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Preface

Linear Optimization! (LO) is one of the most widely taught and applied mathematical
techniques. Due to revolutionary developments both in computer technology and
algorithms for linear optimization, ‘the last ten years have seen an estimated six orders
of magnitude speed improvement’.2 This means that problems that could not be solved
10 years ago, due to a required computational time of one year, say, can now be solved
within some minutes. For example, linear models of airline crew scheduling problems
with as many as 13 million variables have recently been solved within three minutes
on a four-processor Silicon Graphics Power Challenge workstation. The achieved
acceleration is due partly to advances in computer technology and for a significant
part also to the developments in the field of so-called interior-point methods for linear
optimization.

Until very recently, the method of choice for solving linear optimization problems
was the Simplex Method of Dantzig [59]. Since the initial formulation in 1947, this
method has been constantly improved. It is generally recognized to be very robust and
efficient and it is routinely used to solve problems in Operations Research, Business,
Economics and Engineering. In an effort to explain the remarkable efficiency of the
Simplex Method, people strived to prove, using the theory of complexity, that the
computational effort to solve a linear optimization problem via the Simplex Method
is polynomially bounded with the size of the problem instance. This question is still
unsettled today, but it stimulated two important proposals of new algorithms for LO.
The first one is due to Khachiyan in 1979 [167]: it is based on the ellipsoid technique
for nounlinear optimization of Shor [255]. With this technique, Khachiyan proved that
LO belongs to the class of polynomially solvable problems. Although this result has
had a great theoretical impact, the new algorithm failed to deliver its promises in
actual computational efficiency. The second proposal was made in 1984 by Karmar-
kar [165]. Karmarkar’s algorithm is also polynomial, with a better complexity bound

The field of Linear Optimization has been given the name Linear Programming in the past. The
origin of this name goes back to the Dutch Nobel prize winner Koopmans. See Dantzig [60].
Nowadays the word ‘programming’ usually refers to the activity of writing computer programs,
and as a consequence its use instead of the more natural word ‘optimization’ gives rise to confusion.
Following others, like Padberg [230], we prefer to use the name Linear Optimization in the
book. It may be noted that in the nonlinear branches of the field of Mathematical Programming
(like Combinatorial Optimization, Discrete Optimization, Semidefinite Optimization, etc.) this
terminology has already become generally accepted.

This claim is due to R.E. Bixby, professor of Computational and Applied Mathematics at Rice
University, and director of CPLEX Optimization, Inc., a company that markets algorithms for
linear and mixed-integer optimization. See the news bulletin of the Center For Research on Parallel
Computation, Volume 4, Issue 1, Winter 1996. Bixby adds that parallelization may lead to ‘at least
eight orders of magnitude improvement—the difference between a year and a fraction of a second!’
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than Khachiyan, but it has the further advantage of being highly efficient in practice.
After an initial controversy it has been established that for very large, sparse problems,
subsequent variants of Karmarkar’s method often outperform the Simplex Method.

Though the field of LO was considered more or less mature some ten years ago, after
Karmarkar’s paper it suddenly surfaced as one of the most active areas of research in
optimization. In the period 1984-1989 more than 1300 papers were published on the
subject, which became known as Interior Point Methods (IPMs) for LO.? Originally
the aim of the research was to get a better understanding of the so-called Projective
Method of Karmarkar. Soon it became apparent that this method was related to
classical methods like the Affine Scaling Method of Dikin [63, 64, 65], the Logarithmic
Barrier Method of Frisch [86, 87, 88] and the Center Method of Huard [148, 149],
and that the last two methods could also be proved to be polynomial. Moreover, it
turned out that the IPM approach to LO has a natural generalization to the related
field of convex nonlinear optimization, which resulted in a new stream of research
and an excellent monograph of Nesterov and Nemirovski [226]. Promising numerical
performances of IPMs for convex optimization were recently reported by Breitfeld
and Shanno [50] and Jarre, Kocvara and Zowe [162]. The monograph of Nesterov
and Nemirovski opened the way into another new subfield of optimization, called
Semidefinite Optimization, with important applications in System Theory, Discrete
Optimization, and many other areas. For a survey of these developments the reader
may consult Vandenberghe and Boyd [48].

As a consequence of the above developments, there are now profound reasons why
people may want to learn about IPMs. We hope that this book answers the need of
professors who want to teach their students the principles of IPMs, of colleagues who
need a unified presentation of a desperately burgeoning field, of users of LO who want
to understand what is behind the new IPM solvers in commercial codes (CPLEX, OSL,

..} and how to interpret results from those codes, and of other users who want to
exploit the new algorithms as part of a more general software toolbox in optimization.

Let us briefly indicate here what the book offers, and what does it not. Part I
contains a small but complete and self-contained introduction to LO. We deal with
the duality theory for LO and we present a first polynomial method for solving an LO
problem. We also present an elegant method for the initialization of the method,
using the so-called self-dual embedding technique. Then in Part II we present a
comprehensive treatment of Logarithmic Barrier Methods. These methods are applied
to the LO problem in standard format, the format that has become most popular in
the field because the Simplex Method was originally devised for that format. This
part contains the basic elements for the design of efficient algorithms for LO. Several
types of algorithm are considered and analyzed. Very often the analysis improves the
existing analysis and leads to sharper complexity bounds than known in the literature.
In Part IIT we deal with the so-called Target-following Approach to IPMs. This is a
unifying framework that enables us to treat many other IPMs; like the Center Method,
in an easy way. Part IV covers some additional topics. It starts with the description
and analysis of the Projective Method of Karmarkar. Then we discuss some more

3 We refer the reader to the extensive bibliography of Kranich [179, 180] for a survey of the
literature on the subject until 1989. A more recent (annotated) bibliography was given by Roos
and Terlaky [242]. A valuable source of information is the World Wide Web interior point archive:
http://www.mcs.anl.gov/home/otc/InteriorPoint.archive.html.


http://www.mcs
http://anl.gov/home/otc/InteriorPoint

Preface xxi

interesting theoretical properties of the central path. We also discuss two interesting
methods to enhance the efficiency of IPMs, namely Partial Updating, and so-called
Higher-Order Methods. This part also contains chapters on parametric and sensitivity
analysis and on computational aspects of IPMs.

It may be clear from this description that we restrict ourselves to Linear Optim-
ization in this book. We do not dwell on such interesting subjects as Convex Optim-
ization and Semidefinite Optimization, but we consider the book as a preparation for
the study of IPMs for these types of optimization problem, and refer the reader to the
existing literature.*

Some popular topics in IPMs for LLO are not covered by the book. For example,
we do not treat the (Primal) Affine Scaling Method of Dikin.® The reason for this
is that we restrict ourselves in this book to polynomial methods and until now the
polynomiality question for the (Primal) Affine Scaling Method is unsettled. Instead
we describe in Appendix E a primal-dual version of Dikin’s affine-scaling method
that is polynomial. Chapter 18 describes a higher-order version of this primal-dual
affine-scaling method that has the best possible complexity bound known until now
for interior-point methods.

Another topic not touched in the book is (Primal-Dual) Infeasible Start Methods.
These methods, which have drawn a lot of attention in the last years, deal with the
situation when no feasible starting point is available.® In fact, Part I of the book
provides a much more elegant solution to this problem; there we show that any given
LO problem can be embedded in a self-dual problem for which a feasible interior
starting point is known. Further, the approach in Part I is theoretically more efficient
than using an Infeasible Start Method, and from a computational point of view is not
more involved, as we show in Chapter 20.

We hope that the book will be useful to students, users and researchers, inside and
outside the field, in offering them, under a single cover, a presentation of the most
successful ideas in interior-point methods.

Kees Roos
Tamas Terlaky
Jean-Philippe Vial

Preface to the 2005 edition

Twenty years after Karmarkar’s [165] epoch making paper interior point methods
(IPMs) made their way to all areas of optimization theory and practice. The theory of
IPMs matured, their professional software implementations significantly pushed the
boundary of efficiently solvable problems. Eight years passed since the first edition
of this book was published. In these years the theory of IPMs further crystallized.
One of the notable developments is that the significance of the self-dual embedding

4 For Convex Optimization the reader may consult den Hertog [140], Nesterov and Nemirovski [226]

and Jarre [161]. For Semidefinite Optimization we refer to Nesterov and Nemirovski [226],
Vandenberghe and Boyd [48] and Ramana and Pardalos [236]. We also mention Shanno and
Breitfeld and Simantiraki [252] for the related topic of barrier methods for nonlinear programming.

A recent survey on affine scaling methods was given by Tsuchiya [272].

6 We refer the reader to, e.g., Potra [235], Bonnans and Potra [45], Wright [295, 297], Wright and
Ralph [296] and the recent book of Wright [298].
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model —that is a distinctive feature of this book— got fully recognized. Leading linear
and conic-linear optimization software packages, such as MOSEK? and SeDuMi® are
developed on the bedrock of the self-dual model, and the leading commercial linear
optimization package CPLEX? includes the embedding model as a proposed option to
solve difficult practical problems.

This new edition of this book features a completely rewritten first part. While
keeping the simplicity of the presentation and accessibility of complexity analysis,
the featured IPM in Part I is now a standard, primal-dual path-following Newton
algorithm. This choice allows us to reach the so-far best known complexity result in
an elementary way, immediately in the first part of the book.

As always, the authors had to make choices when and how to cut the expansion of
the material of the book, and which new results to include in this edition. We cannot
resist mentioning two developments after the publication of the first edition.

The first development can be considered as a direct consequence of the approach
taken in the book. In our approach properties of the univariate function ¢ (t), as defined
in Section 5.5 (page 92), play a key role. The book makes clear that the primal-, dual-
and primal-dual logarithmic barrier function can be defined in terms of (t), and
as such ¥(t) is at the heart of all logarithmic barrier functions; we call it now the
kernel function of the logarithmic barrier function. After the completion of the book
it became clear that more efficient large-update IPMs than those considered in this
book, which are all based on the logarithmic barrier function, can be obtained simply
by replacing v¥(t) by other kernel functions. A large class of such kernel functions,
that allowed to improve the worst case complexity of large-update IPMs, is the family
of self-regular functions, which is the subject of the monograph [233]; more kernel
functions were considered in [32].

A second, more recent development, deals with the complexity of IPMs. Until now,
the best iteration bound for IPMs is O(y/nL), where n denotes the dimension of the
problem (in standard from), and L the binary input size of the problem. In 1996, Todd
and Ye showed that O(/nL) is a lower bound for the iteration complexity of IPMs
[267]. Tt is well known that the iteration complexity highly depends on the curliness
of the central path, and that the presence of redundancy may severely affect this
curliness. Deza et al. [61] showed that by adding enough redundant constraints to the
Klee-Minty example of dimension n, the central path may be forced to visit all 27
vertices of the Klee-Minty cube. An enhanced version of the same example, where the
number of inequalities is N = O(2%"n3), yields an O(v/N/log N) lower bound for the
iteration complexity, thus almost closing (up to a factor of log N) the gap with the
best worst case iteration bound for IPMs [62].

Instructors adapting the book as textbook in a course may contact the authors at
<terlaky@mecemaster.ca> for obtaining the ”Solution Manual” for the exercises and
getting access to a user forum.

March 2005 Kees Roos
Tamds Terlaky
Jean-Philippe Vial

7 MOSEK: http://www.mosek. com
8 SeDuMi: http://sedumi.mcmaster.ca
9 CPLEX: http://cplex.com
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1
Introduction

1.1 Subject of the book

This book deals with linear optimization (L.O). The object of LO is to find the optimal
(minimal or maximal) value of a linear function subject to linear constraints on the
variables. The constraints may be either equality or inequality constraints.! From
the point of view of applications, LO possesses many nice features. Linear models are
relatively simple to create. They can be realistic enough to give a proper account of the
problems at hand. As a consequence, LO models have found applications in different
areas such as engineering, management, logistics, statistics, pattern recognition, etc.
LO is also very relevant to economic theory. It underlies the analysis of linear activity
models and provides, through duality theory, a nice insight into the price mechanism.

However, we will not deal with applications and modeling. Many existing textbooks
teach more about this.?

Our interest will be mainly in methods for solving LO problems, especially Interior
Point Methods (IPM’s). Renewed interest in these methods for solving LO problems
arose after the seminal paper of Karmarkar [165] in 1984. The overwhelming amount
of research of the last ten years has been tremendously prolific. Many new algorithms
were proposed and almost all of these algorithms have been shown to be efficient, at
least from a theoretical point of view. Our first aim is to present a comprehensive and
unified treatment of many of these new methods.

It may not be surprising that exploring a new method for LO should lead to a new
view of the theory of LO. In fact, a similar interaction between method and theory
is well known for the Simplex Method; in the past the theory of LO and the Simplex
Method were intimately related. The fundamental results of the theory of LO concern
strong duality and the existence of a strictly complementary solution. Our second aim
will be to derive these results from limiting properties of the so-called central path of
an LO problem.

Thus the very theory of LO is revisited. The central path appears to play a key role
both in the development of the theory and in the design of algorithms.

The more general optimization problem arising when the objective function and/or the constraints
are nonlinear is not considered. It may be pointed out that LO is the first building block in the
development of the theory of nonlinear optimization. Algorithmically, LO is also widely used in
nonlinear and integer optimization, either as a subroutine in a more complicated algorithm or as
a starting point of a specialized algorithm.

The book of Williams [293] is completely devoted to the design of mathematical models, including
linear models.
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As a consequence, the book can be considered a self-contained treatment of LO.
The reader familiar with the subject of LO will easily recognize the difference from
the classical approach to the theory. The Simplex Method in essence explores the
polyhedral structure of the domain (or feasible region) of an LO problem. Accordingly,
the classical approach to the theory of LO concentrates on the polyhedral structure of
the domain. On the other hand, the IPM approach uses the central path as a guide to
the set of optimal solutions, and the theory follows by studying the limiting properties
of this path.? As we will see, the limit of the central path is a strictly complementary
solution. Strictly complementary solutions play a crucial role in the theory as presented
in Part I of the book. Also, in general, the output of a well-designed IPM for LO is a
strictly complementary solution. Recall that the Simplex Method generates a so-called
basic solution and that such solutions are fundamental in the classical theory of LO.

From the practical point of view it is most important to study the sensitivity of
an optimal solution under perturbations in the data of an LO problem. This is the
subject of Sensitivity (or Parametric or Postoptimal) Analysis. Our third aim will be
to present some new results in this respect, which will make clear the well-known fact
that the classical approach has some inherent weaknesses. These weaknesses can be
overcome by exploring the concept of the optimal partition of an LO problem which
is closely related to a strictly complementary solution.

1.2 DMore detailed description of the contents

As stated in the previous section, we intend to present an interior point approach
to both the theory of LO and algorithms for LO (design, convergence, complexity
and asymptotic behavior). The common thread through the various parts of the book
will be the prominent role of strictly complementary solutions; this notion plays a
crucial role in the IPM approach and distinguishes the new approach from the classical
Simplex based approach.

Part I of the book consists of Chapters 2, 3 and 4. This part is a self-contained
treatment of LO. It provides the main theoretical results for LO, as well as a
polynomial method for solving the LO problem. The theory of LO is developed in
Chapter 2. This is done in a way that is probably new for most readers, even for those
who are familiar with LO. As indicated before, in IPM’s a fundamental element is
the central path of a problem. This path is introduced in Chapter 2 and the duality
theory for LO is derived from its properties. The general theory turns out to follow
easily when considering first the relatively small class of so-called self-dual problems.
The results for self-dual problems are extended to general problems by embedding
any given LO problem in an appropriate self-dual problem. Chapter 3 presents an
algorithm that solves self-dual problems in polynomial time. It may be emphasized
that this algorithm yields a so-called strictly complementary solution of the given
problem. Such a solution, in general, provides much more information on the set of

3 Most of the fundamental duality results for LO will be well known to many of the readers; they can
be found in any textbook on LO. Probably the existence of a strictly complementary solution is
less well known. This result has been shown first by Goldman and Tucker [111] and will be referred
to as the Goldman—Tucker theorem. It plays a crucial role in this book. We get it as a byproduct
of the limiting behavior of the central path.
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optimal solutions than an optimal basic solution as provided by the Simplex Method.
The strictly complementary solution is obtained by applying a rounding procedure to
a sufficiently accurate approximate solution. Chapter 4 is devoted to LO problems in
canonical format, with (only) nonnegative variables and (only) inequality constraints.
A thorough discussion of the special structure of the canonical format provides some
specialized embeddings in self-dual problems. As a byproduct we find the central
path for canonical LO problems. We also discuss how an approximate solution for the
canonical problem can be obtained from an approximate solution of the embedding
problem.

The two main components in an iterative step of an IPM are the search direction
and the step-length along that direction. The algorithm in Part I is a rather simple
primal-dual algorithm based on the primal-dual Newton direction and uses a very
simple step-length rule: the step length is always 1. The resulting Full-Newton Step
Algorithm is polynomial and straightforward to implement. However, the theoretical
iteration bound derived for this algorithm, although polynomial, is relatively poor
when compared with algorithms based on other search strategies. Therefore, more
efficient methods are considered in Part II of the book; they are so-called Logarithmic
Barrier Methods. For reasons of compatibility with the existing literature, on both
the Simplex Method and IPM’s, we abandon the canonical format (with nonnegative
variables and inequality constraints) in Part II and use the so-called standard format
(with nonnegative variables and equality constraints).

In order to make Part II independent of Part I, in Chapter 5 we revisit duality
theory and discuss the relevant results for the standard format from an interior point
of view. This includes, of course, the definition and existence of the central paths for
the (primal) problem in standard form and its dual problem (which has free variables
and inequality constraints). Using a symmetric formulation of both problems we see
that any method for the primal problem induces in a natural way a method for the dual
problem and vice versa. Then, in Chapter 6, we focus on the Dual Logarithmic Barrier
Method; according to the previous remark the analysis can be naturally, and easily,
transformed to the primal case. The search direction here is the Newton direction for
minimizing the (classical) dual logarithmic barrier function with barrier parameter p.
Three types of method are considered. First we analyze a method that uses full Newton
steps and small updates of the barrier parameter ;. This gives another central-path-
following method that admits the best possible iteration bound. Secondly, we discuss
the use of adaptive updates of u; this leaves the iteration bound unchanged, but
enhances the practical behavior. Finally, we consider methods that use large updates
of 1 and a bounded number of damped Newton steps between each pair of successive
barrier updates. The (theoretical worst-case) iteration bound is worse than for the
full Newton step method, but this seems to be due to the poor analysis of this type
of method. In practice large-update methods are much more efficient than the full
Newton step method. This is demonstrated by some (small) examples. Chapter 7,
deals with the Primal-Dual Logarithmic Barrier Method. It has basically the same
structure as Chapter 6. Having defined the primal-dual Newton direction, we deal
first with a full primal-dual Newton step method that allows small updates in the
barrier parameter p. Then we consider a method with adaptive updates of p, and
finally methods that use large updates of u and a bounded number of damped primal-
dual Newton steps between each pair of successive barrier updates. In-between we
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also deal with the Predictor-Corrector Method. The nice feature of this method is
its asymptotic quadratic convergence rate. Some small computational examples are
included that highlight the better performance of the primal-dual Newton method
compared with the dual (or primal) Newton method. The methods used in Part 11
need to be initialized with a strictly feasible solution.* Therefore, in Chapter 8 we
discuss how to meet this condition. This concludes the description of Part II.

At this stage of the book, the reader will have encountered the main theoretical
ideas underlying efficient implementations of IPM’s for LO. He will have been exposed
to many variants of IPM’s, dual and primal-dual methods with either full or damped
Newton steps.® The search directions in these methods are Newton directions. All these
methods, in one way or another, use the central path as a guideline to optimality. Part
III is devoted to a broader class of IPM’s, some of which also follow the central path but
others do not. In Chapter 9 we introduce the unifying concepts of target sequence and
Target-following Methods. In the Logarithmic Barrier Methods of Part II the target
sequence always consists of points on the central path. Other IPM’s can be simply
characterized by their target sequence. We present some examples in Chapter 11,
where we deal with weighted-path-following methods, a Dikin-path-following method,
and also with a centering method that can be used to compute the so-called weighted-
analytic center of a polytope. Chapters 10, 12 and 13 present respectively primal-dual,
dual and primal versions of Newton’s method for following a given target sequence.
Finally, concluding Part I1I, in Chapter 14 we describe a famous interior-point method,
due to Renegar and based on the center method of Huard; we show that it nicely fits
in the framework of target-following methods, with the targets on the central path.

Part IV is entitled Miscellaneous Topics: it contains material that deserves a place
in the book but did not fit well in any of the previous three parts. The reader will
have noticed that until now we have not discussed the very first polynomial IPM,
the Projective Method of Karmarkar. This is because the mainstream of research into
IPM’s diverged from this method soon after 1984.% Because of the big influence this
algorithm had on the field of LO, and also because there is still a small ongoing stream
of research in this direction, it deserves a place in this book. We describe and analyze
Karmarkar’s method in Chapter 15. Surprisingly enough, and in contrast with all
other methods discussed in this book, both in the description and the analysis of Kar-
markar’s method we do not refer to the central path; also, the search direction differs
from the Newton directions used in the other methods. In Chapter 16 we return to the
central path. We show that the central path is differentiable and study the asymptotic

4 A feasible solution is called strictly feasible if no variable or inequality constraint is at (one of) its
bound(s).

5 1In the literature, full-step methods are often called short-step methods and damped Newton step
methods long-step methods or large-step methods. In damped-step methods a line search is made in
each iteration that aims to (approximately) minimize a barrier (or potential) function. Therefore,
these methods are also known as potential reduction methods.

There are still many textbooks on LO that do not deal with IPM’s. Moreover, in some other
textbooks that pay attention to IPM’s, the authors only discuss the Projective Method of Kar-
markar, thereby neglecting the important developments after 1984 that gave rise to the efficient
methods used in the well-known commercial codes, such as CPLEX and OSL. Exceptions, in this
respect, are Bazaraa, Sherali and Shetty [37], Padberg [230] and Fang and Puthenpura [74], who
discuss the existence of other IPM’s in a separate section or chapter. We also mention Saigal [249],
who gives a large chapter (of 150 pages) on a topic not covered in this book, namely (primal)
affine-scaling methods. A recent survey on these methods is given by Tsuchiya [272].
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behavior of the derivatives when the optimal set is approached. We also show that we
can associate with each point on the central path two homothetic ellipsoids centered at
this point so that one ellipsoid is contained in the feasible region and the other ellipsoid
contains the optimal set. The next two chapters deal with methods for accelerating
IPM’s. Chapter 17 deals with a technique called partial updating, already proposed in
Karmarkar’s original paper. In Chapter 18 we consider so-called higher-order methods.
The Newton methods used before are considered to be first-order methods. It is shown
that more advanced search directions improve the iteration bound for several first order
methods. The complexity bound achieves the best value known for IPM’s nowadays.
We also apply the higher-order-technique to the Logarithmic Barrier Method.

Chapter 19 deals with Parametric and Sensitivity Analysis. This classical subject
in LO is of great importance in the analysis of practical linear models. Almost any
textbook includes a section about it and many commercial optimization packages offer
an option to perform post-optimal analysis. Unfortunately, the classical approach,
based on the use of an optimal basic solution, has some inherent weaknesses. These
weaknesses are discussed and demonstrated. We follow a new approach in this chapter,
leading to a better understanding of the subject and avoiding the shortcomings of
the classical approach. The notions of optimal partition and strictly complementary
solution play an important role, but to avoid any misunderstanding, it should be
emphasized that the new approach can also be performed when only an optimal basic
solution is available.

After all the efforts spent in the book to develop beautiful theorems and convergence
results the reader may want to get some more evidence that TPM’s work well in
practice. Therefore the final chapter is devoted to the implementation of IPM’s.
Though most implementations more or less follow the scheme prescribed by the
theory, there is still a large stretch between the theory and an efficient implementation.
Chapter 20 discusses some of the important implementation issues.

1.3 What is new in this book?

The book offers an approach to LO and to IPM’s that is new in many aspects.” First,
the derivation of the main theoretical results for LO, like the duality theory and the
existence of a strictly complementary solution from properties of the central path, is
new. The primal-dual algorithin for solving self-dual problems is also new; equipped
with the rounding procedure it yields an exact strictly complementary solution. The
derivation of the polynomial complexity of the whole procedure is surprisingly simple.®
The algorithms in Part II, based on the logarithmic barrier method, are known
from the literature, but their analysis contains many new elements, often resulting
in much sharper bounds than those in the literature. In this respect an important
(and new) tool is the function %, first introduced in Section 5.5 and used through
the rest of the book. We present a comprehensive discussion of all possible variants
of these algorithms (like dual, primal and primal-dual full-step, adaptive-update and

7 Of course, the book is inspired by many papers and results of many colleagues. Thinking over these

results often led to new insights, new algorithms and new ways to analyze these algorithms.
The approach in Part I, based on the embedding of a given L.O problem in a self-dual problem,
suggests some new and promising implementation strategies.
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large-update methods). We also deal with the — [rom the practical point of view
very important — predictor-corrector method, and show that this method has an
asymptotically quadratic convergent rate. We also discuss the techniques of partial
updating and the use of higher-order methods. Finally, we present a new approach to
sensitivity analysis and discuss many computationally aspects which are crucial for
efficient implementation of IPM’s.

1.4 Required knowledge and skills

We wanted to write a book that presents the most prominent results on IPM’s in a
unified and comprehensive way, with a full development of the most important items.
Especially Part I can be considered as an elementary introduction to LO, contai-
ning both a complete derivation of the duality theory as well as an easy-to-analyze
polynomial algorithm.

The mathematical tools that are used do not go beyond standard calculus and linear
algebra. Nevertheless, people educated in the Simplex based approach to LO will need
some effort to get acquainted with the formalism and the mathematical manipulations.
They have struggled with the algebra of pivoting, the new methods do not refer to
pivoting.? However, the tools used are not much more advanced than those that were
required to master the Simplex Method. We therefore expect that people will quickly
get, acquainted with the new tools, just as many generations of students have become
familiar with pivoting.

In general, the level of the book will be accessible to any student in Operations
Research and Mathematics, with 2 to 3 years of basic training in calculus and linear
algebra.

1.5 How to use the book for courses

Owing to the importance of LO in theory and in practice, it must be expected that
ITPM’s will soon become a popular topic in Operations Research and other fields where
LO is used, such as Business, Economics and Engineering. More and more institutions
will open courses dedicated to IPM’s for LO. It has been one of our purposes to collect
in this book all relevant material from research papers, survey papers, etc. and to strive
for a cohesive and easily accessible source for such courses.

The dependence between the chapters is demonstrated in Figure 1.1. This figure
indicates some possible reading paths through the book. For newcomers in the field
we recommend starting with Part I, consisting of Chapters 2, 3 and 4. This part of
the book can be used for a basic course in LO, covering duality theory and offering
a first and easy-to-analyze polynomial algorithin: the Full-Newton Step Algorithm.
Part I deals with LO problems in standard format. Chapter 5 covers the duality
theory and Chapters 6 and 7 deal with several interesting variants of the Logarithmic

9 However, numerical analysts who want to perform the actual implementation really need to
master advanced sparse linear algebra, including pivoting strategies in matrix factorization. See
Chapter 20.
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Figure 1.1 Dependence between the chapters.

Barrier Method that underly the efficient solvers in existing commercial optimization
packages. For readers who know the Simplex Method and who are familiar with the
LO problem in standard format, we made Part IT independent of Part I; they might
wish to start their reading with Part IT and then proceed with Part I.

Part 111, on the target-following approach, offers much new understanding of the
principles of IPM’s, as well as a unifying and easily accessible treatment of other
IPM’s, such as the method of Renegar (Chapter 14). This part could be part of a
more advanced course on IPM’s.

Chapter 15 contains a relatively simple description and analysis of Karmarkar’s
Projective Method. This chapter is almost independent of the previous chapters and
hence can be read at any stage.

Chapters 16, 17 and 18 could find a place in an advanced course. The value of
Chapter 16 is purely theoretical and is recommended to readers who want to delve
more deeply into properties of the central path. The other two chapters, on the other
hand, have more practical value. They describe and apply two techniques (partial
updating and higher-order methods) that can be used to enhance the efficiency of
some methods.

We consider Chapter 19 to be extremely important for users of LO who are interested
in the sensitivity of their models to perturbations in the input data. This chapter is
independent of almost all the previous chapters.

Finally, Chapter 20 is relevant for readers who are interested in implementation
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issues. It assumes a basic understanding of many theoretical concepts for IPM’s and
of advanced numerical algebra.

1.6 Footnotes and exercises

It may be worthwhile to devote some words to the positioning of footnotes and
exercises in this book. The footnotes are used to refer to related references, or to
make a small digression from the main thrust of the reasoning. We preferred to place
the footnotes not at the end of each chapter but at the bottom of the page they refer
to. We have treated exercises in the same way. They often have a goal similar to
footnotes, namely to highlight a result closely related to results discussed in the book.

1.7 Preliminaries

We assume that the reader is familiar with the basic concepts of linear algebra, such as
linear (sub-)space, linear (in-)dependence of vectors, determinant of a (square) matrix,
nonsingularity of a matrix, inverse of a matrix, etc. We recall some basic concepts and
results in this section.'”

1.7.1 Positive definite matrices

The space of all square n x n matrices is denoted by R™ ™. A matrix A ¢ R™*"
is called a positive definite matrix if A is symmetric and each of its eigenvalues is
positive.!! The following statements are equivalent for any symmetric matrix A:

(7) A is positive definite;
(i) A= CTC for some nonsingular matrix C;
(iii) T Az > 0 for each nonzero vector z.

A matrix A € R™" is called a positive semi-definite matrix if A is symmetric
and its eigenvalues are nonnegative. The following statements are equivalent for any
symmetric matrix A:

(1) A is positive semi-definite;
(ii) A =CTC for some matrix C;
(iii) T Az > 0 for each vector z.

1.7.2 Norms of vectors and matrices

In this book a vector z is always an n-tuple (x1,22,...,%,) in R™. The numbers
x; (1 €1 < n) are called the coordinates or entries of z. Usually we think of = as a

10 For a more detailed treatment we refer the reader to books like Bellman [38], Birkhoff and
MacLane [41], Golub and Van Loan [112], Horn and Johnson [147], Lancester and Tismenets-
ky [181], Ben-Israel and Greville [39], Strang [259] and Watkins [289)].

11 Some authors do not include symmetry as part of the definition. For example, Golub and Van
Loan [112] call A positive definite if (éi¢) holds without requiring symmetry of A.
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column vector and of its transpose, denoted by =7, as a row vector. If all entries of z
are zero we simply write x = 0. A special vector is the all-one vector, denoted by e,
whose coordinates are all equal to 1. The scalar product of 2 and s € IR” is given by

n
.IITS: E T;8;.
=1

We recall the following properties of norms for vectors and matrices. A norm (or
vector norm) on R™ is a function that assigns to each € IR™ a nonnegative number
|l|| such that for all ,s € R" and o € R:

lz]| >0, ifx#0
ez || = |e ||z
[l + sf| < ]| + [[s]] -

The Euclidean norm is defined by

|zl =

When the norm is not further specified, ||z|| will always refer to the Euclidean norm.
The Cauchy—Schwarz inequality states that for z,s € R™:

's < | |5 -

The inequality holds with equality if and only if x and s are linearly dependent.
For any positive number p we also have the p-norm, defined by

1
n 7
llz]l, = (Z%I”) :

i=1

The Euclidean norm is the special case where p = 2 and is therefore also called the
2-norm. Another important special case is the I-norm:

n

lzlly = > Jail

i—1
Letting p go to infinity we get the so-called infinity norm:
]l = Mim ]l
We have

lloo = max |-

For any positive definite n x n matrix A we have a vector norm ||.|| , according to

2] 4 = VaT Az.
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For any norm the unit ball in IR™ is the set
{zx e R" : |jz| =1}.

By concatenating the columns of an n x n matrix A (in the natural order), A can be

2
considered a vector in IR™ . A function assigning to each A € R™*"™ a real number | A||
is called a matrix norm if it satisfies the conditions for a vector norm and moreover

|AB|| < [[A[I1IB]],

for all A, B € R™". A well-known matrix norm is the Frobenius norm ||.|| », which is
simply the vector 2-norm applied to the matrix:

1Al 7 =

Every vector norm induces a matrix norm according to

|A] = max [[Az].
lel=1

This matrix norm satisfies
[Azl| < A [|z]],  Vz e R"™

The vector 1-norm induces the matrix norm
n
All; = max Ags
4l = max 371441,
i=1
and the vector co-norm induces the matrix norm

n
||A||oo = fél%xnz:l \Az‘j\ .
=

|All, is also called the column sum norm and || A|  the row sum norm. Note that
4l = [[A", -

Hence, if A is symmetric then ||A| . = [|Al|;. The matrix norm induced by the vector
2-norm is, by definition,
14y = max Az, .

llzll =

This norm is also called the spectral matrix norm. Observe that it differs from the
Frobenius norm (consider both norms for A = I, where I = diag (e)). In general,

1Al < 1Al -
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1.7.83  Hadamard inequality for the determinant

For an n x n matrix A with columns a1, as,...,a, its determinant satisfies
det(A) = volume of the parallelepiped spanned by a;,as,. .., a,.
This interpretation of the determinant implies the inequality

det(4) < larflz llazllz - llanlly

which is known as the Hadamard inequality.

1.7.4 Order estimates

Let f and g be functions from the positive reals to the positive reals. In many estimates
the following definitions will be helpful.

o We write f(x) = O(g(x)) if there exists a positive constant ¢ such that f(z) < cg(x),
for all z > 0.

o We write f(x) = Q(g(x)) if there exists a positive constant ¢ such that f(x) > cg(x),
for all z > 0.

e We write f(z) = ©(g(x)) if there exist positive constants ¢; and ¢z such that
crg{z) < f(z) < eag(z), for all z > 0.

1.7.5 Notational conventions

The identity matrix usually is denoted as I; if the size of I is not clear from the
context we use a subscript like in I, to specify that it is the n X n identity matrix.
Similarly, zero matrices and zero vectors usually are denoted simply as 0; but if the
size is ambiguous, we use subscripts like in 0,,«, to specify the size. The all-one vector
is always denoted as e, and if necessary the size is specified by a subscript.

For any = € R" we often denote the diagonal matrix diag (z) by the corresponding
capital X. For example, D = diag(d). The componentwise product of two vectors
z,5 € R™, known as the Hadamard product of = and s is denoted compactly by zs.!3
The i-th entry of zs is z;s;. In other words, s = Xs = Sx. As a consequence we have
for the scalar product of  and s,

xs),

which will be used repeatedly later on. Similarly we use x/s for the componentwise
quotient of x and s. This kind of notation is also used for unitary operations. For
example, the i-th entry of 7! is m;l and the i-th entry of \/x is \/z;. This notation
is consistent as long as componentwise operations are given precedence over matrix
operations. Thus, if A is a matrix then Azs = A(xs).

