x = 1. Since 
/ ( I ) = f{p) = 1 — p the second part of the lemma follows. • 

The rest of this appendix is devoted to some properties of the componentwise 
product uv of two orthogonal vectors u and v in K^. The first two lemmas give 
some upper bounds for the 2-norm and the infinity norm of uv. 

L e m m a C.4 (First uv-lemma.) If u and v are orthogonal in IR^, then 

1 2 II II / A / 2 2 
l̂ l̂loo< 411̂  + ̂ 11 ' ll̂ l̂l < ^ l l ^ + ̂ ll 

Proof: We may write 

uv = - {{u + vf -{u- vf) . (C.3) 
4 

From this we derive the componentwise inequality 

— -(u — v)'^ < uv < -(u-\- v)'^. 
4 ~ 4 
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This imphes 

—-||i^ —i;!! e < uv < - \\u-\-v\\ e. 

Since u and v are orthogonal, the vectors u — v and u -\- v have the same norm, and 
hence the first inequality in the lemma follows. For the second inequality we derive 
from (C.3) that 

\\uvf = e^ {uvf = ^e^ {{u + vf - {u - vff < ^e^ {{u + v)"" ^ {u - v)"") . 

Since e^z"^ ^ ll̂ ll for any z G K^, we obtain 

\\uvf<^(\\u + v\f + \\u-v\f). (C.4) 

Using again that ||i^ — 'u|| = ||i^ + 'u||, we confirm the second inequality. • 

The next lemma provides a second upper bound for \\uv\\. 

Lemma C.5 (Second i^'u-lemma) ^ If u and v are orthogonal in WC^, then \\uv\\ < 

-^,\M\\v\\. 
Proof: Recah from (C.4) that 

\\uvf<^{\\u + v\f + \\u-v\f). 

Now first assume that u and v are unit vectors, i.e., ||i^|| = \\v\\ = 1. Then the 
orthogonality of u and v implies that ||i^ + v\\ = ||i^ — v\\ = 4, whence \\uv\\ < 1/2. 
In the general case, if î  or 'u is not a unit vector, then if one of the two vectors is the 
zero vector, the lemma is obvious. Else we may write 

\\uv\\ u V 

MhA\ 
Now applying the above result for the case of unit vectors to i^/ ||i^|| and 'y/ H'̂H we 
obtain the lemma. • 

The bound for \\uv\\ in Lemma C.5 is stronger than the corresponding bound in 
Lemma C.4. This easily follows by using ab < ^ (a^ + 6 )̂ with a = ||i^|| and b = Ĥ ;!!. 
It may be noted that the last inequality provides also an alternative proof for the 
bound for ||î 'y||oo i^ Lemma C.5. 

For the proof of the third i^^'-lemma we need the next lemma. 

Lemma C.6 ^ Let j be a vector in K^ such that 7 > —e and e^j = a. Then if either 
7 > 0 or 7 < 0, 

Sr -7i < -o-

equality holds if and only if at most one of the coordinates of 7 is nonzero. 

^ For the case in which u and v are unit vectors, this lemma has been found by several authors. 
See, e.g., Mizuno [214], Jansen et al. [154], Gonzaga [125]. The extension to the general case in 
Lemma C.5 is due to Gonzaga (private communication). We will refer to this lemma as the second 
uv-lemma^. 

^ This lemma and the next lemma are due to Ling [182, 183]. 

file:////uvf
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Proof: The lemma is trivial if 7 = 0, so we may assume that 7 is nonzero. For the 
proof of the lemma we use the function / : (—1, 00)^ ^ IR defined by 

/(7) := E r -li 
i=l 

We can easily verify that / is convex (its Hessian is positive definite). Observe that 
Xir=i li/^ = 1 ^^^5 since either 7 > 0 or 7 < 0, ji/a > 0. Therefore we may write 

where ê  denotes the z-th unit vector in K^. This proves the inequality in the lemma. 
Note that the inequality holds with equality if 7 = aei^ for some z, and that in all 
other cases the inequality is strict since the Hessian of / is positive definite. Thus the 
lemma has been proved. • 

Using the above lemmas we prove the next lemma. 

Lemma C.7 (Third i^'u-lemma) Let u and v be orthogonal in IR^, and suppose 
\\u -\- v\\ = 2r with r < 1. Then 

e-\-uv J 1 — r^ 

Proof: The first i^'u-lemma implies that ||î 'y||oo < r^ < 1. Hence, putting (3 := uv we 
have e^/3 = 0 and —e<(3<e. Now let 

/+ := {i : (3^> 0}, 

/_ := {z : A < 0}. 

Then 

E A = - E /̂ -
Let a denote this common value. Using Lemma C.6 twice, with respectively 7̂  = bi 
for i ^ IJ^ and 7̂  = bi for i G I_, we obtain 

Pi , V - - A 

< 
-G G 2G 2 

1 + CT I - a 1 - Cr2 * 

The last expression is monotonically increasing in a. Hence we may replace it by an 
upper bound, which can be obtained as follows: 

-t Ti 1 ^ 1 ^ 1 

i=l i=l i=l 
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Substitution of this bound for a yields the lemma. • 

L e m m a C.8 (Fourth i^'u-lemma) Let u and v be orthogonal in IR^ and suppose 
\\u + i;|| < A/2 and S = \\u ^ v ^ uv\\ < 1 / A / 2 . Then 

\\u\\<^Jl-Vl-2S^. 

Proof: It is convenient for the proof to introduce the vector 

z = u -\- V, 

and to denote r := \\z\\. Since u and v are orthogonal there exists a (/?, 0 < (/? < 7r/2, 
such tha t 

||i^|| = r cos(/?, ||'u|| = r sin(/?. (C^-5) 

Note tha t if the angle (p equals 7r/4 then r = \\z\\ < \ /2 implies tha t ||i^|| = \\v\\ < 1. 
But for the general case we only know tha t 0 < cp < 7r/2 and hence at first sight we 
should expect tha t the norms of ||i^|| and \\v\\ may well exceed 1. However, it will tu rn 
out below tha t the second condition in the lemma, namely S = \\u -\- v -\- uv\\ < l / \ / 2 , 
restricts the values of (/? to a small neighborhood of 7r/4, depending on S, thus yielding 
the tighter upper bound for ||i^|| in the lemma. Of course, the symmetry with respect 
to u and v implies the same upper bound for \\v\\. 

We have 

6=\\u^v^uv\\>\\u^v\\- \\uv\\ = \\z\\ - \\uv\\ . (C.6) 

Applying the second i^'u-lemma (Lemma C.5) we find 

,, ,, 1 1 2 . r^sin2(i? 
Il^^ll < - ^ ll^ll \m\ = ~/^^ coscpsmcp = . 

Substi tuting this in (C.6) we obtain 

The lemma is trivial if either cp = 0 or cp = 7r/2, because then either u = 0 or u = z. 
In the latter case, v = 0, whence ||i^|| = S. Since (cf. Figure 6.12, page 138) 

6<\/l- \ / l - 2 ( 5 ^ 

the claim follows. Therefore, from now on it is assumed tha t 

o < ^ < - . 

Thus, sin2(/? > 0 and (C.7) is equivalent to 

(sin 2cp) r^ - 2 r \ / 2 + 2cpV2 > 0. 
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The left-hand side expression is quadratic in r and vanishes if 

V2 
M ± ^Jl-5V2sm2ip\ . 

sin2(/? 

The plus sign gives a value larger than ^/2. Thus we obtain 

r < ^ ^ (l - Jl-8V2s\n2^^ ^^ 
sin2(/) V / l + \/l-(5A/2sin2(/) 

Consequently, using 0 < (/? < 7r/2, 

,, ,, 26cosLp 
\\u\\ = rcos(/? < . 