12 See, e.g., Horn and Johnson [147], page 477.

13 In the literature this product is known as the Hadamard product of x and s. It is often denoted by
res. Throughout the book we will use the shorter notation xs. Note that if  and s are nonnegative
then s = 0 holds if and only if z7s = 0.
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Duality Theory for Linear
Optimization

2.1 Introduction

This chapter introduces the reader to the main theoretical results in the field of linear
optimization (LO). These results concern the notion of duality in LO. An LO problem
consists of optimizing (i.e., minimizing or maximizing) a linear objective function
subject to a finite set of linear constraints. The constraints may be equality constraints
or inequality constraints. If the constraints are inconsistent, so that they do not allow
any feasible solution, then the problem is called infeasible, otherwise feasible. In the
latter case the feasible set (or domain) of the problem is not empty; then there are two
possibilities: the objective function is either unbounded or bounded on the domain. In
the first case, the problem is called unbounded and in the second case bounded. The
set of optimal solutions of a problem is referred to as the optimal set; the optimal set
is empty if and only if the problem is infeasible or unbounded.

For any LLO problemn we may construct a second LO problem, called its dual problem,
or shortly its dual. A problem and its dual are closely related. The relation can be
expressed nicely in terms of the optimal sets of both problems. If the optimal set of one
of the two problems is nonempty, then neither is the optimal set of the other problem;
moreover, the optimal values of the objective functions for both problems are equal.
These nontrivial results are the basic ingredients of the so-called duality theory for
LO.

The duality theory for LO can be derived in many ways.! A popular approach in
textbooks to this theory is constructive. It is based on the Simplex Method. While
solving a problem by this method, at each iterative step the method generates so-

1 The first duality results in LO were obtained in a nonconstructive way. They can be derived from
some variants of Farkas’ lemma [75], or from more general separation theorems for convex sets. See,
e.g., Osborne [229] and Saigal [249]. An alternative approach is based on direct inductive proofs
of theorems of Farkas, Weyl and Minkowski and derives the duality results for LO as a corollary
of these theorems. See, e.g., Gale [91]. Constructive proofs are based on finite termination of a
suitable algorithm for solving either linear inequality systems or LO problems. A classical method
for solving linear inequality systems in a finite number of steps is Fourier-Motzkin elimination.
By this method we can decide in finite time if the system admits a feasible solution or not. See,
e.g., Dantzig [59]. This can be used to proof Farkas’ lemma from which the duality results for
LO then easily follow. For the LLO problem there exist several finite termination methods. One
of them, the Simplex Method, is sketched in this paragraph. Many authors use such a method to
derive the duality results for LO. See, e.g., Chvatal [55], Dantzig [59], Nemhauser and Wolsey [224],
Papadimitriou and Steiglitz [231], Schrijver [250] and Walsh [287].
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called multipliers associated with the constraints. The method terminates when the
multipliers turn out to be feasible for the dual problem; then it yields an optimal
solution both for the primal and the dual problem.?

Interior point methods are also intimately linked with duality theory. The key
concept is the so-called central path, an analytic curve in the interior of the domain of
the problem that starts somewhere in the ‘middle’ of the domain and ends somewhere
in the ‘middle’ of the optimal set of the problem. The term ‘middle’ in this context will
be made precise later. Interior point methods follow the central path (approximately)
as a guideline to the optimal set.? One of the aims of this chapter is to show that the
aforementioned duality results can be derived from properties of the central path.*
Not every problem has a central path. Therefore, it is important in this framework to
determine under which condition the central path exists. It happens that this condition
implies the existence of the central path for the dual problem and the points on the
dual central path are closely related to the points on the primal central path. As a
consequence, following the primal central path (approximately) to the primal optimal
set goes always together with following the dual central path (approximately) to the
dual optimal set. Thus, when the primal and dual central paths exist, the interior-
point approach yields in a natural way the duality theory for LO, just as in the case of
the Simplex Method. When the central paths do not exist the duality results can be
obtained by a little trick, namely by embedding the given problem in a larger problem
which has a central path. Below this approach will be discussed in more detail.

We start the whole analysis, in the next section, by considering the LO problem in
the so-called canonical form. So the objective is to minimize a linear function over a
set of inequality constraints of greater-than-or-equal type with nonnegative variables.

Since every LO problem admits a canonical representation, the validity of the
duality results in this chapter naturally extend to arbitrary LO problems. Usually
the canonical form of an LO problem is obtained by introducing new variables and/or
constraints. As a result, the number of variables and/or constraints may be doubled.
In Appendix D.1 we present a specific scheme that transforms any LO problem that is
not in the canonical form to a canonical problem in such a way that the total number
of variables and constraints does not increase, and even decreases in many cases.

We show that solving the canonical LO problem can be reduced to finding a solution
of an appropriate system of inequalities. In Section 2.4 we impose a condition on the
system—the interior-point condition— and we show that this condition is not satisfied
by our system of inequalities. By expanding the given system slightly however we get
an equivalent system that satisfies the interior-point condition. Then we construct a
self-dual problem® whose domain is defined by the last system. We further show that
a solution of the system, and hence of the given LO probleimn, can easily be obtained

The Simplex Method was proposed first by Dantzig [59]. In fact, this method has many variants
due to various strategies for choosing the pivot element. When we refer to the Simplex Method
we always assume that a pivot strategy is used that prevents cycling and thus guarantees finite
termination of the method.

This interpretation of recent interior-point methods for LO was proposed first by Megiddo [200].
The notion of central path originates from nonlinear (convex) optimization; see Fiacco and
MecCormick [77].

4 This approach to the duality theory has been worked out by Giiler et al. [133, 134].
Problems of this special type were considered first by Tucker [274], in 1956.

523
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from a so-called strictly complementary solution of the self-dual problem.

Thus the canonical problem can be embedded in a natural way into a self-
dual problem and using the existence of a strictly complementary solution for the
embedding self-dual problem we derive the classical duality results for the canonical
problem. This is achieved in Section 2.9.

The self-dual problem in itself is a trivial LO problem. In this problem all variables
are nonnegative. The problem is trivial in the sense that the zero vector is feasible
and also optimal. In general the zero vector will not be the only optimal solution.
If the optimal set contains nonzero vectors, then some of the variables must occur
with positive value in an optimal solution. Thus we may divide the variables into two
groups: one group contains the variables that are zero in each optimal solution, and
the second group contains the other variables that may occur with positive sign in an
optimal solution. Let us call for the moment the variables in the first group ‘good’
variables and those in the second group 'bad’ variables.

We proceed by showing that the interior-point condition guarantees the existence
of the central path. The proof of this fact in Section 2.7 is constructive. From the
limiting behavior of the central path when it approaches the optimal set, we derive
the existence of a strictly complementary solution of the self-dual problem. In such
an optimal solution all ’'good’ variables are positive, whereas the 'bad’ variables are
zero, of course. Next we prove the same result for the case where the interior-point
condition does not hold. From this we derive that every (canonical) LO problem that
has an optimal solution, also has a strictly complementary optimal solution.

It may be clear that the nontrivial part of the above analysis concerns the existence
of a strictly complementary solution for the self-dual problem. Such solutions play
a crucial role in the approach of this book. Obviously a strictly complementary
solution provides much more information on the optimal set of the problem than
just one optimal solution, because variables that occur with zero value in a strictly
complementary solution will be zero in any optimal solution.’

One of the surprises of this chapter is that the above results for the self-dual problem
immediately imply all basic duality results for the general LLO problem. This is shown
first for the canonical problem in Section 2.9 and then for general LO problems in
Section 2.10; in this section we present an easy-to-remember scheme for writing down
the dual problem of any given LO problem. This involves first transforming the given
problem to a canonical form, then taking the dual of this problem and reformulating
the canonical dual so that its relation to the given problem becomes more apparent.
The scheme is such that applying it twice returns the original problem. Finally,
although the result is not used explicitly in this chapter, but because it is interesting
in itself, we conclude this chapter with Section 2.11 where we show that the central
path converges to an optimal solution.

6 The existence of strictly complementary optimal solutions was shown first by Goldman and
Tucker [111] in 1956. Balinski and Tucker [33], in 1969, gave a constructive proof.
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2.2 The canonical LO-problem and its dual

We say that a linear optimization problem is in canonical form if it is written in the
following way:
(P) min {ch : Az > b,z >0}, (2.1)

where the matrix A is of size m x n, the vectors ¢ and z are in IR” and b in R™.
Note that all the constraints in (P) are inequality constraints and the variables
are nonnegative. Each LO-problem can be transformed to an equivalent canonical
problem.” Given the above canonical problem (P), we consider a second problem,
denoted by (D) and called the dual problem of (P), given by

(D) max {bly : ATy<c, y>0}. (2.2)

The two problems (P) and (D) share the matrix A and the vectors b and ¢ in their
description. But the role of b and ¢ has been interchanged: the objective vector ¢ of
(P) is the right-hand side vector of (D), and, similarly, the right-hand side vector b
of (P) is the objective vector of (D). Moreover, the constraint matrix in (D) is the
transposed matrix A7, where A is the constraint matrix in (P). In both problems the
variables are nonnegative. The problems differ in that (P) is a minimization problem
whereas (D) is a maximization problem, and, moreover, the inequality symbols in the
constraints have opposite direction.®?
At this stage we make a crucial observation.

Lemma 1.1 (Weak duality) Let a be feasible for (P) and y for (D). Then
by <cle. (2.3)

Proof: If x is feasible for (P) and y for (D), then x > 0,y > 0, Az > b and ATy <ec.
As a consequence we may write

by < (Az)" y =27 (ATy) <.
This proves the lemma. O

Hence, any y that is feasible for (D) provides a lower bound by for the value of ¢!z,
whenever x is feasible for (P). Conversely, any x that is feasible for (P) provides an
upper bound ¢!z for the value of b7y, whenever y is feasible for (D). This phenomenon
is known as the weak duality property. We have as an immediate consequence the
following.

Corollary 1.2 If x is feasible for (P) andy for (D), and c'x = by, then x is optimal
for (P) and y is optimal for (D).

7 For this we refer to any text book on LO. In Appendix D it is shown that this can be achieved

without increasing the numbers of constraints and variables.

Exercise 1 The dual problem (D) can be transformed into canonical form by replacing the
constraint ATy < ¢ by —ATy > —c and the objective maxbTy by min —bTy. Verify that the
dual of the resulting problem is exactly (P).

Exercise 2 Let the matrix A be skew-symmetric, i.e., AT = —A, and let b = —c. Verify that then
(D) is essentially the same problem as (P).
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The (nonnegative) difference
e —bvly (2.4)

between the primal objective value at a primal feasible x and the dual objective value
at a dual feasible y is called the duality gap for the pair (z,y). We just established
that if the duality gap vanishes then x is optimal for (P) and y is optimal for (D).
Quite surprisingly, the converse statement is also true: if x is an optimal solution of
(P) and y is an optimal solution of (D) then the duality gap vanishes at the pair
(z,y). This result is known as the strong duality property in LO. One of the aims of
this chapter is to prove this most important result. So, in this chapter we will not use
this property, but prove it!

Thus our starting point is the question under which conditions an optimal pair (z,y)
exists with vanishing duality gap. In the next section we reduce this question to the
question if some system of linear inequalities is solvable.

2.3 Reduction to inequality system

In this section we consider the question whether (P) and (D) have optimal solutions
with vanishing duality gap. This will be true if and only if the inequality system

Ar > b, x>0,
7ATy 2 —C, Yy = 07 (25)
bTy —cTr> 0

has a solution. This follows by noting that x and y satisfy the inequalities in the first
two lines if and only if they are feasible for (P) and (D) respectively. By Lemma 1.1
this implies ¢’z — b7y > 0. Hence, if we also have b7y — c¢Ta > 0 we get b7y = Tz,
proving the claim.

If kK = 1, the following inequality system is equivalent to (2.5), as easily can be
verified.

O A —b Yy (I
—AT Oy c z|>10,1, z>20,y>0x2>0. (2.6)
bT T 0 K 0

The new variable x is called the homogenizing variable. Since the right-hand side
in (2.6) is the zero vector, this system is homogeneous: whenever (y,z, x) solves the
system then A(y,z,k) also solves the system, for any positive A. Now, given any
solution (z,y,k) of (2.6) with x > 0, (x/k,y/k,1) yields a solution of (2.5). This
makes clear that, in fact, the two systems are completely equivalent unless every
solution of (2.6) has k = 0. But if k = 0 for every solution of (2.6), then it follows that
no solution exists with x = 1, and therefore the system (2.5) cannot have a solution in
that case. Evidently, we can work with the second system without loss of information
about the solution set of the first system.
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Hence, defining the matrix M and the vector Z by

0 A b Y
M=|-AT 0 ¢ |, z:=|2z]|, (2.7)
bt T 0

where we omitted the size indices of the zero blocks, we have reduced the problem
of finding optimal solutions for (P) and (D) with vanishing duality gap to finding a
solution of the inequality system

Mz>0, >0, k>0. (2.8)

If this system has a solution then it gives optimal solutions for (P) and (D) with
vanishing duality gap; otherwise such optimal solutions do not exist. Thus we have
proved the following result.

Theorem 1.3 The problems (P) and (D) have optimal solutions with vanishing
duality gap if and only if system (2.8), with M and Z as defined in (2.7), has a
solution.

Thus our task has been reduced to finding a solution of (2.8), or to prove that such
a solution does not exists. In the sequel we will deal with this problem. In doing so,
we will strongly use the fact that the matrix M is skew-symmetric, i.e., MT = —M .19
Note that the order of M equals m +n + 1.

2.4 Interior-point condition

The method we are going to use in the next chapter for solving (2.8) is an interior-
point method (IPM), and for this we need the system to satisfy the interior-point
condition.

Definition 1.4 (IPC) We say that any system of (linear) equalities and (linear)
inequalities satisfies the interior-point condition (IPC) if there exists a feasible solution
that strictly satisfies all inequality constraints in the system.

Unfortunately the system (2.8) does not satisly the IPC. Because if z = (z,y, k)
is a solution then z/x is feasible for (P) and y/k is feasible for (D). But then
(chf bTy) /k > 0, by weak duality. Since x > 0, this implies b7y — ¢f'z < 0.
On the other hand, after substitution of (2.7), the last constraint in (2.8) requires
by — 'z > 0. It follows that b7y — ¢’z = 0, and hence no feasible solution of (2.8)
satisfies the last inequality in (2.8) strictly.

To overcome this shortcoming of the system (2.8) we increase the dimension by
adding one more nonnegative variable ¥ to the vector 2, and by extending M with
one extra column and row, according to

ZV::[ZKTS], z:z[é}, (2.9)

10 Exercise 3 If Sisann x n skew-symmetric matrix and z € R™, then 27.Sz = 0. Prove this.
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where -
" = €mitnt1 — Mem+n+17 (210)
with ey 4n41 denoting an all-one vector of length m +n 4 1. So we have
{ OT 4 7b-| em — Ae, + b y
—A 0 ¢ ir T x
M= [ T AN J s 1= en+A%en—c |, 2= (2.11)
- K
T 0 1—bTe,, +cTe, 9

The order of the matrix M is m + n + 2. To simplify the presentation, in the rest of
this chapter we denote this number as n:

n=m+n+2.
Letting ¢ be the vector of length 7 given by
0n_
q:[ 1]’ (2.12)
n

we consider the system
Mz>—q, 2z>0. (2.13)

We make two important observations. First we observe that the matrix M is skew-
symmetric. Secondly, the system (2.13) satisfies the IPC. The all-one vector does the
work, because taking Z =e; 1 and ¥ = 1, we have

M - Meg_
]sz+q:[rT g‘|[en11 :[ ep—1+7T

T
The last equality is due to the definition of 7, which implies Mez_q1 + 17 = en_1 and

0

n

+

—rtes_14+7n 1

- [e”‘ll. (2.14)

T _ —, T _ T _
—rten_1+n=— (eﬁ,l — Meﬁ,l) en_1+n=—e; 1€n_1+0=1,

where we used el_; Me;_; = 0 (cf. Exercise 3, page 20).

The usefulness of system (2.13) stems from two facts. First, it satisfies the IPC
and hence can be treated by an interior-point method. What this implies will
become apparent in the next chapter. Another crucial property is that there is a
correspondence between the solutions of (2.8) and the solutions of (2.13) with ¥ = 0.
To see this it is useful to write (2.13) in terms of Z and ©:

M r
—T 0

Obviously, if z = (Z,0) satisfies (2.13), this implies Az > 0 and Z > 0, and hence Z
satisfies (2.8). On the other hand, i Z satisfies (2.8) then Mz > 0 and z > 0; as a
consequence z = (Zz,0) satisfies (2.13) if and only if —rz +n > 0, i.e., if and only if

0
n

z

+
U

>0, >0, 9>0.

rT'z <m.

If Tz < 0 this certainly holds. Otherwise, if 7% > 0, the positive multiple nz/r’'z of
Z satisfies r7Z < 7. Since a positive multiple preserves signs, this is sufficient for our
goal. We summarize the above discussion in the following theorem.
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Theorem 1.5 The following three statements are equivalent:

(i) Problems (P) and (D) have optimal solutions with vanishing duality gap;
(i) If M and Z are given by (2.7) then (2.8) has a solution;
(#9i) If M and z are given by (2.11) then (2.18) has a solution with ¥ = 0 and k > 0.

Moreover, system (2.13) satisfies the IPC.

2.5 Embedding into a self-dual LO-problem

Obviously, solving (2.8) is equivalent to finding a solution of the minimization problem
(SPy) min {07z : Mz>0, z>0} (2.15)

with k¥ > 0. In fact, this is the way we are going to follow: our aim will be to find
out whether this problem has a(n optimal) solution with x > 0 or not. Note that
the latter condition makes our task nontrivial. Because finding an optimal solution of
(5Fy) is trivial: the zero vector is feasible and hence optimal. Also note that (SFPp) is
in the canonical form. However, it has a very special structure: its feasible domain is
homogeneous and since M is skew-symmetric, the problem (SP,) is a self-dual problem
(cf. Exercise 2, page 18). We say that (SFP) is a self-dual embedding of the canonical
problem (P) and its dual problem (D).

If the constraints in an LO problem satisfy the IPC, then we simply say that the
problem itself satisfies the IPC. As we established in the previous section, the self-dual
embedding (SFp) does not satisfy the IPC, and therefore, from an algorithmic point
of view this problem is not useful.

In the previous section we reduced the problem of finding optimal solutions (P) and
(D) with vanishing duality gap to finding a solution of (2.13) with ¥ = 0 and & > 0.
For that purpose we consider another self-dual embedding of (P) and (D), namely

(SP) min {¢"z : Mz > —q, 2> 0}. (2.16)
The following theorem shows that we can achieve our goal by solving this problem.

Theorem 1.6 The system (2.13) has a solution with ¥ = 0 and k > 0 if and only if
the problem (SP) has an optimal solution with k = zz_1 > 0.

Proof: Since ¢ > 0 and z > 0, we have ¢” 2 > 0, and hence the optimal value of (SP)
is certainly nonnegative. On the other hand, since ¢ > 0 the zero vector (z = 0) is
feasible, and yields zero as objective value, which is therefore the optimal value. Since
q''z = n, we conclude that the optimal solutions of (2.16) are precisely the vectors z
satisfying (2.13) with ¢ = 0. This proves the theorem. O

We associate to any vector z € R™ its slack vector s(z) as follows.
s(z):=Mz+q. (2.17)
Then we have

z is a feasible for (SP) <« 2z>0, s(z) >0.
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As we established in the previous section, the inequalities defining the feasible domain
of (SP) satisty the IPC. To be more specific, we found in (2.14) that the all-one vector
e is feasible and its slack vector is the all-one vector. In other words,

s(e) =e. (2.18)
We proceed by giving a small example.

Example 1.7 By way of example we consider the case where the problems (P) and
(D) are determined by the following constraint matrix A, and vectors b and c:'!

A[H, b{ﬂ c=[2].

According to (2.7) the matrix M is then equal to

1 -1
[0 4 ] [0 o
M=|-4T 0 ¢ |=
[ A J -1 0 0 2
[ 1 -1 -2 0
and according to (2.10), the vector r becomes
1 0 1
- 1 1 0
—e— Me— - —
r=e e ) ) ol
1 —2 3
Thus, by (2.11) and (2.12), we obtain
0 0 1 -1 1] 0
0O 0 0 1 0 0
M=|-1 0o o0 2 of, g=1o0
1 -1 -2 0 3 0
-1 0 0 -3 0 5}

Hence, the self-dual problem (SP), as given by (2.16), gets the form

0 0 1 -1 1 z1 0 z1
O 0 0 1 0 Z9 0 Z9
min<5J : | -1 0 0 2 0 z3 |+ 0| =20, 23 >0,. (219
1 -1 -2 0 3 24 0 Z4 =K
-1 0 0 -3 0 z5 5 z5 =1

Note that the all-one vector is feasible for this problem and that its surplus vector
also is the all-one vector. This is in accordance with (2.18). As we shall see later on,
it means that the all-one vector is the point on the central path for = 1. &

11 ¢f. Example D.5 (page 449) in Appendix D.



24 I Theory and Complexity

Remark 1.8 In the rest of this chapter, and the next chapter, we deal with the problem
(SP). In fact, our analysis does not only apply to the case that M and q have the
spectal form of (2.11) and (2.12). Therefore we extend the applicability of our analysis
by weakening the assumptions on M and q. Unless stated otherwise below we only
assume the following:

MY =M, ¢>0, s(e)=e. (2.20)

The last two variables in the vector z play a special role. They are the homogenizing
variable Kk = 25 1, and ¥ = zp. The variable 9 is called the normalizing variable,
because of the following important property.

Lemma 1.9 One has
elztels(z)y=n+q¢' 2 (2.21)

Proof: The identity in the lemma is a consequence of the orthogonality property (cf.
Exercise 3, page 20)

u' Mu =0, YucR" (2.22)
First we deduce that for every z one has
gtz =2" (s(2) = Mz) = 27s(2) = 2T Mz = 27 5(2). (2.23)

Taking u = e — z in (2.22) we obtain

(z =) (s(2) = 5(e)) = 0.

Since s(e) = e,eTe = i and z75(2) = ¢* 2, the relation (2.21) follows. O

It follows from Lemma 1.9 that the sum of the positive coordinates in z and s(z)
is bounded above by @ + ¢7 2. Note that this is especially interesting if z is optimal,
because then g7z = 0. Hence, if z is optimal then

elz +el's(z) =n. (2.24)

Since z and s(z) are nonnegative this implies that the set of optimal solutions is
bounded.

Another interesting feature of the LO-problem (2.16) is that it is self-dual: the dual
problem is

(DSP) max {quu s MTu<q,u> 0};

since M is skew-symmetric, MTu < g is equivalent to —Mu < ¢, or Mu > —q,
and maximizing —¢” v is equivalent to minimizing ¢” u, and thus the dual problem is
essential the same problem as (2.16).

The rest of the chapter is devoted to our main task, namely to find an optimal
solution of (2.16) with & > 0 or to establish that such a solution does not exist.

2.6 The classes B and N

We introduce the index sets B and N according to

B :={i : z > 0 for some optimal z}

N :={i : s;(2) > 0 for some optimal z}.
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So, B contains all indices i for which an optimal solution z with positive z; exists. We
also write z; € B if i € B. Note that we certainly have ¥ ¢ B, because ¥ is zero in
any optimal solution of (SP). The main question we have to answer is whether k € B
holds or not. Because if k € B then there exists an optimal solution z with x > 0,
in which case (P) and (D) have optimal solutions with vanishing duality gap, and
otherwise not.

The next lemma implies that the sets B and N are disjoint. In this lemma, and
further on, we use the following notation. To any vector v € R, we associate the
diagonal matrix I/ whose diagonal entries are the elements of u, in the same order. If
also v € R”, then Uv will be denoted shortly as uv. Thus uv is a vector whose entries
are obtained by multiplying « and v componentwise.

Lemma 1.10 Let 2! and z° be feasible for (SP). Then z' and 2% are optimal solutions
of (SP) if and only if z'5(2?) = 2%s(z') = 0.

Proof: According to (2.23) we have for any feasible z:
gtz = 21s(2). (2.25)

As a consequence, z > 0 is optimal if and only if s(z) > 0 and z7's(z) = 0. Since, by
(2.22),

we have
(z" = ZQ)T (s(z") — s(z*)) =0.

Expanding the product on the left and rearranging the terms we get

Now z! is optimal if and only if (21)Ts(z!) = 0, by (2.25), and similarly for 2. Hence,

since 21, 22, s(z') and s(z?) are all nonnegative, z' and 22 are optimal if and only if

which is equivalent to

proving the lemma. a

Corollary 1.11 The sets B and N are disjoint.

Proof: If i € BN N then there exist optimal solutions 2z and 22 of (SP) such that
z} > 0 and s;(2%) > 0. This would imply z}s;(z?) > 0, a contradiction with Lemma
[.10. Hence BN N is the empty set. a

By way of example we determine the classes B and N for the problem considered
in Example 1.7.
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Example 1.12 Consider the self-dual problem (SP) in Example 1.7, as given by
(2.19):

0 0 1 -1 1 Z1 0 Z1
0O 0o 0 1 o Z9 0 Zn
mn<hH? : | -1 0 0 2 0 z|+ 0| >0, 23 >0
1 -1 -2 0 3 Z4 0 24 = K
-1 0 0 -3 0 z5 5 z5 =1
For any z € IR® we have
23 — Za + 25 23— K+ 7
z4 R
s(z) = 224 — 21 = 2k — 21
21— 2o — 223 + 3z5 21 — 29 — 223 + 39
5— 21— 324 5—2 — 3K

Now z is feasible if z > 0 and s(z) > 0, and optimal if moreover zs(z) = 0. So
z = (z1, 22, 23, K, ¥) is optimal if and only if

z1 z3 — K+ 0 z1(zs —k+9)=0
29 K 2ok =0
z3| >0, 25 — 21 >0, 2326 —21) =0
K 21 — 2o — 223 + 39 K(z1— 22— 223 +39) =0
) 5—2z1 — 3k 95— 2 —3k) =

Adding the equalities at the right we obtain 59 = 0, which gives ¥ = 0, as it should.
Substitution gives

71 Z3 — K z1(23—K)=0
29 K 2ok =0
zz | >0, 2K — 21 >0, 23(26—21) =0 .
K Z1 — 29 — 223 K(z1 — 22 —223) =0
0 5—21 — 3k 9 =0

Note that if x = 0 then the inequality 2k — z; > 0 implies z; = 0, and then the
inequality z1 — 22 — 223 > 0 gives also z2 = 0 and z3 = 0. Hence, z = 0 is the only
optimal solution for which x = 0. So, let us assume x > 0. Then we deduce from the
second and fourth equality that zo = 0 and z; — 2o — 223 = 0. This reduces our system
to

2 = 223 Z3 — K 223 (25 — K) =
0 K 29 =
Z3 >0, 2k — 223 >0, 23 (26 — 223) =
K 0 0=
0 5 — 223 — 3K 9=0

The equations at the right make clear that either z3 = 0 or z3 = s. However, the
inequality z3 —k > 0 forces z3 > 0 since x > 0. Thus we find that any optimal solution
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has the form

(2.26)

I
Il
&
2
)
Il
e an i S en)
jam}
A
&
A
=

0 5—05k
This implies that in this example the sets B and N are given by

B={1,3,4}, N={2,5}. O

In the above example the union of B and N is the full index set. This is not an
incident. Our next aim is to prove that this always holds. 12131415 Ag a consequence
these sets form a partition of the full index set {1,2,...,7}; it is the so-called optimal
partition of (SP). This important and nontrivial result is fundamental to our purpose
but its proof requires some effort. It highly depends on properties of the central path
of (SP), which is introduced in the next section.

2.7 The central path

2.7.1 Definition of the central path

Recall from (2.14) that s(e) = e, where e (as always) denotes the all-one vector of
appropriate length (in this case, i1). As a consequence, we have a vector z such that
z;8i(z) =1 (1 <14 < @), which, using our shorthand notation can also be expressed as

z=e = zs(z)=e. (2.27)

Now we come to a very fundamental notion, both from a theoretical and algorithmic
point of view, namely the central path of the LO-problem at hand. The underlying

12 Exercise 4 Following the same approach as in Example 1.7 construct the embedding problem for
the case where the problems (P) and (D) are determined by

a4 -] e tel

and, following the approach of Example 1.12, find the set of all optimal solutions and the optimal
partition.

13 Exercise 5 Same as in Exercise 4, but now with

A:{é], b:{i}, c:[Q]

14 Exercise 6 Same as in Exercise 4, but now with

A:[é}, b:[;}, c=[2], B>o0

15 Exercise 7 Same as in Exercise 4, but now with

A:[é}, b:[;}, c=[2], B<o
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theoretical property is that for every positive number p there exist a nonnegative
vector z such that
zs(z) = pe, z20,s(z) >0, (2.28)

and moreover, this vector is unique. If © = 1, the existence of such a vector is
guaranteed by (2.27). Also note that if we put p = 0 in (2.28) then the solutions
are just the optimal solutions of (SP). As we have seen in Example 1.12 there may
more than one optimal solution. Therefore, if 1 = 0 the system (2.28) may have
multiple solutions. The following lemma is of much interest. It makes clear that for
> 0 the system (2.28) has at most one solution.

Lemma 1.13 If u > 0, then there exists at most one nonnegative vector z such that
(2.28) holds.

Proof: Let z! and 2% to nonnegative vectors satisfying (2.28), and let s' = s(z!)

and s? = 5(22). Since u > 0, 21, 22, s', 5% are all positive. Define Az := 22 — 21, and

similarly As := s? — s*. Then we may easily verify that
MAz = As (2.29)
Z'As + st Az + AsAz = 0. (2.30)
Using that M is skew-symmetric, (2.22) implies that AzT As = 0, or, equivalently,
el (AzAs) =0. (2.31)

Rewriting (2.30) gives
(z' + Az)As + s'Az = 0.

Since z! + Az = 22 > 0 and s' > 0, this implies that no two corresponding entries in
Az and As have the same sign. So it follows that
AzAs <0. (2.32)

Combining (2.31) and (2.32), we obtain AzAs = 0. Hence either (Az); = 0 or
(As); = 0, for each i. Using (2.30) once more, we conclude that (Az); = 0 and
(As); = 0, for each i. Hence Az = As = 0, whence 2! = 22 and s = s2. This proves
the lemma. O

To prove the existence of a solution to (2.28) requires much more effort. We postpone
this to the next section. For the moment, let us take the existence of a solution to
(2.28) for granted and denote it as z(u). We call it the p-center of (SP). The set

{z(w) + p>0}

of all p-centers represents a parametric curve in the feasible region of (SP). This curve
is called the central path of (SP). Note that

q" 2(p) = s(u) " 2(p) = pn. (2.33)

This proves that along the central path, when u approaches zero, the objective value
q% z(11) monotonically decreases to zero, at a linear rate.
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2.7.2 Existence of the central path

In this section we give an algorithmic proof of the existence of a solution to (2.28).
Starting at z = e we construct the y-center for any u > 0. This is done by using the
so-called Newton direction as a search direction. The results in this section will also
be used later when dealing with a polynomial-time method for solving (SP).

Newton direction

Assume that z is a positive solution of (SP) such that its slack vector s = s(z) is
positive, and let Az denote a displacement in the z-space. Our aim is to find Az such
that z + Az is the p-center. We denote

2t =24 Az,
and the new slack vector as s¥:
sTi=s(z)=M(z+Az) +q=s+ MAz
Thus, the displacement As in the s-space is simply given by
As=st —s=MAz.
Observe that Az and As are orthogonal, since by (2.22):
(A2)T As = (Az)" MAz=0. (2.34)

We want Az to be such that z™ becomes the p-center, which means (z + Az)
(s+ As) = pe, or

28+ zAs + sAz + AzAs = pe.
This equation is nonlinear, due to the quadratic term AzAs. Applying Newton’s

method, we omit this nonlinear term, leaving us with the following linear system
in the unknown vectors Az and As:

MAz — As = 0, (2.35)
2As + sAz = pe — zs. (2.36)
This system has a unique solution, as easily may be verified, by using that M is

skew-symimetric and z > 0 and s > 0.1917 The solution Az is called the Newton
direction. Since we omitted the quadratic term AzAs in our calculation of the Newton

16 Exercise 8 The coefficient matrix of the system (2.35-2.36) of linear equations in Az and As is

M -1
s Z

As usual, Z = diag (z) and S = diag (s), with z > 0 and s > 0, and I denotes the identity matrix.
Show that this matrix is nonsingular.

17 Exercise 9 Let M be a skew-symmetric matrix of size n X n and Z and S positive diagonal
matrices of the same size as M. Then the matrix S + ZM is nonsingular. Prove this.
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direction, z + Az will (in general) not be the p-center, but hopefully it will be a good
approximation. In fact, using (2.36), after the Newton step one has

2ts(zT) = (2 4+ Az)(s + As) = zs + (2As + sAz) + AzAs = pe + AzAs.  (2.37)

Comparing this with our desire, namely z7s(z*) = pe, we see that the ‘error’ is
precisely the quadratic term AzAs. Using (2.22), we deduce from (2.37) that

(z*)T s(zT) = pel'e = um, (2.38)
showing that after the Newton step the duality gap already has the desired value.

Example I.14 Let us compute the Newton step at z = e for the self-dual problem
(SP) in Example 1.7, as given by (2.19), with respect to some u > 0. Since
z = s(z) = e, the equation (2.36) reduces to

As+Az=pe—e=(u—1e.
Hence, by substitution into (2.35) we obtain
(M4+1)Az=(u—1e.

Tt suffices to know the solution of the equation (M + I)({ = e, because then Az =
(1t — 1)¢. Thus we need to solve ¢ from

1 0 1 -1 1 1
0 1 0 1 0 1
1 0 1 2 o0|c¢c=1]1],
1 -1 -2 1 3 1
-1 0 0 -3 1 1

Hence

and -
4 1 5 8
As = MAz = (5~ 1) (e —¢) = (u—1) (5, L o) S (240

After the Newton step we thus have

2tst = (2 4+ A2) (s + As) = 25 + (Az + As) + AzAs
=e+ (p—De+ AzAs=pe+ AzAs

(n—1)°

T
—36, 8,20, 8,0)" .
8]_ ( 3 ) ) 3 ) Q

ne-+
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Proximity measure

To measure the quality of any approximation z of z(p), we introduce a proximity
measure §(z, u) that vanishes if z = z(u) and is positive otherwise. To this end we
introduce the variance vector of z with respect to i as follows:

N ELO))
V= w (2.41)

where all operations are componentwise. Note that
zs(z)=pe < v=e.
The proximity measure §(z, 1) is now defined by'®
§(z,p) =13 Hv - ’071H . (2.42)

Note that if z = z(p) then v = e and hence é(z, ) = 0, and otherwise d(z, i) > 0. We
show below that if 6(z, 1) < 1 then the Newton process quadratically fast converges to
z(u). For this we need the following lemma, which estimates the error term in terms
of the proximity measure. In this lemma ||.|| denotes the Eucledian norm (or 2-norm)
and |||, the Chebychev norm (or infinity norm) of a vector.

Lemma L15 If§ :=§(z, n), then |[AzAs| < pé? and ||AzAs|| < ud?Ve2.

Proof: Componentwise division of (2.36) by \/itv = \/zs yields

\/gAs—i—\/gAZZ\/lj(Ul_U)'

The terms at the left represent orthogonal vectors whose componentwise product
is AzAs. Applying Lemma C.4 in Appendix C to these vectors, and using that
Hv_l — UH = 24, the result immediately follows. a

Quadratic convergence of the Newton process

We are now ready for the main result on the Newton direction.

Theorem 1.16 If 6 := §(z, 1) < 1, then the Newton step is strictly feasible, i.e.,
2zt >0 and sT > 0. Moreover,

52

V2(1=462)

18 In the analysis of interior-point methods we always need to introduce a quantity that measures the
‘distance’ of a feasible vector z to the central path or to the u-center. This can be done in many
ways as becomes apparent in the course of this book. In the coming chapters we make use of a
variety of so-called proximity measures. Most of these measures are based on the simple observation
that z is equal to the p-center if and only if ¥ = e and z is on the central path if and only if the
vector zs(z) is a scalar multiple of the all-one vector.

5(z" ) <
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Proof: Let 0 <a <1, 2% = z+ aAz and s* = s+ aAs. We then have, using (2.36),

2%8% = (2 + aAz)(s + aAs) = zs + a (2As + sAz2) + o> AzAs
= 25+ a(pe — zs) + *AzAs = (1 — &)zs + a (pe + aAzAs)

By Lemma I.15,
pe + alzAs > pe —a||AzAs|| e > p(l — as?)e > 0.

Hence, since (1 — a)zs > 0, we have 2z%s* > 0, for all & € [0,1]. Therefore, the
components of z* and s® cannot vanish when « € [0, 1]. Hence, since z > 0 and s > 0,
by continuity, z® and s® must be positive for any such «, especially for «« = 1. This
proves the first statement in the lemma.

Now let us turn to the proof of the second statement. Let 1 := §(z7, u) and let v™
be the variance vector of z with respect to u:

ot — ztst
I
Then, by definition,
267 = ||(v) " =t || = ()T (e = (1)) . (2.43)

Recall from (2.37) that 27s™ = pe + AzAs. In other words,

(’U+)2 —e4 AZAS.
u

Substitution into (2.43) gives

M < [
e+ Azhs 1 _ |[azas
H 1 o

The last inequality follows by using Lemma 1.15 twice. Thus the proof is complete. O

2
<5\/§

20" = .
T V1-=4?

)
‘  AzAs H%

Theorem I.16 implies that when § < 1/ V2, then after a Newton step the proximity to
the p-center satisfies 6(27, u) < 62. In other words, Newton’s method is quadratically
convergent.

Example 1.17 Using the self-dual problem (SP) in Example 1.7 again, we consider
in this example feasibility of the Newton step, and the proximity measure before and
after Newton step at z = e for several values of i, to be specified below. We will see
that the Newton step performs much better than Theorem 1.16 predicts! In Example
1.14 we found the values of Az and As. Using these values we find for the new iterate:

T
1 8 41
+ ~1 e |
et >( Ly ) ,
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and since s = s(e) = e,

ol
Rl e

T
5 8
7_7_70 .
9" 9

Hence the Newton step is feasible, i.e., 2T and sT are nonnegative, if and only if

st =e+(u— 1)(

0.25 < pu < 4,

as easily may be verified. For any such u we have

- 5 V= el = 2 v - =

“2|ve

Note that Theorem 1.16 guarantees feasibility only if 6(z, ) < 1. This holds if
5p? — 14p +5 < 0, which is equivalent to

o.4202~—(7 2f) <u<- (7+2f) ~ 2.3798.

The same theorem guarantees quadratically convergence if §(z,u) < 1/4/2, which
holds if and only if

1 1
0.5367 ~ = (6 — \/11) <u<y (6+ \/11) ~ 1.8633.

By way of example, consider the case where y = 0.5. Then we have 6(z, u) = + V10 =~
0.7906 and, by Theorem 1.16, §(z, u) < %\/_ ~ 0.7217. Let us compute the actual
value of §(z", p). For u = 0.5 we have

1/ 18 41 \* 75 7 17 1\"
t=e—z-3,-, 5, 5,1 - = =, =, =
2\ 3999 699 182/

and since s = s(e) = e,
T T
1/4 1 5 8 1 17 13 5
S+:ef_ PR _7_70 - o _7_7_71 .
233999 31818 9

+gt T
(v+)2:2 s <7 85 91 85 1) ’

Therefore,

7 9’ 817 817 81
Finally, we compute §(z", ;1) by using

5 5

(= o = )P = 3 )+ X () - 0

i=1 i=1

Note that the first sum equals (z"')T st /i = 2npu = 5. The second sum equals 5.0817.
Thus we obtain 46(z%, 1)? = 0.0817, which gives §(z ¥, u) = 0.1429. o
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Existence of the central path

Now suppose that we know the p-center for = u® > 0 and let us denote z° = z(u").
Note that this is true for u® = 1, with 2% = ¢, because es(e) = e. So ¢ is the y-center
for p=1.

Since 2°s(z%) = ple, the v-vector for 2° with respect to an arbitrary u > 0 is given

) o

Hence we have §(2°, u) <5 if and only if

Using |le|| = /i, one may easily verify that this holds if and only if

1 I 1 1 2

— < Lo<p, =14 = — + = 2.44

5= 0 <8 Bi=ld oy 5+ (2.44)
Now starting the Newton process at 2°, with p fixed, and such that p satisfies (2.44),
we can generate an infinite sequence 20, 2%, - - zF, - .. such that

1
(5( ?l’[‘)—22k 1

Hence
lim o (zk,,u) =0.

k—o0

The generated sequence has at least one accumulation point z*, since the iterates

2, ... 2F ... lie in the compact set

elztels(z)=n(1+p), 2>0,s(z)>0,

due to (2.21) and (2.38). Since & (z*, ) = 0, we obtain z*s (z*) = pe. Due to Lemma
.13, z* is unique. This proves that the p-center exists if y satisfies (2.44) with pu® = 1,
ie., if

1
- <pu<p

=

By redefining 1° as one of the endpoints of the above interval we can repeat the above
procedure, and extend the interval where the p-center exists to

1

@ <u< ﬂ2~

and so on. After applying the procedure %k times the interval where the p-center
certainly exists is given by
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For arbitrary p > 0, we have to apply the above procedure at most

|log 1|
log 3
times, to prove the existence of the u-center. This completes the proof of the existence

of the central path.

It may be worth noting that, using # > 2 and log(1 +¢) > IL-l—t for ¢t > 0,19

1 1 2 2 V2 1
logf=log|l+=+4/=+—=] >lo 1+\/j > = > .
g 3 g( - 2 n) g< n) e NN T

Hence the number of times that we have to apply the above described procedure to
obtain the p-center is bounded above by

V2n |log pl . (2.45)

We have just shown that the system (2.28) has a unique solution for every positive p.
The solution is called the p-center, and denoted as z(u). The set of all u-centers is a
curve in the interior of the feasible region of (SP). The definition of the p-center, as
given by (2.28), can be equivalently given as the unique solution of the system

Mz+qg=s 22>20,5>0

2.46
z8 = e, ( )

with M and z as defined in (2.11), and s = s(z), as in (2.17).29:21,22

2.8 Existence of a strictly complementary solution

Now that we have proven the existence of the central path we can use it as a guide
to the optimal set, by letting the parameter y approach to zero. As we show in this
section, in this way we obtain an optimal solution z such that z + s(z) > 0.

Definition 1.18 Two nonnegative vectors a and b in IR™ are said to be complementary
vectors if ab = 0. If moreover a+b > 0 then a and b are called strictly complementary
vectors.

19 See, e.g., Exercise 39, page 133.
20 Exercise 10 Using the definitions of z and ¢, according to (2.11) and (2.12), show that 9() = p.

2! Exercise 11 In this exercise a skew-symmetric M and four vectors ¢(¥, i = 1,2,3,4 are given as
follows:

0 1 0 . 1 0 1
/- W _ @ _ ®) _ @
S R B ) B P B B Y

For each of the four cases ¢ = ¢(¥, i = 1,2, 3, 4, one is asked to verify (1) if the system (2.46) has
a solution if g > 0 and (2) if the first equation in (2.46) satisfies the IPC, i.e., has a solution with
z>0and s> 0.

22 Exercise 12 Show that z(u) is continuous (and differentiable) at any positive u. (Hint: Apply
the implicit function theorem (cf. Proposition A.2 in Appendix A) to the system (2.46)).
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Recall that optimality of z means that zs(z) = 0, which means that z and s(z) are
complementary vectors. We are going to show that there exists an optimal vector z
such that z and s(z) are strictly complementary vectors. Then for every index ¢, either
z > 0 or s;(z) > 0. This implies that the index sets B and N, introduced in Section
2.5 form a partition of the index set, the so-called optimal partition of (SP).

It is convenient to introduce some more notation.

Definition I.19 If z is a nonnegative vector, we define its support, denoted by o(z),
as the set of indices i for which z; > 0:

o(z) ={i : z >0}.

Note that if z is feasible then zs(z) = 0 holds if and only if o(z) N a(s(z)) = 0.
Furthermore, z is a strictly complementary optimal solution if and only if it is optimal
and o(z)Uo(s) ={1,2,...,7}.

Theorem 1.20 (SP) has an optimal solution z* with z* + s(z*) > 0.

Proof: Let {u;}72, be a monotonically decreasing sequence of positive numbers
pg such that up — 0 if & — oo, and let s(py) := s(z(pr)). Due to Lemma 1.9
the set {(z(pr),s{ur))} lies in a compact set, and hence it contains a subsequence
converging to a point (z*,s*), with s* = s(2*). Since z(up)?s(ur) = Apr — 0, we
have (z*)7's* = 0. Hence, from (2.25), ¢7 z* = 0. So z* is an optimal solution.

We claim that (z*, s*) is a strictly complementary pair. To prove this, we apply the
orthogonality property (2.22) to the points z* and z(py), which gives

(z(p) = =) (s(uw) — %) = 0.

Rearranging the terms, and using z(uz)T s(jux) = Ay and (%)

D ozsilw) + D z(w)s] =

jeo(z*) jeo(s*)

Ts* =0, we arrive at

Dividing both sides by pj and recalling that z;(jux)s;(ps) = ps, we obtain

D DI T

jEO’(Z*) Z](“k) jEG’(S*) ](luk)

Letting £ — oo, the first sum on the left becomes equal to the number of positive
coordinates in z*. Similarly, the second sum becomes equal to the number of positive
coordinates in s*. The sum of these numbers being 7, we conclude that the optimal
pair (z*, s*) is strictly complementary.23-24 O

22 By using a similar proof technique it can be shown that the limit of z(y) exists if 1 goes to zero.
In other words, the central path converges. The limit point is (of course) a uniquely determined
optimal solution of (SP), which can further be characterized as the so-called analytic center of the
set of optimal solutions (cf. Section 2.11).

24 Let us also mention that Theorem 1.20 is a special case of an old result of Goldman and Tucker
which states that every feasible linear system of equalities and inequalities has a strictly feasible
solution [111].
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By Theorem 1.20 there exists a strictly complementary solution z of (SP). Having
such a solution, the classes B and N simply follow from

B={i:z>0}, N={i: s(2)>0}.

Now recall from Theorem 1.5 and Theorem 1.6 that the problems (P) and (D) have
optimal solutions with vanishing duality gap if and ounly if (SP) has an optimal solution
with x > 0. Due to Theorem I1.20 this can be restated as follows.

Corollary 1.21 The problems (P) and (D) have optimal solutions with vanishing
duality gap if and only if K € B.

Let us consider more in detail the implications of & € B for the problems (SFP,), and
more importantly, for (P) and (D).

Theorem 1.20 implies the existence of a strictly complementary optimal solution z
of (SP). Let z be such an optimal solution. Then we have

z8(z)=0, z4+s(z)>0, z>0, s(z)>0.

Now using s(z) = Mz + ¢ and ¥ =0, and also (2.11) and (2.12), we obtain

Y Ax — kb
_AT
z = t >0, s(z)= T Y +THC > 0.
K bty —cx
[OJ [ﬁf[yT,xT,m]r
Neglecting the last entry in both vectors, it follows that
Y Azr — kb
Z = T >0, 5(2) =Mz = —ATy + Ke > 07 (247)
by —clx
and moreover,
zZs(z)=0, z4+3z >0, z>0, 3z >0. (2.48)

This shows that Z is a strictly complementary optimal solution of (SP). Hence the
next theorem requires no further proof.

Theorem 1.22 (SFy) has an optimal solution Z with Z + 5(Z) > 0.

Note that (2.47) and (2.48) are homogeneous in the variables z, y and . So, assuming
K € B, without loss of generality we may put x = 1. Then we come to

y >0, Arx —b >0, y(Ax —b) =0, y+ (Ax —b) > 0,
x>0, c— ATy >0, x(c—ATy)zo, x+(c—ATy)>0,
1>0, vy—clz>0, Vly —clz=0, 1+ (bTychm) > 0.
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This makes clear that z is feasible for (P) and y is feasible for (D), and because

Tz = b7y these solutions are optimal with vanishing duality gap. We get a little

more information from the above system, namely
y (Ax —b) =0, y+ (Az —b) > 0,
z(c—ATy) =0, z+(c—ATy) >0.

The upper two relations show that the dual vector y and the primal slack vector
Az — b are strictly complementary, whereas the lower two relations express that the
primal vector z and the dual slack vector ¢ — ATy are strictly complementary. Thus
the following is also true.

Theorem 1.23 If x € B then the problems (P) and (D) have optimal solutions that
are strictly complementary with the slack vector of the other problem. Moreover, the
optimal values of (P) and (D) are equal.

An intriguing question is of course what can be said about the problems (P) and (D)
if kK ¢ B, ie., il kK € N. This question is completely answered in the next section.

2.9 Strong duality theorem

We start by proving the following lemma.
Lemma 1.24 If k € N then there exist vectors x and y such that
x>0, y>0, Axr>0, ATySO, bTy—ch>0.

Proof: Let x € N. Substitution of x =0 in (2.47) and (2.48) yields

y > 0, Ax > 0, y(Azx) = 0, y+ Az > 0,
x>0, —ATy >0, T (ATy) =0, z—ATy > 0,
0>0, by—clz>0, 0 (bTy — ch) =0, 0+ (bTy — cTac) > 0.
It follows that the vectors x and y are as desired, thus the lemma is proved. O

Let us call an LO-problem solvable if it has an optimal solution, and unsolvable
otherwise. Note that an LO-problem can be unsolvable for two possible reasons: the
domain of the problem is empty, or the domain is not empty but the objective function
is unbounded on the domain. In the first case the problem is called infeasible and in
the second case unbounded.

Theorem 1.25 If & € N then neither (P) nor (D) has an optimal solution.
Proof: Let x € N. By Lemma 1.24 we then have vectors « and y such that

x>0, y>0, Azx>0, ATy<o, bvy—clz>o0. (2.49)



1.2 Duality Theory 39

By the last inequality we cannot have b7y < 0 and ¢’z > 0. Hence,

either b'y>0 or cfz<o0. (2.50)

Suppose that (P) is not infeasible. Then there exists z* such that
z*>0 and Az*>0b.

Using (2.49) we find that z* + 2z > 0 and A(z* + z) > b. So z* + « is [easible for (P).
We can not have b7y > 0, because this would lead to the contradiction

0<bly< (Ax*)Ty = m*T(ATy) <0,

since z* > 0 and ATy < 0. Hence we have b7y < 0. By (2.50) this implies ¢’z < 0.
But then we have for any positive A that x* 4+ Az is feasible for (P) and

"+ z) =cTa* + ATz,

showing that the objective value goes to minus infinity if A grows to infinity. Thus we
have shown that (P) is either infeasible or unbounded, and hence (P) has no optimal
solution.

The other case can be handled in the same way. If (D) is feasible then there exists
y* such that y* > 0 and ATy* < c¢. Due to (2.49) we find that y* +y > 0 and
AT (y* +y) < e So y* +y is feasible for (D). We then can not have ¢’z < 0, because
this gives the contradiction

0>cle> (ATy*)Tx =y T (4z) > 0,

since y* > 0 and Az > 0. Hence ¢’z > 0. By (2.50) this implies 7y > 0. But then we
have for any positive A that y* + Ay is feasible for (D) and

bl (y* + \y) = b y* + ATy,

If A grows to infinity then the last expression goes to infinity as well, so (D) is an
unbounded problem. Thus we have shown that (D) is either infeasible or unbounded.
This completes the proof. a

The following theorem summarizes the above results.

Theorem 1.26 (Strong duality theorem) For an LO problem (P) in canonical
Jorm and its dual problem (D) we have the following two alternatives:

(i) Both (P) and (D) are solvable and there exist (strictly complementary) optimal
solutions x for (P) and y for (D) such that c'x = bTy.

(it) Neither (P) nor (D) is solvable.

This theorem is known as the strong duality theorem. It is the result that we
announced in Section 2.2. It implies that if one of the problems (P) and (D) is solvable
then the other problem is solvable as well and in that case the duality gap vanishes
at optimality. So the optimal values of both problems are then equal.



40 I Theory and Complexity

If (B, N) is the optimal partition of the self-dual problem (SP) in which (P) and
(D) are embedded, then case (i) occurs if k € B and case (i) it & € N. Also, by
Theorem 1.25, case (i) occurs if and only if there exist  and y such that (2.49) holds,
and then at least one of the two problems is infeasible.

Duality is a major topic in the theory of LO. At many places in the book, and in
many ways, we explore duality properties. The above result concerns an LO problem
(P) in canonical form and its dual problem (D). In the next section we will extend
the applicability of Theorem 1.26 to any LO problem.

We conclude the present section with an interesting observation.

Remark I.27 In the classical approach to LO we have so-called theorems of the
alternatives, also known as variants of Farkas’ lemma. We want to establish here that the
fact that (2.47) has a strictly complementary solution for each vector ¢ € IR™ implies Farkas’
lemma. We show this below for the following variant of the lemma.

Lemma 1.28 (Farkas’ lemma [75]) For a given m X n matrit A and a vector b € R™
either the system
Ar>b, x>0

has a solution or the system
ATy<0,b"y>0,y>0

has a solution but not both systems have a solution.

Proof: The obvious part of the lemma is that not both systems can have a solution, because
this would lead to the contradiction

0<biy< (Am)Ty =2TATy <o.
Taking ¢ = 0 in (2.47), it follows that there exist z and y such that the two vectors

Y Ax — kb

are strictly complementary. For s there are two possibilities: either x = 0 or x > 0. In the
first case we obtain ATy < 0, 5Ty > 0,y > 0. In the second case we may assume without
loss of generality that x = 1. Then « satisfies Az > b, & > 0, proving the claim.? .

2.10 The dual problem of an arbitrary LO problem

Every LO problem can be transformed into a canonical form. In fact, this can be done
in many ways. In its canonical form the problem has a dual problem. In this way we
can obtain a dual problem for any LO problem. Unfortunately the transformation to
canonical form is not unique, and as a consequence, the dual problem obtained in this
way is not uniquely determined.

25 Exercise 18 Derive Theorem 1.22 from Farkas’ lemma. In other words, use Farkas’ lemma to show
that for any skew-symmetric matrix M there exists a vector x such that

x>0, Mx>0, x+ Mx>O0.
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The aim of this section is to show that we can find a dual problem for any given
problem in a unique and simple way, so that when taking the dual of the dual problem
we get the original problem, in its original description.

Recall that three types of variables can be distinguished: nonnegative variables, free
variables and nonpositive variables. Similarly, three types of constraints can occur
in an LO problem: equality constraints, inequality constraints of the < type and
inequality constraints of the > type. For our present purpose we need to consider the
LO problem in its most general form, with all types of constraint and all types of
variable. Therefore, we consider the following problem as the primal problem:

@77 120 Agz® + Ajxt + Apx? = B0
(P) ming |c! 21| ¢ Bor" + Byl + Box2 > b1, 2! >0,22<0,
& z? Coz® + Ciz! + Coz? < b?

where, for each i = 0,1,2, A;, B; and C; are matrices and b, ¢ and z? are vectors,
and the sizes of these matrices and vectors, which we do not further specify, are such
that all expressions in the problem are well defined.

Now let us determine the dual of this problem. We first put it into canonical form.26
To this end we replace the equality constraint by two inequality constraints and we
multiply the < constraint by —1. Furthermore, we replace the nonpositive variable x>
by 23 = —z? and the free variable z° by £+ — £~ with ¥ and #~ nonnegative. This
yields the following equivalent problem:

T
0 zt
minimize — T
el !
2 23
AO —AO Al —A2 .17+ bO J?+
—AO AO —Al AQ T~ _bO x-
subject to > >0
. By —By By —By| ||| 02| | 2|~
700 Co 701 02 IEB 7b2 IEB

In terms of vectors z',2%, 2% 2% that contain the appropriate nonnegative dual

variables, the dual of this problem becomes

A
- 22
maximize bl 3

—b? 22

26 The transformations carried out below lead to an increase of the numbers of constraints and
variables in the problem formulation. They are therefore ‘bad’ from a computational point of view.
But our present purpose is purely theoretical. In Appendix D it is shown how the problem can be
put in canonical form without increasing these numbers.
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Al —AT B -t [+ & 2!
~AY AT -BEY c¥ | | 2? —c? 22

subject to < >0
) AT AT BT CT| |3 EERA P
—Ag Ag —B2T CQT 24 —c? 24

We can easily check that the variables z' and 22 only occur together in the combination

21 — 22, Therefore, we can replace the variables by one free variable y° := 2! — 22.

This reduces the problem to

T
bO yO
maximize bl 23
7b2 4
A5 B i) 0
AL -BE of —cY 23
subject to 2| < , > 0.
) AT gr—or | |5, | &
z
_AT _BI of _¢?

In this problem the first two blocks of constraints can be taken together into one block
of equality constraints:

T
B0 y° Aty + B2 -cfzt = & e
max bt 2 AT 4 B2 ot < L, [ 4] >0
z
—b? 2 —ATy — BI3 +CTA < -2

Finally we multiply the last block of constraints by -1, we replace the nonnegative

variable 2% by y! = 23 and the nonnegative variable z* by the nonpositive variable
2

y2 = —z*. This transforms the dual problem to its final form, namely
T
L[y AT+ Bly +CTy =
(D) max< | bt y' | AT+ By + Ty <yt >0,47<0
| [y*] AT+ BIy +Ciyt >

IV IA

Comparison of the primal problem (P) with its dual problem (D), in its final
description, reveals some simple rules for the construction of a dual problem for
any given LO problem. First, the objective vector and the right-hand side vector are
interchanged in the two problems, and the constraint matrix is transposed. At first
sight it may not be obvious that the types of the dual variables and the dual constraints
can be determined. We need to realize that the vector 4 of dual variables relates to
the first block of constraints in the primal problem, y' to the second block and y? to
the third block of constraints. Then the relation becomes obvious: equality constraints
in the primal problem yield free variables in the dual problem, inequality constraints
in the primal problem of type > yield nonnegative variables in the dual problem, and
inequality constraints in the primal problem of type < yield nonpositive variables in
the dual problem. For the types of dual constraint we have similar relations. Here the
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vector of primal variables x° relates to the first block of constraints in the dual problem,
z' to the second block and x? to the third block of constraints. Free variables in the
primal problem yield equality constraints in the dual problem, nonnegative variables
in the primal problem yield inequality constraints of type < in the dual problem, and
nonpositive variables in the primal problem yield inequality constraints of type > in
the dual problem. Table 2.1. summarizes these observations, and as such provides a
simple scheme for writing down a dual problem for any given minimization problem.
To get the dual of a maximization problem, one simply has to use the table from the
right to the left.

Primal problem (P)

Dual problem (D)

T

min c¢'x

max b7y

equality constraint
inequality constraint

inequality constraint

free variable
variable > 0

variable < 0

free variable
variable > 0

variable < 0

equality constraint
inequality constraint

inequality constraint

AARVAN

Table 2.1. Scheme for dualizing.

As indicated before, the dualizing scheme is such that when it is applied twice, the
original problem is returned. This easily follows from Table 2.1., by inspection.?”

2.11 Convergence of the central path

We already announced in footnote 23 (page 36) that the central path has a unique
limit point in the optimal set. Because this result was not needed in the rest of this
chapter, we postponed its proof to this section. We also characterize the limit point
as the so-called analytic center of the optimal set of (SP).

As before, we assume that the central path of (SP) exists. Our aim is to investigate
the behavior of the central path as p tends to 0. From the proof of Theorem 1.20 we
know that the central path has a subsequence converging to an optimal solution. This
was sufficient for proving the existence of a strictly complementary solution of (SP).
However, as we show below, the central path itself converges. The limit point z* and

27 Exercise 14 Using the results of this chapter prove that the following three statements are
equivalent:

(i) (SP) satisfies the interior-point condition;
(ii) the level sets £ := {(z, s(2) : ¢T2<y,8(2) =Mz4+q>0,z> 0} of ¢Tz are bounded;
(i74) the optimal set of (SP) is bounded.
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its surplus vector s* := s(z*) form a strictly complementary optimal solution pair,
and hence determine the optimal partition (B, N) of (SP).
The optimal set of (SP) is given by

SP* ={(2,8) : Mz+q=s,2>0,5>0, qu:O}.
This makes clear that SP* is the intersection of the affine space
{(z,s) c Mz4q=s,q'z :O}

with the nonnegative orthant of R*".

At this stage we need to define the analytic center of SP*. We give the definition
for the more general case of an arbitrary (nonempty) set that is the intersection of an
affine space in IR” and the nonnegative orthant of IR”.

Definition 1.29 (Analytic center) ?® Let the nonempty and bounded set T be the
intersection of an affine space in RP with the nonnegative orthant of RP. We define
the support o(T) of T as the subset of the full index set {1,2,...,p} given by

o(T)={i : 3z € T such that x; > 0}.

The analytic center of T is defined as the zero vector if o(7T) is empty; otherwise it is
the vector in T that maximizes the product

I] = =zeT. (2.51)

If the support of the set 7 in the above definition is nonempty then the convexity of
T implies the existence of a vector € 7 such that x,(7) > 0. Moreover, if o(7) is
nonempty then the maximum value of the product (2.51) exists since 7 is bounded.
Since the logarithm of the product (2.51) is strictly concave, the maximum value (if it
exists) is attained at a unique point of 7. Thus the above definition uniquely defines
the analytic center for any bounded subset that is the intersection of an affine space
in IR? with the nonnegative orthant of IR”.
Due to Lemma 1.9 any pair (2, s) € SP* satisfies

elz +el's(z) =n.

This makes clear that the optimal set SP* is bounded. Its analytic center therefore
exists. We now show that the central path converges to this analytic center. The proof
very much resembles that of Theorem 1.20.%°

28 The notion of analytic center of a polyhedron was introduced by Sonnevend [257]. It plays a crucial
role in the theory of interior-point methods.

29 The limiting behavior of the central path as p approaches zero has been an important subject in
research on interior-point methods for a long time. In the book by Fiacco and McCormick [77]
the convergence of the central path to an optimal solution is investigated for general convex
optimization problems. McLinden [197] considered the limiting behavior of the path for monotone
complementarity problems and introduced the idea for the proof-technique of Theorem [.20, which
was later adapted by Giiler and Ye [135]. Megiddo [200] extensively investigated the properties of
the central path, which motivated Monteiro and Adler [218], Tanabe [261] and Kojima, Mizuno
and Yoshise [178] to investigate primal-dual methods. Other relevant references for the limiting
behavior of the central path are Adler and Monteiro [3], Asié¢, Kovagevié-Vujci¢ and Radosavljevié-
Nikoli¢ [28], Giiler [131], Kojima, Mizuno and Noma [176], Monteiro and Tsuchiya [222] and
Witzgall, Boggs and Domich [294], Halické [137], Wechs [290] and Zhao and Zhu [321].
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Theorem 1.30 The central path converges to the analytic center of the optimal set
SP* of (SP).

Proof: Let (z*,s") be an accumulation point of the central path, where s* = s(z*).
The existence of such a point has been established in the proof of Theorem 1.20. Let
{1} be a positive sequence such that uz — 0 and such that (z(ug), (Mk)) with
s(pr) = s(z(ur)), converges to (z*,s*). Then z* is optlmal which means z*s* = 0,
and z* and s* are strictly complementary, i.e, z* + s* > 0.

Now let z be optimal in (SP) and let § = MZ + ¢ be its surplus vector. Applying
the orthogonality property (2.22) to the points zZ and z(u) we obtain

(z(1) = 2)" (s(ur) — 5) = 0.
Rearranging terms and using z () s(pr) = npy, and (2)75 = 0, we get
Z )+ 52 (uw) = ke
=1 j=1

Since the pair (2%, s*) is strictly complementary and (Z, 3) is an arbitrary optimal pair,
we have for each coordinate j:

z;=0=2=0, s;=0=35;=0.
Hence, z; =01if j ¢ 0(2*) and 5; =0 if j ¢ o(s*). Thus we may write
> sizi(uk) = np.
jEo(z*) jEo(s*)
Dividing both sides by up = z;(uz)s;(px), we get

jeaten FlH) T

Letting & — o0, it follows that
Zj
j€o(z*) 7 jea(s*) 7

Using the arithmetic-geometric-mean inequality we obtain
1/n

2002 <3 X2 > 2=t
J

jco(z*) I jeo(s*) J j€a(zr) 7 jeo(s?)

3=

Obviously, the above inequality implies
II % II <11 = Il &
j€o(z*)  jeo(s ) JGU(Z ) JEO 5%)

This shows that (z*,s") maximizes the product [[;c, .« 2j[[ ;e (s+) S5 over the
optimal set. Hence the central path of (SP) has ounly one accumulation point when u
approaches zero and this is the analytic center of SP*. a
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Example I.31 Let us compute the limit point of the central path of the self-dual
problem (SP) in Example 1.7, as given by (2.19). Recall from (2.26) in Example 1.12
that any optimal solution has the form

2k 0
0 K

z= |k |, s(z)= 0 , 0<k <1,
K 0

o] [

from which the sets B and N follow:

ot
\
ot
P
| I—

B={1,3,4}, N=1{2,5}.

Hence we have for any optimal z,

H 25 H sj(2) = 26% (5 — 5K) = 10 (/@'4 —K7).

je€B  jEN

This product is maximal for k = 0.8, so the analytical center of the optimal set is
given by 30,31,32,33
ta)

1.6 0
0 0.8
z=108], s(z)=]0
0.8 0
0 1 ¢

The convergence of the central path when u goes to zero implies the boundedness of
the coordinates of z(u) and s(u) for any finite section of the central path. Of course,
this also follows from Lemma 1.9 and (2.33).3*

30 Exercise 15 Find the analytic center of the self-dual problem considered in Exercise 4 (page 27).

31 Exercise 16 Find the analytic center of the self-dual problem considered in Exercise 5 (page 27).

)
)
32 Exercise 17 Find the analytic center of the self-dual problem considered in Exercise 6 (page 27).
)

o~~~ —

33 Exercise 18 Find the analytic center of the self-dual problem considered in Exercise 7 (page 27).

34 Exercise 19 For any positive u consider the set
SPy = {(z7 8) : Mz+qg=s,2>0,8>0, q'z= qu(u)}.

Using the same proof-technique as for Theorem 1.30, show that the pair (z(u), s(u)) is the analytic
center of this set.
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A Polynomial Algorithm for the
Self-dual Model

3.1 Introduction

The previous chapter made clear that any (canonical) LO problem can be solved by
finding a strictly complementary solution of a specific self-dual problem that satisfies
the interior-point assumption. In particular, the self-dual problem has the form

(SP) min {qu s Mz> —q, 2> 0} ,

where M is a skew-symmetric matrix and ¢ a nonnegative vector. Deviating from the
notation in Chapter 2 we denote the order of M as n (instead of ). Then, according
to (2.12) the vector g has the form

Op—
q::[nll. (3.1)
n
Note that due to the definition of the matrix M we may assume that n > 5.
Like before, we associate to any vector z € R™ its slack vector s(z):

s(z):=Mz+q. (3.2)
As a consequence we have
z is a feasible for (SP) il and only if z > 0 and s(z) > 0.

Also recall that the all-one vector e is feasible for (SP) and its slack vector is the
all-one vector (cf. Theorem 1.5):
s(e) =e. (3.3)

Assuming that the entries in M and g are integral (or rational), we show in this chapter
that we can find a strictly complementary solution of (SP) in polynomial time. This
means that we present an algorithin that yields a strictly complementary solution of
(SP) after a number of arithmetic operations that is bounded by a polynomial in the
size of (SP).

Remark I.32 The terminology is taken from complexity theory. For our purpose it is not
necessary to have a deep understanding of this theory. Major contributions to complexity
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theory were given by Cook [56], Karp [166], Aho, Hopcroft and Ullman [5], and Garey and
Johnson [92]. For a survey focusing on linear and combinatorial optimization problems we
refer the reader to Schrijver [250]. Complexity theory distinguishes between easy and hard
problems. In this theory a problem consists of a class of problem instances, so ‘the’ LO
problem consists of all possible instances of LO problems; here we restrict ourselves to LO
problems with integral input data.® A problem is called solvable in polynomial time (or simply
polynomial or easy) if there exists an algorithm that solves each instance of the problem in
a time that is bounded above by a polynomial in the size of the problem instance; otherwise
the problem is considered to be hard. In general the size of an instance is defined as the
length of a binary string encoding the instance. For the problem (SP) such a string consists
of binary encodings of the entries in the matrix M and the vector g. Note that the binary
encoding of a positive integer a requires a string of length 1 + [log,(1 + |al)]. (The first 1
serves to encode the sign of the number.) If the entries in M and ¢ are integral, the total
length of the string for encoding (SP) becomes

n n

> (1 + Mogy (14 |a:)]) + Y (1 + [log, (1 +[M;])]) =

i=1 i,j=1

n(n+ 1)+ flog, (1+ a1+ > [log, (1+ [Mi;))] .- (3.4)

i=1 i,j=1
Instead we work with the smaller number
L=n(n+1)+log, 11, (3.5)

where II is the product of all nonzero entries in ¢ and M. Ignoring the integrality operators,
we can show that the expression in (3.4) is less than 2L. In fact, one can easily understand
that the number of operations of an algorithm is polynomial in (3.4) if and only if it is
bounded by a polynomial in L. °

We counsider the number L, as given by (3.5), as the size of (SP). In fact we use
this number only once. In the next section we present an algorithm that generates a
positive vector z such that z7's(z) < ¢, where ¢ is any positive number, and we derive
a bound for the number of iterations required by the algorithm. Then, in Section 3.3,
we show that this algorithin can be used to find a strictly complementary solution of
(5P) and we derive an iteration bound that depends on the so-called condition number
of (SP). Finally, we show that the iteration bound can be bounded from above by a
polynomial in the quantity L, which represents the size of (SP).

3.2 Finding an e-solution

After all the theoretical results of the previous sections we are now ready to present
an algorithm that finds a strictly complementary solution of (SP) in polynomial time.
The working horse in the algorithm is the Newton step that was introduced in Section
2.7.2. Tt will be convenient to recall its definition and some of its properties.