1 + V I -8^/2^\ii2Lp 

We proceed by considering the function 

./ N 2(5cos(/? 
1 + V I -(^V2sin2(/^ 

with (5\/2 < 1. Clearly this function is nonnegative and differentiable on the interval 
[0,7r/2]. Moreover, /(O) = 8 and /(7r/2) = 0. On the open interval (0,7r/2) the 
derivative of / with respect to ^p is zero if and only if 

/ I ~~r- \ (5\/2cos(/?cos2(/? 
-sin(/) 1 +Vl-(5V2sin2( / ) + )̂  ^ ^ = 0 . 

V ^ J ^l-5^/2sm2if 
This reduces to 

sin 2(/? — sin ^p sin 2ip j + (5 v 2 cos ip cos 2(/? = 0, 

which can be rewritten as 

(5 v2 cos if — sin ip = sin ip y 1 — 5v2 sin 2(/?. 

Taking squares we obtain 

2(5̂  cos^ (/? + sin^ ip — (5v2sin2(/? = sin^ (p — 5v2 sin^ (p sin2(/?, 

which simplifies to 

2(5̂  cos^ (/? = 5v2sin2(/? (l — sin^ (/?) = (5v2sin2(pcos^ (/?. 

Dividing by (5\/2 cos^ (/? we find the surprisingly simple expression 

sin2(/? = (5v2. 

We assume that 8 is positive, because if (5 = 0 the lemma is trivial. Then sin 2(p = 8\/2 
admits two values for (p on the interval [0,7r/2], one at each side of 7r/4. Since we are 
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maximizing / we have to take the value to the left of 7r/4. For this value, cos 2ip is 
positive. Therefore we may write 

26cosLp 26cosLp 26 cos ̂ p 6 

1 + A/1 - sin^ 2LP 1 + cos2LP 2cos^ Lp coscp' 

Now cos (f can be solved from the equation 2 cos (p sin (p = Sy^. Taking the larger of 
the two roots we obtain 

cos (/? = ^ Y 1 + \ / l - 25'^. 
v2 

For this value of cp we have 

V1 + Vl - 26^ V26^ 

Clearly this value is larger than the values at the boundary points cp = 0 and cp = 7r/2. 
Hence it gives the maximum value of rcoscp on the whole interval [0,7r/2]. Thus the 
lemma follows. • 



Appendix D 

Transformation to canonical form 

D. l Introduction 

It is almost obvious that every LO problem can be rewritten in the canonical form given 
by (P). To see this, some simple observations are sufficient. First, any maximization 
problem can be turned into a minimization problem by multiplying the objective 
function by —1. Second, any equality constraint a^x = b can be replaced by the 
two inequality constraints a^x < 6, a^x > 6, and any inequality constraint a^x < b 
is equivalent to —oFx > —b. Third, any free variable x, with no sign requirements, 
can be written as x = x+ — x~, with x+ and x~ nonnegative. By applying these 
transformations to any given LO problem, we get an equivalent problem that has the 
canonical form of (P). The new problem is equivalent to the given problem in the 
sense that the new problem is feasible if and only if the given problem is feasible, and 
unbounded if and only if the given problem is unbounded, and, moreover, if the given 
problem has (one or more) optimal solutions then these can be found from the optimal 
solution(s) of the new problem. 

The approach just sketched is quite popular in textbooks,^ despite the fact 
that in practice, when dealing with solution methods, it has a number of obvious 
shortcomings. First, it increases the number of constraints and/or variables in the 
problem description. Each equality constraint is removed at the cost of an extra 
constraint, and each free variable is removed at the cost of an extra variable. Especially 
when the given problem is a large-scale problem it may be desirable to keep the 
dimensions of the problem as small as possible. Apart from this shortcoming the 
approach is even more inappropriate when dealing with an interior-point solution 
method. It will become clear later on that it is then essential to have a feasible region 
with a nonempty interior so that the level sets for the duality gap are bounded. 
However, when an equality constraint is replaced by two inequality constraints, these 
two inequalities cannot have positive slack values for any feasible point. This means 
that the interior of the feasible region is empty after the transformation. Moreover, 
the nonnegative variables introduced by eliminating a free variable are unbounded: 
when the same constant is added to the two new variables their difference remains the 
same. Hence, if in the original problem the level sets of the duality gap were bounded, 
we would lose this property in the new formulation of the problem. 

For deriving theoretical results, the above properties of the described transforma­
tions may give no problems at all. In fact, an example of an application of this type is 

1 See, e.g., Schrijver [250], page 91, and Padberg [230], page 23. 
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given in Section 2.10. However, when it is our aim to solve a given LO problem, the ap­
proach cannot be recommended, especially if the solution method is an interior-point 
method. 

The purpose of this section is to show tha t there exists an alternative approach 
tha t has an opposite effect on the problem size: it reduces the size of the problem. 
Moreover, if the original problem has a nonempty interior feasible region then so has 
the transformed problem, and if the level sets in the original problem are bounded 
then they are bounded after the transformation as well. In this approach, outlined 
below, each equality constraint and each free variable in the original problem reduces 
the number of variables or the number of constraints by one. Stated more precisely, 
we have the following result. 

T h e o r e m D . l Let (P) be an LO problem with m constraints and n variables. 
Moreover let (P) have mo equality constraints and no free variables. Then there exists 
an equivalent canonical problem for which the sum of the number of constraints and 
the number of variables is not more than n -\- m — no — mo. 

Proof: In an arbitrary LO problem we distinguish between the following types of 
variable: nonnegative variables, free variables and nonpositive variables.^ Similarly, 
three types of constraints can occur: equality constraints, inequality constraints of the 
less-than-or-equal-to (<) type and inequality constraints of the greater-than-or-equal-
to (>) type. It is clear tha t nonpositive variables can be replaced by nonnegative 
variables at no cost by taking the opposites as new variables. Also, inequality 
constraints of the less-than-or-equal-to type can be turned into inequality constraints 
of the greater-than-or-equal-to type through multiplication by —1. In this way we can 
transform the problem to the following form at no cost: 

(P) min 
x^ 
x' 

Aox^ + Aix^ = b^ 1 
Box'^^B.x^ > 51 . ^ >U 

where, for z = 0 , 1 , Ai and Bi are matrices and 6%c^ and x^ are vectors. The vector 
x^ contains the no free variables, and there are mo equality constraints. The variables 
in x^ are nonnegative, and their number is n — no, whereas the number of inequality 
constraints is m — mo. The sizes of the matrices and the vectors in (P) are such tha t 
all expressions in the problem are well defined and need no further specification. 

D . 2 El iminat ion of free variables 

In this section we discuss the elimination of free variables, thus showing how to obtain 
a problem in which all variables are nonnegative. We may assume tha t the matr ix 

^ A variable Xi in (P) is called a nonnegative variable if (P) contains an explicit constraint Xi > 0 
and a nonpositive variable if there is a constraint Xi < 0 in (P); all remaining variables are called 
free variables. For the moment this classification of the variables is sufficient for our goal. But it 
may be useful to discuss the role of bounds on the variables. In this proof we consider any constraint 
of the form Xi > £ or Xi < u, with £ and u nonzero, as an inequality constraint. If the problem 
requires a variable Xi to satisfy £ < Xi < u then we can save one constraint by a simple shift of Xi: 
defining x'. := Xi — £, the new variable is nonnegative and is bounded above by x^ < u — £. 
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[AQ Ai] has full row rank. Otherwise the set of equality constraints is redundant 
or inconsistent. If the system is not inconsistent, we can eliminate some of these 
constraints until the above condition on the rank is satisfied, i.e., rank {AQ AI) = mo. 
Introducing a surplus vector x^, we can write the inequality constraints as 

BQX^ + Bix^ -x^ = 6 \ x^ > 0. 

The constraints in the problem are then represented by the equality system 

, 0 -

Ao Ai 
Bo Bi 

0 
x^ > 0, x^ > 0, 

where Im-rn^ denotes the identity matrix of size {m — mo) x (m. — TTIQ). We now have 
771 equality constraints and n-\- m. — TTIQ variables. Grouping together the nonnegative 
variables, we may write the last system as 

[F G] > 0 , 

where x^ contains the free variables, as before, and the variables in z are nonnegative. 
Note that, as a consequence of the above rank condition, the matrix [F G] has full 
row rank. The size of F is m x no and the size of G is m x (n — no + m — mo). 