1 We could easily have included LO problems with rational input data in our considerations, because
if the entries in M and g are rational numbers then after multiplication of these entries with their
smallest common multiple, all entries become integral. Thus, each problem instance with rational
data can easily be transformed to an equivalent problem with integral data.
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Given a positive vector z such that s = s(z) > 0, the Newton direction Az at z

with respect to p (or the p-center z(p)) is uniquely determined by the linear system
(cf. (2.35) — (2.36))

MAz — As = 0, (3.6)
2As + sAz = pe — zs. (3.7

Substituting (3.6) into (3.7) we get 2
(S+ZM)Az = ne — zs.

Since the matrix S + ZM is invertible (cf. Exercise 9, page 29), it follows that

Az = (S+ZM) ' (ue — zs) (3.8)

As = MAz. (3.9)
The result of the Newton step is denoted as

2T =2+ Az
the new slack vector is then given by
stTi=s(zt)=M(z+A2) +q=s+MAz

The vectors Az and As are orthogonal, by (2.34). After the Newton step the objective
value has the desired value npu, by (2.38):

¢ z=s"2=np. (3.10)

The variance vector of z with respect to p is defined by (cf. (2.41)):

vz |28 (3.11)
7
This implies
zs(z) =pe < v=e. (3.12)

We use §(z, 1) as a measure for the proximity of z to z(u). It is defined by (cf. (2.42))
8z, p) =% |lv—v7!|. (3.13)

If z = z(p) then v = e and hence §(z, pu) = 0, otherwise 6(z, ) > 0. If d(z, 1) < 1
then the Newton step is feasible, and if §(z, ) < 1/v/2 then the Newton process
quadratically fast converges to z{(u). This is a consequence of the next lemma (cf.
Theorem 1.16).

Lemma 1.33 If§ := §(z, 1) < 1, then the Newton step is strictly feasible, i.e., z+ > 0
and sT > 0. Moreover,
52

V2(1 =62y

6z ) <

2 Here, as usual, Z = diag (z) and S = diag (s).

3
Exercise 20 If we define d := /z/s, where s = s(z), then show that the Newton step Az satisfies

(I+DMD)Az = z (v_l —v) = s~ -z
v
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3.2.1 Newton-step algorithm

The idea of the algorithm is quite simple. Starting at z = e, we choose p < 1 such
that

0z, 1) < 75, (3.14)
and perform a Newton step targeting at z(u). After the step the new iterate z
satisfies 6(z, ) < 3. Then we decrease y such that (3.14) holds for the new values
of z and u, and repeat the procedure. Note that after each Newton step we have
q'z = z's(z) = nu. Thus, if p approaches zero, then z will approach the set of

optimal solutions. Formally the algorithm can be stated as follows.

Full-Newton step algorithm

Input:
An accuracy parameter ¢ > 0;
a barrier update parameter 6, 0 < 8 < 1.

begin
z=e pu:=1
while np > e do
begin
pi=(1—0)u;
z:=z+ Az;
end
end

Note that the reduction of the barrier parameter u is realized by the multiplication
with the factor 1 — 6. In the next section we discuss how an appropriate value of the
update parameter 6 can be obtained, so that during the course of the algorithm the
iterates are kept within the region where Newton’s method is quadratically convergent.

3.2.2  Complexity analysis

At the start of the algorithm we have 4 = 1 and z = z(1) = e, whence ¢7 2 = n and
8(z,u) = 0. In each iteration p is first reduced with the factor 1 — @ and then the
Newton step is made targeting the new p-center. It will be clear that the reduction
of 1 has effect on the value of the proximity measure. This effect is fully described by
the following lemma.

Lemma 1.34 Let z > 0 and u > 0 be such that s = s(z) > 0 and g7z = nu. Moreover,
let § :=d(z,p) and i’ = (1 — @)u. Then

9’n

5(2,/1/)2 — (1 — 9)52 + m
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Proof: Let 67 :=6§(z, ') and v = \/zs/u, as in (3.11). Then, by definition,
2

A(57)2 = ‘\/ﬁvl - \/%Tg

s = nu it follows that ||v||” = n. This implies

From 2T

vl (vt =) =n— lv]|* = 0.

1

Hence, v is orthogonal to v—" — v. Therefore,

2 2 2
+32 _ -1 2 07 v]|” -1 2 nb
40T == ot =0+ T = =) o =T+
Since Hv’l — vH = 20, the result follows. a
Lemma 1.35 Let 0 = \/%—n Then at the start of each iteration we have
T 1
g z=np and (z,pn) < 3 (3.15)

Proof: At the start of the first iteration we have 4 = 1 and z = e, so ¢’ z = n and
d(z, ;1) = 0. Therefore (3.15) certainly holds at the start of the first iteration. Now
suppose that (3.15) holds at the start of some iteration. We show that (3.15) then also
holds at the start of the next iteration. Let § = d(z, ). When the barrier parameter
is updated to p' = (1 — 0)u, Lemma 1.34 gives

0%n <179Jr 1
4(1—-6) = 4 8(1—1#6)

The last inequality can be understood as follows. Due to n > 2 we have 0 < 0 <
1/ Vi=1 /2. The left hand side expression in the last inequality is a convex function
of 6. Its value at § = 0 as well as at 8 = 1/2 equals 3/8, hence its value does not
exceed 3/8 for 6 € [0,1/2].

Since 3/8 < 1/2, it follows that after the p-update 6(z,u’) < 1/+/2. Hence, by
Lemma 1.33, after performing the Newton step we certainly have §(zT,p") < 1/2.
Finally, by (3.10), ¢* 27 = nu'. Thus the lemma has been proved. O

5z 1) = (1—60)5° +

3
< —.
-8

How many iterations are needed by the algorithm? The answer is provided by the

following lemma.
1 n

Proof: Initially, the objective value is n and in each iteration it is reduced by the
factor 1 — 0. Hence, after k iterations we have p = (1 — 0)*. Therefore, the objective
value, given by ¢ z(u) = ny, is smaller than, or equal to ¢ if

Lemma 1.36 Afier at most

iterations we have nu < €.

(1-6Fn<e
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Taking logarithms, this becomes
klog (1 —6) +logn <loge.
Since —log (1 — 8) > 6, this certainly holds if
kO > logn —loge = log g
This implies the lemma. O

The above results are summarized in the next theorem which requires no further
proof.

Theorem 1.37 If 0 = \/%—n then the algorithm requires at most

e

iterations. The output is a feasible z > 0 such that ¢*z = nu < ¢ and §(z, u) < %

This theorem shows that we can get an e-solution z of our self-dual model with ¢ as
small as desirable.

A crucial question for us is whether the variable x = z,_1 is positive or zero in
the limit, when it goes to zero. In practice, for small enough ¢ it is usually no serious
problem to decide which of the two cases occurs. In theory, however, this means that
we need to know what the optimal partition of the problem is. As we explain in the
next section, the optimal partition can be found in polynomial time. This requires
some further analysis of the central path.

Example 1.38 In this example we demonstrate the behavior of the Full-Newton step
algorithm by applying it to the problem (SP) in Example 1.7, as given in (2.19) on
page 23. According to Theorem 1.37, with n = 5, the algorithm requires at most

[\/ﬁ log a

iterations. For & = 1072 we have log (5/¢) = log 5000 = 8.5172, and we get 27 as an
upper bound for the number of iterations. When running the algorithm with this ¢
the actual number of iterations is 22. The actual values of the output of the algorithm

are
z = (1.5999, 0.0002, 0.8000, 0.8000, 0.0002)”

and
s(z) = (0.0001, 0.8000, 0.0002, 0.0002, 1.OOOO)T.

The left plot in Figure 3.1 shows how the coordinates of the vector z := (21, 20, 23, 24 =
kK, z5 = 1), which contains the variables in the problem, develop in the course of the
algorithm. The right plot does the same for the coordinates of the surplus vector
s(z) := (s1, 82, 83, 84, 55). Observe that z and s(z) converge nicely to the limit point
of the central path of the sample problem as given in Example 1.31. &

4 Tt is worth pointing out that if we put & = ny in the iteration bound of Theorem 1.37 we get
exactly the same bound as given by (2.45).
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1.6 T 1.6 T T T
141 1 141 ]
1.21 k 1.21 k
85
1 1 1 /
08} 0.8}
So
06 b 0.6 . b
83
04r 1 04 1
02f 1 02} “ 1
$
0 ‘ 7 . . 0 ‘ . .
0 5 10 15 20 0 5 10 15 20

iteration number iteration number

Figure 3.1 Output Full-Newton step algorithm for the problem in Example 1.7.

3.3 Polynomial complexity result

3.3.1 Introduction

Having a strictly complementary solution z of (S P), we also know the optimal partition
(B, N) of (SP), as defined in Section 2.6. For if z is a strictly complementary solution
of (SP) then we have zs(z) = 0 and z + s(z) > 0, and the optimal partition follows
from®

N ={i: si(») > 0}.

Definition 1.39 The restriction of a vector z € R" to the coordinates in a subset I
of the full index set {1,2,...,n} is denoted by z;.

Hence if Z is a strictly complementary solution of (SP) then

zZg > 0, Zy =0, SB(E):O, SN(Z)>O.

Now let z be any feasible solution of (SP). Then, by Lemma I.10, with 21 = z, z9 = 2
we obtain that z is optimal if and only if zs(Z) = Zs(z) = 0. This gives

z is optimal for (SP) <= zy=0 and sp(z)=0.

5 Tt may be sensible to point out that if, conversely, the optimal partition is known, then it is not
obvious at all how to find a strictly complementary solution of (SP).



54 I Theory and Complexity

As a consequence, the set SP* of optimal solutions of (SP) is completely determined
by the optimal partition (B, N) of (SP). We thus may write

SP*={2z€ 8P : zxy =0, sp(z) =0},

where SP denotes the feasible region of (SP).

Assuming that M and ¢ are integral we show in this section that a strictly
complementary solution of (SP) can be found in polynomial time. We divide the
work into a few steps. First we apply the Full-Newton step algorithm with a suitable
(small enough) value of the accuracy parameter €. This yields a positive solution =z
of (SP) such that s(z) is positive as well and such that the pair (z,s(z)) is almost
strictly complementary in the sense that for each index i one of the positive coordinates
in the pair (z; s;(2)) is large and the other is small. To distinguish between ‘large’
and ‘small’ coordinates we introduce the so-called condition number of (SP). We
are able to specify ¢ such that the large coordinates of z are in B and the small
coordinates of z in N. The optimal partition of (SP) can thus be derived from
the almost strictly complementary solution z provided by the algorithm. Then, in
Section 3.3.6, a rounding procedure is described that yields a strictly complementary
solution of (SP) in polynomial time.

3.5.2  Condition number

Below, (B, N) always denotes the optimal partition of (SP), and SP* the optimal set
of (SP). We first introduce the following two numbers:

ohp = mip max sk, obe =y max i)
By convention we take 0%p = oo if B is empty and op = co if V is empty. Since the
optimal set SP* is bounded, c%p is finite if B is nonempty and o%p is finite if NV is
nonempty. Due to the definition of the sets B and N both numbers are positive, and
since B and N cannot be both empty at least one of the two numbers is finite. As a
consequence, the number

ogp :=min{oép,0ip}
is positive and finite. This number plays a crucial role in the further analysis and is

called the condition number of (SP).% Using that z and s(z) are complementary if
z € 8SP* we can easily verify that ogp can also be written as

7sp i 2, g s}

Example 1.40 Let us calculate the condition number of our sample problem (2.19)
in Example 1.7. We found in Example 1.12 that any optimal solution z has the form

6 This condition number seems to be a natural quantity for measuring the degree of hardness of
(SP). The smaller the number the more difficult it is to find a strictly complementary solution.
In a more general context, it was introduced by Ye [311]. See also Ye and Pardalos [314]. For a
discussion of other condition numbers and their relation to the size of a problem we refer the reader
to Vavasis and Ye [280].
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as given by (2.26), namely

2k 0
0 K
z=| k|, s(z)= 0 , 0<kr<1
K 0
0 5—05k
Hence we have for any optimal z,
2K
K
z+s(z) = R , 0<k<<1
K
5 — 5K

To find the condition number we need to find the maximum values of each of the
variables in in this vector. These values are 2, 1, 1, 1 (for x = 1) and 5 (for K = 0),
respectively. The minimum of these maximal values being 1, the condition number of
our sample problem (2.19) turns out to be 1.7:%910 O

In the above example we were able to calculate the condition number of a given
problem. We see below that when we know the condition number of a problem we
can profit from it in the solution procedure. In general, however, the calculation of
the condition number is at least as hard as solving the problem. Hence, in general, we
have to solve a problem without knowing its condition number. In such cases there is
a cheap way to get a lower bound for the condition number. We proceed by deriving
such a lower bound for ogp in terms of the data of the problem (SP). We introduce
some more notation.

Definition 1.41 The submatriz of M consisting of the elements in the rows whose
indices are in I and the columns whose indices are in J is denoted by Myy.

Using this convention, we have for any vector z and its surplus vector s = s(z):

s Mpgp M z
B _ BB MBN B I qB . (3.16)

SN Myp Myn | | 28 an

Recall from the previous section that the vector z is optimal if and only if z and s are
nonnegative, zy = 0 and sg = 0. Hence we have ¢7 2 = quB. Due to the existence of

7 Exercise 21 Using the results of Exercise 4 (page 27), prove that the condition number of the

self-dual problem in question equals 5/4.

Exercise 22 Using the results of Exercise 5 (page 27), prove that the condition number of the
self-dual problem in question equals 5/4.

Exercise 23 Using the results of Exercise 6 (page 27), prove that the condition number of the
self-dual problem in question equals 5/(1 + 3) if 3 > 2 and otherwise 53/(2(1 + 3)).

10 Exercise 24 Using the results of Exercise 7 (page 27), prove that the condition number of the
self-dual problem in question equals 5/(4 — 3) if 3 < —1 and otherwise —53/(4 — 3).
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a strictly complementary solution z, for which zg is positive, we conclude that
g =0. (3.17)

Thus it becomes clear that a vector z and its surplus vector s are optimal for (SP) if
and only if z5 >0, 2y =0, sg =0, sy > 0 and

o] [amm g ] [on] o)
o] [tvm it ] [ 0]

This is equivalent to

M 0 z 0
BB VBN Pl=| 7|, 2520, 2n=0,s5=0,sy>0. (3.18)

Myp —Inn| | SN —qN

Note that any strictly complementary solution z gives rise to a positive solution of
this system. For the calculation of ogp we need to know the maximal value of each
coordinate of the vector (zp, sy) when this vector runs through all possible solutions
of (3.18). Then ogp is just the smallest of all these maximal values.

At this stage we may apply Lemma C.1 in Appendix C to (3.18), which gives us an
easy to compute lower bound for ogp.

Theorem 1.42 The condition number csp of (SP) satisfies

1
OSP 2 a7
[l 1M

where M denotes the j-th column of M.

Proof: Recall that the optimal set of (SP) is determined by the equation (3.18). Also,
by Lemma 1.9 we have ez 4 e”s(z) = n, showing that the optimal set is bounded.
As we just established, the system (3.18) has a positive solution, and hence we may
apply Lemma C.1 to (3.18) with

A Mpp Opn .
Myp —Inn

The columns in A made up by the two left blocks are the columns M; of M with
j € B, whereas the columns made up by the two right blocks are unit vectors. Thus
we obtain that the maximal value of each coordinate of the vector (zg, sx) is bounded

below by the quantity
1

e M)
With the definition of ogp this implies

1
osp 2 > .
[Lien 1M = T, 105

The last inequality is an obvious consequence of the assumption that all columns in
M are nonzero and integral. Hence the theorem has been proved. O
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3.8.8 Large and small variables

It will be convenient to call the coordinates of z(u) that are indexed by B the
large coordinates of z(u), and the other coordinates the small coordinates of z(u).
Furthermore, the coordinates of sy (i) are called the large coordinates of s(u), and
the coordinates of sg(u) small coordinates of s(p). The next lemma provides lower
bounds for the large coordinates and upper bounds for the small coordinates of z(u)
and s(u). This lemma implies that the large coordinates of z(u) and s(u) are bounded
away from zero along the central path, and there exists a uniform lower bound that is
independent of u. Moreover, the small coordinates are bounded above by a constant
times i, where the constant depends only on the data in the problem (SP). In other
words, the order of magnitude of the small coordinates is O(u). The bounds in the
lemma use the condition number ogp of (SP).

Lemma 1.43 For any positive u we have

osp 28

zl(,u)z—,zeB, Zl(,u)g—,’LGN,
n osp
7 o
agsp n
Proof: First let ¢« € N and let Z be an optimal solution such that §; = s;(%) is

maximal. Then the definition of the condition number ogp implies that §; > ogp.
Applying the orthogonality property (2.22) to the points Z and z(u) we obtain

(z(1) — 2)" (s(u) — 3) =0,

which gives

This implies
z(p)3; < 2(n)75 <np.
Dividing by §; and using that §; > ogp we obtain

n n

Si gsp
Since z;(p)s:(1) = p, it also follows that

asp
) > =2,
si(u) > —

This proves the second and fourth inequality in the lemma. The other inequalities are
obtained in the same way. Let ¢« € B and let Z be an optimal solution such that z;
is maximal. Then the definition of the condition number ogp implies that Z; > ggp.
Applying the orthogonality property to the points Z and z(u) we obtain in the same
way as before

From this we deduce that



58 I Theory and Complexity

Using once more z(u)s(p) = pe we find

asp
Z > —
(1) = "
completing the proof of the lemma.!l:12 O

We collect the results of the above lemma in Table 3.1..

1€ B teN
zi(p) > 2B < b
si(p) | <ok > Zsv

Table 3.1. Estimates for large and small variables on the central path.

The leinma has an important consequence. If ¢ is so small that
ny < osp
ogsp n
then we have a complete separation of the small and the large variables. This means
that if a point z(u) on the central path is given so that

2
asp

n< =3

b

then we can determine the optimal partition (B, N) of (SP).

In the next section we show that the Full-Newton step algorithm can produce a
point z in the neighborhood of the central path with this feature, namely that it gives
a complete separation of the small and the large variables.

8.8.4 Finding the optimal partition
Theorem 1.37 states that after at most

[\/% log 5 (3.19)

1 Exercise 25 Let 0 < p < . Using the orthogonality property (2.22), show that for each %
(1<i<n),

™
&
—
=
=

)
&
PN
=
=

which implies
zi(p) <nzs(p),  si(p) < nsi(p).

For a proof we refer the reader to Vavasis and Ye [281].
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iterations the Full-Newton step algorithm yields a feasible solution z such that
q'z = nu < e and 8(z, ) < % We show in this section that if p is small enough
we can recognize the optimal partition (B, N) from z, and such z can be found in
a number of iterations that depends only on the dimension n and on the condition
number ogp of (SP).

We need a simple measure for the distance of z to the central path. To this end, for

each positive feasible vector z with s(z) > 0, we define the number 6.(z) as follows:

. max (zs(2))
%(2) min (25(z)) (3.20)

Observe that 6.(z) = 1 if and only if zs(z) is a multiple of the all-one vector e. This
occurs precisely if z lies on the central path. Otherwise we have §.(z) > 1. We consider
5.(%) as an indicator for the ‘distance’ of z to the central path.!?

Lemma L.44 If §(z, p) < & then 6.(z) < 4.

Proof: Using the variance vector v of z, with respect to the given y > 0, we may
write
max (pv?)  max (v?)

de(z) = =

min (v?) min (v2)

Using (3.13), it follows from §(z, ) < 3 that
oot <.
Without loss of generality we assume that the coordinates of v are ordered such that
VI 2 V2 2 ... > Up.

Then 6.(z) = v}/v2. Now consider the problem

2
max{v—l : Hv—v_lu < 1}.
T

The optimal value of this problem is an upper bound for d.(z). One may easily verify
that the optimal solution has v; =1 if 1 <i < n, v1 = V2 and v, = 1/\/§ Hence the
optimal value is 4.1* This proves the lemma. a

13 In the analysis of interior-point methods we always need to introduce a quantity that measures the
‘distance’ of a feasible vector x to the central path. This can be done in many ways as becomes
apparent in the course of this book. In the coming chapters we make use of a variety of so-called
proximity measures. All these measures are based on the simple observation that z is on the central
path if and only if the vector zs(z) is a scalar multiple of the all-one vector.

14 Exercise 26 Prove that
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Lemma 1.45 Let z be a feasible solution of (SP) such that §.(z) < 7. Then, with

s = s(z), we have
T

asp . z s .

zi > ——,1 € B, 2z < —, 1 €N,
™ gsp
T
zts . osp .

3 < —, 1€ B, §; > —, 1€ N.
agsp TN

Proof: The proof is basically the same as the proof of Lemma 1.43. It is a little more
complicated because the estimates now concern a point off the central path. From
8:(2) <7 we conclude that there exist positive numbers 7y and 7o such that 771 = 79
and

T <zi5 <1 1<i<n. (3.21)

When we realize that these inequalities replace the role of the identity z;(p)s;(p) = u
in the proof of Lemma I1.43 the generalization becomes almost straightforward. First
suppose that ¢ € N and let £ be an optimal solution such that §; = s;(Z) is
maximal. Then, from to the definition of ogp, it follows that §; > ogp. Applying
the orthogonality property (2.22) to the points Z and z, we obtain in the same way as
before
2:8; < 23 < 2Ts.
Hence, dividing both sides by §; and using that 5; > ogp we get

T
2 < 22
osp

From the left inequality in (3.21) we also have z;s; > 1. Hence we must have

Ti10sP
2Ts -~

S =

The right inequality in (3.21) gives 2z7s < n7. Thus

TI08p _ Ogp

§ 22— =——.

nTo nT

This proves the second and fourth inequality in the lemma. The other inequalities
are obtained in the same way. If ¢ € B and Z is an optimal solution such that Z; is
maximal, then Z; > ogp. Applying the orthogonality property (2.22) to the points 2
and z we obtain

8:2; < sTz < 2Ts.

Thus we get

Z4 osp

Using once more that z;s; > 7 and 27s < nr we obtain

T10sP Ti108P gsp
> o8P PSP TSP

2Ts nTy nT

completing the proof of the lemma. O
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i€ B 1€N

asp ZTS

“i 2 ;1 Stmp
< 7TS > TSP

Sl(z) — osp -

Table 3.2. Estimates for large and small variables if d.(z) < 7.

The results of the above lemma are shown in Table 3.2.. We conclude that if 27s

is so small that
T
zts o
2 I5P

agsp ™
then we have a complete separation of the small and the large variables. Thus we may

state without further proof the following result.

Lemma 1.46 Let z be a feasible solution of (SP) such that 0.(z) < 7. If

2
2s(z) < 75k

™

then the optimal partition of (SP) follows from

B={i: z>s(2)} and N={i: z <s(2)}. (3.22)
This lemma is the basis of our next result.
Theorem 1.47 After at most

4n?
2

osp

{\/ﬁ log W (3.23)

iterations, the Full-Newton step algorithm yields a feasible (and positive) solution z of
(SP) that reveals the optimal partition (B, N) of (SP) according to (8.22).

Proof: Let us run the Full-Newton step algorithm with ¢ = ¢/ (4n). Then Theorem
.37 states that we obtain a feasible z with z7s(2) < 0Zp/(4n) and §(z, ) < 1/2.
Lemma I.44 implies that §.(z) < 4. By Lemma .46, with 7 = 4, this z gives a complete
separation between the small variables and the large variables. By Theorem 1.37, the
required number of iterations for the given ¢ is at most

{\/ﬁ log 4n? W

osp?

which is equal to the bound given in the theorem. Thus the proof is complete. a
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Example 1.48 Let us apply Theorem 1.47 to the self-dual problem (2.19) in Example
1.7. Then n = 5 and, according to Example 1.40 (page 54), cgp = 1. Thus the iteration
bound (3.23) in Theorem 1.47 becomes

[\/ﬁ log(lOO)—‘ — [14.5628] = 15.

With the help of Figure 3.1 (page 53) we can now determine the optimal partition
and we find
B={1,3,5}, N={2,4},

in agreement with the result of Example 1.12. &

8.8.5 A rounding procedure for interior-point solutions

We have just established that the optimal partition of (SP) can be found after a
finite number of iterations of the Full-Newton step algorithm. The required number
of iterations is at most equal to the number given by (3.23). After this number of
iterations the small variables and the large variables are well enough separated from
each other to reveal the classes B and N that counstitute the optimal partition.

The aim of this section and the next section is to show that if B has been fixed then
a strictly complementary solution of (SP) can be obtained with little extra effort.1®

First we establish that the class B is not empty.

Lemma 1.49 The class B in the optimal partition of (SP) is not empty.

Proof: If B is the empty set then z = 0 is the only optimal solution. Since, by
Theorem 1.20, this solution must be strictly complementary we must have s(z) > 0.
Since s(z) = Mz + q = ¢, we find ¢ > 0. This contradicts that ¢ has zero entries, by
(3.1). This proves the lemma. O

Assuming that the optimal partition (B, N) has been determined, with B nonempty,
we describe a rounding procedure that can be applied to any positive vector z with
positive surplus vector s(z) to yield a vector Z such that z and its surplus vector
5 = s(z) are complementary (in the sense that Zy = §p = 0) but not necessarily
nonnegative. In the next section we run the algorithm an additional number of
iterations to get a sharper separation between the small and the large variables and
we show that the rounding procedure yields a strictly complementary solution in
polynomial time.

Let us have a positive vector z with positive surplus vector s(z). Recall from (3.16),
page 55, that

5B Mpp Mpn | | zB L | s
SN Myp Mnyn | | 2N qn

15 It is generally believed that interior-point methods for LO never generate an exact optimal solution
in polynomial time (Andersen and Ye [11]). In fact, Ye [308] showed in 1992 that a strictly
complementary solution can be found in polynomial time by all the known O(n3L) interior-point
methods. See also Mehrotra and Ye [208]. The rounding procedure described in this chapter is
essentially the same as the one presented in these two papers and leads to finite termination of the
algorithm.
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This implies that
sp = Mppzp + Mpnznv + gB.

Since gp = 0, by (3.17), £ = zp satisfies the system of equations in the unknown
vector & given by
AfBB&ZSB—AfBNZN. (324)

Note that zp is a ‘large’ solution of (3.24), because the entries of zg are large variables.
Oun the other hand we can easily see that (3.24) must have more solutions. This follows
from the existence of a strictly complementary solution of (SP), because for any such
solution Z we derive from Zy = 0 and sg(2) = 0 that MggZp = 0. Since Zg > 0, it
follows that the columns of Mpp are linearly dependent, and hence (3.24) has multiple
solutions.

Now let & be any solution of (3.24) and consider the vector Z defined by

Zp=2zp — &, zy = 0.
For the surplus vector 5 = s(Z) of Z we have
Sp=MppzZgp + MpnzZy = MppzZg = Mgpg (ZB —5) =0.

So we have Zy = 5§ = 0, which means that the vectors zZ and § are complementary. It
will be clear, however, that the vectors zZ and 5 are not necessarily nonnegative. This
only holds if

Zzp=zp—&£2>0,

and
sn =MypZp + MyNZN +qnv = Mnp (2B — &) +qnv = snv — Mynvzn — Myg€ > 0.

We conclude that if (3.24) admits a solution £ that satisfies the last two inequalities
then Z is a solution of (SP). Moreover, if £ satisfies these inequalities strictly, so that

zp—E£>0, sy—Mynzy — Myp€ >0, (3.25)

then Z is a strictly complementary solution of (SP). In the next section we show that
solving (3.24) by Gaussian elimination gives such a solution, provided the separation
between the small and the large variables is sharp enough.

Example 1.50 In this example we show that the Full-Newton step algorithmn
equipped with the above described rounding procedure solves the sample problem
(2.19) in Example 1.7 in one iteration. Recall from Example I1.14 that the Newton step
in the first iteration is given by (2.39) and (2.40). Since in this iteration 4 =1 — 6,
substituting # = 1/1/10, we find

1 18 41 N\ -
and
T
1 4 1 5 8
As = fﬁ (5, 999 0) = —(0.4216, 0.0351, 0.1757, 0.2811, O.OOOO)T.
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Hence, after one iteration the new iterate is given by
z = (1.1054, 0.7189, 0.8595, 0.9649, O.6838)T,

and
s = (0.5784, 0.9649, 0.8243, 0.7189, 1.0000)T.

It is interesting to observe that the sets B and N, as defined by (3.22) are already the
classes of the optimal partition of the problem:

B=1{1,34}, N={2 5}.

Now we apply the rounding procedure at z with respect to the partition (B, N). The
matrix Mpp is given by

0 1 -1
Mpp=|-1 0 2
1 -2 0

‘We have
[ 0 1 —1} [1.1054} [—0.1054}
Mgpzg=1-1 0 2 0.8595 | = 0.8243 | .
1 -2 oJ [0.9649J [70.6135

So we need to find a ‘small’ solution ¢ of the system

0 1 -1 —0.1054
Mppzp=| -1 0 2|¢= 0.8243
1 -2 0 —0.6135
A solution of this system is
[ 0.0000 |
¢ = | 0.3067
| 0.4122 |

The rounded solution is now defined by

1.1054 [ 0.0000 ] 1.1054
Zg=zp—C=| 08595 | — | 0.3067 | = | 05527 |, znx =0.
0.9649 | 0.4122 | 0.5527

Hence the rounded solution is
z = (1.1054, 0.0000, 0.5527, 0.5527, 0.0000)7.
The corresponding slack vector is
s(z) = Mz + ¢ = (0.0000, 0.5527, 0.0000, 0.0000, 2.2365)7 .

Since z and s(z) are nonnegative and complementary, z is optimal. Moreover, z+s(z) >
0, so z is a strictly complementary solution. Hence we have solved the sample problem
in one iteration. ¢
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Remark 1.51 In the above example we used for ¢ the least norm solution of (3.24). This
is the solution of the minimization problem

min {||¢|| : Mg = Mgprzp}.
Formally the least norm solution can be described as
¢= M2 Mppes,
where ]WgB denotes the generalized inverse(cf. Appendix B) of Mgg. We may then write
28 — &= (Isp — M35Mss) 28,

where Igg is the identity matrix of appropriate size.
Since we want £ to be such that zg — £ is positive, an alternative approach might be to
use the solution of
min {||z5¢|| : Mspé = Mppzp}.
Then £ is given by
¢ =75 (MgsZs)" Mpg2s.

Of course, we were lucky in the above example in two ways: the first iterate already
determined the optimal partition and, moreover, at this iterate the rounding procedure
vielded a strictly complementary solution. In general more iterations will be necessary
to find the optimal partition and once the optimal partition has been found the
rounding procedure may not yield a strictly complementary solution at once. But,
as we see in the next section, after sufficiently many iterations we can always find an
exact solution of any problem in this way, and the required number of iterations can
be bounded by a (linear) polynomial of the size of the problem.

3.8.6 Finding a strictly complementary solution

In this section we assume that the optimal partition (B, N) of (SP) is known. In the
previous section we argued that it may be assumed without loss of generality that
the set B is not empty. In this section we show that when we run the algorithm an
additional number of iterations, the rounding procedure of the previous section can be
used to construct a strictly complementary solution of (SP). The additional number
of iterations depends on the size of B and is aimed at creating a sufficiently large
distance between the small and the large variables.
We need some more notation. First, w will denote the infinity norm of M:

1<i<n

n
w:=||M|, = max Z M|
j=1

Second, B* denotes the subset of B for which the columns in Mpp are nonzero, and
third, the number 7y is defined by

1 if B* =,

H I(Mgg);l otherwise.
jEB*

B .
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Lemma 1.52 Let z be a feasible solution of (SP) such that 6.(z) <7 =4. If

2

T Ogsp
z s(z) < ,
B S i T w)rp Bl

with w and g as defined above, then a strictly complementary solution can be found
mn
*|3
o(|B*[%)

arithmetical operations.

Proof: Suppose that z is positive solution of (SP) with positive surplus vector
s = s(z) such that 6.(z) < 4 and z7s < ¢, where

2
9sp

€:= . 3.26

An(1 + w)?rp+/|B] (3.26)

Recall that the entities |B|, w and 7g are all at least 1 and also, by Lemma 1.45, that
the small variables in z and s are less than ¢/ogp and the large variables are at least
Usp/(4n).

We now show that the system (3.24) has a solution £ whose coordinates are small
enough, so that

ZBff>O, SNfMNNZNfMNB£>O. (327)

We need to distinguish between the cases where Mg is zero and nonzero respectively.

We first consider the case where Mpp = 0. Then £ = 0 satisfies (3.24) and for this

¢ the condition (3.27) for the rounded solution Z to be strictly complementary reduces
to the single inequality

sy — Myyzy > 0. (328)

This inequality is satisfied if My = 0. Otherwise, if My # 0, since zy is small we

may write
£ EW

[MNnen oo S IMNN oo 128 ] o S Mo — = —.

Osp  Osp

Hence, since sy is large, (3.28) certainly holds if

EW ogsp
gsp 4n ’
which is equivalent to
o2
sp
dnw

Since this inequality is implied by the hypothesis of the lemma, we conclude that the
rounding procedure yields a strictly complementary solution if Mgg = 0.

Now consider the case where Mpp # 0. Then we solve (3.24) by Gaussian
elimination. This goes as follows. Let B; and B; be two subsets of B such that Mg, p,is
a nonsingular square submatrix of Mpp with maximal rank, and let ¢ be the unique
solution of the equation

Mp,B,¢ = s5, — Mp,nzN-
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From Cramer’s rule we know that the i-th entry of {, with i € B,, is given by

(@)
- detM BB,
! det A131B2 ’
where M J<311) B, 1s the matrix arising by replacing the ¢-th column in Mp, g, by the vector

sp, —Mp, nvzy. Since the entries of Mp, g, are integral and this matrix is nonsingular,
the absolute value of its determinant is at least 1. As a consequence we have

1G] < ‘det M9, |

The right-hand side is no larger than the product of the norms of the columns in the
matrix M 1(9? B,» due to the inequality of Hadamard (cf. Section 1.7.3). Thus

Gl < llsp —Manznll []  1(Ms,5,)50l < s — Mpn2n| 75. (3.29)
JjeB2\{i}

The last inequality follows because the norm of each nonzero column in Mpp is at
least 1, and 7p is the product of these norms.
Since sg and zp are small variables we have

€
IsBllee < —

osp
and w
|IMeNnzn|loo < IMENo |28 loe < M|l 28]l 0o < —-
Therefore
e(l 4w
s~ Manan| < VBT sz~ Mavanll, < VBT S22
P

Substituting this inequality in (3.29), we obtain

ol < el +w)mp \B\

osp

Defining £ by
531:C7 fizoa ’L€B\B1,

the vector & satisfies (3.24), because Mp, p, is a nonsingular square submatrix of Mpp
with maximal rank and because sg — Mpnzy(= Mpgrzp) belongs to the column space
of Mpp. Hence we have shown that Gaussian elimination yields a solution & of (3.24)
such that

(14 w)yrp+/|B|

€Ml < p— : (3.30)

Applying the rounding procedure of the previous section to z, using £, we obtain
the vector Z defined by


file:////MbnZn/L
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and the surplus vector 5§ = s(Z) satisfies 55 = 0. So Z is complementary. We proceed
by showing that Z is a strictly complementary solution of (SP) by proving that &
satisfies the condition (3.25), namely

Zzp =z — £ >0, §N:SN—ZWNNZN—]WNB§>O.

We first establish that Zp is positive. This is now easy. The coordinates of zp are
large and the nonzero coordinates of £ are bounded above by the right-hand side in
(3.30). Therefore, Zg will be positive if

(1 +w)rp+/|B| o osp
agsp 4n ’
or, equivalently,
2
c < 9sp
dn(l + w)rp+/|B]
and this is guaranteed by the hypothesis in the lemma.
We proceed by estimating the coordinates of sy . First we write

My + Mol = 00 Mol | (2)] <iarn ()]

Using (3.30) and the fact that zy is small we obtain

IMynzn + MyBE|,, <wmax (L s +w)ms B) = sw(l +w)mpy/|B]

osp osp osp

Here we used again that 7p > 1 and |B| > 1. Hence, since the coordinates of sy are
large, the coordinates of sy will be positive if

ew(l + w)rpy/|B| o OsP
gsp 4n ’
or, equivalently, if
oip
< )
dnw(l + w)rp+/|B|
and this follows from the hypothesis in the lemma.
Thus we have shown that the condition for Z being strictly complementary is

satisfied. Finally, the calculation of ¢ can be performed by Gaussian elimination and
this requires O(|B*|*) arithmetic operations. Thus the proof is complete. O

The next theorem now easily follows from the last lemma.

Theorem 1.53 Using the notation introduced above, the Full-Newton step algorithm
yields a feasible solution z for which the rounding procedure yields a strictly compl-
ementary solution of (SP), after at most

4n?(1 2 B
B o 1L
Osp

iterations.
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Proof: By Lemma 1.52 the rounding procedure yields a strictly complementary
solution if we run the Full-Newton step algorithm with

2
O5p

dn(1 +w)?m+/|B|

By Theorem 1.37 for this value of ¢ the Full-Newton step algorithm requires at most

4n?(1 2 b
Vo log 20 L ne B
I5P

iterations. This proves the theorem. a

Remark I.54 The result in Theorem 1.53 can be used to estimate the number of arithmetic
operations required by the algorithm in a worst-case situation. This number can be bounded
by a polynomial of the size L of (SP) (cf. Remark 1.32), as we show. We thus establish that
the method proposed in this chapter solves the self-dual model in polynomial time. As a
consequence, by the results of the previous chapter, it also solves the canonical L.LO problem
in polynomial time.

The iteration bound in the theorem is worst if B contains all indices. Ignoring the integrality
operator, and denoting the number of iterations by K, the iteration bound becomes

2 2
K S \/% log 4n \/ﬁ (12Jr (.U) TM :
Osp

where
m= I
j=1

By Theorem 1.42 we have
1 1

OSP 2 7 7 ] - -
[I_ 1M1 ma

Substituting this we get the upper bound
K <+v2nlog (4n%(1 + w)zmsu> , (3.31)

for the number of iterations. A rather pessimistic estimate yields

Ta = ﬁ <§: M;-) < "I

j=1 \i=1

This follows by expanding the product in the middle, which gives n™ terms, each of which
is bounded above by II?, where II is defined in Remark 1.32 as the product of all nonzero
entries in ¢ and M. We also have the obvious (and very pessimistic) inequality w < I, which
implies 14+ w < 2I1. Substituting these pessimistic estimates in (3.31) we obtain

5 K n+5
K <21 log (4n§ (2112 (n"11%) 2) = V2n log (16n3 2 H5> .



70 I Theory and Complexity

This can be further reduced. One has

log (16n3"1z+5 HS) 3n+5

2

log 16 +

logn + 5log Il
1 7
< 3+§(3n+5)(n—1)+§10g21—[

= (?m2 +2n+ 14 7log, H)

N =T D =

< (n(n+1) +log, II) .
The first inequality is due to log 16 = 2.7726 < 3, logn < n — 1 and logII = 0.6931log, II,
and the second inequality holds because 7n(n + 1) > 3n” + 2n + 1 for all n.

Finally, using the definition (3.5) of the size L(= n(n + 1) + log, 1)), we obtain

K < g\/an < 5ynL.

Thus the claim has been proved. .

3.4 Concluding remarks

The analysis in this chapter is based on properties of the central path of (SP). To
be more specific, on the property that when one moves along the central path to the
optimal set, the separation between the large and small variables becomes apparent.
We showed that the Full-Newton step algorithm together with a simple rounding
procedure yields a polynomial algorithin for solving a canonical LP problem; the
iteration bound is 5y/n L, where L is the binary input size of the problem.

In the literature many other polynomial-time interior-point algorithms have been
presented. We will encounter many of these algorithms in the rest of the book. Almost
all of these algorithms are based on a Newton-type search direction. At this stage we
want to mention an interesting exception, which is based on an idea of Dikin and that
also can be used to solve in polynomial time the self-dual problem that we considered
in this and the previous chapter. In fact, an earlier version of this book used the
Dikin Step Algorithm in this part of the book. The iteration bound that we could
obtain for this algorithm was 7nL. Because it leads to a better iteration bound, in this
edition we preferred to use the Full-Newton step algorithm. But because the Dikin
Step Algorithm is interesting in itself, and also because further on in the book we will
deal with Dikins method, we decided to keep a full description and analysis of the
Dikin Step Algorithm in the book. It can be found in Appendix F.!6

16 The Dikin Step Algorithm was investigated first by Jansen et al. [156]; the analysis of the algorithm
used in this chapter is based on a paper of Ling [182]. By including higher-order components in
the search direction, the complexity can be improved by a factor v/n, thus yielding a bound of the
same order as for the Full-Newton step algorithm. This has been shown by Jansen et al. [160]. See
also Chapter 18.



4
Solving the Canonical Problem

4.1 Introduction

In Chapter 2 we discussed the fact that every LO problem has a canonical description
of the form
(P) min {ch A > b x> O}.

The matrix A is of size m X n and the vectors ¢ and z are in R™ and b in R™. In this
chapter we further discuss how this problem, and its dual problem

(D) max {bTy ATy <e y> O},

can be solved by using the algorithm of the previous chapter for solving a self-dual
embedding of both problems. With

o e e a

T T 0 K

as in (2.7), the embedding problem is given by (2.15). It is the self-dual homogeneous
problem ~
(SPy)  min{0"z : Mz>0, z2>0} (4.2)

In Chapter 3 we showed that a strictly complementary solution Z of (SP)) can be
found in polynomial time. If a strictly complementary solution Z has x > 0 then
Z = x/k is an optimal solution of (P), and if x = 0 then (P) (and also its dual (D))
must be either unbounded or infeasible. This was shown in Section 2.8, where we also
found that any strictly complementary solution of (SP)) with & > 0 provides a strictly
complementary pair of solutions (zZ, §) for (P) and (D). Thus Z is primal feasible and
7 dual feasible. The complementarity means that

z(c—ATy) =0, y(Az-1b)=0,
and the strictness of the complementarity that
I+ (c—ATg) >0, F+(AZ—0b)>0.

Obviously these results imply that every LO problem can be solved exactly in
polynomial time. The aim of this chapter is to make a more thorough investigation of
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the consequences of the results in Chapter 2 and Chapter 3. We restrict ourselves to
the canonical model.

The algorithm for the self-dual model, presented in Section 3.2, requires knowledge
of a positive Z such that the surplus vector s(z) = Mz of 7 is positive. However, such
Z does not exist, as we argued in Section 2.4. But then, as we showed in the same
section, we can embed (SPy) in a slightly larger sell-dual problem, named (SP) and
given by (cf. (2.16)),

(SP) min {¢"z : Mz > —q, 2> 0}. (4.3)

for which the constraint matrix has one extra row and one extra column, so that any
strictly complementary solution of (SP) induces a strictly complementary solution
of (SP). Hence, applying the algorithm to the larger problem (SP) yields a strictly
complementary solution of (SFp), hence also for (P) and (D) if these problems are
solvable.

It should be noted that both the description of the Full-Newton Step algorithm
(page 50) and its analysis apply to any problem of the form (4.3) that satisfies the
IPC, provided that the matrix M is skew-symmetric and ¢ > 0. In other words, we
did not exploit the special structure of the matrix M, as given by (2.11), neither did
we use the special structure of the vector ¢, as given by (2.12).

Also note that if the embedding problem is ill-conditioned, in the sense that the
condition number ogp is small, we are forced to run the Full-Newton step algorithm
with a (very) small value of the accuracy parameter. In practice, due to limitations of
machine precision, it may happen that we cannot reach the state at which an exact
solution of (SP) can be found. In that case the question becomes important of what
conclusions can be drawn for the canonical problem (P) and its dual problem (D)
when an e-solution for the embedding self-dual problem is available.

The aim of this chapter is twofold. We want to present two other embeddings of
(5Fy) that satisfy the IPC. Recall that the embedding in Chapter 2 did not require
any foreknowledge about the problems (P) and (D). We present another embedding
that can also be used for that case. A crucial question that we want to investigate is if
we can then decide whether the given problems have optimal solutions or not without
using the rounding procedure. Obviously, this amounts to deciding whether we have
% > 0 in the limit or not. This will be the subject in Section 4.3.

Our first aim, however, is to consider an embedding that applies if both (P) and
(D) have a strictly feasible solution and such solutions are know in advance. This case
is relatively easy, because we then know for sure that x > 0 in the limit.

4.2 The case where strictly feasible solutions are known
We start with the easiest case, namely when strictly feasible solutions of (P) and (D)

are given. Suppose that z° € R™ and y° € R™ are strictly feasible solutions of (P)
and (D) respectively:

>0, s(z")y=A42"-b>0 and ¢°>0, s(y°)=c— ATy > 0.
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4.2.1 Adapted self-dual embedding

Let
0 A b 0 y 0
AT 0 ¢ 0 x 0
M:: 5 Z = ) - 9
T —cT 0 1 K ¢ 0
0 0 -1 0 9 2

and consider the self-dual problem
(SP) min {qu : Mz+q>0, 220}.

Note that ¢ > 0. We proceed by showing that this problem has a positive solution
with positive surplus vector. Let
90 =1+ 2% —pTy0.

The weak duality property implies that ¢72% — b7y > 0. If ¢72° — 579° = 0 then «°
and 7° are optimal and we are done. Otherwise we have ¥° > 1. We can easily check
that for

Yy
0
= .
1
190
we have
Az0 —b s(x%)
T,0 0
0 0 c— Aty s(y”)
=Mz +qg= — ,
s(z) Z g pTy0 — Tl 4 90 1
142 1

so both 2° and its surplus vector are positive.! Now let Z be a strictly complementary
solution of (SP;). Then we have, for suitable vectors § and & and scalars & and 9,

g AZ —Rb
z re— ATy
Z:= >0, s(z)= _| >0, Zzs(zZ)=0, z4s(z)>0
I ) Vlyg—clz 49 ) (%)
V 2—R

Since the optimal objective value is zero, we have ¥ = 0. On the other hand, we
cannot have k = 0, because this would imply the contradiction that either (P) or (D)
is infeasible. Hence we conclude that & > 0. This has the consequence that & = Z/&
is feasible for (P) and § = §/F is feasible for (D), as follows from the feasibility of Z.
The complementarity of Z and s(Z) now yields that

s(R)=bg—cl'z=0.

! Exercise 27 If it happens that we have a primal feasible ¥ and a dual feasible 3° such that
295(y0) = pey, and y0s(x®) = pe,, for some positive y, find an embedding satisfying the IPC such

that 20 is on its central path.
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Thus it follows that Z/& is optimal for (P) and g/ is optimal for (D). Finally, the
strict complementarity of Z and s(Z) gives the strict complementarity of this solution
pair.

4.2.2  Central paths of (P) and (D)

At this stage we want to point out an interesting and important consequence of the
existence of strictly feasible solutions of (P) and (D). In that case we can define central
paths for the problems (P) and (D). This goes as follows. Let p be an arbitrary positive
number. Then the p-center of (SP;) is determined as the unique solution of the system
(cf. (2.46), page 35)

Mz+q = s, 2z2>0,8>0 (4.4)
z$ = W eminta.
In other words, there exist unique nonnegative x,y, &, 9 such that
Axr — kb > 0, KC*AT@/ZO, bTychm+1920, 2-xk>0
and, moreover
y (Ax — kb) = HEm
z(ke =A%) = pen (4.5)
K (b —clz + 19) = I
9 (2— k) = L

An immediate consequence is that all the nonnegative entities mentioned above are
positive. Surprisingly enough, we can compute the value of x from (4.4). Taking the
inner product of both sides in the first equation with z, while using the orthogonality
property, we get ¢. z = z7's. The second equation in (4.4) gives z7s = (n +m + 2)pu.
Due to the definition of ¢ we obtain?

20 = (n+m+2)p. (4.6)

In fact, this relation expresses that the objective value ¢7z = 20 along the central
path equals the dimension of the matrix M times u, already established in Section 2.7.
Substitution of (4.6) in the last equation of (4.5) yields

(n+m+2)9(2—k)=29.
Since ¥ > 0, after dividing by ¥ it easily follows that
2 1
o — (n+m+ ) (4.7)
n+m-+2

Substitution of the values of x and ¢ in the third equation gives

dz—bly 9 ﬂ_ﬁn—u_(n+m)u_(n+m)(n+m+2)2

I K K2 K2 K2 An+m+1)°

2 The relation can also be obtained by adding all the equations in (4.5).
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Now, defining

_ oy - _ I
) Yy== 19:_7 H= ==
K K K
and using the notation
s(Z) = Az -
S(g) = ¢ — AT_)

we obtain that the positive vectors  and § are feasible for (P) and (D) respectively
with s(Z) and s(g) positive, and moreover,

(4.8)

If 4+ runs through the interval (0,00) then & runs through the same interval, since
K is constant. We conclude that for every positive i there exist positive vectors T
and 7 that are feasible for (P) and (D) respectively and are such that Z, § and their
associated surplus vectors s(Z) and s(g) satisfy (4.8).

Our next aim is to show that the system (4.8) cannot have more than one solution
with Z and 7 feasible for (P) and (D). Suppose that Z and g are feasible for (P) and
(D) and satisfy (4.8). Then it is quite easy to derive a solution for (4.5) as follows.
First we calculate x from (4.7). Then taking u = x2fi, we can find ¥ from (4.6). Finally,
the values © = xZ and y = kg satisfy (4.5). Since the solution of (4.5) is unique, it
follows that the solution of (4.8) is unique as well. Thus we have shown that for each
positive i the system (4.8) has a unique solution with # and g feasible for (P) and
(D).

Denoting the solution of (4.8) by Z(ji) and g(Ji), we obtain the central paths of (P)
and (D) by letting i run through all positive values. Summarizing the above results,
we have proved the following.

Theorem 1.55 Let (x(p), y(u), c(p), (1)) denote the point on the central path of
(SPy) corresponding to the barrier parameter value u. Then we have k(p) = Kk with

 2(n+m+1)
 on4+m+2

If i = p/K?, then (i) = z(u)/rx and y(i1) = y(u)/k are the points on the central
paths of (P) and (D) corresponding to the barrier parameter . As a consequence we
have

'z vy =7"s(g) + 57 s(2) = (n+m)a.

4.2.3  Approzimate solutions of (P) and (D)

Our aim is to solve the given problem (P) by solving the embedding problem (SP;).
The Full-Newton step algorithm yields an e-solution, i.e. a feasible solution z of (SP;)
such that ¢” z < ¢, where ¢ is some positive number. Therefore, it is of great importance
to see how we can derive approximate solutions for (P) and (D) from any such solution
of (§P;). In this respect the following lemma is of interest.
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Lemma 1.56 Let z = (y,x, k,¥) be a positive solution of (SPy). If

~ € - Yy
= — y=—,
K K
then & is feasible for (P), § is feasible for (D), and the dudlity gap at the pair (Z,7)
satisfies

Jj—ﬁggﬁ.
K
Proof: Since z is feasible for (SP;), we have
Ax — kb > 0
~ATy + ke > 0
bly —clz+9 > 0
—Kk4+2 > 0

With # and ¢ as defined in the theorem it follows that A% > b, AT§ < ¢ and

53

i< —,
K

thus proving the lemma. O

The above lemma makes clear that it is important for our goal to have a solution
z = (y,z,k,9) of (SP;) for which the quotient ¥/ is small. From (4.7) in Section
4.2.2 we know that along the central path the variable k is constant and given by

_2(n+m+1)
T on4+m+2

Hence, along the central path we have the following inequality:

< (n+m+2)9
~ 2(n+m+1)

s — by .
For large-scale problems, where n 4+ m is large, this means that the duality gap at the
feasible pair (Z,7) is about ¥/2.

Unfortunately our algorithm for solving (SP;) generates a feasible solution z that
is not necessarily on the central path. Hence the above estimate for the duality gap
at (Z,7) is no longer valid. However, we show now that the estimate is ‘almost’ valid
because the solution z generated by the algorithm is close to the central path. To be
more precise, according to Lemma 1.44 z satisfies §.(z) < 7, where 7 = 4, and where
the proximity measure d.(z) is defined by

max (zs(z))

0c(2) =

min (zs(z))

Recall that 0.(z) = 1 if and only if zs(z) is a multiple of the all-one vector e. This
occurs precisely i z lies on the central path. Otherwise we have §.(z) > 1. Now we
can prove the following generalization of Lemma 1.56.
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Lemma I.57 Let 7 > 1 and let z = (y,z,k,¥) be a feasible solution of (SPy) such
that 0.(z) < 7. If
. € - Y
T =y y=—,
K K
then & is feasible for (P), i is feasible for (D), and the duality gap at the pair (Z,§)
satisfies

2
ey < ntmt
2n+m+2—7)
Proof: Recall from (2.23) that ¢7z = 275(2). Since g7z = 20, the average value of

the products z;s;(2) is equal to
20

n+m+2
From 6.(z) < 7 we deduce the following bounds:**

29 279

Y s <—2Y  1<i< 9. 4.9
T(n+m+2)*zs(z) n+m-+2 rEmn (4.9)

The lemma is obtained by applying these inequalities to the last two coordinates of z,
which are x and . Application of (4.9) to z; = 9 yields the inequalities

29 271

— <P 2K < ———m—.
T{n+m+2) n+m-+2

After division by ¢ and some elementary reductions, this gives the following bounds
on K:

2n+m+2—7) << 2(r(n+m+2)—1)
n+m—+2 —  —  Tthn+m+2)
Application of the left-hand side inequality in (4.9) to z; = & leads to
29
T(n+m+2)

(4.10)

k(bTy —cle+9) >

Using the upper bound for & in (4.10) we obtain

T T 20 T(n+m+2) 9
— > = .
e e S Mt mt D -1 rnimi 1

Hence,
7 2) -2
_Inimi2 2,
Tn+m+2)—1 7(n+m+2)—1
Finally, dividing both sides of this inequality by k, and using the lower bound for &
in (4.10), we obtain

ch—bTySﬁ—

i 4Ty cT:r—bTy< n+m+2
K 2ln+m+2—1)

3 These bounds are sufficient for our purpose. Sharper bounds could be obtained from the next
exercise.

1 Exercise 28 Let z € R and T > 1. Prove that if eTr = no and 7 min(z) > max(z) then
o no ™o

S———— < £ ——— <70, 1<i<n.
T 1+(n—11 n+71-—1
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This proves the lemma.? O

For large-scale problems the above lemma implies that the duality gap at the feasible
pair (Z, ) is about /2, provided that 7 is small compared with n + m.

4.3 The general case

4.8.1  Introduction

This time we assume that there is no foreknowledge about (P) and (D). It may well
be that one of the problems is infeasible, or both. This raises the question of whether
the given problems have any solution at all. This question must be answered by the
solution method. In fact, the method that we presented in Chapter 3 perfectly answers
the question. In the next section, we present an alternative self-dual embedding. The
new embedding problem can be solved in exactly the same way as the embedding
problem (SP) in Chapter 3, and by using the rounding procedure described there, we
can find a strictly complementary solution. Then the answer to the above question is
given by the value of the homogenizing variable x. If this variable is positive then both
(P) and (D) have optimal solutions; if it is zero then at least one of the two problems
is infeasible. Our aim is to develop some tools that may be helpful in deciding if « is
positive or not without using the rounding procedure.

4.3.2  Alternative embedding for the general case

Let 2° and 3° be arbitrary positive vectors of dimension n and m respectively. Defining
positive vectors s° and t° by the relations

25" = e, Yt = ep,

we consider the self-dual problem
(5F) min {qu : Mz+q>0,2>0},

where M and ¢ are given by

Omm A —b b Orm
AT 0,, ¢ ¢ 0y
M = =
bt o gl ! 0 ’
3" & 50 n+m+2
with
b = t"+b— Aa°

5 Exercise 29 Using the sharper bounds for z;s;(2) obtainable from Exercise 28, and using the
notation of Lemma 1.57, derive the following bound for the duality gap:

(n+m+1+7)((n+m+1)7-1)

cTi‘beg< 5
21 (n+m+1)

.
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c = sY e ATy
I} 1—b7y" + T,
Taking
Y0
0
P
1
1
we then have
Ax® —b+b 0, t0
MO g = AT y etz - 0, _ 50
bTy0 — T2 + 3 0
—bTy0 — "z — 3 n+m-+2 1

Except for the last entry in the last vector this is obvious. For this entry we write
CpTy 0 g _ —(t0+b—A:r0)Ty0—(50—0+ATy0)T:rO—B
_ _ (tO)TyO —pTy0 & (gCO)T AT 0
_ (SO)Txo TR0 (yO)T Az’ — 8
= —m=bTy —n+ 2 —B=—m—-—n—1,
whence
b1y — 2 — B4+ n+m+2=1.

We conclude that 20 is a positive solution of (SP) with a positive surplus vector.
Moreover, since z's° = e,, and 4% = e,,, this solution lies on the central path of
(5P») and the corresponding barrier parameter value is 1. It remains to show that if a
strictly complementary solution of (SP) is available then we can solve problems (P)

and (D). Therefore, let

8

K

]
be a strictly complementary solution. Then, since the optimal value of (SP;) is zero,
we have ¥ = 0. As a consequence, the vector

Yy
Zi= |z
K
is a strictly complementary solution of
T
min 0, z | | —AT 0,n, ¢ z| >0, |, x| >0

0 K T =T 0 R 0
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This is the problem (SFy), that we introduced in Chapter 2. We can duplicate the
arguments used there to conclude that if 7 is positive then the pair (Z/R, §/%) provides
strictly complementary optimal solutions of (P) and (D), and if & is zero then one
of the two problems is feasible and the other is unbounded, or both problems are
infeasible.

Thus (SP,) provides a self-dual embedding for (P) and (D). Moreover, 2° provides
a suitable starting point for the Full-Newton step algorithm. It is the point on the
central path of (SP;) corresponding to the barrier parameter value 1.

4.3.83  The central path of (SPs)

In this section we point out some properties of the central path of the problem (SPs).
Let p be an arbitrary positive number. Then the p-center of (SPs) is determined as
the unique solution of the system (cf. (2.46), page 35)

Mz+ = s, 2>0,5s>0
1 (4.11)

z8 = HEemint.

This solution defines the point on the central path of (SP;) corresponding to the
barrier parameter value p. Hence there exists unique positive z, y, £, such that

Az — b+ b > 0
ke — ATy + ¢ > 0
Y (4.12)
s(k) =bTy — Tz + 98 > 0
s(@) =n+m+2—-ble—cly— kB > 0
and, moreover,
Y (Am — kb + b = Hem
z (ke — ATy + Ve = en
( Y . (4.13)

K (bTy — Tz + 196) = T
) =
Just as in Section 4.2.2 we take the inner product of both sides with z in the first

equation of (4.11). Using the orthogonality property, we obtain g7 z = z7's. The second
equation in (4.11) gives z7s = (n + m + 2)u. Due to the definition of ¢ we obtain

(n+m+2)9 =(n+m+2)pu,

which gives ¢ = u. Since ¥s(d) = p, by the fourth equation in (4.13), we conclude
that s(¥) = 1. Since B
s =n+m+2-bly—clz— kB

this leads to -
Vly+e'zs+rB=n+m+1. (4.14)
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Using ¢ = p, the third equality in (4.13) can be rewritten as
i (VY —cTa) = p— unp,

which gives
mﬁ:l—&—g(ch—bTy).

Substituting this in (4.14) we get
by +elz+ g (c"z —bTy) =n+m,
which is equivalent to
(ke + pe)l @ — (nb—,ul_))Ty = p(n +m). (4.15)

This relation admits a nice interpretation. The first two inequality in (4.12) show that
x is feasible for the perturbed problem

min {(/@'c+ué)Tm : Ax > kb — pb, x> O},
and y is feasible for the dual problem
max {(ﬁb—uB)Ty s ATy < ke pe, y > O}.

For these perturbed problems the duality gap at the pair (z,y) is pu(n + m), from
(4.15). Now consider the behavior along the central path when p approaches zero.
Two cases can occur: either k converges to some positive value, or & goes to zero. In
both cases the duality gap converges to zero. Roughly speaking, the limiting values of
x and y are optimal solutions for the perturbed problems. In the first case, when &
converges to some positive value, asymptotically the first perturbed problemn becomes
equivalent to (P). We simply have to replace the variable x by sxz. Also, the second
problem becomes equivalent to (D): replace the variable y by ky. In the second case
however, asymptotically the perturbed problems become

min {07z : Az >0,z >0},

and
max {OTy ATy <0,y > 0}.

As we know, one of the problems (P) and (D) is then infeasible and the other
unbounded, or both problems are infeasible.

When dealing with a solution method for the canonical problem, the method
must decide which of these two cases occurs. In this respect we make an interesting
observation. Clearly the first case occurs if and only if k € B and the second case if and
only it k € N, where (B, N) is the optimal partition of (SF»). In other words, which
of the two cases occurs depends on whether « is a large variable or a small variable.
Note that the variable ¥ is always small. In the present case we have ¥(u) = u, lor
each i > 0. Recall from Lemma 1.43 that the large variables are bounded below by
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osp/n and the small variables above by nu/ogp. Hence, if k is a large variable then
Kk > ogp/n implies

nuy

osp’

This implies that the quotient ¥/x goes to zero if u goes to zero. On the other hand,
if k is a small variable then

v p
K K

<

Koo n
v = Jdosp osp’
proving that the quotient /v is bounded above. Therefore, if 1 goes to zero, x*/9
goes to zero as well, and hence ¥/x? goes to infinity. Thus we may state the following
without further proof.
Theorem 1.58 If k is a large variable then
4
lim — = lim — =0,
nl0 K ul0 K
and if k is o small variable then
lim — = oo.
ul0 K

The above theorem provides another theoretical tool for distinguishing between the
two possible cases.

4.3.4  Approzimale solutions of (P) and (D)

Assuming that an e-solution z = (y, z, k, ) for the embedding problem (SP) is given,
we proceed by investigating what information this gives on the embedded problem (P)
and its dual (D). With

the feasibility of z for (SPs) implies the following inequalities:

Az = b=2b
ATg < e+ 2¢
voo= " (4.16)
Jdz-vly < I3
k(OTE+c"g+8) < ndm42

Clearly we cannot conclude that Z is feasible for (P) or that § is feasible for (D). But
Z is feasible for the perturbed problem

0 \" 0
(P min (c+—5> T:AT>b—=b, x>0,
K K
and g is feasible for its dual problem
A 9
(D) max (b—b) g: ATg<c4+ - y>0p.
K K

We have the following lemma.
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Lemma 1.59 Let z = (y,z, k,¥) be a feasible solution of (SPy) with k > 0. If

~ x - Yy
T=—, 7 ==,
K K

then T is feasible for (P'), {§ is feasible for (D), and the duality gap at the pair (Z,§)
for this pair of perturbed problems satisfies

T T
(c—l—ﬁc) f—(b—%) gjgi(n’Lm;sz.
K K K

Proof: We have already established that % is feasible for (P’) and ¢ is feasible for
(D). We rewrite the duality gap for the perturbed problems (P’) and (D’) at the pair
(Z,7) as follows:

(c+

The third inequality in (4.16) gives

S

T 9T 9 B
c) i—(b—gb) gj:chE—ng—&-E(éTf—&-ngj).

and the fourth inequality

Substitution gives

T T
(C+QC) w—<b—ﬁb> ygﬁmﬁ(w—ﬁ) _(ntm+2)
k K K I

proving the lemma. a

The above lemma seems to be of interest ounly if  is a large variable. For if 9/k
and ¥/k? are small enough then the lemma provides a pair of vectors (%, %) such that
Z and g are ‘almost’ feasible for (P) and (D) respectively and the duality gap at this
pair is small. The error in feasibility for (P) is given by the vector (9/k)b and the
error in feasibility for (D) by the vector (¢/x)e, whereas the duality gap with respect
to (P) and (D) equals

Z (e"z+b"7).
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5
Preliminaries

5.1 Introduction

In the previous chapters we showed that every LO problem can be solved in polynomial
time. This was achieved by transforming the given problem to its canonical form and
then embedding it into a self-dual model. We proved that the self-dual model can
be solved in polynomial time. Our proof was based on the algorithm in Chapter 3
that uses the Newton direction as search direction. As we have seen, this algorithm is
conceptually simple and allows a quite elementary analysis. For the theoretical purpose
of Part I of the book this algorithi therefore is an ideal choice.

From the practical point of view, however, there exist more efficient algorithms.
The aim of this part of the book is to deal with a class of algorithms that has a
relatively long history, going back to work of Frisch [88] in 1955. Frisch was the first
to propose the use of logarithmic barrier functions in LO. The idea was worked out by
Lootsma [185] and in the classical book of Fiacco and McCormick [77]. After 1984, the
year when Karmarkar’s paper [165] raised new interest in the interior-point approach
to LO, the so-called logarithmic barrier approach also began a new life. It became
the basis of a wide class of polynomial time algorithms. Variants of the most efficient
algorithms in this class found their way into commercial optimization packages like
CPLEX and OSL.!

The aim of this part of the book is to provide a thorough introduction to these
algorithms. In the literature of the last decade these interior-point algorithms were
developed for LO problems in the so-called standard format:

(P) min {ch cAx=0b, x> 0} ,

where A is an m X n matrix of rank m, ¢,z € IR", and b € IR"™. This format also served
as the standard for the literature on the Simplex Method. Because of its historical
status, we adopt the standard format for this part of the book.

We want to point out, however, that all results in this part can easily be adapted
to any other format, including the self-dual model of Part I. We only have to define a
suitable logarithmic barrier function for the format under consideration.

A disadvantage of the change from the self-dual to the standard format is that it
leads to some repetition of results. For example, we need to establish under what
conditions the problem (P) in standard format has a central path, and so on. In fact,

1 CPLEX is a product of CPLEX Optimization, Inc. OSL stands for Optimization Subroutine Library
and is the optimization package of IBM.
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we could have derived all these results from the results in Chapter 2. But, instead, to
malke this part of the book more accessible for readers who are better acquainted with
the standard format rather than the less known self-dual format, we decided to make
this part self-contained.

Readers who went through Part I may only be interested in methods for solving the
self-dual problem

(SP) min {qu c Mx> —q, x> 0} ,

with ¢ > 0 and M7 = —M. Those readers may be advised to skip the rest of this
chapter and continue with Chapters 6 and 7. The relevance of these chapters for
solving (SP) is due to the fact that (SP) can easily be brought into the standard
format by introducing a surplus vector s to create equality constraints. Since x and s
are nonnegative, this yields (SP) in the standard format:

(SPS) min {qTx c Mr—s=—¢q,2>0,s> 0}.

In this part of the book we take the classical duality results for the standard format
of the LO problem as granted. We briefly review these results in the next section.

5.2 Duality results for the standard LO problem
The standard format problem (P) has the following dual problem:
(D) max {b7y : ATy+s=c,s>0},

where s € R"™ and y € R™. We call (D) the standard dual problem. The feasible
regions of (P) and (D) are denoted by P and D, respectively:

Pi={x : Az =b,x >0},

D= {(y,s) : ATers:c,szO}.

If P is empty we call (P) infeasible, otherwise feasible. If (P) is feasible and the
objective value ¢’z is unbounded below on P, then (P) is called unbounded, otherwise
bounded. We use similar terminology for the dual problem (D).

Since we assumed that A has full (row) rank m, we have a one-to-one correspondence
between y and s in the pairs (y,s) € D. In order to facilitate the discussion we feel
free to refer to any pair (y,s) € D either by y € D or s € D. The (relative) interiors
of P and D are denoted by P and D™:

Pti={xr : Az =b, 2> 0},
Dt = {(y,s) : ATy+s=c,s>0}.

We recall the well known and almost trivial weak duality result for the LO problem
in standard format.
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Proposition II.1 (Weak duality) Let x and s be feasible for (P) and (D), respect-
ively. Then cTx—bTy = 27s > 0. Consequently, c"x is an upper bound for the optimal
value of (D), if it exists, and by is a lower bound for the optimal value of (P), if it
exists. Moreover, if the duality gap x7s is zero then x is an optimal solution of (P)
and (y,s) is an optimal solution of (D).

Proof: The proof is straightforward. We have
0<als=al(c—ATy)=cTo — (Ax)Ty = clx - bTy. (5.1

This implies that ¢’z is an upper bound for the optimal objective value of (D), and
bTy is a lower bound for the optimal objective value of (P), and, moreover, if the
duality gap is zero then the pair (z, s) is optimal. O

A direct consequence of Proposition II.1 is that if one of the problems (P) and
(D) is unbounded, then the other problem is infeasible. The classical duality results
for the primal and dual problems in standard format boil down to the following two
results. The first result is the Duality Theorem (due to von Neumann, 1947, [227]),
and the second result will be referred to as the Goldman—Tucker Theorem (Goldman
and Tucker, 1956, [111]).

Theorem I1.2 (Duality Theorem) If (P) and (D) are feasible then both problems
have optimal solutions. Then, if x € P and (y,s) € D, these are optimal solutions
if and only if xTs = 0. Otherwise neither of the two problems has optimal solutions:
either both (P) and (D) are infeasible or one of the two problems is infeasible and the
other one is unbounded.

Theorem II.3 (Goldman—Tucker Theorem) If (P) and (D) are feasible then
there exists a strictly complementary pair of optimal solutions, that is an optimal
solution pair (x, s) satisfying x + s > 0.

It may be noted that these two classical results follow immediately from the results in
Part 1.2 For future use we also mention that (P) is infeasible if and only if there exists
a vector g such that ATy < 0 and b7y > 0, and (D) is infeasible if and only if there
exists a vector > 0 such that Az = 0 and ¢’z < 0. These statements are examples
of theorems of the alternatives and easily follow from Farkas’ lemma.3

We denote the set of all optimal solutions of (P) by P* and similarly D* denotes the
set of optimal solutions of (D). Of course, P* is empty if and only if (P) is infeasible
or unbounded, and D* is empty if and only if (D) is infeasible or unbounded. Note
that the Duality Theorem (II1.2) implies that P* is empty if and only if D* is empty.