Let us denote the rank of F by r. The we obviously have r < no- Then, using 
Gaussian elimination, we can express r free variables in the remaining variables. We 
simply have to pivot on free variables as long as possible. So, as long as free variables 
occur in the problem formulation we choose a free variable and a constraint in which 
it occurs. Then, using this (equality) constraint, we express the free variable in the 
other variables and by substitution eliminate it from the other constraints and from 
the objective function. Since F has rank r, we can do this r times, and after reordering 
variables and equations if necessary, the constraints get the form 

Ir 
0 

H 
0 

Dr' 
D 

z 

= 
d 

"* 
x" 

z>0, (D.l) 

where I^ is the r x r identity matrix, which is multiplied with x^, the vector of the 
eliminated free variables, and H is wci r x (no — r) matrix, which is multiplied with 
x^, the vector of free variables that are not eliminated; the columns of D^ and D 
correspond to the nonnegative variables in z. Moreover, since the variables x^ have 
been eliminated from the objective function, there exist vectors CH and CD such that 
the objective function has the form 

T ~0 
CfjX 

T 
•Cc>Z. (D.2) 

We are left with m. equalities. The first r equalities express the free variables in x^ in 
the remaining variables, while the remaining mi — r equalities contain no free variables. 
Observe that the first r equalities do not impose a condition on the feasibility of the 
vector z; they simply tell us how the values of the free variables in x^ can be calculated 
from the remaining variables. 
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We conclude that the problem is feasible if and only if the system 

Dz = d, z>0 (D.3) 

is feasible. Assuming this, for an any z satisfying (D.3) we can choose the vector x^ 
arbitrarily and then compute x^ such that the resulting vector satisfies (D.l). So fixing 
z, and hence also fixing its contribution c^z to the objective function (D.2), we can 
make the objective value arbitrary small if the vector CH is nonzero. Since the variables 
in x^ do not occur in the objective function, it follows from this that the problem is 
unbounded if CH is nonzero. 

So, if the problem is not unbounded then CH = 0. In that case it remains to solve 
the problem 

(P') min {c^z : Dz = d, z>0} , 

where D is an {m — r) x {n — no -\- m — mo) matrix and this matrix has rank m — r. 
Note that {P') is in standard format. 

D . 3 Remova l of equal i ty constra ints 

We now show how problem {P') can be reduced to canonical form. This goes by using 
the same pivoting procedure as above. Choose a variable and an equality constraint in 
which it occurs. Use the constraint to express the chosen variable in the other variables 
and then eliminate this variable from the other constraints and the objective function. 
Since A has rank m — r we can repeat this process m — r times and then we are left 
with expressions for the m — r eliminated variables in the remaining (nonnegative) 
variables. The number of the remaining variables is 

n — no -\- m — mo — {m — r) = n — no -\- r — mo. 

Now the nonnegativity conditions on the m — r eliminated variables result in m — r 
inequality constraints for the remaining n — no -\-r — mo variables. So we are left with 
m — r inequality constraints that contain n — no + r — mo variables. The sum of these 
numbers being n + m — no — mo, the theorem has been proved. • 

Before giving an example of the above reduction we make some observations. 

Remark D.2 When dealing with an LO problem, it is most often desirable to have 
an economical representation of the problem. Theorem D.l implies that whenever the 
model contains equality constraints or free variables, then the size of the constraint 
matrix can be reduced by transforming the problem to a canonical form. As a 
consequence, when we consider the dimension of the constraint matrix as a measure of 
the size of the model, then any minimal representation of the problem has a canonical 
form. Of course, here it is assumed that in any such representation, nonpositive 
variables are replaced by nonnegative variables and < inequalities by > inequalities; 
these transformations do not change the dimension of the constraint matrix. In this 
connection it may be useful to point out that the representation obtained by the 
transformation in the proof of Theorem D.l may be far from a minimal representation. 
Any claim of this type is poorly founded. For example, if the given problem is infeasible 
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then a representation with one constraint and one variable exists. But to find out 
whether the problem is infeasible one really has to solve it. 

R e m a r k D . 3 It may happen tha t after the above transformations we are left with a 
canonical problem 

(P) min {c^x : Ax > 6, x > O} , 

for which the matr ix A has a zero row. In tha t case we can reduce the problem further. 
If the i-th row of A is zero and bi < 0 then the i-th row of A and the i-th entry of b 
can be removed. If 6̂  > 0 then we may decide tha t the problem is infeasible. 

R e m a r k D . 4 Also if A has a zero column further reduction is possible. If the j-th 
column of A is zero and Cj > 0 then we have Xj = 0 in any optimal solution and this 
column and the corresponding entry of c can be deleted. If Cj < 0 then the problem is 
unbounded. Finally, if Cj = 0 then Xj may be given any (nonnegative) value. For the 
further analysis of the problem we may delete the j-th column of A and the entry Cj 
in c. 

E x a m p l e D . 5 By way of example we consider the problem 

(EP) max {7/1 + 7/2 : - 1 < 7/i < 1, 7/2 < 1} . (D.4) 

This problem has two variables and three constraints, so the constraint matr ix has size 
3 x 2 . Since the two variables are free (cf. Footnote 2), Theorem D. l guarantees the 
existence of a canonical description of the problem for which the sum of the numbers 
of rows and columns in the constraint matr ix is at most 3 (= 5 — 2). Following the 
scheme of the proof of Theorem D. l we construct such a canonical formulation. First, 
by introducing nonnegative slack variables for the three inequality constraints, we 
change all constraints into equality constraints: 

-yi + 5 1 = 1 

yi + 5 2 = 1 

y2 + 53 = 1. 

The free variables yi and 7/2 can be eliminated by using 

yi = 5 1 - 1 

y2 = 1 - 53, 

and since 7/1 + 7/2 = 5i — 53 we obtain the equivalent problem 

m a x { 5 i - 5 3 : 5i + 52 = 2, 5i, 52, 53 > 0} . 

By elimination of 52 this reduces to 

max {51—53 : 5i < 2, 5i, 53 > 0} . (D.5) 

The problem is now reduced to the dual canonical form, as given by (2.2), with the 
following constraint matr ix A, right-hand side vector c and objective vector b: 

A 
1 

0 
5 C = 2 , b = 

1 

- 1 
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Note tha t the constraint matr ix in this problem has size 2 x 1 , and the sum of the 
dimensions is 3, as expected. (} 

In the above example the optimal solution y = (1,1) is unique. We consider below 
two modifications of the sample problem (EP) by changing the objective function. In 
the first modification we use the objective function yi; then the optimal set consists 
of all y = (1,^2) with ^ 2 ^ 1 - The optimal solution is no longer unique. The second 
modification has objective function yi — y2] then the problem is unbounded, as can 
easily be seen. 

E x a m p l e D . 6 In this example we consider the problem 

max {7/1 : - 1 < 7/1 < 1, 7/2 < 1} • (D.6) 

As in the previous example we can introduce nonnegative slack variables 5i, 52 and 53 
and then eliminate the variables ^1,^2 and 52, arriving at the canonical problem 

:{5i : 5i < 2, 51,53 > 0 } . (D.7) 

Here we have replaced the objective ^1 = 5i — 1 simply by 5i, thereby omitting the 
constant —1, which is irrelevant for the optimization. The dependence of the eliminated 
variables on the variables in this problem is the same as in the previous example: 

yi 

y2 

52 

= 

= 

= 

5 1 - 1 

1 - 5 3 

2 - 5 1 . 