2 Exercise 30 Derive Theorem I1.2 and Theorem II.3 from Theorem I1.26.

3 Exercise 31 Using Farkas' lemma (cf. Remark 1.27), prove:
(i) either the system Az = b, 2 > 0 or the system ATy <0, b7y > 0 has a solution;
(i4) either the system ATy < ¢ or the system Az =0, 2 > 0, ¢/« < 0 has a solution.
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5.3 The primal logarithmic barrier function

We start by introducing the so-called logarithmic barrier function for the primal
problem (P). This is the function §,(x) defined by

T
Gu(x) ="z — MZ log x5, (5.2)
j=1

where u is a positive number called the barrier parameter, and = runs through all
primal feasible vectors that are positive. The domain of §,, is the set PT.

The use of logarithmic barrier functions in LO was first proposed by Frisch [88] in
1955. By minimizing §,(x), we try to realize two goals at the same time, namely to
find a primal feasible vector z for which ¢”z is small and such that the barrier term
Z?:1 log z; is large. Frisch observed that the minimization of §,(x) can be done easily
by using standard techniques from nonlinear optimization. The barrier parameter can
be used to put more emphasis on either the objective value ¢’z of the primal LO
problem (P), or on the barrier term. Intuitively, by letting u take a small (positive)
value, we may expect that a minimizer of §,(x) will be a good approximation for an
optimal solution of (P). It has taken approximately 40 years to make clear that this
is a brilliant idea, not only from a practical but also from a theoretical point of view.
In this part of the book we deal with logarithmic barrier methods for solving both the
primal problem (P) and the dual problem (D), and we show that when worked out
in an appropriate way, the resulting methods solve both (P) and (D) in polynomial
time.

5.4 Existence of a minimizer

In the logarithmic barrier approach a major question is whether the barrier function
has a minimizing point or not. This section is devoted to this question, and we present
some necessary and sufficient conditions. One of these (mutually equivalent) conditions
will be called the interior-point condition. This condition is fundamental not only for
the logarithmic barrier approach, but as we shall see, for all interior-point approaches.
Note that the definition of §,(x) can be extended to the set IR", of all positive
vectors x, and that g,(x) is differentiable on this set. We can easily verify that the
gradient of g, is given by
véu('r) =C— /’Laj717

and the Hessian matrix by
V3G, (x) = uX 2

Obviously, the Hessian is positive definite for any x € R’ ,. This means that g, (x)
is strictly convex on R ,. We are interested in the behavior of g, on its domain,
which is the set PT of the positive vectors in the primal feasible space. Since PT
is the intersection of IR’ , and the affine space {z : Az = b}, it is a relatively open
subset of R} | . Therefore, the smallest affine space containing P is the affine space
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{z : Az = b}, and the linear space parallel to it is the null space N(A4) of A:
N(A) ={z : Az =0}.

Taking D = R}, and C' = PT, we may now apply Proposition A.1. From this we
conclude that g, has a minimizer if and only if there exists an « € Pt such that

c—pux~t L N(A).

Since the orthogonal complement of the null space of A is the row space of A, it follows
that z € P* is a minimizer of g, if and only if there exists a vector y € R such that

c—px 1 =ATy.

By putting s := pz~!, which is equivalent to zs = pe, it follows that g, has a
minimizer if and only if there exist vectors x,y and s such that

Az = b, x>0,
ATy4+s = ¢ s> 0, (5.3)
s = pe.

We thus have shown that this system represents the optimality conditions for the
primal logarithmic barrier minimization problem, given by

(Py) min {g,(z) : z € PT}.

We refer to the system (5.3) as the KKT system with respect to pu.*

Note that the condition x > 0 can be relaxed to z > 0, because the third equation in
(5.3) forces strict inequality. Similarly, the condition s > 0 can be replaced by s > 0.
Thus, the first equation in (5.3) is simply the feasibility constraint for the primal
problem (P) and the second equation is the feasibility constraint for the dual problem
(D). For reasons that we shall make clear later on, the third constraint is referred to
as the centering condition with respect to pu.

5.5 The interior-point condition

If the KKT system has a solution for some positive value of the barrier parameter p,
then the primal feasible region contains a positive vector x, and the dual feasible region
contains a pair (y, s) with positive slack vector s. In short, both P and D contain a
positive vector. At this stage we announce the surprising result that the converse is
also true: if both P and D contain a positive vector, then the KKT system has a
solution for any positive y. This is a consequence of the following theorem.

Theorem 11.4 Let i1 > 0. Then the following statements are equivalent:

(i) both P and D contain a positive vector;

4 The reader who is familiar with the theory of nonlinear optimization will recognize in this system
the first-order optimality conditions, also known as Karush-Kuhn—Tucker conditions, for (P,).
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(ii) there exists a (unique) minimizer of g, on PT;
(iii) the KKT system (5.8) has a (unique) solution.

Proof: The equivalence of (i7) and (ii¢) has been established above. We have also
observed already the implication (##) = (¢). So the proof of the theorem will be
complete if we show (i) = (i7). The proof of this implication is more sophisticated.

Assuming (i), there exist vectors z° and y° such that 20 is feasible for (P) and ¢°
is feasible for (D), 2% > 0 and s* := ¢ — ATy" > 0. Taking K = j, (2°) and defining
the level set Lx of g, by

L= {xéP"‘ : gu(w)gK},

we have 2% € Lk, so L is not empty. Since g, is continuous on its domain, it suffices
to show that L is compact. Because then g,, has a minimizer, and since g,, is strictly
convex this minimizer is unique. Thus to complete the proof we show below that Lx
is compact.

Let © € L. Using Proposition II.1 we have

T —bTy0 = 2740,

s0, in the definition of §,(x) we may replace ¢’z by b7 y® + 270

T T
gulz) = e — uZlogwj =bTy + 275" — uZlong.

j=1 j=1
Since 2750 = T (mso) and eTe = n, this can be written as
~ 7123
gu(z) = el (acso — e) — uZlogTJ +n —nulog i+ by° —l—uZlogsg,
j=1 j=1

or, equivalently,

n g0 n
el (mso — e) f,uZlog A - Gu(z) —n+nplogp — b0 f,uZlogsg.
j=1 K =1
Hence, using §,(z) < K and defining K by
B T
K:=K—n+nulogp—bTy° f,uZlogs?,
g=1
we obtain
T (.0 - i85 _ o
e’ (xs fe)f,uZlog . <K (5.4)
j=1

Note that & does not depend on x.
Now let the function ¢ : (—1,00) — IR be defined by

b(t) =t —log(1 +1). (5.5)
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Then, also using e’'e = n, we may rewrite (5.4) as follows:
n 0
J?jS :
py o=
=1 #

The rest of the proof is based on some simple properties of the function 4 (t),% namely

- 1) <K. (5.6)

o Y(t) >0 fort>—1;

1) is strictly convex;
P(0) = 0;
limy 00 ©(t) = 005

lim |1 9(t) = oo.

In words: ¥(t) is strictly convex on its domain and minimal at ¢ = 0, with ¥(0) = 0;
moreover, ¢(t) goes to infinity if ¢ goes to one of the boundaries of the domain (-1, c0)
of ¥. Figure 5.1 depicts the graph of .

Figure 5.1 The graph of 2.

Since 1 is nonnegative on its domain, each term in the above sum is nonnegative.
Therefore,

acjsg _ .
12

Now using that (¢) is strictly convex, zero at ¢ = 0, and unbounded if ¢ goes to —1
or to infinity, it follows that there must exist unique nonnegative numbers a and b,

5 E. Klafszky drew our attention to the fact that this function is known in the literature. It was
used in a different context for measuring discrepancy between two positive vectors in IR™. See
Csiszér [58] and Klafszky, Mayer and Terlaky [169)].
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with @ < 1, such that

K
Y(—a)=P(b) = —.
I
We conclude that
ijSJ .
—a < —1<b, 1<5<n,
7
which gives
PO 05h)
Sj 5

Since 1 — a > 0, this shows that each coordinate of the vector x belongs to a finite
and closed interval on the set (0, 00) of positive real numbers. As a consequence, since
the level set L is a closed subset of the Cartesian product of these intervals, Lx is
compact. Thus we have shown that (i7) holds. O

The first condition in Theorem I1.4 will be referred to as the interior-point condition.
Let us point out once more that the word ‘unique’ in the second statement comes from
the fact that g, is strictly convex, which implies that g, has at most one minimizer.
The equivalence of (i) and (i49) now justifies the word ‘unique’ in the third statement.

Remark IL.5 Tt is possible to give an elementary proof (i.e., without using the equivalence
of (ii) and (éi%) in Theorem II.4) of the fact that the KKT system (5.3) cannot have more
than one solution. This goes as follows. Let z', y?, s* and 22, 4?%, s denote two solutions of the
equation system (5.3). Define Az := 2® — ', and similarly Ay := y* — 4! and As := s* — s'.
Then we may easily verify that

AAzx = (5.7)
ATAy+As = (5.8)
' As + 5" Az 4 AsAz = 0. (5.9)
From (5.7) and (5.8) we deduce that AsT Az = 0, or
e’ AzAs=0. (5.10)

Rewriting (5.9) gives
(' + Az)As + s' Az = 0.

Since ' + Az = 2? > 0 and s > 0, this implies that no two corresponding entries in Az
and As have the same sign. So it follows that

AzAs <0. (5.11)

Combining (5.10) and (5.11), we obtain AzAs = 0. Hence either (Az); = 0 or (As); = 0,
for each 4. Using (5.9), we conclude that (Az); = 0 and (As); = 0, for each i. Hence ' = 2?
and s' = s%. Consequently, AT (y' —9?) = 0. Since rank (4) = m, the columns of AT are
linearly independent and it follows that ' = ¢*. This proves the claim. .
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5.6 The central path

Theorem 11.4 has several important consequences. First we remark that the interior-
point condition is independent of the barrier parameter. Therefore, since this condition
is equivalent to the existence of a minimizer of the logarithmic barrier function §,,
if such a minimizer exists for some (positive) p, then it exists for all u. Hence, the
interior point condition guarantees that the KKT system (5.3) has a unique solution
for every positive value of u. These solutions are denoted throughout as x(u), (i)
and s(u), and we call z(u) the p-center of (P) and (y(u), s(i)) the p-center of (D).
The set

{z(p) :+ p>0}
of all primal u-centers represents a parametric curve in the feasible region P of (P)
and is called the central path of (P). Similarly, the set

{(y(w),s(n)) = >0}
is called the central path of (D).

Remark I1.6 It may worthwhile to point out that along the primal central path the primal
objective value cTa;(u) is monotonically decreasing and along the dual central path the dual
objective value bTy(u) is monotonically increasing if ¢ decreases. In fact, in both cases the
monotonicity is strict unless the objective value is constant on the feasible region, and in the
latter case the central path is just a point. Although we will not use these results we include
here the proof for the primal case.® Recall that 2(u) is the (unique) minimizer of the primal
logarithmic barrier function

gu(w) =cTw—py logw;,
j=1

as given by (5.2), when z runs through the positive vectors in P. First we deal with the
case when the primal objective value is constant on P. We have the following equivalent
statements:

(i) c"x is constant for x € P;
(i) a(p) is constant for u > 0;
(4i1) z(p1) = x(u2) for some gy and po with 0 < g1 < po;
(fv) there exists a £ € R”™ such that s(p) = p€ for g > 0.

The proof is easy. If (¢) holds then the minimizer of §,(x) is independent of y, and hence
2(u) is constant for all v > 0, which means that (i¢) holds. The implication (it) = (iii) is
obvious. Assuming (i), let & be such that x(u1) = z(u2) = €. Since s(p1) = & and
s(p2) = 26" we have

ATy(u) +me "t =c, ATy(p) + et =c

This implies
(p2 — pa) e = AT (pay(1) — my(2)),

6 The idea of the following proof is due to Fiacco and McCormick [77]. They deal with the more
general case of a convex optimization problem and prove the monotonicity of the objective value
only for the primal central path. We also refer the reader to den Hertog, Roos and Vial [146] for
a different proof. The proof for the dual central path is similar to the proof for the primal central
path and is left to the reader.
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showing that ¢ belongs to the row space of A. This means that (%) holds.” Thus we have
shown the equivalence of (¢) to (¢éi). The equivalence of (ii) and (iv) is immediate from
xz(p)s(u) = pe for all g > 0.

Now consider the case where the primal objective value is not constant on P. Letting
0 < 1 < pe and 2! = x(p1) and 2® = z(u2), we claim that ¢Tz' < ¢Tx?. The above
equivalence (i) < (#4) makes it clear that z' # x. The rest of the proof is based on
the fact that g,(x) is strictly convex. From this we deduce that §,,(z') < g, (z?) and

(
iz (2%) < Gus (a'). Hence

n n
Tt — 73 Zlog le <cfa? - i1 Zlog m? (5.12)
j=1 Jj=1
and
Fa? — po Zlogm? <ot — po Zlog:n;. (5.13)
j=1 Jj=1

The sums in these inequalities can be eliminated by multiplying both sides of (5.12) by ua
and both sides of (5.13) by p1, and then adding the resulting inequalities. Thus we find

T 1 T 2 T 2 T 1
poC T + pc 2" < pac T+ pic T,

which is equivalent to
(2 — p1) (cTac1 — cTJ:2) < 0.
Since pr2 — p1 > 0 we obtain ¢T 2! < ¢Tz?, proving the claim. °

It is obvious that if one of the problems (P) and (D) is infeasible, then the interior-
point condition cannot be satisfied, and hence the central paths do not exist. But
feasibility of both (P) and (D) is not enough for the existence of the central paths:
the central paths exist if and only if both the primal and the dual feasible region
contain a positive vector. In that case, when the interior-point condition is satisfied,
the central path can be obtained by solving the KKT system.

Unfortunately, the KKT system is nonlinear, and hence in general it will not be
possible to solve it explicitly. In order to understand better the type of nonlinearity,
we show that the KKT system can be reformulated as a system of m polynomial
equations of degree at most n, in the m coordinates of the vector y. This goes as
follows. From the second and the third equations we derive that

x:u(cfATy)il.

Substituting this in the first equation we obtain

-1

A (c — ATy) =b. (5.14)

If we multiply each of the m equations in this system by the product of the n
coordinates of the vector ¢ — ATy, which are linear in the m coordinates y;, we arrive
at m polynomial equations of degree at most n in the coordinates of y.

We illustrate this by a simple example.

7 Exercise 32 Assume that (P) and (D) satisfy the interior point condition. Prove that the primal
objective value is constant on the primal feasible region P if and only if ¢ = AT X for some X\ € R™,
and the dual objective value is constant on the dual feasible region D if and only if b = 0.
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Example II.7 Consider the case where &

For the moment we do not further specify the vector b. The left-hand side of (5.14)
becomes

11—y | 2uy1

- 1 -1 0 =2

Alc— AT ' = 1 _ Yt
pA (c y) “[0 0 1] + 1 u
1=y T—

This means that the KKT system (5.3) is equivalent to the system of equations

211 b 1y
L—yi | _ |

b |
1—y2 2 1_y2

We consider this system for special choices of the vector b. Obviously, if b5 < 0 then
the system has no solution, since u > 0 and 1 —y, > 0. Note that the second equation
in Az = b then requires that x3 < 0, showing that the primal feasible region does not
contain a positive vector in that case. Hence, the central path exists only if b > 0.
Without loss of generality we may put b2 = 1. Then we find

Yo =1 — p.

bm

Then we obtain y; = 0 from the first equation, and hence for each u > 0:

Now consider the case where b; = 0:

z(p) = (pp1)
S(:U’) = (1717/’6)
y(w) = (01— p).

Thus we have found a parametric representation of the central paths of (P) and (D).
They are straight half lines in this case. The dual central path (in the y-space) is
shown in Figure 5.2.

8 Note that these data are the same as in the examples D.5, D.6 and D.7 in Appendix D. These
examples differ only in the vector b.
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Y2

“1F

=3F

Figure 5.2 The dual central path if b = (0, 1).

Let us also consider the case where b = 1:

1
- [ ] |
1
The first equation in the reduced KKT system then becomes

Y+ 2up — 1 =0,

giving
y1=-—pEV1I+p

The minus sign gives y; < —1, which implies so = 1 + y1 < 0. Since 1 + y; must be
positive, the unique solution for y; is determined by the plus sign:

yr=—p+ V142

With y(u) found, the calculation of s(u) and x(p) is straightforward, and yields a
parametric representation of the central paths of (P) and (D). We have for each
u >0

1 1
o) = (§(u+1+\/1+u2),§(1+;A+\/1+u2),1>
(1+uf I+ p?1—p+ 1+pz2,,u)

y(p) = (—u+ 1+u2,1fu).

The dual central path in the y-space is shown in Figure 5.3.

s(1)
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Figure 5.3 The dual central path if b = (1, 1).

Note that in the above examples the limit of the central path exists if 1 approaches
zero, and that the limit point is an optimal solution. In fact this property of the central
path is at the heart of the interior-point methods for solving the problems (P) and
(D). The central path is used as a guideline to the optimal solution set. &

5.7 Equivalent formulations of the interior-point condition

Later on we need other conditions that are equivalent to the interior-point condition.
In this section we deal with one of them.

Let = be feasible for the primal problem, and (y, s) for the dual problem. Then,
omitting y, we call (z, s) a primal-dual pair. From Proposition II.1 we recall that the
duality gap for this pair is given by

e —bvTy=a"s.

We now derive an important consequence of the interior point condition on the level
sets of the duality gap. In doing so, we shall use a simple relationship that we state,
for further use, as a lemma. The relation in the lemma is an immediate consequence
of the orthogonality of the row space and the null space of the matrix A.

Lemma IL1.8 Assume Z € P and § € D. Then for all primal-dual feasible pairs (x,s),

T

x s:ETx+ETsffT

S.
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Proof: From the feasibility assumption, the vectors £ — Z and s — 5 are orthogonal,
since the first vector belongs to the null space of A while the second is in the row space
of A. Expanding the scalar product (x — %) (s — §) and equating it to zero yields the
result. O

Theorem I1.9 Let the interior-point assumption hold. Then, for each positive K, the
set of all primal-dual feasible pairs (z, s) such that z7s < K is bounded.

Proof: By the interior-point assumption there exists a positive primal-dual feasible
pair (Z,5). Substituting K for #7s in Lemma I1.8, we get

sle+2ls<K+7z's

This implies that both 57z and #”'s are bounded. Since Z > 0 and 5 > 0, we conclude
that all components of x and s must also be bounded. O

We can restate Theorem I1.9 by saying that the interior-point condition implies that
all level sets of the duality gap are bounded. Interestingly enough, the converse is also
true. If all level sets of the duality gap are bounded, then the interior point condition
is satisfied. This is a consequence of our next result.’

Theorem I1.10 Let the feasible regions of (P) and (D) be nonempty. Then the
following statements are equivalent:

(i) both P and D contain a positive vector;
(ii) the level sets of the duality gap are bounded;
(#ii) the optimal sets of (P) and (D) are bounded.

Proof: The implication (i) = (i) is just a restatement of Theorem II.9. The
implication (#4) = (i44) is obvious, because optimal solutions of (P) and (D) are
contained in any nonempty level set of the duality gap. The implication (iii) = (¢) in
the theorem is nontrivial and can be proved as follows.

Since the feasible regions of (P) and (D) are nonempty we have optimal solutions
z* and (y*, s*) for (P) and (D). First assume that the optimal set of (P) is bounded.
Since x € P is optimal for (P) if and only if z7's* = 0, this set is given by

P*:{m : Ax:b,mZO,sz*:O}.
The boundedness of P* implies that the problem
max{eTx cAr=b,x>0,27s = 0}
x

is bounded, and hence it has an optimal solution. Since x and s* are nonnegative, the
problem is equivalent to

max{eTaJ cAr=b,2>0,27s < 0}.
x

9 This result was first established by McLinden [197, 198]. See also Megiddo [200].
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Hence, the dual of this problem is feasible. The dual is given by

Hli/{l {bTy ATy +As* > e, A > O}.
v,

Let (7, \) be feasible for this problem. Then we have ATg + As* > e. If A = 0 then
AT > e, which implies

AT(y*—g):AT *—ATgSC—e,

and hence y* — ¢ is dual feasible with positive slack vector. Now let X > 0. Then,
replacing s* by ¢ — ATy* in ATy + As* > e we get

ATg+ X (c — ATy*) >e.
Dividing by the positive number A we obtain

Y e
AT ( ® :) Fr-<e
Y by N =
showing that y* — 57/ is feasible for (D) with a positive slack vector.

We proceed by assuming that the (nonempty!) optimal set of (D) is bounded. The
same arguments apply in this case. Using that (y,s) € D is optimal for (D) if and
only if s72* = 0, the dual optimal set is given by

D' = {(y,s) : ATy+s—=c,5>0,s"a" =0}.
The boundedness of D* implies that the problem

max{eTs ATy 4+ s=c¢ >0, T2 = O}
;5

is bounded and hence has an optimal solution. This implies that the problem

max{eTs ATy 4 s=¢5>0 512" < O}
e

is also feasible and bounded. Hence, the dual problem, given by

min{ch s Ar=0,x+nx* >e, n> 0},
@
is feasible and bounded as well. We only use the feasibility. Let (Z,7) be a feasible
solution. Then T + f2* > e and AZ = 0. If 7 = 0 then we have z* + T > ¢ > 0 and
A(z* 4+ ) = AT 4+ Az* = b, whence z* 4 7 is a positive vector in P. If 7 > 0 then we
write
T " 1. N
A(j—&—x ) = —Azx + Az* =),
n n
yielding that the positive vector Z/7j+ x* is feasible for (P). Thus we have shown that
(#3t) implies (2), completing the proof. O

Each of the three statements in Theorem II.10 deals with properties of both (P)
and (D). We also have two one-sided versions of Theorem I1.10 in which we have three
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equivalent statements where each statement involves a property of (P) or a property
of (D). We state these results as corollaries, in which a primal level set means any set
of the form

{x eP:clz<K }
and a dual level set means any set of the form
{yeD : by>K},
where K may be any real number. The first corollary follows.

Corollary I1.11 Let the feasible regions of (P) and (D) be nonempty. Then the
following statements are equivalent:

(i) P contains o positive vector;
(i) the level sets of the dual objective are bounded;
(#ii) the optimal set of (D) is bounded.

Proof: Recall that the hypothesis in the corollary implies that the optimal sets of
(P) and (D) are nonempty. The proof is cyclic, and goes as follows.

(1) = (it): Letting Z € P, with T > 0, we show that each level set of the dual
objective is bounded. For any number K let Dg be the corresponding level set of the
dual objective:

Dg ={(y,s) €D : bTyzK}.

Then (y, s) € D implies
slz=cz-v'y<dz-K.

Since Z > 0, the i-th coordinate of s must be bounded above by (¢I'z — K)/z;.
Therefore, D is bounded.
(#4) = (#1): This implication is trivial, because the optimal set of (D) is a level set
of the dual objective.
(#41) = (4): This implication has been obtained as part of the proof of Theorem II.10.
O

The proof of the second corollary goes in the same way and is therefore omitted.

Corollary I1.12 Let the feasible regions of (P) and (D) be nonempty. Then the
following statements are equivalent:

(i) D contains a positive vector;
(ii) the level sets of the primal objective are bounded;
(#ii) the optimal set of (P) is bounded.

We conclude this section with some interesting consequences of these corollaries.
We assume that the feasible regions P and D are nonempty.

Corollary 11.13 D is bounded if and only if the null space of A contains a positive
vector.
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Proof: The dual feasible region remains unchanged if we put b = 0. In that case D
coincides with the optimal set D* of (D), and this is the only nonempty dual level set.
Hence, Corollary I1.11 yields that D is bounded if and only if P contains a positive
vector. Since b = 0 this gives the result. a

Corollary I1.14 P is bounded if and only if the row space of A contains a positive
vector.

Proof: The primal feasible region remains unchanged if we put ¢ = 0. Now P coincides
with the primal optimal set P* of (P), and Corollary II.12 yields that D is bounded
if and only if D contains a positive vector. Since ¢ = 0 this gives the result. a

Note that the word ‘positive’ in the last two corollaries could be replaced by the word
‘negative’, because a linear space contains a positive vector if and only if it contains
a negative vector. An immediate consequence of Corollary II1.13 and Corollary I1.14 is
as follows.

Corollary I1.15 At least one of the two sets P and D is unbounded.

Proof: If both sets are bounded then there exist a positive vector x and a vector y
such that Az = 0 and A7y > 0. This gives the contradiction

0=(Az)"y =27 (ATy) > 0.

The result follows. O

Remark I1.16 If (P) and (D) satisfy the interior-point condition then for every positive
1 we have a primal-dual pair (z, s) such that xs = pe. Letting 1 go to infinity, it follows that
for each index i the product x;s; goes to infinity. Therefore, at least one of the coordinates
z; and s; must be unbounded. It can be shown that exactly one of these two coordinates is
unbounded and the other is bounded. This is an example of a coordinatewise duality property.
We will not go further in this direction here, but refer the reader to Williams [291, 292] and
to Giiler et al. [134]. )

5.8 Symmetric formulation

In this chapter we dealt with the LO problem in standard form
(P) min {ch : Az =b, z >0},
and its dual problem
(D) max {bTy ATy +s=c¢, s 20}.

Note that there is an asymmetry in problems (P) and (D). The counstraints in (P) and
(D) are equality constraints, but in (P) all variables are nonnegative, whereas in (D)
we also have free variables, in y. Note that we could eliminate s in the formulation of
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(D), leaving us with the inequality constraints ATy < ¢, so this would not remove the
asymmetry in the formulations.

We could have avoided the asymmetry by using a different format for problem (P),
but because the chosen format is more or less standard in the literature, we decided
to use the standard format in this chapter and to accept its inherent asymmetry. Note
that the asymmetry is also reflected in the KKT system. This is especially true for
the first two equations, because the third equation is symmetric in « and s.

In this section we make an effort to show that it is quite easy to obtain a perfect
symmetry in the formulations. This has some practical value. It implies that every
concept, or result, or algorithm for one of the two problems, has its natural counterpart
for the other problem. It will also highlight the underlying geometry of an LO problem.

Let us define the linear space £ as the null space of the matrix A:

L={Az=0:zeR"}, (5.15)

and let £+ denote the orthogonal complement of £. Then, due to a well known result
in linear algebra, £ is the row space of the matrix A4, i.e.,

£t ={ATy . ye R™}. (5.16)

Now let Z be any vector satisfying AZ = b. Then z is primal feasible if x € Z+ £ and
x € IR’ So the primal problem can be reformulated as

(P min {'z : z€@+L)NRE}.

Ty over the intersection of the

So, (P) amounts to minimizing the linear function ¢

affine space ¥ 4+ £ and the nonnegative orthant IR’ .
We can put (D) in the same format by eliminating the vector y of free variables.

To this end we observe that s € R™ is feasible for (D) if and only if s € ¢ + £+ and

s € R’}. Given any vector s € ¢+ L1, let y be such that ATy + s = ¢. Then
by =(Az) y=2"ATy=2"(c—s5) ="z —2"s. (5.17)

Omitting the constant ¢''Z, it follows that solving (D) is equivalent to solving the
problem

(D) min {z7s : s€(c+ L) NRE}.
Thus we see that the dual problem amounts to minimizing the linear function z7's
over the intersection of the affine space ¢ + £ and the nonnegative orthant RT.
The similarity with reformulation (P’) is striking: both problems are minimization
problems, the roles of the vectors Z and ¢ are interchanged, and the underlying linear
spaces are each others orthogonal complement. An immediate consequence is also that
the dual of the dual problem is the primal problem.!® The KKT conditions can now
be expressed in a way that is completely symmetric in « and s:

x € (z+ L) NRY, x>0,
s € (etLhH)nRE, 5>0, (5.18)
s = He.

10 The affine spaces ¢+ £1 and Z + £ intersect in a unique point £ € IR™. Hence, we could even take
c=x=¢.
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Due to (5.17), we conclude that on the dual feasible region, b7y and Z''s sum up to
the constant ¢’ Z.

5.9 Dual logarithmic barrier function

We conclude this chapter by introducing the dual logarithmic barrier function, using
the symmetry that has now become apparent. Recall that for any positive p the primal
p-center x () has been characterized as the minimizer of the primal logarithmic barrier
function g,(x), as given by (5.2):

T
Gu(@) =c'z — MZ log z;.
j=1

Using the symmetry, we obtain that the dual p-center s(u) can be characterized as
the minimizer of the function

n
h(s):=z"s — ,uZlog 55, (5.19)
j=1

where s runs through all positive dual feasible slack vectors. According to (5.17), we
may replace 7's by ¢’z —bTy. Omitting the constant ¢!z, it follows that (y(iu), s(11))
is the minimizer of the function

ku(y,s) = —bly — uZlogsj.
j=1

The last function is usually called the dual logarithmic barrier function. Recall that for
any dual feasible pair (y, s), h,(s) and k,(y, s) differ by a constant only. It may often
be preferable to use Eu(s), because then we only have to deal with the nonnegative
slack vectors, and not with the free variable y. It will be convenient to refer also to
h,.(s) as the dual logarithmic barrier function.

From now on we assume that the interior point condition is satisfied, unless
stated otherwise. As a consequence, both the primal and the dual logarithmic barrier
functions have a minimizer, for each p > 0. These minimizers are denoted by x(u)
and s(u) respectively.
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The Dual Logarithmic Barrier
Method

In the previous chapter we introduced the central path of a problem as the set
consisting of all p-centers, with y running through all positive real numbers. Using
this we can now easily describe the basic idea behind the logarithmic barrier method.
We do so for the dual problem in standard format:

(D) max {bTy : ATy+s=¢c5>0}.

Recall that any method for the dual problem can also be used for solving the primal
problem, because of the symmetry discussed in Section 5.8. The dual problem has the
advantage that its feasible region—in the y-space—can be drawn if its dimension is
small enough (m = 1,2 or 3). This enables us to illustrate graphically some aspects
of the methods to be described below.

6.1 A conceptual method

We assume that we know the u-centers y(u) and s(u) for some positive y = u. Later
on, in Chapter 8, we show that this assumption can be made without loss of generality.
Given s(u), the primal u-center z(u) follows from the relation

z(p)s(p) = pe.
Now the duality gap for the pair of u-centers is given by

cTa(p) — bTy(u) = 2(u)"s(p) = np.

The last equality follows since we have for each ¢ that

xi(p)si(p) = .

It follows that if p goes to zero, then the duality gap goes to zero as well. As a
consequence we have that if u is small enough, then the pair (y(u),s(u)) is ‘almost’
optimal for the dual problem. This can also be seen by comparing the dual objective
value b7 y(u) with the optimal value of (D). Denoting the optimal value of (P) and
(D) by z* we know {rom Proposition II.1 that

bl y(p) < 2% < clalp),
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so we have
2= 0Ty(u) < Ta(p) — b y(p) = x(w) " s(u) = np,
and
la(p) — 2* <claw(u) —0Ty(p) = 2(u)

Thus, if p is chosen small enough, the primal objective value ¢z (u) and the dual
objective value b7y(u) can simultaneously be driven arbitrarily close to the optimal
value. We thus have to deal with the question of how to obtain the p-centers for small
enough values of p.

Now let u* be obtained from p by

IU’* = (1 - 9)/’6’

where 0 is a positive constant smaller than 1. We may expect that if § is not too large,
the p*-centers will be close to the given p-centers.! For the moment, let us assume
that we are able to calculate the p*-centers, provided 6 is not too large. Then the
following conceptual algorithm can be used to find -optimal solutions of both (P)

and (D).

Conceptual Logarithmic Barrier Algorithm

Input:
An accuracy parameter ¢ > 0;
a barrier update parameter 6, 0 < 8 < 1,
the center (y(u%), s(u°)) for some p® > 0.

begin
poi=
while nu > ¢ do
begin
= (1= 0)p;
s = s(p);
end
end

Recall that, given the dual center s(u), the primal center z(u) can be calculated
immediately from the centering condition at p. Hence, the output of this algorithm
is a feasible primal-dual pair of solutions for (P) and (D) such that the duality gap
does not exceed €. How many iterations are needed by the algorithm? The answer is
provided by the following lemma.

1 This is a consequence of the fact that the p-centers depend continuously on the barrier parameter
t, due to a result of Fiacco and McCormick [77]. See also Chapter 16.
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Lemma I1.17 If the barrier parameter i has the initial value p° and is repeatedly
multiplied by 1 — 68, with 0 < 6 < 1, then after at most

1 nu®
Zlog -
{e *e W

Proof: Initially the duality gap is nu®, and in each iteration it is reduced by the
factor 1 — 6. Hence, after k iterations the duality gap is smaller than ¢ if

iterations we have nu < €.

(1-— G)knuo <e.

The rest of the proof goes in the same as in the proof of Lemma 1.36. Taking logarithms
we get
klog (1 — 0) + log(nu®) < loge.
Since —log (1 — 8) > 8, this certainly holds if
0 !
k6 > log(nu”) —loge = log -~

This implies the lemma. g

To make the algorithin more practical, we have to avoid the exact calculation of the
p-center s(p). This is the subject of the following sections.

6.2 Using approximate centers

Recall that any p-center is the minimizer for the corresponding logarithmic barrier
function. Therefore, by minimizing the corresponding logarithmic barrier function we
will find the p-center. Since the logarithmic barrier function has a positive definite
Hessian, Newton’s method is a natural candidate for this purpose. If we know the
p-center, then defining p* by p* := (1 — )u, just as in the preceding section, we
can move to the p*-center by applying Newton’s method to the logarithmic barrier
function corresponding to p*, starting at the u-center. Having reached the p*-center,
we can repeat this process until the barrier parameter has become small enough. In
fact this would yield an implementation of the conceptual algorithm of the preceding
section. Unfortunately, however, after the update of the barrier parameter to u*, to
find the p*-center exactly infinitely many Newton steps are needed. To restrict the
number of Newton steps between two successive updates of the barrier parameter, we
do not calculate the p*-center exactly, but instead use an approximation of it. Our
first aim is to show that this can be done in such a way that only one Newton step
is taken between two successive updates of the barrier parameter. Later on we deal
with a different approach where the number of Newton steps between two successive
updates of the barrier parameter may be larger than one.

In the following sections we are concerned with a more detailed analysis of the
use of approximate centers. In the analysis we need to measure the proximity of
an approximate center to the exact center. We also have to study the behavior of
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Newton’s method when applied to the logarithmic barrier function. We start in the
next section with the calculation of the Newton step. Then we proceed to defining a
proximity measure and deal with some related properties. After this we can formulate
the algorithm, and analyze it.