The constraint matr ix A and the right-hand side vector c in the dual canonical 
formulation are the same as before; only the objective vector b has changed: 

0 
1 

0 
1 C = 2 , b = 

1 

0 
A 

E x a m p l e D . 7 Finally we consider the unbounded problem 

max {7/1 -y2 : - 1 < ^1 < 1, ^2 < 1} • (D.^ 

In this case the optimal set is empty. To avoid repetition we immediately state the 
canonical model: 

max {51 + 53 : 5i < 2, 53 > 0} . (D.9) 

The dependence of the eliminated variables on the variables in this problem is 
the same as in the previous example. The matr ix A and vectors c and b are now 

A 
1 

0 
1 C = 2 , b = 

1 

1 
0 



Appendix E 

The Dikin step algorithm 

E . l In troduct ion 

In this appendix we reconsider the self-dual problem 

(SP) min {q^z : Mz>-q,z>0}. (E.l) 

as given by (2.16) and we present a simple algorithm for solving (SP) different from 
the full-Newton step algorithm of Section 3. Recall that we may assume without loss 
of generality that x = e is feasible and 5(e) = Me -\- q = e, so e is the point on the 
central path of (SP) corresponding to the value 1 of the barrier parameter. Moreover, 
at this point the objective value equals n, the order of the skew-symmetric matrix M. 

The algorithm can be described roughly as follows. Starting at x^ = e the algorithm 
approximately follows the central path until the objective value reaches some (small) 
target value s. This is achieved by moving from x^ along a direction — more or less 
tangent to the central path — to the next iterate x^, in such a way that x^ is close to 
the central path again, but with a smaller objective value. Then we repeat the same 
procedure until the objective has become small enough. 

In the next section we define the search direction used in the algorithm.^ Then, 
in Section E.3 the algorithm is defined and in subsequent sections the algorithm is 
analyzed. This results in an iteration bound, in Section E.5. 

E.2 Search direct ion 

Let X be a positive solution of (SP) such that its surplus vector s = s{x) is positive, 
and let Ax denote a displacement in the x-space. For the moment we neglect the 
nonnegativity conditions in (SP). Then, the new iterate x+ is given by 

x~^ := X -\- Ax, 

and the new surplus vector 5+ follows from 

5+ = 5(x+) = M{x + Ax) ^q = s^ MAx. 

^ After the appearance of Karmarkar's paper in 1984, Barnes [34] and Vanderbei, Meketon and 
Freedman [279] proposed a simplified version of Karmarkar's algorithm. Later, their algorithm 
appeared to be just a rediscovery of the primal afRne-scaling method proposed by Dikin [63] in 
1967. See also Barnes [35]. The search direction used in this chapter can be considered as a primal-
dual variant of the affine-scaling direction of Dikin (cf. the footnote on page 339) and is therefore 
named the Dikin direction. It was first proposed by Jansen, Roos and Terlaky [156]. 
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The displacement As in the 5-space is simply given by 

A s = 5+ - 5 = M A x , 

and, hence, the two displacements are related by 

MAx -As = 0. (E.2) 

This implies, by the orthogonality property (2.22), tha t Ax and As are orthogonal: 

{Axf As = {Axf MAx = 0. (E.3) 

The inequality constraints in (SP) require tha t 

X + Ax > 0, 5 + A s > 0. 

In fact, we want to stay in the interior of the feasible region, so we need to find 
displacements Ax and As such tha t 

Ax > 0, As>0. 

Following an idea of Dikin [63, 65], we replace the nonnegativity conditions by requiring 
tha t the next iterates {x -\- Ax, s -\- As) belong to a suitable ellipsoid. We define this 
ellipsoid by requiring tha t 

\Ax As\ 
< 1 , (E.4) 

2n and call this ellipsoid in IR ^ the Dikin ellipsoid. 

R e m a r k E . l It may be noted that when there are no additional conditions on the 
displacements Ax and As, then the Dikin ellipsoid is highly degenerate in the sense that 
it contains a linear space. For then the equation sAx-\-xAs = 0 determines an n-dimensional 
linear space that is contained in it. However, when intersecting the Dikin ellipsoid with the 
linear space (E.2), we get a bounded set. This can be seen as follows. The pair (Ax, As) 
belongs to the Dikin ellipsoid if and only if (E.4) holds. Now (E.4) can be rewritten as 

sAx + xAs 

By substitution of As = MAx this becomes 

I sAx + xMAx 

< 1. 

< 1, 

which is equivalent to 
\\{XS)~^{S + XM)Ax\\ < 1. 

The matrix {XS)~' (S + XM) is nonsingular, and hence Ax is bounded. See also Exercise 9 
(page 29) and Exercise 113 (page 453). • 

Our aim is to minimize the objective value q^x = x^s. The new objective value is 

{x + Ax)^{s + As) = x^s + x^As + s^Ax. 
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Here we have used that Ax and As are orthogonal, from (E.3). Now minimizing 
the new objective value over the Dikin ellipsoid amounts to solving the following 
optimization problem: 

l in < min <̂  s^Ax + x^As : MAx - As = 0, 
Ax As 

X S 
< 1 (E.5) 

We proceed by showing that this problem uniquely determines the search direction 
vectors. For this purpose we rewrite (E.5) as follows. 

min <j (xs)^ ( — H ^ J : MAx - As = 0, 
Ax As 

X S 
< 1 (E.6) 

The vector 
Ax As 

X S 

must belong to the unit ball. When we neglect the afhne constraint As = MAx in 
(E.6) we get the relaxation 

mm {{xsfi •• | |? | |<l}. 

This problem has a trivial (and unique) solution, namely 

xs 

\\xsW 

Thus, if we can find Ax and As such that 

Ax As 
X S 

As 

xs 
\\xs\\ 

MAx 

(E.7) 

(E.8) 

then Ax and As will solve (E.5). Multiplying both sides of (E.7) with xs yields 

sAx^xAs = -^-^. (E.9) 
\\xs\\ 

Now substituting (E.8) we get^'^ 

{S + XM) Ax 
x^s^ 

\\xs\\ 

Thus we have found the solution of (E.5), namely 

Ax 

As 

-{S^XM) 

MAx. 

2 2 
_1 X^S^ 

\\xs\\ 
(E.IO) 

(E.ll) 

As usual, X = diag (x) and S = diag (s). 

Exercise 113 If we define d := Wx/s then show that the Dikin step Ax can be rewritten as 

Ax = -D{I^DMD) 
1 3. 

file:////xsW


454 The Dikin step algorithm 

We call Ax the Dikin direction or Dikin step at x for the self-dual model (SP). In the 
next section we present an algorithm that is based on the use of this direction, and in 
subsequent sections we prove that this algorithm solves (SP) in polynomial time. 

E.3 A l g o r i t h m using t h e Dikin direct ion 

The reader should be aware that we have so far not discussed whether the Dikin step 
yields a feasible point. Before stating our algorithm we need to deal with this. For the 
moment it suffices to point out that in the algorithm we use a step-size parameter a. 
Starting at x we move in the direction along the Dikin step Ax to x-\-aAx. The value 
of a is specified later on. The algorithm can now be described as follows. 

Dikin Step Algorithm for the Self-dual Model 

Input: 
An accuracy parameter s > 0; 
a step-size parameter a, 0 < a < 1; 
x^ >0 such that s{x^) > 0. 

begin 
X := x^; s := s{x); 
while x^ s > £ do 
begin 

X := X + aAx (with Ax from (E.IO)); 
s := s{x); 

end 
end 

Below we analyze this algorithm and provide a default value for the step-size 
parameter a for which the Dikin step is always feasible. This makes the algorithm 
well defined. In the analysis of the algorithm we need a measure for the 'distance' of 
an iterate x to the central path . To this end, for each positive feasible vector x with 
s{x) > 0, we use the number Sc{x) as introduced in (3.20): 

mm[xs[x)) 

Below, in Theorem E.5 we show that the algorithm needs no more than 

T 0 

rn log 

iterations to produce a solution x with x^s{x) < e, where r depends on x^ according 
to 

r = max(2,(5e(^^)). 
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Recall tha t it may be assumed without loss of generality tha t x^ lies on the central 
pa th , in which case Sc{x^) = 1 and r = 2. 

E . 4 F e a s i b i l i t y , p r o x i m i t y a n d s t e p - s i z e 

We proceed by a condition on the step-size tha t guarantees the feasibility of the new 
iterates. Let us say tha t the step-size a is feasible if the new iterate and its surplus 
vector are positive. Then we may state the following result. 

L e m m a E.2 Let a > 0, x*^ = x-\- aAx and 5^ = 5 + aAs. If a is such that x^s^ > 0 
for all a satisfying 0 < a < a, then the step-size a is feasible. 

Proof: If a satisfies the hypothesis of the lemma then the coordinates of x^ and 5^ 
cannot vanish for any a G [0, a]. Hence, since x^s^ > 0, by continuity, x^ and s^ must 
be positive for any such a. • 

We use the superscript + to refer to entities after the Dikin step of size a at x: 

x~^ := X -\- aAx, 

s~^ := s -\- aAs. 

Consequently, 

x~^s{x~^) = {x -\- aAx){s -\- aAs) = xs -\- a {xAx -\- sAs) -\- a'^AxAs. 

Since, by (E.9, 

sAx -\- xAs = —-—-, 
\\xs\\ 

we obtain 

x^s(x^) =xs- a^-^ + a'^AxAs. (E.13) 
\\xs\\ 

Observe tha t Lemma E.2 implies tha t the step-size a is feasible if 

xs — a-—- -\- a^AxAs > 0 
\\xs\\ 

for all a satisfying 0 < a < a. Recall tha t the objective value is given by q^x = x^s{x). 
In the next lemma we investigate the reduction of the objective value during a Dikin 
step with size a. 

L e m m a E.3 / / the step-size a is feasible then 

( x + ) ^ 5 + < (l 
/n 

Proof: Using (E.13) and the fact tha t Ax and As are orthogonal, the objective value 

(x+) 5+ after the step can be expressed as follows. 

(x~^) s~^ = x^s — ae^-—- = x^s — a \\xs\\ . 
\\xs\\ 
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The Cauchy-Schwarz inequahty impHes 

x^s = e^{xs) < \\e\\ \\xs\\ = v ^ | | x 5 | | . 

Substitution gives 

Hence the lemma follows. • 

Now let r > 1 be some constant. We assume tha t we are given a feasible x such 
tha t 6c{x) < r , and we establish a bound for the step-size a such tha t this property is 
maintained after the Dikin step. Note tha t (^c(^) ^ ^ implies the existence of positive 
numbers r i and T2 such tha t 

Tie < xs < r2e, with T2 = r r i . 

The numbers r i and T2 are used in the next lemma. 

L e m m a E.4 Let r > 1. Suppose that x > 0 is feasible so that s := s{x) > 0 and 
^c{x) < r. Then, any step-size a satisfying 

\\xs\\ , 4r i 
a < ^ ^ and Q̂  < 2r2 \\xs\\ 

is feasible, and after a step of this size we have Sc{x~^) < r. 

Proof: Recah from (E.13) tha t 

x+5(x+) =xs- a-—- + a'^AxAs. (E.14) 
\\xs\\ 

Using the first bound on a in the lemma, we can easily verify tha t the map 

t ^^ t — a-
'\\xs\\ 

is an increasing function for t G [0,r2]. Application of this map to each component of 
the vector xs gives 

( ^1 ' 
V^ " 11-11 y 

Substitution in (E.14) gives 

\ e <xs -
X^5^ 

""WxsW - ' " ^ - " ^ ' " 

Ti - a-p— I e + a^AxAs < x^s(x^) < ( r2 - a - ^ | e + a'^AxAs, (E.15) 
\\xs\\j V \\x4J 

thus yielding lower and upper bounds for the entries of x~^s{x~^). It follows tha t if the 
Dikin step with size a is feasible, then we certainly have Sc{x~^) < r if 

(ri -a-p—] e^a'^AxAs] > {T2 - a-^^\ e^a^AxAs. (E.16) 

file:////x4J
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On the other hand, if (E.16) holds, then this implies feasibility of the step-size a. This 
follows by substi tuting (E.15) into (E.16), which gives 

Ti — a-
\xs\ 

e + Q^^AxAs > n \\xs\ 
• Q^^AxAs. 

Since r > 1 this implies 

Ti — a 
\\xs\\ 

e + a^/\x/\s > 0. 

By (E.15), this makes clear tha t the coordinates of x+5+ do not vanish for any step-
size satisfying the bound in the lemma. By Lemma E.2 this implies tha t any such 
step-size a is feasible. It remains to show tha t a satisfies (E.16). 

The inequality (E.16) can be simplified by using r2 = r r i , and then dividing by a. 
Thus we find tha t (E.16) is equivalent to 

rrt 
\\xs\\ 

e^a{r - l)AxAs > 0. 

This can be further simplified by using 

T | -rrf = ( ^ - l ) n T 2 . 

Thus the condition tha t guarantees Sc{x~^) < r reduces to 

rir2 

\\xs\\ 
e + aAxAs > 0. (E.17) 

Note tha t the orthogonality of Ax and As implies tha t not all coordinates of the 
vector Ax As can be positive. The most negative element of Ax As gives the strongest 
bound on a in the above inequality. We can find a lower bound for this element by 
using Lemma C.4 in Appendix C. The first s tatement in this lemma (with u = d~^Ax 
and V = dAs, where d = \/x/s) gives 

\\^x^s\\^ = \\{d-'^x) {d^s)\\^ < \ \\d-'^2 

Using (E.9) once more we get 

lAxAsll < xs 
xs 

\\xs\\ 
<l\\^s\l 

dAs 

xs 

sAx + xAs 

\xs\ 
\\xs\\ 

xs 

0 0 - 4 

Thus it follows by substitution tha t (E.17) is certainly satisfied if 

T1T2 aT2 

\xs\\ 

This is equivalent to 

a < 

4 

4ri 

\\xs\\ 

> 0 . 

which is the second bound on a in the lemma. This completes the proof. D 
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E . 5 C o n v e r g e n c e a n a l y s i s 

The previous section contains the ingredients necessary for deriving an upper bound 
for the number of iterations needed by the algorithm. 

T h e o r e m E.5 Let r := max (2, 5c{x^)) and a = 1/ (ry^). Then, if n > 2, the Dikin 
Step Algorithm for the self-dual Model requires at most 

T 0 

rn log 

iterations. The output is a feasible solution x such that 6c{x) < r and q^x < e. 

Proof: Initially we are given a feasible x = x^ > 0 such tha t 6c{x) < r. The choice of 
the step-size a guarantees tha t after each iteration these properties are maintained. 
This can be deduced from Lemma E.4, as we now show. It suffices to show tha t the 
specified value of a meets the bound in Lemma E.4. Since n > 2 we have 

1 n Tiy^ ||ne|| . \\xs\\ 
c^ = — ^ = ^ ^ —̂  = —̂  ^ T v n r 2 v n 2r2 2r2 2r2 

where we have also used tha t 0 < r i e < xs. Furthermore, using \\xs\\ < r^^Jn^ we may 
write 

4r i 4ri _ 4 
||x5|| ~ T2^fn T^/n 

Thus, Lemma E.4 implies tha t after each iteration the iterate x satisfies ^c{x) < r. 
Initially the objective value equals q^x^. Each iteration reduces the objective by a 
factor 1 — l / ( n r ) , from Lemma E.3. Hence, after k iterations the objective value is 
smaller than s if 

1 

nr 

Taking logarithms, this becomes 

1 _ _ ) g ^ x O < £ . 

nr 

Since 

klog ( 1 1 + log{q^x^) < logs. 

l o g ( l - — ) > — , 
nr J nr 

this is certainly satisfied if 

1 / T' 0\ 1 1 q X 
— > logiq X ) — logs = log . 
nr £ 

This implies the theorem. • 

E x a m p l e E.6 In this example we demonstrate the behavior of the Dikin Step 
Algorithm by applying it to the problem (SP) in Example 1.7, as given in (2.19) 
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(page 23). The same problem was solved earlier by the Full-Newton Step Algorithm 
in Example 1.38. 