6.3 Definition of the Newton step

In this section we assume that we are given a dual feasible pair (y, ), and, by applying
Newton’s method to the dual logarithmic barrier function corresponding to the barrier
parameter value u, we try to find the minimizer of this function, which is the pair
(y(w), s(1)). Recall that the dual logarithmic barrier function is the function k,(y, s)
defined by

ku(y,s) == =b"y —py _logs;,
=1

where (y, s) runs through all dual feasible pairs with positive slack vector s. Recall
also that y and s are related by the dual feasibility condition

Aly4+s=¢, s>0,

and since we assume that A has full rank, this defines a one-to-one correspondence
between the components y and s in dual feasible pairs. As a consequence, we can
consider k,(y, s) as a function of s alone. In Section 5.8 we showed that k,,(y, s) differs
ouly by the constant ¢’z from

n
hu(s)=a"s — ,uZlog S5,
j=1

provided Az = b. -~

Our present aim is to compute the minimizer s(u) of k,(s). Assuming s # s(u), we
construct a search direction by applying Newton’s method to ﬁ#(s). We first calculate
the first and second derivatives of Bu(s) with respect to s, namely

Vh,(s) =2 — s~ VQBM(S) = pS~2,
where, as usual, S = diag (s). The Newton step As — in the s-space — is the minimizer
of the second-order approximation of A, (s + As) at s, which is given by

t(As) == hu(s) + (z — usil)T As+ %AST,U,572AS,

subject to the condition that s+ As is dual feasible. The latter means that there exists
Ay such that
AT (y+ Ay) +s+As =c.

Since ATy + s = ¢, this is equivalent to

ATAy+As=0
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for some Ay.
We make use of an (n —m) x n matrix H whose null space is equal to the row space
of A. Then the condition on As simply means that HAs = 0, which is equivalent to

As € null space of H.
Using Proposition A.1, we find that As minimizes ¢(As) if and only if
Vt(As) =T — ps ' 4 pus 2As L null space of H.
It is useful to restate these conditions in terms of the matrix HS:>
sT — pe + us~'As L null space of HS,

and
s tAs € null space of HS.

Therefore, writing
ST — pe = —pus tAs + (353 — pe+ us_lAs) ,

we have a decomposition of the vector sT — pe into two components, with the first
component in the null space of HS and the second component orthogonal to the
null space of HS. Stated otherwise, us~!As is the orthogonal projection of pue — sz
into the null space of HS. Hence we have shown that

us 'As = Py (pe — sz) . (6.1)
From this relation the Newton step As can be calculated. Since the projection matrix
Py g? is given by
Pys—1I- SH” (HS>H") ' HS,
we obtain the following expression for As:
As=s(1-SH" (Hs*HT)™" 1) (e - ﬂ) :
7

Recall that T may be any vector such that AZ = b. It follows that the right-hand
side in (6.1) must be independent of Z. It is left to the reader to verify that this is
indeed true.*%% We are now going to explore this in a surprising way with extremely
important consequences.

2 Exercise 33 Let S be a square and nonsingular matrix and H be any other matrix such that the

product HS is well defined. Then 2z € null space of H if and only if S~z € null space of HS, and
2 L null space of H if and only if Sz L null space of HST. Prove this.

For any matrix @@ the matrix of the orthogonal projection onto the null space of @ is denoted as
Pg.

4 Exercise 34 Show that Pgg (sAx) = 0 whenever AAz = 0.

Exercise 35 The Newton step in the y-space is given by

Ay = (as7247) " (% - As*le) .

Prove this. (Hint: Use that AT Ay + As = 0.)

Observe that the computation of As requires the inversion of the matrix HS?HT, and the
computation of Ay the inversion of the matrix AS~2AT . It is not clear in general which of the two
inversions is more attractive from a computational point of view.
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If we let Z run through the affine space AZ = b then the vector pe — sZ runs through
another affine space that is parallel to the null space of AS~!. Now using that

null space of AS™! = row space of HS,

we conclude that the affine space consisting of all vectors pe — sz, with AZ = b, is
orthogonal to the null space of HS. This implies that these two spaces intersect in a
unique point. Hence there exists a unique vector T satisfying AZ = b such that pe — sz
belongs to the null space of HS. We denote this vector as x(s, u). From its definition
we have

Pirs (e — s(s, p) = e — sa(s, ),

thus yielding the following expression for the Newton step:
ps 1As = pe — sx(s, ). (6.2)

Figure 6.1 depicts the situation.

l— {pe — sz : Az = b}

null space of HS

122 = pe — su(s, 1)

null space of AS™! = row space of HS

Figure 6.1 The projection yielding s 'As.

Another important feature of the vector z(s, ) is that it minimizes the 2-norm of
pe— s in the affine space AZ = b. Hence, z(s, i) can be characterized by the property

x(s, ) = argmin,, {||ue — sz|| : Az =b}. (6.3)
‘We summarize these results in a theorem.

Theorem I1.18 Let s be any positive dual feasible slack vector. Then the Newton
step As at s with respect to the dual logarithmic barrier function corresponding to the
barrier parameter value p satisfies (6.2), with x(s, 1) as defined in (6.3).
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6.4 Properties of the Newton step
We denote the result of the Newton step at s by sT. Thus we may write
st ::5+As:s(e+s_1As).

A major question is whether st is feasible or not. Another important question is
whether x(s, ) is primal feasible. In this section we deal with these two questions,
and we show that both questions allow a perfect answer.

We start with the feasibility of sT. Clearly, sT is feasible if and only if sT is
nonnegative, and this is true if and only if

e+s TAs > 0. (6.4)

We conclude that the (full) Newton step is feasible if (6.4) is satisfied.

Let us now consider the vector x(s, it). By definition, it satisfies the equation Az = b,
so if it is nonnegative, then x(s, 1) is primal feasible. We can derive a simple condition
for that. From (6.2) we obtain that

z(s,p) = ps ' (e— s tAs). (6.5)
We conclude that z(s, 1) is primal feasible if and only if
e—s TAs > 0. (6.6)
Combining this result with (6.4) we state the following lemma.

Lemma I1.19 If the Newton step As satisfies
—e<sTAs<e
then x(s, pi) is primal feasible, and s* = s+ As is dual feasible.

Remark I1.20 We make an interesting observation. Since s is positive, (6.6) is
equivalent to

s—As>0.

Note that s — As is obtained by moving from s in the opposite direction of the Newton
step. Thus we conclude that z(s, pt) is primal feasible if and only if a backward Newton
step yields a dual feasible point for the dual problem.

We conclude this section by considering the special case where As = 0. From (6.2)
we deduce that this occurs if and only if sz (s, u) = ue, i.e., if and only if s and z(s, u)
satisfy the centering condition with respect to p. Since s and z(s, u) are positive, they
satisfy the KKT conditions. Now the unicity property gives us that z(s,u) = z(u)
and s = s(p). Thus we see that the Newton step at s is equal to the zero vector if and
only if s = s(u). This could have been expected, because s(u) is the minimizer of the
dual logarithmic barrier function.
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6.5 Proximity and local quadratic convergence

Lemma I1.19 in the previous section states under what conditions the Newton step
yields feasible solutions on both the dual and the primal side. This turned out to be
the case when

—e<s lAs<e.

Observe that these inequalities can be rephrased simply by saying that the infinity
norm of the vector s 'As does not exceed 1. We refer to s 'As as the Newton step
As scaled by s, or, in short, the scaled Newton step at s.

In the analysis of the logarithmic barrier method we need a measure for the ‘distance’
of s to the p-center s(pi). The above observation might suggest that the infinity norm
of the scaled Newton step could be used for that purpose. However, it turns out to
be more convenient to use the 2-norm of the scaled Newton step. So we measure the
proximity of s to s(u) by the quantity”

(s, ) = ||s7'As||. (6.7)

At the end of the previous section we found that the Newton step As vanishes if and
only if s is equal to s(u). As a consequence we have

5(s,p) =0 <= s =s(u).

The obvious question that we have to deal with is about the improvement in the
proximity to s(u) after a feasible Newton step. The next theorem provides a very
elegant answer to this question. In the proof of this theorem we need a different
characterization of the proximity (s, u), which is an immediate consequence of
Theorem II.18, namely

5(8’ n) =

c— — "7

I

1
sa(s, 1) ‘ = min {ljue — sz + Az =b}. (6.8)

We have the following result.

Theorem I1.21 If §(s,u) < 1, then x(s,u) is primal feasible, and s = s + As is
dual feasible. Moreover,
3(st p) < o(s, )%

Proof: The first part of the theorem is an obvious consequence of Lemma II.19,
because the infinity norm of s 1'As does not exceed its 2-norm and hence does not
exceed 1. Now let us turn to the proof of the second statement. Using (6.8) we write

§(st p) = i min{H,ueferxH : Az =b}.

7 Exercise 36 If s = s(u) then we know that us~! is primal feasible. Now let § = &(s, 1) > 0 and

consider = ps~'. Let Q@ = AS~2AT. Then Q is positive definite, and so is its inverse. Hence
Q™' defines a norm that we denote as Illg—1- Thus, for any z € R™:

l2llg-1=V2"Q "z

Measuring the amount of infeasibility of x in the sense of this norm, prove that

1Az — bl g1 < pa.
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Substituting for = the vector z(s, ) we obtain the inequality
1

The vector pe — stx(s, 1) can be reduced as follows:

pe — sTx(s, p) = pe — (s + As)x(s, ) = pe — sw(s, u) — Asx(s, ).

From (6.2) this implies
pe—sta(s, 1) = us 1 As—Asx(s, u) = (ue — sx(s, 1)) s *As = p (silAs)Q. (6.10)

Thus we obtain, by substitution of this equality in (6.9),
§(sTpu) < H(silAs)QH < H871A8|‘oo H571A3H.
Now from the obvious inequality |z, < 2|, with z = s7!As, the result follows. O

Theorem I1.21 implies that after a Newton step the proximity to the p-center
is smaller than the square of the proximity before the Newton step. In other
words, Newton’s method is quadratically convergent. Moreover, the theorem defines
a neighborhood of the p-center s(u) where the quadratic convergence occurs, namely

{seD : o(s,pu) < 1}. (6.11)

This result is extremely important. It implies that when the present iterate s is close
to s(p), then only a small number of Newton steps brings us very close to s(u). For
instance, if 6(s, ) = 0.5, then only 6 Newton steps yield an iterate with proximity
less than 10716, Figure 6.2 shows a graph depicting the required number of steps to

9

— number of Newton steps

Figure 6.2 Required number of Newton steps to reach proximity 10~ 1°.

reach proximity 10716

(0,1).

when starting at any given value of the proximity in the interval
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We can also consider it differently. If we repeatedly apply Newton steps, starting at
s® = s, then after £ Newton steps the resulting point, denoted by s*, satisfies

8(s*, ) < 6(s°, m)?".
Hence, taking logarithms on both sides,
- log 5($k7 :U’) > 72]{ IOg 5(507 M)v

see Figure 6.3 (page 116).

70

601 T

501 b

—log §(s*.p)
“Tog8(s0,0)

301 t

lower bound for

201 b

—_—
=)
T
.
I

0 ) I I I I
0 1 2 3 4 5 6

— iteration number k

Figure 6.3 Convergence rate of the Newton process.

The above algebraic proof of the quadratic convergence property is illustrated
geometrically by Figure 6.4 (page 117). Like in Figure 6.1, in Figure 6.4 the
null space of HS and the row space of HS are represented by perpendicular axes.
From (6.1) we know that the orthogonal projection of any vector ue — sz, with
Ax = b, into the null space of HS yields us~!As. Hence the norm of this projection
is equal to pd(s,u). In other words, ud(s, u) is equal to the Euclidean distance from
the affine space {ue — sx : Az = b} to the origin. Therefore, the proximity after the
Newton step, given by pd(st,u), is the Euclidean distance from the affine space
{pe —stx : Az = b} to the origin. The affine space {ue — stz : Az = b} contains
the vector e —sTz(s, 1), which is equal to u (s_lAs)Q, from (6.10). Hence, ud(s™, i)
does not exceed the norm of this vector.

The properties of the proximity measure d(s, ) described in Theorem II.21 are
illustrated graphically in the next example. In this example we draw some level curves
for the proximity measure for some fixed value of the barrier parameter u, and we
show how the Newton step behaves when applied at some points inside and outside
the region of quadratic convergence, as given by (6.11). We do this for some simple
problems.
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#
&
R
" &
<
¢ &
S 5 l— {pne — sz : Az =1}
2,
>
g f—t {pe—sTz : Az =10}
Asy2
w(5)
null space of HS
e 182 = pe — sa(s, 1)
}/{)
— pé(s, 1) —

Figure 6.4 The proximity before and after a Newton step.

8(s,2)y =1

Figure 6.5 Demonstration no.1 of the Newton process.

Example I1.22 First we take A and ¢ as in Example I1.7 on page 97, and b = (0,1)%".
Figure 5.2 (page 98) shows the feasible region and the central path. In Figure 6.5 we
have added some level curves for §(s,2). We have also depicted the Newton step at
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several points in the feasible region. The respective starting points are indicated by
the symbol °’, and the resulting point after a Newton step by the symbol ‘*’; the two
points are connected by a straight line to indicate the Newton step.

Note that, in agreement with Theorem II.21, when starting within the region of
quadratic convergence, i.e., when 6(s, 1) < 1, the Newton step is not only feasible, but
there is a significant decrease in the proximity to the 2-center. Also, when starting
outside the region of quadratic convergence, i.e., when (s, ) > 1, it may happen that
the Newton step leaves the feasible region.

In Figure 6.6 we depict similar results for the problem defined in Example I1.7 with
b=(1,1)T.

d(s,2) =1

— Y2

Figure 6.6 Demonstration no.2 of the Newton process.

Finally, Figure 6.7 depicts the situation for a new, less regular, problem. It is defined
by

1

4

21 1 0 1 -1 0 2 !

A- ] _[ ] e= |2
1 1 -1 1 0 0 -1 1

2

0

L 0]

This figure makes clear that after a Newton step the proximity to the 2-center may
increase. Concluding this example, we may state that inside the region of quadratic
convergence our proximity measure provides perfect control over the Newton process,
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0.5

Figure 6.7 Demonstration no.3 of the Newton process.

but outside this region it has little value. O

6.6 The duality gap close to the central path

A nice feature of the p-center s = s(u) is that the vector x = us~! is primal feasible,
and the duality gap for the primal-dual pair (z,s) is given by nu. One might ask
about the situation when s is close to s(u). The next theorem provides a satisfactory
answer. It states that for small values of the proximity (s, i) the duality gap for the
pair (z(s, ), s) is close to the gap for the p-centers.

Theorem I1.23 Let § := §(s,p) < 1. Then the duality gap for the primal-dual pair
(x(s, ), s) satisfies
np (1= 6) < (s, 1) < npp (1+9).

Proof: From Theorem I1.21 we know that z(s,u) is primal feasible. Hence, for the
duality gap we have

sta(s,p) = sT (,usfl (e~ silAs)) = pel (e — silAs) .

Since the coordinates of the vector e —s~1As lie in the interval [1 — 6,14 6], the result
follows. O



120 IT Logarithmic Barrier Approach

Remark II.24 The above estimate for the duality gap is not as sharp as it could be, but is
sufficient for our goal. Nevertheless, we want to point out that the Cauchy—Schwarz inequality
gives stronger bounds. We have

sTa(s, 1) = pe’ (e - s_lAs) = nu — pet s As.

Hence
‘STJZ(S,[L) —nu‘ =pu |6T5_1A5| < el Hs_lASH = p\/né,

and it fOHOWS thal
\/ﬁ ’ \/ﬁ :

6.7 Dual logarithmic barrier algorithm with full Newton steps

We can now describe an algorithm using approximate centers. We assume that we are
given a pair (y°,s%) € D and a pu® > 0 such that (y°,s°) is close to the pu°-center in
the sense of the proximity measure 4(s", u°). In the algorithm the barrier parameter
monotonically decreases from the initial value 1° to some small value determined by
the desired accuracy. In the algorithm we denote by p(s, 1) the Newton step As at
s € DT to emphasize the dependence on the barrier parameter .

Dual Logarithmic Barrier Algorithm with full Newton steps

Input:
A proximity parameter 7, 0 < 7 < 1;
an accuracy parameter £ > 0;
(y°,s°%) € D and p° > 0 such that 6(s°, u°) < 7
a fixed parameter 6, 0 < 8 < 1.

begin
5= 8" p = p%
while ny > (1 —6)e do
begin
5= s+ p(s, p);
p=(1—-0)u;
end
end

We prove the following theorem.

Theorem I1.25 If 7 = 1/v/2 and 0 = 1/(3\/n), then the Dual Logarithmic Barrier
Algorithm with full Newton steps requires at most

0
[3\/ﬁlog %—‘
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iterations. The output is a primal-dual pair (x,s) such that x7s < 2e.

6.7.1 Convergence analysis

The proof of Theorem 11.25 depends on the following lemma. The lemma generalizes
Theorem II.21 to the case where, after the Newton step corresponding to the barrier
parameter value ji, the barrier parameter is updated to p* = (1 — #)u. Taking § = 0
in the lemma we get back the result of Theorem I1.21.

Lemma I1.26 % Assuming §(s, ) < 1, let st be obtained from s by moving along the
Newton step As = p(s, 1) at s corresponding to the barrier parameter value p, and let
pt = (1 — 0. Then we have

) 2<5 ML
(s, 1) (s, 1) SR
Proof: By definition we have

S(sT,uT) = % mxin{Hu"'e - s+acH . Az =1b}

Substituting for = the vector z(s, u) we obtain the inequality:

ey

1
At < o e —statsp)l] =

state)],
p(1—96)

From (6.10) we deduce that
sta(s,u) = p (e - (silAs)Q) .
Substituting this, while simplifying the notation by using

we get

h:=s"1As,
e— h? 9 0
1—6 L’

To further simplify the notation we replace 8/ (1 — 0) by p. Then taking squares of
both sides in the last inequality we obtain

5(S+7M+) <|e—

(e —#%)

‘. (6.12)

5™ i) < [7]° 20 (0%)" (e~ 1%) 07 [l — 17|
Since [|h]| = d(s, 1) < 1 we have
0<e—h%<e.

Hence we have - )
()7 (e=12) 20, fle— 12| < el

& This lemma and its proof are due to Ling [182]. Tt improves estimates used by Roos and Vial [245].
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Using this, and also that |[¢]|*> = n, we obtain
2 2 4
5(s%, 1) < [[R2)2 o2 el < Bl + 2 = 8(s, ) + P,

thus proving the lemma. O

Remark II.27 It may be noted that a weaker result can be obtained in a more simple way
by applying the triangle inequality to (6.12). This yields

0
5(s+,u+)§HhZH 1_9He—hH<5su) +i
This result is strong enough to derive a polynomial iteration bound, but the resulting bound

will be slightly weaker than the one in Theorem I1.25. °
The proof of Theorem I1.25 goes now as follows. Taking § = 1/(3+/n), we have

N
1-0 1-—

1
< ~
o 2

‘H
wltofesl—

3

B

Hence, applying the lemma, we obtain
+ 2 4,1
Therefore, if §(s, 1) < 7 = 1/4/2, then we obtain

1
27

N

+

N

(st ut)? <

which implies that 6(st, u) < 1/v/2 = 7. Thus it follows that after each iteration of
the algorithm the property
d(s,p) <7

is maintained. The iteration bound in the theorem is an immediate consequence of
Lemia I.36. Finally, if s is the dual iterate at termination of the algorithm, and u the
value of the barrier parameter, then with z = z(s, u), Theorem I11.23 yields

s (s, p) < np (1 +6(s, 1)) < np(1+7) < 2np.

Since upon termination we have nu < ¢, it follows that s”z(s, u) < 2¢. This completes
the proof of the theorem. O

6.7.2 llustration of the algorithm with full Newton steps

In this section we start with a straightforward application of the logarithmic barrier
algorithm. After that we devote some sections to modifications of the algorithm that
increase the practical efficiency of the algorithm without destroying the theoretical
iteration bound.
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As an example we solve the problem with A and ¢ as in Example I1.7, and with
bl = (1,1). Written out, the (dual) problem is given by

max{y; +y2 : —1 <y <1,y <1}
and the primal problem is
min{xy + @+ a3 ¢ ¥y —x2 =1, 23 =1, x > 0}.

We can start the algorithm at y = (0,0) and p = 2, because we then have s = (1,1,1)
and, since z = (2,1, 1) is primal feasible,

‘ O

ST 1
S(s, ) < |12 — I Il
(“‘)‘u ‘ i‘ NG
2

With € = 104, the dual logarithmic barrier algorithm needs 53 iterations. to generate
the primal feasible solution z = (1.000015,0.000015,1.000000) and the dual feasible
pair (y, s) with y = (0.999971,0.999971) and s = (0.000029, 1.999971,0.000029). The
respective objective values are ¢’z = 2.000030 and b7y = 1.999943, and the duality
gap is 0.000087.

Table 6.1. (page 124) shows some quantities generated in the course of the algorithm.
For each iteration the table shows the values of nyu, the first coordinate of x(s, 1), the
coordinates of y, the first coordinate of s, the proximity 6 = §(s, u) before and the
proximity d7 = §(s™, ) after the Newton step at y to the p-center, and, in the last
column, the barrier update parameter 6, which is constant in this example.

The columns for § and 5T in Table 6.1. are of special interest. They make clear
that the behavior of the algorithm differs from what might be expected. The analysis
was based on the idea of maintaining the proximity of the iterates below the value
T =1//2 = 0.7071, s0 as to stay in the region where Newton’s method is very efficient.
Therefore we updated the barrier parameter in such a way that just before the Newton
step, i.e., just after the update of the barrier parameter, the proximity should reach
the value 7. The table makes clear that in reality the proximity takes much smaller
values (soon after the start). Asymptotically the proximity before the Newton step is
always 0.2721 and after the Newton step 0.0524.

This can also be seen from Figure 6.8, which shows the relevant part of the feasible
region and the central path. The points y are indicated by small circles and the exact
p-centers as asterisks. The above observation becomes very clear in this figure: soon
after the start the circles and the asterisks can hardly be distinguished. The figure
also shows at each iteration the region where the proximity is smaller than 7, thus
indicating the space where we are allowed to move without leaving the region of
quadratic convergence. Instead of using this space the algorithm moves in a very
narrow neighborhood of the central path.

6.8 A version of the algorithm with adaptive updates

The example in the previous section has been discussed in detail in the hope that the
reader will now understand that there is an easy way to reduce the number of iterations
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It. n 1 i 2 51 5 5t 0
0] 6.000000 | 2.500000 | 0.000000 0.000000 | 1.000000 | 0.6124 | 0.2509 [ 0.1925
1[4.845299 | 2.255388 | 0.250000 | —0.500000 | 0.750000 | 0.0901 | 0.0053 | 0.1925
21 3.912821 | 1.969957 | 0.285497 | —0.606897 | 0.714503 | 0.2491 | 0.0540 | 0.1925
313.159798 | 1.749168 | 0.342068 | —0.234058 | 0.657932 | 0.2003 | 0.0303 [ 0.1925
412.551695 | 1.578422 | 0.403015 | —0.022234 | 0.596985 | 0.2334 | 0.0420 | 0.1925
512.060621 | 1.447319 | 0.467397 0.184083 | 0.532603 | 0.2285 | 0.0379 | 0.1925
6| 1.664054 | 1.347011 | 0.532510 0.337370 | 0.467490 | 0.2406 | 0.0416 | 0.1925
711.343807 | 1.270294 | 0.595745 0.466322 | 0.404255 | 0.2438 | 0.0421 [ 0.1925
811.085191 | 1.211482 | 0.654936 0.568477 1 0.345064 | 0.2500 | 0.0441 [ 0.1925
910.876346 | 1.166207 | 0.708650 0.651736 1 0.291350 | 0.2537 | 0.0453 [ 0.1925

101 0.707693 | 1.131170 | 0.756184 |  0.718677 | 0.243816 | 0.2574 | 0.0467 [ 0.1925
11 {0.571498 | 1.103907 | 0.797423 | 0.772849 | 0.202577 | 0.2601 | 0.0477 | 0.1925
12| 0.461513 | 1.082581 | 0.832650 | 0.816552 | 0.167350 | 0.2624 | 0.0486 | 0.1925
131 0.372695 | 1.065815 | 0.862383 | 0.851862 | 0.137617 | 0.2643 | 0.0493 [ 0.1925
141 0.300969 | 1.052577 | 0.887244 |  0.880369 | 0.112756 | 0.2658 | 0.0499 [ 0.1925
15(0.243048 | 1.042085 | 0.907881 | 0.903393 | 0.092119 | 0.2670 | 0.0504 | 0.1925
16 10.196273 | 1.033741 | 0.924914 |  0.921985 | 0.075086 | 0.2680 | 0.0508 | 0.1925
1710.158500 | 1.027088 | 0.938910 | 0.936999 | 0.061090 | 0.2688 | 0.0511 | 0.1925
1810.127997 | 1.021771 | 0.950370 |  0.949123 | 0.049630 | 0.2695 | 0.0513 | 0.1925
1910.103364 | 1.017513 | 0.959728 |  0.958915 | 0.040272 | 0.2700 | 0.0515 | 0.1925
20 (0.083472 | 1.014098 | 0.967352 |  0.966821 | 0.032648 | 0.2704 | 0.0517 | 0.1925
21 (0.067407 | 1.011356 | 0.973553 |  0.973207 | 0.026447 | 0.2707 | 0.0518 | 0.1925
221 0.054435 | 1.009152 | 0.978589 | 0.978363 | 0.021411 | 0.2710 | 0.0519 | 0.1925
23 10.043959 | 1.007378 | 0.982674 | 0.982527 | 0.017326 | 0.2712 | 0.0520 | 0.1925
241 0.035499 | 1.005950 | 0.985986 | 0.985890 | 0.014014 | 0.2714 | 0.0521 | 0.1925
251 0.028667 | 1.004800 | 0.988668 | 0.988605 | 0.011332 | 0.2716 | 0.0521 | 0.1925
26 | 0.023150 | 1.003873 | 0.990839 | 0.990798 | 0.009161 | 0.2717 | 0.0522 | 0.1925
2710.018695 | 1.003125 | 0.992596 | 0.992569 | 0.007404 | 0.2718 | 0.0522 | 0.1925
281 0.015097 | 1.002522 | 0.994017 |  0.993999 | 0.005983 | 0.2718 | 0.0523 | 0.1925
2910.012192 | 1.002036 | 0.995165 | 0.995154 | 0.004835 | 0.2719 | 0.0523 | 0.1925
30 [ 0.009845 | 1.001643 | 0.996094 | 0.996087 | 0.003906 | 0.2720 | 0.0523 [ 0.1925
31 {0.007951 | 1.001327 | 0.996845 | 0.996840 | 0.003155 | 0.2720 | 0.0523 [ 0.1925
32 (0.006421 | 1.001071 | 0.997451 | 0.997448 | 0.002549 | 0.2720 | 0.0523 | 0.1925
33 (0.005185 | 1.000865 | 0.997941 | 0.997939 | 0.002059 | 0.2721 | 0.0523 [ 0.1925
34 10.004187 | 1.000698 | 0.998337 | 0.998336 | 0.001663 | 0.2721 | 0.0523 [ 0.1925
35 0.003381 | 1.000564 | 0.998657 | 0.998656 | 0.001343 | 0.2721 | 0.0524 [ 0.1925
36 [ 0.002731 | 1.000455 | 0.998915 | 0.998915 | 0.001085 | 0.2721 | 0.0524 | 0.1925
37 10.002205 | 1.000368 | 0.999124 | 0.999124 | 0.000876 | 0.2721 | 0.0524 | 0.1925
38 10.001781 | 1.000297 | 0.999292 | 0.999292 | 0.000708 | 0.2721 | 0.0524 [ 0.1925
39 (0.001438 | 1.000240 | 0.999429 | 0.999428 | 0.000571 | 0.2721 | 0.0524 | 0.1925
401 0.001161 | 1.000194 | 0.999539 | 0.999538 | 0.000461 | 0.2721 | 0.0524 | 0.1925
41 0.000938 | 1.000156 | 0.999627 | 0.999627 | 0.000373 | 0.2721 | 0.0524 | 0.1925
42 0.000757 | 1.000126 | 0.999699 | 0.999699 | 0.000301 | 0.2721 | 0.0524 | 0.1925
431 0.000612 | 1.000102 | 0.999757 |  0.999757 | 0.000243 | 0.2722 | 0.0524 | 0.1925
44 10.000494 | 1.000082 | 0.999804 | 0.999804 | 0.000196 | 0.2722 | 0.0524 | 0.1925
45 0.000399 | 1.000066 | 0.999841 | 0.999841 | 0.000159 | 0.2722 | 0.0524 | 0.1925
46  0.000322 | 1.000054 | 0.999872 | 0.999872 | 0.000128 | 0.2722 | 0.0524 | 0.1925
471 0.000260 | 1.000043 | 0.999897 | 0.999897 | 0.000103 | 0.2722 | 0.0524 | 0.1925
48 0.000210 | 1.000035 | 0.999917 |  0.999917 | 0.000083 | 0.2722 | 0.0524 | 0.1925
49 0.000170 | 1.000028 | 0.999933 | 0.999933 | 0.000067 | 0.2722 | 0.0524 | 0.1925
50 [ 0.000137 | 1.000023 | 0.999946 | 0.999946 | 0.000054 | 0.2722 | 0.0524 | 0.1925
51 (0.000111 | 1.000018 | 0.999956 | 0.999956 | 0.000044 | 0.2722 | 0.0524 | 0.1925
52 | 0.000089 | 1.000015 | 0.999964 | 0.999964 | 0.000036 | 0.2722 | 0.0524 | 0.1925
53 1 0.000072 | 1.000015 | 0.999971 | 0.999971 | 0.000029 — — —

Table 6.1. Output of the dual full-step algorithm.



I1.6 Dual Logarithmic Barrier Method 125

<~—— central path

— U1

Figure 6.8 Iterates of the dual logarithmic barrier algorithm.

required by the algorithm without losing the quality of the solution guaranteed by
Theorem I1.25. The obvious way to reach this goal is to make larger updates of the
barrier parameter while keeping the iterates in the region of quadratic convergence.

This is called the adaptive-update strategy,” which we discuss in the next section.
After that we deal with a more greedy approach, using larger updates of the barrier
parameter, and in which we may leave temporarily the region of quadratic convergence.
This is the so-called large-update strategy. The analysis of the large-update strategy
cannot be based on the proximity measure d(y, 1) alone, because outside the region of
quadratic convergence this measure has no useful meaning. But, as we shall see, there
exists a different way of measuring the progress of the algorithm in that case.

6.8.1 An adaptive-update variant

Observe that the iteration bound of Theorem II.25 was obtained by requiring that
after each update of the barrier parameter y the proximity satisfies

d(s, ) <. (6.13)

In order to make clear how this observation can be used to improve the performance
of the algorithm without losing the iteration bound of Theorem II1.25, let us briefly
recall the idea behind the proof of this theorem. At the start of an iteration we are
given s and p such that (6.13) holds. We then make a Newton step to the p-center,

9 The adaptive-update strategy was first proposed by Ye [303]. See also Roos and Vial [245].
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central path

o(st ut)=r

Figure 6.9 The idea of adaptive updating.

which yields s*, and we have

S(sT,p) <72 (6.14)

Then we update i to a smaller value ut = (1 — §)u such that
S(st, ) <7, (6.15)

and we start the next iteration. Our estimates in the proof of Theorem I1.25 were such
that it has become clear that the value 8 = 1/(31/n) guarantees that (6.15) will hold.
But from the example in the previous section we know that actually the new proximity
may be much smaller than 7. In other words, it may well happen that using the given
value of § we start the next iteration with an s* and a ut such that (s, u™t) is
(much) smaller than .

It will be clear that this opens a way to speed up the algorithm without degrading
the iteration bound. For if we take @ larger than the value 8 = 1/(3y/n) used in
Theorem I1.25, thus enforcing a deeper update of the barrier parameter in such a way
that (6.15) still holds, then the analysis in the proof of Theorem I1.25 remains valid
but the number of iterations decreases. The question arises of how deep the update
might be. In other words, we have to deal with the problem that we are given s™ and
u such that (6.14) holds, and we ask how large we can take § in u+ = (1 —0)u so that
(6.15) holds with equality:

S(stout) =7

See Figure 6.9. Note that we know beforehand that this value of 0 is at least
0= 1/(3y7).

To answer the above question we need to introduce the so-called affine-scaling
direction and the centering direction at s.
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6.8.2 The affine-scaling direction and the centering direction

From (6.1) we recall that the Newton step at s to the u-center is given by
ps 1As = Py (pe — sT),
so we may write
ST 1 _
As=SPys|e— — ) =SPys(e) — — SPyssz.
p 0
The directions

Afs = SPHS (6) (616)

and
A%s:= —SPgs (sT) (6.17)

are called the centering direction and the affine-scaling direction respectively. Note that
these two directions depend only on the iterate s and not on the barrier parameter p.
Now the Newton step at s to the p-center can be written as

1
As = A°s+ — A%,
w
and the definition (6.7) of the proximity (s, 1) implies

?

(s, p) =

1
d°+—d°
I

where
d°=s 1A%, d*=s"1A%

are the scaled centering and affine-scaling directions respectively.

6.8.3 Calculation of the adaptive update

Now that we know how the proximity depends on the barrier parameter we are able
to solve the problem posed above. We assume that we have an iterate s such that for
someu>0and0<7<1/\/§,

§:=0d(s, 1) <72,
and we ask for the smallest value u* of the barrier parameter such that
S(s,ut) =
Clearly, u* is the smallest positive root of the equation

o(s, 1) = ‘ d¢ + % d*| =r. (6.18)
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Note that in the case where b = 0, the dual objective value is constant on the dual
feasible region and hence s is optimal.'%!! We assume that d* # 0. This is true if and
only if b # 0. It then follows from (6.18) that (s, ) depends continuously on u and
goes to infinity if 1 approaches zero. Hence, since 7 > 72, equation (6.18) has at least
one positive solution.

Squaring both sides of (6.18), we arrive at the following quadratic equation in 1/u:

7 )2 lde||® + da)TdC+||dc|| —7r2=0. (6.19)

The two roots of (6.19) are given by

@yt k| (@) = ool (o)~ %)
@ |

We already know that at least one of the roots is positive. Hence, although we do not
know the sign of the second root, we may conclude that 1/p*, where u* is the value of
the barrier parameter we are looking for, is equal to the larger of the two roots. This
gives, after some elementary calculations,

| =
(@ f(@nyraey? — o) ? (|l - 72)

*

M:

It is interesting to observe that it is easy to characterize the situation that both
roots of (6.18) are positive. By considering the constant term in the quadratic equation
(6.19) we see that both roots are positive if and only if ||d¢||* — 72 > 0. From (6.18) it
follows that ||d¢|| = d(s, 00). Thus, both roots are positive if and ouly if

d(s,00) > T.
Obviously this situation occurs only if
(d9Tde <o.
Thus we find the interesting result
8(s,00)>7 = (d)Td° <o.

At the central path, when é(s, u) = 0, we have d* = —ud®, so in that case the above
implication is obvious.