We initialize the algorithm with z = e. Then Theorem E.5, with r = 2 and n = 5, 
yields tha t the algorithm requires at most 

10 log • 

iterations. For s = 10~^ we have log (5/e) = log 500 = 6.2146, and we get 63 as an 
upper bound for the number of iterations. When running the algorithm with this e 
the actual number of iterations is 58. The output of the algorithm is 

and 

z = (1.5985,0.0025,0.7998,0.8005,0.0020) 

s{z) = (0.0012,0.8005,0.0025,0.0025,1.0000). 

The left plot in Figure E . l shows how the coordinates of the vector z develop in the 
course of the algorithm. The right plot does the same for the coordinates of the surplus 
vector s = s{z). Observe tha t z and s{z) converge to the same solution as found in 

40 60 
iteration number 

40 60 
iteration number 

Figure E . l Output of the Dikin Step Algorithm for the problem in Example 1.7. 

Example 1.38 by the Full-Newton Step Algorithm, but the number of iterations is 
higher. (} 
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second-order predictor-corrector method, 

411 
simplify the Newton system, 418 
sparse linear algebra, 408-413 
starting point, 413-419 

self-dual embedding, 414 
step-size, 420 
stopping criteria, 420-421 
warm start, 418-419 

implicit function theorem, 226, 308, 309, 
331, 431 

inequality constraints, 15 
infeasible problem, 15, 38 
infinity norm, 9 
inner iteration, 132, 195 
inner loop, 131, 195 
input size of an LO problem, see L 
interior-point condition, 16, 20 

standard problem, 94 
interior-point method, 20 
interior-point methods, xix, 16 
IPC, 20 
IPM, 20 

iteration bounds, 3, 5, 48, 122, 125, 144, 
145, 150, 162, 167, 168, 247, 
250-252, 254, 257, 258, 277, 284, 
294, 318, 322, 330, 338, 345, 347 

Conceptual Logarithmic Barrier Al­
gorithm, 108 

Dikin Step Algorithm, 70, 458 
Dual Logarithmic Barrier Algorithm 

with fuh Newton steps, 120, 125 
with large updates, 143 

Dual Logarithmic Barrier Algorithm 
with Modified Full Newton Steps, 
322 

Full-Newton Step Algorithm, 52, 68 
Higher-Order Dikin Step Algorithm 

for the Standard Model, 346 
Higher-Order Logarithmic Barrier 

Algorithm, 358, 359 
Karmarkar's Projective Method, 297 
Newton Step Algorithm, 69, 70 
Primal-Dual Logarithmic Barrier Al­

gorithm 
with full Newton steps, 161, 168 
with large updates, 208 

Renegar's Method of Centers, 279 

Jacobian, 226, 308, 331, 432 

Karmarkar format, see Symbol Index, 
(PK), 297 

definition, 289 
discussion, 297-301 
dual homogeneous version, 305 
dual version, 305 
homogeneous version, see Symbol 

Index, (PKH), 304-305 
Karmarkar's Projective Method, 294, 

289-305 
decrease potential function, 296 
iteration bound, 297 
potential function, 295 
search direction, 304, 301-304 
step-size, 296 
unit simplex in H^, see Symbol 

Index, Sn 
illustration for n = 3, 290 
inner-outer sphere bound, 292 
inverse of the transformation Td, 

293 
projective transformation, see Sym­

bol Index, Td 
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properties of Td, 293 
radius largest inner sphere, see 

Symbol Index, r 
radius smallest outer sphere, see 

Symbol Index, R 
Karush-Kuhn-Tucker conditions, 91, see 

KKT conditions 
KKT conditions 

canonical problem, 74 
standard problem, 91 
uniqueness of solution, 92, 222 

large coordinates, 54, 57 
large updates, 144 
large-step methods, 4, see Target-following 

Methods 
large-update algorithm, 208 
large-update strategy, 125 
left-shadow price, see Sensitivity Analysis 
level set 

ellipsoidal approximation, 315 
of (/)^(x,s), 222 

of duality gap, 100, 103, 445 
of primal objective, 102 

LINDO, 396-398 
linear constraints, 1, 15 
linear function, 1 
linear optimization, see LO 
linear optimization problem, 15 
Linear Programming, xix 
linearity interval, see Parametric Analysis 
LIPSOL, 430 
LO, xix 
logarithmic barrier function, 87 

standard dual problem, 105 
standard primal problem, 90 

logarithmic barrier method, xx, 3, 219 
dual method, 107 

Newton step. 111 
primal method, 271 

Newton step, 271 
primal-dual method, 149, 150 

Newton step, 150 
see also Target-following Methods, 

219 
long-step methods, 4 
LOQO, 429 
lower bound for asp, 56 

Markowitz's merit function, see imple­
mentation aspects 

Mathematical Programming, xix 
matrix norm, 10 
maximal basis, see implementation as­

pects 
maximal step, see adaptive-step methods 
McIPM, 430 
medium updates, 144 
medium-step methods, see Target-following 

Methods 
medium-update algorithm, 209 
Method of Centers, 277-285 
minimum degree, see implementation as­

pects 
minimum local fill-in, see implementation 

aspects 
/i-center 

(P) and (D), 95 
multipliers, 16 
multistep-step methods, see Target-following 

Methods 

Newton direction, 29-31, 49 
self-dual problem, 29 

definition, 29 
feasibility, 32 
quadratic convergence, 31, 32 

Newton step 
to /i-center 

dual case, 110 
primal-dual case, 161 

to target w 
dual case, 261 
primal case, 271 
primal-dual case, 236 

nonbasic indices, 392 
nonnegative variables, 446 
nonpositive variables, 446 
normal equation, see implementation as­

pects 
normalizing constraint, 297 
normalizing variable, 24 

objective function, 15 
objective vector, 18 
optimal basic solution, 362 
optimal basis, 362, 392, see implementa­

tion aspects 
optimal basis identification, see imple­

mentation aspects 
optimal basis partition, see Sensitivity 

Analysis 



Subject Index 489 

optimal partition, 2, 27, 36, see standard 
problem 

standard problem, 190 
optimal set, 15 
optimal-value function, see Parametric 

Analysis 
optimizing, 15 
orthogonality property, 24 
OSL, XX, 4, 87, 396-398 
outer iteration, 132, 195 
outer iteration bound, 108 
outer loop, 131, 195 

Parametric Analysis, 361-386 
optimal-value function, see Symbol 

Index, ZA{b,c), f{p) and 0(7) 
algorithm for /(/3), 380 
algorithm for ^(7), 384 
break points, 369 
directional derivatives, 372 
domain, 367 
examples, 361, 367, 369, 376, 378, 

381, 385 
extreme points of linearity inter­

val, 377, 378 
linearity interval, 369 
one-sided derivatives, 372, 373, 375 
piecewise linearity, 368 

perturbation vectors, see Symbol 
Index, Ab and Ac 

perturbed problems, see Symbol In­
dex, (P/3) and (1^7) 

dual problem of (D^), see Symbol 
Index, (P7) 

dual problem of (-P/3), see Symbol 
Index, (Dfs) 

feasible region (D^), see Symbol 
Index, T>^ 

feasible region (P/3), see Symbol 
Index, Vf3 

partial updating, 5, 317-328 
Dual Logarithmic Barrier Algorithm 

with Modified Full Newton Steps, 
323 

Full Step Dual Logarithmic Barrier 
Algorithm with Rank-One Up­
dates, 324 

rank-one modification, 318 
rank-one update, 318 
Sherman-Morrison formula, 318 

path-following method, 4 

central path, 248 
Dikin-path, 254 
primal or dual, see logarithmic bar­

rier method and center method 
weighted path, 249 

PC-PROG, 396-398 
PCx, 430 
perturbed problems, see Parametric Anal­

ysis 
pivot transformation, see implementation 

aspects 
polynomial time, see complexity theory, 

48, see complexity theory 
polynomially solvable problems, xix 
positive definite matrix, 8 
positive semi-definite matrix, 8 
postoptimal analysis, see Sensitivity Anal­

ysis 
potential reduction methods, 4 
predictor step, 181, see predictor-corrector 

method 
Predictor-Corrector Algorithm, 182, 177-

194 
adaptive version, 186-194 
convergence analysis, 185-194 
illustration, 188 
iteration bound, 181 
second-order version, see implemen­

tation aspects 
predictor-corrector method, 150, see Predictor-

Corrector Algorithm 
preprocessing, see implementation aspects 
primal affine-scaling, 339 
primal affine-scaling method, 339, 451 
primal canonical problem, 18, see canoni­

cal problem 
definition, 18 

primal level set, 102 
primal logarithmic barrier method, 304 
primal methods, 219 

primal standard problem, see standard 
problem, see standard problem 

Primal Target-following Method, see Target-
following Methods 

primal-dual affine-scaling, 169 
primal-dual algorithms, 150 
primal-dual centering, 169 
Primal-Dual Logarithmic Barrier Algo­

rithm, 149-209 
duality gap after Newton step, 153 
example Newton process, 159 
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feasibility of Newton step, 152, 154 
initialization, 213-216 
local quadratic convergence, 156, 159 
Newton step, 150, 150-154 
proximity measure, 156 
with adaptive updates, 168-177 

affine-scaling direction, 171, 179 
centering direction, 171, 179 
cheap adaptive update, 176 
condition for adaptive updating, 

172, 173 
illustration, 176-177 

with fuh Newton steps, 160, 150-168 
classical analysis, 165-168 
convergence analysis, 161-162 
illustration, 162-164 
iteration bound, 161 

with large updates, 195, 194-209 
illustrations, 209 
iteration bound, 208 
step-size, 201 

primal-dual logarithmic barrier function, 
132 

primal-dual method, 219 
primal-dual pair, 99 
Primal-Dual Target-following Method, see 

Target-following Methods 
Projective Method, 277, see Karmarkar's 

Projective Method 
proximity measures, 31, 59 

5c{w), 222, 227 
6c{x), 454 
Sc{z), 59 
6\y,w), 261 
(5^(x,^), 271, 272 
5{w\w), 266 
(5(z,/i),49 
(5(x,s;/i), 156, 237 
5lxs,w), 237 
(5(s,/i), 114 
a{x, s; /i), 165 

pseudo-inverse, 194, 313, 433-434 

quadratic convergence 
dual case, 114 
primal-dual case, 156 

ranges, see Sensitivity and/or Parametric 
Analysis 

rank-one modification, see partial updat­
ing 

rank-one update, see partial updating 
reliable sensitivity modules, 399 
removal of equality constraints, 448 
Renegar's method, see Renegar's Method 

of Centers 
Renegar's Method of Centers, 279 

adaptive and large-update variants, 
284-285 

analysis, 281-284 
as target-following method, 279-280 
barrier function, see Symbol Index, 

description, 278 
iteration bound, 279 
lower bound update, 278 

right-hand side vector, 18 
right-shadow price, see Sensitivity Analy­

sis 
rounding procedure, 3, 54 
row sum norm, 10 

scaled Newton step, 114 
scaling matrix, 151, 317 
scheme for dualizing, 43 
Schiet O p ^ ^ , see higher-order methods 
Schur complement, see implementation 

aspects 
search direction, 451 
second-order effect 

higher-order methods, 329 
self-dual embedding, 22 
self-dual model, see self-dual problem 
self-dual problem, 13, 16, 24 

central path 
convergence, 43, 45 
derivatives, 309-315 

condition number, see Symbol Index, 
O'SP 

definition, 22, 71, 72, 451 
ellipsoidal approximations of level 

sets, 315-316 
limit central path, 36 
objective value, 24, 25, 48, 50, 61, 66, 

454, 455 
optimal partition, 36 
polynomial algorithm, 50, 47-70, 

454 
proximity measure, 31 
strictly complementary solution, 35-

37 
strong duality theorem, 38 
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Semidefinite Optimization, xix 
Sensitivity Analysis, 387-399 

classical approach, 391-399 
computationally cheap, 393 
optimal basis partition, 392 
pitfalls, 399 
ranges depend on optimal basis, 

392 
results of 5 commercial packages, 

394-398 
definition, 387 
example, 389 
left- and right-shadow prices of bi, 

387, 388 
left- and right-shadow prices of Cj, 

388 
left-shadow price, 387 
range of bi, 387, 388 
range of Cj ,387, 388 
range of a coefficient, 387 
right-shadow price, 387 
shadow price of a coefficient, 387 

shadow prices, see Sensitivity and/or 
Parametric Analysis 

Sherman-Morrison formula, 318, see par­
tial updating 

shifted barrier method, 258 
short-step methods, 4, see Target-following 

Methods 
Simplex Method, xix, xx, 1-3, 6, 7, 15, 16, 

87, 365, 391, 392, 406 
singular value decomposition, 434 
size of a problem instance, see complexity 

theory 
skew-symmetric matrix, 18, 20-22, 24, 28, 

29, 47, 214, 299, 307, 310, 416 
slack vector, 22, 47 
small coordinates, 54, 57 
solvable in polynomial time, see complex­

ity theory 
solvable problem, 38 
sparse linear algebra, see implementation 

aspects 
spectral matrix norm, 10 
standard dual problem 

logarithmic barrier function, 105 
standard format, 87, see standard prob­

lem, 448 
standard primal problem 

logarithmic barrier function, 90 
standard problem 

barrier parameter, 90 
barrier term, 90 
central path 

definition, 95 
duality gap, 107 
examples, 96-99 
monotonicity, 95 

classical duality results 
complementarity, 89 
strong duality, 89 
weak duality, 88, 89 

coordinatewise duality, 103 
dual adaptive-update algorithm, 123-

129 
illustration, 129 

dual algorithms, 107-149 
dual barrier function, see Symbol 

Index, ki^(y,s) 
decrease after step, 140, 140-142 
effect of an update, 140, 138-140 

dual full-step algorithm, 120, 120-
123 

dual large-update algorithm, 131, 
130-149 

dual problem, 88, 103, 107 
duality gap 

close to central path, 119 
on central path, 89, 99 

estimates of dual objective values, 
138, 135-138 

interior-point condition, 94 
equivalent conditions, 100 

KKT conditions, 91 
optimal partition, see Symbol Index, 

7r= (B,N) 
optimal sets, 100, see Symbol Index, 

V" and P* 
determined by dual optimal solu­

tion, 363 
determined by optimal partition, 

363 
dimensions, 365 
example, 363 

orthogonality property, 99 
predictor-corrector algorithm, 182, 

177-194 
primal barrier function, 90, see Sym­

bol Index, gi_^{x) 
primal problem, 87, 103 
primal-dual adaptive-update algo­

rithm, 168-177 
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primal-dual algorithms, 149-209 
primal-dual barrier function, see Sym­

bol Index, (/)^(x, s) 
decrease after step, 201, 199-204 
effect of an update, 205 

primal-dual full-step algorithm, 160, 
150-168 

primal-dual large-update algorithm, 
195, 194-209 

strictly complementary solution, 89 
symmetric formulation, 103-105 

starting point, see implementation aspects 
step of size a 

damped Newton step, 140, 154, 199, 
202, 232, 240, 241, 258, 403 

decrease barrier function, 140, 199, 
201, 202, 241, 296, 347 

Dikin step, 455 
feasibility, 152, 154, 236, 239, 262, 

272, 342, 343, 455 
higher-order Dikin step, 341, 349 

step-size, see implementation aspects 
stopping criteria, see implementation as­

pects 
strict complementarity 

standard format, 89 
strictly complementary solution, 2 
strictly complementary vectors, 35 
strictly feasible, 4 
strong duality property, 19 
strong duality theorem, 39 
support of a vector, 36 

target map, see Symbol Index, ^PD, see 
Target-following Methods 

target pair, see Target-following Methods 
target sequence, 4, see Target-following 

Methods 
target vector, see Target-following Meth­

ods 
Target-following Method, 4 
Target-following Methods, 235-275 

adaptive and large target-update, 
257-258 

adaptive-step methods, 232 
dual method, 260, 259-268 

barrier function, 259 
effect of target update, 266 
feasibility of Newton step, 262 
linear convergence for damped 

step, 264 

local quadratic convergence, 263 
Newton step, 261 
proximity measure, 261 

examples, 247-285 
centering method, 250-252 
central-path-following, 248-249 
Dikin-path-following method, 254-

257 
method of centers, 277-285 
Renegar's method of centers, 277-

285 
weighted-centering method, 252-

253 
weighted-path-following, 249-250 

full-step methods, 232 
large-step methods, 232 
medium-step methods, 232 
multistep-step methods, 232 
primal method, 269, 269-275 

barrier function, 270 
effect of target update, 275 
feasibility of Newton step, 272 
linear convergence for damped 

step, 273 
local quadratic convergence, 273 
Newton step, 271 
proximity measure, 271, 272 

primal-dual method, 233, 235-245 
barrier function, 221 
duality gap after Newton step, 237 
feasibility of Newton step, 236, 239 
linear convergence for damped 

steps, 241 
local quadratic convergence, 240 
Newton step, 235, 236 
proximity measure, 237, 266 

proximity measure, 222 
short-step methods, 232 
target map, 220 
target pair, 235 
target sequence, 220 

properties, 226-231 
target vector, 235 
traceable target sequence, 231 

theorems of the alternatives, 40 
traceable target sequence, see Target-

following Methods 
types of constraint 

equality, 446 
inequality 

greater-than-or-equal-to, 446 
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less-than-or-equal-to, 446 
types of variable 

free, 446 
nonnegative, 446 
nonpositive, 446 

unbounded problem, 15, 38 
unit ball in K^, 10 
unsolvable problem, 38 

vanishing duality gap, 19, 37 
variance vector, 31, 49, 59 

warm start, see implementation aspects 
weak duality, 18 
weak duality property, 18 
weighted dual logarithmic barrier func­

tion, 259, see Symbol Index, 

<Pi{y) 
weighted path, 249 
weighted primal barrier function, 270 
weighted primal logarithmic barrier func­

tion, see Symbol Index, (/)^(x) 
weighted primal-dual logarithmic barrier 

function, 221, see Symbol Index, 
(l)w{x,s) 

weighted-analytic center, 4, 220, 229 
definition, 229 
limit of target sequence, 229 

weighted-centering problem, 252 
weighted-path-following method, 4, see 

Target-following Methods 
weighting coefficients, 221 
w-space, 220 

XMP, 396-398 
XPRESS-MP, 429 
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{D'), 82 
{D) 

canonical form, 
standard form, 

361 
{DK), 305 
(DKH), 305 
{D'), 104 
(D), 214 
(D^), 366 
(D^), 366 
(EP), 449 
(P'O. 299 

18, 
88, 

{P'), 82, 298, 299, 448 

(P) 
canonical form. 
standard form. 

361 
(PK), 289 
(PKH), 304 
(PKS), 293 
( P O . 104 
(P), 214 
(P^), 366 
(P^^), 213, 214 
(P^), 366 

(^M), 91 
(SP), 22, 47, 72, 88, 
(SPo), 71 
(5Pi) , 73 
(SP2), 78 
(^Po), 22 
(55P) , 88 
(5P"), 214 
(55P") , 214 

A 
canonical form. 

18, 
87, 

71 
103, 

71, 
103, 

107, 

449 
213, 

219, 298, 

219, 298, 

, 307, 416, 451 

18 

Karmarkar form, 289 
standard form, 87, 298, 361 

ll-lli,9 
Il-ll2,9 
11-11,, 9 
ll-lloo^9 

P , 24, 190 
b 

canonical form, 18 
standard form, 87, 298, 361 

b{p), 366 
B\ 65 

c 
canonical form, 18 
Karmarkar form, 289 
standard form, 87, 298, 361 

c(7), 366 

d, 170, 238 
ds, 170, 238 
ĉ ?, 171 
d's, 171 
da:, 170, 238 
d'i, 171 
^x, 171 
V, 88 
Vf3, 366 
V^, 366 
P + , 88 
V\ 89, 190, 362 

dimension, 365 
from optimal solution of (P), 363 

Ah, 366 
Ac, 366 
As, 49, 150, 452 
A^s, 171 



496 S y m b o l I n d e x 

A"s, 171 
Ax, 150, 451 
Az, 49 

A^x, 171 
A^x, 171 
Ay, 150 

6clw), 222, 227 
(5c (x), 454 
Sc{z), 59 

(5^(^,^),261 
(5^(^,^), 261 
5PIX,W), 271, 272 

As, 29 
(5(^*,^), 266 
(5(z,/i),49 
(5(x,s;/i), 156, 237 
6lxs,w), 237 
Az, 29 
6{s,fi),lU 

d{x,/2), 305 

e, 9 

S{ii,r), 315 

/ ( /3), 366 

^ (7 ) , 366 
~g^{x), 90 

scaled, see gi^{x) 

g^(x), 132 

i7 . 111 

h^{s), 105, 110 

scaled, see h,^{s) 

K{s), 132 

/^, 19 

k^{y,s), 105, 110 

see also h,^{s), 105 

L, 48, 70 

C, 104 

Z:^, 104 

M, 21 

M , 20, 23, 71 

MBB, 55 

M s i v , 55 

Mij, 55 

A I K , 315 

MiVB, 55 

MNN, 55 

iV, 24, 190 
J\f{A), 91 
n, 21 

O, 11 
Q, 11 
a;, 65 

V, 88 
:P/3, 366 
V^, 366 
: P + , 88 
:P*, 89, 190, 36^ 

dimension. 
) 
365 

from optimal solution of {D), 363 
^i{s), 132 
r^{x), 132 

0'(̂ ) 
properties. 

€i^) 
properties. 

r^{x) 
properties. 

(j)^{x,s), 132 
properties. 

^PD, 220 
existence, \ 

r^{x) 
properties. 

0fi(y,0), 278 
^i(y), 260 
« ( x ) , 270 
0,„(a;,s),221 
•KB, 65 
7r = (B,iV), 362 
PQ, 111 

133, 

132 

132 

132-

222, 

133 

134 

134 

221-226 

^ 

^ 

graph, 93 

graphs of'0((5) and \jj{—5), 135 

propert ies , 93, 133, 137, 197, 198 

properties, 1̂  

^ ,21 
qB, 55 
qN, 55 

R, 290, see Sn 
r, 21, 291, see Sn 
y9((5), 182 

s(/^), 95 
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s^, 158, 455 
SB, 55 

SB{Z), 53 

SB{Z), 53 

asp, 54 
lower bound , 56 

a{x, s; / i) , 165 
(Jd, 192 
fjp, 192 

S n , 290 
i l lustrat ion for n = 3, 290 

a'sp, 54 
cr(z), 36 
a'sp, 54 
SAT, 55 
SAr(^), 53 
SV, 54 
s+ , 455 
SV", 44, 54 
s (z ) , 53 
s{z), 53 
s (z ) , 22 

Td, 292 
properties, 293 

e, 11 

i3, 21 

ZB, 53 

ZAT, 53 

u, 170, 238 

V, 238 

w;-space, 220 

x(/i), 95 

x^, 158, 455 

x+, 455 

y{fi), 95 

z, 21 

z(/i), 28 

ZA{b, c), 361 
^B, 55 

z, 20, 23, 71 
zi, 53 

ZAT, 53, 55 