10 Exercise 37 Show that d® = 0 if and only if b = 0.

11 Exercise 38 Consider the case b = 0. Then the primal feasibility condition is Az = 0, 2 > 0,
which is homogeneous in z. Show that z(s, ) = pxz(s,1) for each p > 0, and that 6(s, ) is
independent of u. Taking s = s(1), it now easily follows that s(u) = s(1) for each p > 0. This
means that the dual central path is a point in this case, whereas the primal central path is a
straight half line. If s and p > 0 are such that §(s, #) < 1 then the Newton process converges
quadratically to s(1), which is the analytic center of the dual feasible region. See also Roos and
Vial [243] and Ye [310].
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6.8.4 Illustration of the use of adaptive updates

By way of example we solve the same problem as in Section 6.7.2 with the dual
logarithmic barrier algorithm, now using adaptive updates. As before, we start
the algorithm at y = (0,0) and p = 2. With ¢ = 10~ and adaptive updates,
the dual full-step algorithm needs 20 iterations to generate the primal feasible
solution z = (1.000013,0.000013, 1.000000) and the dual feasible pair (y, s) with y =
(0.999973,0.999986) and s = (0.000027,1.999973,0.000014). The respective objective
values are ¢’z = 2.000027 and b7y = 1.999960, and the duality gap is 0.000067.
Table 6.2. (page 129) gives some information on how the algorithm progresses. From
the seventh column in this table (with the heading 4) it is clear that we have reached
our goal: after each update of the barrier parameter the proximity equals 7. Moreover,
the adaptive barrier parameter update strategy reduced the number of iterations, from
53 to 20.

Figure 6.10 (page 130) provides a graphical illustration of the adaptive strategy.
It shows the relevant part of the feasible region and the central path, as well as
the first four points generated by the algorithm and their regions of quadratic
convergence. After each update the iterate lies on the boundary of the region of
quadratic convergence for the next value of the barrier parameter.

—
t+

O~ T WN O |-

nu xy Y1 Y2 51 J bii g

3.000000 | 1.500000 | 0.000000 | 0.000000 | 1.000000 | 0.7071 | 0.1581 | 0.5000
1.778382 | 1.374235 | 0.500000 | 0.000000 | 0.500000 | 0.7071 | 0.4725 | 0.4072
0.863937 | 1.149409 | 0.579559 [ 0.686927 | 0.420441 | 0.7071 | 0.4563 | 0.5142
0.505477 | 1.091171 | 0.864662 | 0.714208 | 0.135338 | 0.7071 | 0.4849 | 0.4149
0.280994 | 1.047762 | 0.847943 [ 0.913169 | 0.152057 | 0.7071 | 0.4912 | 0.4441
0.165317 | 1.028293 | 0.954529 [ 0.906834 | 0.045471 | 0.7071 | 0.4776 | 0.4117
0.093710 | 1.015735 | 0.947640 | 0.971182 | 0.052360 | 0.7071 | 0.4937 | 0.4332
0.055038 | 1.009255 | 0.984428 [ 0.968951 | 0.015572 | 0.7071 | 0.4799 | 0.4127
0.031566 | 1.005275 | 0.982196 [ 0.990450 | 0.017804 | 0.7071 | 0.4915 | 0.4265
0.018469 | 1.003087 | 0.994677 | 0.989568 | 0.005323 | 0.7071 | 0.4827 | 0.4149
101 0.010662 | 1.001779 | 0.993971 | 0.996813 | 0.006029 | 0.7071 | 0.4894 | 0.4227
11]0.006220 | 1.001038 | 0.998188 | 0.996484 | 0.001812 | 0.7071 | 0.4846 | 0.4167
12 0.003603 | 1.000601 | 0.997961 | 0.998931 | 0.002039 | 0.7071 | 0.4881 | 0.4207
131 0.002098 | 1.000350 | 0.999385 | 0.998814 | 0.000615 | 0.7071 | 0.4856 | 0.4177
141 0.001217 | 1.000203 | 0.999311 | 0.999640 | 0.000689 | 0.7071 | 0.4874 | 0.4198
151 0.000708 | 1.000118 | 0.999792 | 0.999599 | 0.000208 | 0.7071 | 0.4862 | 0.4183
16 | 0.000411 | 1.000069 | 0.999767 | 0.999879 | 0.000233 | 0.7071 | 0.4870 | 0.4193
171 0.000239 | 1.000040 | 0.999930 | 0.999865 | 0.000070 | 0.7071 | 0.4864 | 0.4186
18] 0.000139 | 1.000023 | 0.999921 | 0.999959 | 0.000079 | 0.7071 | 0.4868 | 0.4191
191 0.000081 | 1.000013 | 0.999976 | 0.999954 | 0.000024 | 0.7071 | 0.4865 | 0.4187
20 | 0.000081 | 1.000013 | 0.999973 | 0.999986 | 0.000027 — — —

Table 6.2. Output of the dual full-step algorithm with adaptive updates.
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[~ 0(s,2) =71
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Figure 6.10 The iterates when using adaptive updates.

6.9 A version of the algorithm with large updates

In this section we consider a more greedy approach than the adaptive strategy, using
larger updates of the barrier parameter. As before, we assume that we have an iterate
s and a p > 0 such that s belongs to the region of quadratic convergence around the
p-center. In fact we assume that!'?

d(s,p) <7 = 7

Starting at s we want to reach the region of quadratic convergence around the p™-
center, with

pt=(1-0)p,

and we assume that ¢ is so large that s lies outside the region of quadratic convergence
around the pT-center. In fact, it may well happen that d(s, u*) is much larger than 1.
It is clear that the analysis of the previous sections, where we always took full Newton
steps for the target value of the barrier parameter, is then no longer useful: this analysis
was based on the nice behavior of Newton’s method in a close neighborhood of the
T -center. Being outside this region, we can no longer profit from this nice behavior
and we need an alternative approach.

Now remember that the target center s(u™) can be characterized as the (unique)

12 We could have taken a different value for 7, for example 7 = 1/2, but the choice 7 = 1/+/2 seems
to be natural. The analysis below supports our choice. In the literature the choice 7= 1/2 is very
popular (see, e.g., [140]). It is easy to adapt the analysis below to this value.
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minimizer of the dual logarithmic barrier function

n
ket (y,8) = —bly —pt Z log s;
P

and that this function is strictly convex on the interior of the dual feasible region.
Hence, the difference

k;ﬁ (y,8) — k;ﬁ (y(:U'Jr)v S(IU'JF))

vanishes if and only if s = s(1™) and is positive elsewhere. The difference can therefore
be used as another indicator for the ‘distance’ from s to s(u™). That is exactly what
we plan to do. Outside the region of quadratic convergence the barrier function value
will act as a measure for proximity to the u-center. We show that when moving in the
direction of the Newton step at s the barrier function decreases, and that by choosing
an appropriate step-size we can guarantee a sufficient decrease of the barrier function
value. In principle, the step-size can be obtained from a one-dimensional line search
in the Newton direction so as to minimize the barrier function in this direction. Based
on these ideas we derive an upper bound for the required number of damped Newton
steps to reach the vicinity of s(u"); the upper bound will be a function of 6.

The algorithm is described on page 131. We refer to the first while-loop in the

Dual Logarithmic Barrier Algorithm with Large Updates

Input:

A proximity parameter 7 =1/ V2;

an accuracy parameter € > 0;

a variable damping factor «;

an update parameter 6, 0 < 6 < 1;

(y°,s°) € D and p° > 0 such that §(s, u°) < 7.
begin

s =% p = p’

while nu > ¢ do

begin
o= (1—O)u;
while d(s,u) > 7 do
begin

s:= s+ ap(s, u);
(The damping factor v must be such that k,(y, s) decreases
sufficiently. The default value is 1/(1 + &(s, u1)).)
end
end
end

algorithm as the outer loop and to the second while-loop as the inner loop. Each



132 IT Logarithmic Barrier Approach

execution of the outer loop is called an outer iteration and each execution of the inner
loop an inner iteration. The required number of outer iterations depends only on the
dimension n of the problem, on u° and ¢, and on the (fixed) barrier update parameter
6. This number immediately follows from Lemma 1.36. The main task in the analysis
of the algorithm is to derive an upper bound for the number of iterations in the inner
loop. For that purpose we need some lemmas that estimate barrier function values
and objective values in the region of quadratic convergence around the p-center. Since
these estimates are interesting in themselves, and also because their importance goes
beyond the analysis of the present algorithm with line searches alone, we discuss them
in separate sections.

6.9.1 Estimates of barrier function values

We start with the barrier function values. Our goal is to estimate dual barrier function
values in the region of quadratic convergence around the p-center. It will be convenient
not to deal with the barrier function itself, but to scale it by the barrier parameter.
Therefore we introduce

1 —b7 -
hu(s) = ;ku(y,s) = ; y_ Zlogsj.
j=1

Let us point out once more that y is omitted in the argument of h,(s) because of the
one-to-one correspondence between y and s in dual feasible pairs (y, s). We also use
the primal barrier function scaled by u:

Recall that both barrier functions are strictly convex on their domain and that s(u)
and z(u) are their respective minimizers. Therefore, defining

() == gu(x) — gu(@(1)),  Gp(s) == huls) — hy(s(u)),
we have QSZ(S) > 0, with equality if and only if s = s(u), and also ¢%(z) > 0, with
equality if and only if x = x(u). As a consequence, defining
Gulw, s) = ¢h(z) + ¢Z(s), (6.20)

where (z,s) is any pair of positive primal and dual feasible solutions, we have
ou(z,s) > 0, and the equality holds if and only if * = xz(u) and s = s(u). The
function ¢, : PT x DT — R™" is called the primal-dual logarithmic barrier function
with barrier parameter p. Now the following lemma is almost obvious.

Lemma I1.28 Let x > 0 be primal feasible and s > 0 dual feasible. Then
O (@) = by (x,5(n)) < Gula,s) and  ¢i(s) = o, (2(p), 5) < du(x, ).

Proof: The inequalities in the lemma are immediate from (6.20) since ¢%(x) and

d N . . . el . o o
¢4, (s) are nonnegative. Similarly, the equalities follow since ¢f, (z(1t)) = gbi (s(u)) =0.
Thus the lemma has been proved. O
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In the sequel, properties of the function ¢, form the basis of many of our estimates.
These estimates follow from properties of the univariate function

P(t) =t —log(l1+1), t>—1, (6.21)

as defined in (5.5).12 The definition of ¢ is extended to any vector z = (21,22, .., 2,
satisfying z + e > 0 according to

n

n n
Psi(z Zw zj) Z —log(l+z;))=¢ z—Zlog 1+ z5). (6.22)
j=1

Jj=1 j=1

We now make a crucial observation, namely that the barrier functions ¢,,(z, s), ¢%,(z)
and ¢i(s) can be nicely expressed in terms of the function W.

Lemma I1.29 Let x > 0 be primal feasible and s > 0 dual feasible. Then
(i) bulw,s) = (2 —e);
(ii) 9h(w) =W (=)~ c);
ﬁm<ﬁ@)=w(ﬂgﬁ_e)

Proof: '* TFirst we consider item (i). We use that ¢’z — b7y = «
bTy(u) = ()" s(u) = np. Now ¢,,(x, s) can be reduced as follows:

Ts and eTa(u) —

Gul@,s) = Puls) + gul(x) — (huls(u) + gulz(w)))
s < z(p)l's ‘
= —_—— Zlogmjsj ) sl + Zlog zi (1) s; (1)
noo= 7 —t
J J
zT's
= —fZlogmjsjfn+nlog,u.
Tt
Since z1's = e (xs) and eT'e = n, we find the following expression for ¢, (z, s):*°

n
pulx,s) = el <E—e) —Zlogﬁzlﬁ(g—e>. (6.23)
K = K H
This proves the first statement in the lemma. The second statement follows by
substituting s = s(u) in the first statement, and using Lemma 11.28. Similarly, the
third statement follows by substituting = z(u) in the first statement. O

13 Exercise 39 Let ¢t > —1. Prove that

v(55) rew =1

1+1 14+t
14 Note that the dependence of ¢u{xz,s) on x and s is such that it depends only on the coordinatewise
product xs of x and s.
15 Exercise 40 Considering (6.23) as the definition of ¢, (z, s), and without using the properties of
9, show that ¢, (x,s) is nonnegative, and zero if and only if s = pe. (Hint: Use the arithmetic-
geometric-mean inequality.)
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Now we are ready to derive lower and upper bounds for the value of the dual
logarithmic barrier function in the region of quadratic convergence around the u-
center. These bounds heavily depend on the following two inequalities:

e(llzl) <V(z) <@ (=|=l), 2> —e (6.24)

The second inequality is valid only if [|z|] < 1. The inequalities in (6.24) are
fundamental for our purpose and are immediate consequences of Lemma C.2 in
Appendix C.16:17

Lemma I1.30'®  Let 6 := (s, ). Then
9u(s) > 0 —log(1 +6) = ¥(9).
Moreover, if § < 1, then
¢2(s) < pula(s, ), s) < —3 — log(1 — &) = ¢(=4).

Proof: By applying the inequalities in (6.24) to (6.23) we obtain for any positive
primal feasible z:
o

where the second inequality is valid only if the norm of zs/p — e does not exceed 1.
Using (6.8) we write

sx
——e
I

sx
— —e
I

> < ou(x,s) <o < > , (6.25)

0= 5(8’/1’) =

e —

sx(s, 1) ‘ < ‘e sx
— |

Hence, by the monotonicity of (t) for ¢t > 0,

sz
——e

w0 <v(

).

16 At least one of the inequalities in (6.24) shows up in almost every paper on interior-point methods.
As far as we know, all usual proofs use the power series expansion of log(l + x),—1 < « < 1 and
do not characterize the case of equality, at least not explicitly. We give an elementary proof in
Appendix C (page 435).

17 Exercise 41 Let z € R™. Prove that

2
I

HZII) K

z>0 = U(z)<n — ] <

> Gy <me (B1) <12

- IIZH) Iz
—e<2<0 = Y(z)>n (— >
< (z) 2 nap N

18 This lemma improves a similar result of den Hertog et al. [146] and den Hertog [140]. The
improvement is due to a suggestion made by Osman Giiler [130] during a six month stay at
Delft in 1992, namely to use the primal logarithmic barrier function in the analysis of the dual
logarithmic barrier method. This approach not only simplifies the analysis significantly, but also
leads to sharper estimates. It may be appropriate to mention that even stronger bounds for ¢,,(x, s)
will be derived in Lemma I1.69, but there we use a different proximity measure.
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for any positive primal feasible x. Taking © = x(u) and using the left inequality in
(6.25) and the third statement in Lemma I1.29, we get

M®§w<

2%Lfbsmmmm=%@y

proving the first inequality in the lemma. For the proof of the second inequality in the
lemma we assume 6 < 1 and put x = (s, ) in the right inequality in (6.25). This
gives

%@@w%$§w<—

By Lemma I1.28 we also have gbz(s) < ¢, (x(s, 1), s). Thus the lemma follows. O

The functions 1(8) and ¢¥(—4), for 0 < § < 1, play a dominant role in many of the
estimates below. Figure 6.11 shows their graphs.

275F

25F

225-

1751

1.25-

075

0.5-

0.25-

Figure 6.11 The functions ¥(§) and ¢(—6) for 0 <4 < 1.

6.9.2 Estimates of objective values

We proceed by considering the dual objective value b7y in the region of quadratic
convergence around the u-center. Using that x(p)s(u) = pe and cl'z(p) — b7 y(u) =
() s(p1) = nu, we write

bT T

y) —oTy = ca(u) —np— 0Ty = sTa(p) —np = e (sz(u) — pe)
= pet (%(M) - e) = pel (ﬁ - e) . (6.26)
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Applying the Cauchy—Schwarz inequality to the expression for b y(u) — b7y in (6.26),
we obtain

s
— — el . 6.27
s(p) ‘ (627
We assume § := §(s, ) < 1/+/2. It seems reasonable then to expect that the norm of
the vector

0Ty (p) —b"y| < pv/n

hg == 5 76:395(/1)76

s(w) p
will not differ too much from §. In any case, that is what we are going to show. It will
then follow that the absolute value of by(u) — by is of order ud\/n.
Note that hg can be written as

and hence || h,|| measures the relative difference between s and s(u). We also introduce
a similar vector for any primal feasible x > O:

zs(u) z z—a(p)

he = (1) (1)

Using that  — x(p) and s — s(u) are orthogonal, as these vectors belong to the null
space and row space of A, respectively, we may write

i (5380 () -

This makes clear that h, and h, are orthogonal as well. In the rest of this section we
work with = z(s, 1) and derive upper bounds for ||h,|| and ||hg]|. It is convenient to
introduce the vector

h=hy + hs.

The next lemma implicitly yields an upper bound for ||A]|.
Lemma I1.31 Let 6 = 6(s, ) <1 and x = x(s, ). Then ¥(||h]]) < ¥(=9).
Proof: Using Lemma I1.29 we may rewrite (6.20) as
Oz, s) = W(hg) + U(hs).
By the first inequality in (6.24) we have
U(he) = ((lhel]) and  W(hs) = ¥([|hs])-

Applying the first inequality in (6.24) to the 2-dimensional vector (|||, ||ks]]), we
obtain

Pllhll) + L (hsl) = (A1)

Here we used that h, and h, are orthogonal. Substitution gives

P, s) 2 Y(|[]]).
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On the other hand, by Lemma II.30 we have ¢,(x,s) < ¢/(—9), thus completing the
proof. a

Let us point out that we can easily deduce from Lemma II.31 an interesting
upper bound for [|h| if 6 < 1. It can then be shown that ¥ (||h|]) < ¥(—§) implies
|R|| < 6/(1 —6).1%20 This implies that ||h]| < 1 if § < 1/2. However, for our purpose
this bound is not strong enough. We prove a stronger result that implies that ||h| <1

if § < 1/v/2.
Lemma I1.32 Let § = 6(s, 1) < 1/+/2. Then ||h| < V2.

Proof: By Lemma I1.31 we have 9(||h]]) < 1(—J). Since (—4) is monotonically
increasing in 6, this implies

Y(|[R]) < P(=1/v/2) = 0.52084.

Since

Y(V/2) = 0.53284 > 0.52084,
and v (t) is monotonically increasing for ¢ > 0, we conclude that ||A]| < v/2. O

We now have the following result.

Lemma I1.33 2! Let & := 6(s, ) < 1/v/2. Then

<\/1—+/1—262.

lhsll = || =~ —e

Moreover, if x = x(s, u) then also

lhe|| = ||~ —e‘ <\/1—+/1— 252

()
Proof: Lemma II.32 implies that

Hhx JFhs” - ”hH < \/§

On the other hand, since
s xs
fe=—2" o h hy)—e=nh hs + h.h
. e 200500 e=(e+hy)(e+ hs) —e=hy +hs+ hyhs,

with x = x(s, i), and using (6.8), it follows that

Sl

19 Exercise 42 Let 0 < ¢t < 1. Prove that
—t t? 2 2 t
Tyt << <) < —— <o ——).
w(1+t)—2(1+t)—w()— 5 Sl )_Q(I—t)_w(l—t>

Also show that the first two inequalities are valid for any ¢ > 0.
20 Exercise 43 Let 0 < & < 1 and r > 0 be such that ¢(r) < ¥(—8). Prove that r < §/(1 — ).

21 For § < 1/2 this lemma was first shown by Gonzaga (private communication, Delft, 1994).
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At this stage we may apply the fourth wv-lemma (Lemma C.8 in Appendix C) with
u = h, and v = hg, to obtain the lemma. O

We are now ready for the main result of this section.

Theorem I1.34 If§ = §(s, 1) < 1/v/2 then
b7y(p) — b"y| < pvny1— V1 — 262
Proof: Recall from (6.27) that

07 y(u) = 0"y| < pv/n [|hsl]

Substituting the bound of Lemma I1.33 on ||A;], the theorem follows. O

0.8

osf : \

DL e

0.2
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_.6

Figure 6.12 The graphs of § and v/1 — /1 — 252 for 0 < § < 1/v/2.

Figure 6.12 (page 138) shows the graphs of § and /1 — /1 — 242, Tt is clear that
for small values of § (§ < 0.3 say) the functions can hardly be distinguished.

6.9.83 Effect of large update on barrier function value

We start by considering the effect of an update of the barrier parameter on the
difference between the dual barrier function value and its minimal value. More
precisely, we assume that for given dual feasible s and p > 0 we have § = (s, u) <
1/v/2, and we want to estimate

i (8) = Ry (8) = Dy (s(u ™)),
where ut = (1 — 6) for 0 < 6 < 1. Note that Lemma I1.30 gives the answer if § = 0:

o (s) < ¥(=9).
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For the general case, where § > 0, we write

) = ua(s) = hus(s(u™))
= B (8) — by (s <u>>+hu+< s(11)) — hy+ (s(u*))
= by (s) = e (s(w) + 6 (s()), (6.28)

and we treat the first two terms and the last term in the last expression separately.

Lemma I1.35 In the above notation,

e (5) = By (s()) < 0(=0) + 2% 1= T

Proof: Just using definitions we write

by & bTy(p) <
hot () = hys (s(u)) = — — Y logs; + —=—=+ > _logs;(p)
Iz =~ Iz =
= fZIOgsterogsj(,u)Jr#
j=1 j=1 K
bTy() —b"y  bTy(p) —b"y
= huls) = hpu(s(u) + e - "
6 bly(u) -y
_ d
= $,(s) + T g . )
Applying Lemma II.30 to the first term in the last expression, and Theorem I1.34 to
the second term gives the lemma. a

Lemma I1.36 In the above notation,

L (5(1)) < By (2(00),5(2)) = 1) (%) .

Proof: The inequality follows from Lemma I1.28. The equality is obtained as follows.
From (6.23),

6y ol ) = (D o) - Zlog L),

Iu+

Since z(u)s(p) = pe and pu™ = (1 — B)u, this can be simplified to

Gur (x(p),s(w)) = el (5—i —e> - znjlog/%
_ eT(1—9 )Zlog
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This completes the proof. O
Combining the results of the last two lemmas we find the next lemma.

Lemma I1.37 Let 6(s,p) < 1/v/2 for some dual feasible s and p > 0. Then, if
uht = p(l —0) with 0 <0 < 1, we have
6
1-6

-1 9\/_
ﬁ+(5) <y (E) 1—
Proof: The lemma follows from (6.28) and the bounds provided by the previous
lemmas, by substitution of § = 1/v/2. O

With s, ¢ and p* as in the last lemma, our aim is to estimate the number of damped
Newton steps required to reach the vicinity of the p*-center when starting at s. To
this end we proceed by estimating the decrease in the barrier function value during a
damped Newton step.

6.9.4 Decrease of the barrier function value

In this section we consider a damped Newton step to the p-center at an arbitrary
positive dual feasible s and we estimate its effect on the barrier function value. The
analysis also yields a suitable value for the damping factor a.. The result of the damped
Newton step is denoted by s, so

st =54 als, (6.29)

where As denotes the full Newton step.

Lemma I1.38 Let & = (s, p). If « = 1/(1 + &) then the damped Newton step (6.29)
is feasible and it reduces the barrier function value by at least § —log(l +9). In other
words,

Sji(s) — ¢p(st) > 6 —log(1 +8) = 4(9).

Proof: First recall from (6.5) in Section 6.5 that the Newton step As is determined
by
z(s,p) = us™! (e— s_lAs) .

We denote z(s, u) briefly as . With

the damped Newton step can be described as follows:
st =54 als = s(e + az).

Since sT is feasible if and only if it is nonnegative, the step is certainly feasible if
a||z|| < 1. Since § = ||z]|, the value for a specified by the lemma satisfies this condition,
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and hence the feasibility of s* follows. Now we consider the decrease in the dual barrier
function value during the step. We may write

dp(s) — du(s™) hn(S) - hu(5+)

The difference b7 y™ — b”y can be written as follows:

byt —bly = o —ply — (ch — bTy"') =gls—2Tst
= —azl(sz) = —ael (z8) 2= au(z —e)z.
Thus we obtain
¢d( ) — ¢d( ) = OéeT(Z—e)Z—f—Zlog(l—i—oazj)

j=1
= ae’ z°— eT(az)fZIOg(1+azj)
= ad® —¥(az).

Since [Jaz|] < 1 we may apply the right-hand side inequality in (6.24), which gives
V(az) <¥(—alz|) =¢ (—ad), whence

gbi(s) - ¢/‘i(s+) > ad? —p(—ad) = ad® +ad +log(l — ad).

As a function of «, the right-hand side expression is increasing for 0 < a < 1/(1 + ),
as can be easily verified, and it attains its maximal value at o = 1/(1 + §), which is
the value specified in the lemma. Substitution of this value yields the bound in the
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lemma. Thus the proof is complete.?2:23 O

We are now ready to estimate the number of (inner) iterations between two
successive updates of the barrier parameter.

6.9.5 Number of inner iterations

Lemma I1.39 The number of (inner) iterations between two successive updates of the
barrier parameter is no larger than

()]

Proof: From Lemma I1.37 we know that after the update of 1 we have
9\/_ )
e (8) <w(=m) + (19)

1—
where 7 = 1/4/2. The algorithm repeats damped Newton steps as long the iterate s
satisfies § = (s, u™) > 7. In that case the step decreases the barrier function value
by at least 1(4), by Lemma I1.38. Since § > 7, the decrease is at least

(1) = 0.172307.

As soon as the barrier function value has reached #(7) we are sure that §(s,pu™) <7,
from Lemma I1.30. Hence, the number of inner iterations is no larger than

5 (v o (555))|

The rest of the proof consists in reducing this expression to the one in the lemma.
First, using that ¢(—7) = 0.52084, we obtain

Y(—7) —(r)  0.34853
(1) ~0.172307 —

22 Exercise 44 In the proof of Lemma I1.38 we found the following expression for the decrease in
the dual barrier function value:

$i(s) = dpi(sT) = aelz” — V(az),

where a denotes the size of the damped Newton step. Show that the decrease is maximal for the
unique step-size & determined by the equation

n 2

ozs
eTz2:§ : J
1+ az;

j=1

and that for this value the decrease is given by

v ( az ) .
€+ az
23 1t is interesting to observe that Lemma I11.38 provides a second proof of the first statement in

Lemma I1.30, namely
$i(s) = (6,

where ¢ := §(s, ). This follows from Lemma I1.38, since ¢ﬁ(s+) > 0.
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Furthermore, using 1 (t) < t2/2 for t > 0 we get*

" (1 ﬁ 9) = 2(1n929)2' (6.30)

Finally, using that 1/¢(7) < 1/6 we obtain the following upper bound for the number

of inner iterations:
60/ 3nd? NG 2
= 1
[3+19+(19)2] 3(19+

This proves the lemma. g

Remark I1.40 It is tempting to apply Lemma I1.39 to the case where 8 = 1/(34/n). We
know that for that value of 8 one full Newton step keeps the iterate in the region of quadratic
convergence around the p"-center. Substitution of this value in the bound of Lemma I1.39
however yields that at least 6 damped Newton steps are required for the same purpose. This
disappointing result reveals a weakness of the above analysis. The weakness probably stems
from the fact that the estimate of the number of inner iterations in one outer iteration is based
on the assumption that the decrease in the barrier function value is given by the constant
(7). Actually the decrease is at least t(0). Since in many inner iterations, in particular in
the iterations immediately after the update of the barrier parameter, the proximity é may be
much larger than 7, the actual number of iterations may be much smaller than the pessimistic
estimate of Lemma I1.39. This is the reason why for the algorithm with large updates there
exists a gap between theory and practice. In practice the number of inner iterations is much
smaller than the upper bound given by the lemma. Hopefully future research will close this

gap.”® ®

6.9.6 Total number of iterations

We proceed by estimating the total number of iterations required by the algorithm.

Theorem I1.41 To obtain a primal-dual pair (x,s), with x = x(s, ), such that

xTs < 2e, at most
1 0+/n 2 np®
- 13 1 log —
7 (1 il ) 8

iterations are required by the logarithmic barrier algorithm with large updates.

24 A different estimate arises by using Exercise 39, which implies 1(t) < t2/(1 +1t) for t > —1. Hence

[ ng?
Ly« L
"¢(1—9) =1 ¢

which is sharper than (6.30) if & > % The use of (6.30) however does not deteriorate the order of
our estimates below.

25 Exercise 45 Let § = 8(s, it) > 0 and & = z(s, 1). Then the vector z = (ws/p) — e has at least one
positive coordinate. Prove this. Hence, if z has only one nonzero coordinate then this coordinate
equals ||z||. Show that in that case the single damped Newton step with step-size a = 1/(1 + §)
yields sT = s(p).
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Proof: The number of outer iterations follows from Lemina 1.36. The bound in the
theorem is obtained by multiplying this number by the bound of Lemma II.39 for
the number of inner iterations per outer iteration and rounding the product, if not
integral, to the smallest integer above it. O

We end this section by drawing two conclusions. If we take & to be a fixed constant
(independent of n), for example 8 = 1/2, the iteration bound of Theorem I1.41 becomes

0
o<n log %).
I

For such values of # we say that the algorithm uses large updates. The number of
inner iterations per outer iteration is then O(n).

If we take 8 = v/ /n for some fixed constant v (independent of n), the iteration
bound of Theorem II.41 becomes

0
0<ﬁ log %)

provided that n is large enough (n > v? say). It has become common to say that the
algorithm uses medium updates. The number of inner iterations per outer iteration is
then bounded by a constant, depending on v.

In the next section we give an illustration.

6.9.7 Illustration of the algorithm with large updates

We use the same sample problem as before (see Sections 6.7.2 and 6.8.4) and solve
it using the dual logarithmic barrier algorithm with large updates. We do this for
several values of the barrier update parameter 6. As before, we start the algorithm at
y = (0,0) and p = 2, and the accuracy parameter is set to ¢ = 104, For § = 0.5,
Table 6.3. (page 145) lists the algorithm’s progress.

The table needs some explanation. The first two columns contain counters for the
outer and inner iterations, respectively. The algorithm requires 16 outer and 16 inner
iterations. The table shows the effect of each outer iteration, which involves an update
of the barrier parameter, and also the effect of each inner iteration, which involves a
move in the dual space. During a barrier parameter update the dual variables  and
s remain unchanged, but, because of the change in u, the primal variable x(s, 1) and
the proximity attain new values. After each update, damped Newton steps are taken
until the proximity reaches the value 7. In this example the number of inner iterations
per outer iteration is never more than one. Note that we can guarantee the primal
feasibility of x only if the proximity is at most one. Since the table shows only the
second coordinate of = (and also of s), infeasibility of z can only be detected {rom the
table if x5 is negative. In this example this does not occur, but it occurs in the next
example, where we solve the same problem with § = 0.9.

With 6 = 0.9, Table 6.4. (page 146) shows that in some iterations x is infeasible
indeed. Moreover, although the number of outer iterations is much smaller than in
the previous case (5 instead of 16), the total number of iterations is almost the same
(14 instead of 16). Clearly, and understandably, the deeper updates make it harder to
reach the new target region.
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Outer | Inner nu To Y1 Yo So )
0 0 | 6.000000 | 1.500000 | 0.000000 | 0.000000 | 1.000000 | 0.6124
1 3.000000 | 0.500000 | 0.000000 | 0.000000 | 1.000000 | 0.7071

1] 3.000000 | 0.690744 | 0.292893 | 0.000000 | 1.292893 | 0.2229
2 1.500000 | 0.230248 | 0.292893 | 0.000000 | 1.292893 | 1.3081
2 | 1.500000 | 0.302838 | 0.519549 | 0.433260 | 1.519549 | 0.2960
3 0.750000 | 0.105977 | 0.519549 | 0.433260 | 1.519549 | 1.7316
31 0.750000 | 0.138696 | 0.717503 | 0.696121 | 1.717503 | 0.3618
4 0.375000 | 0.056177 | 0.717503 | 0.696121 | 1.717503 | 2.0059
41 0.375000 | 0.065989 | 0.847850 | 0.840792 | 1.847850 | 0.4050
5 0.187500 | 0.029627 | 0.847850 | 0.840792 | 1.847850 | 2.1632
5 10.187500 | 0.032120 | 0.920315 | 0.918672 | 1.920315 | 0.4367
6 0.093750 | 0.015201 | 0.920315 | 0.918672 | 1.920315 | 2.2575
6 | 0.093750 | 0.015842 | 0.959178 | 0.958681 | 1.959178 | 0.4591
7 0.046875 | 0.007704 | 0.959178 | 0.958681 | 1.959178 | 2.3176
7 1 0.046875 | 0.007866 | 0.979268 | 0.979161 | 1.979268 | 0.4744
8 0.023438 | 0.003878 | 0.979268 | 0.979161 | 1.979268 | 2.3556
8 [ 0.023438 | 0.003920 | 0.989548 | 0.989516 | 1.989548 | 0.4844
9 0.011719 | 0.001946 | 0.989548 | 0.989516 | 1.989548 | 2.3793
9 10.011719 | 0.001956 | 0.994747 | 0.994740 | 1.994747 | 0.4907
10 0.005859 | 0.000975 | 0.994747 | 0.994740 | 1.994747 | 2.3937
10 | 0.005859 | 0.000977 | 0.997366 | 0.997364 | 1.997366 | 0.4945
11 0.002930 | 0.000488 | 0.997366 | 0.997364 | 1.997366 | 2.4023
11 | 0.002930 | 0.000488 | 0.998681 | 0.998680 | 1.998681 | 0.4968
12 0.001465 | 0.000244 | 0.998681 | 0.998680 | 1.998681 | 2.4074
12 1 0.001465 | 0.000244 | 0.999340 | 0.999340 | 1.999340 | 0.4982
13 0.000732 | 0.000122 | 0.999340 | 0.999340 | 1.999340 | 2.4103
13 | 0.000732 | 0.000122 | 0.999670 | 0.999670 | 1.999670 | 0.4990
14 0.000366 | 0.000061 [ 0.999670 | 0.999670 | 1.999670 | 2.4120
14 | 0.000366 | 0.000061 | 0.999835 | 0.999835 | 1.999835 | 0.4994
15 0.000183 | 0.000031 | 0.999835 | 0.999835 | 1.999835 | 2.4130
15 | 0.000183 | 0.000031 | 0.999917 | 0.999917 | 1.999917 | 0.4997
16 0.000092 | 0.000015 [ 0.999917 | 0.999917 | 1.999917 | 2.4135
16 | 0.000092 | 0.000015 [ 0.999959 | 0.999959 | 1.999959 | 0.4998

Table 6.3. Progress of the dual algorithm with large updates, 8 = 0.5.
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This is even more true in the last example where we take 8 = 0.99. Table 6.5.
(page 146) shows the result. The number of outer iterations is only 3, but the total
number of iterations is still 14. This leads us to the important observation that the
deep update strategy has its limits. On the other hand, the number of iterations is
competing with the methods using full Newton steps, and is significantly less than the
iteration bound of Theorem I1.41.
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Outer | Inner nu To " Yo So )
0 0 | 6.000000 1.500000 | 0.000000 | 0.000000 | 1.000000 | 0.6124
1 0.600000 | —0.300000 | 0.000000 | 0.000000 | 1.000000 | 5.3385
1| 0.600000 0.014393 | 0.394413 | 0.631060 | 1.394413 | 2.4112
2 1 0.600000 0.108620 | 0.762163 | 0.722418 | 1.762163 | 0.5037
2 0.060000 | —0.005240 | 0.762163 | 0.722418 | 1.762163 | 16.8904
3 | 0.060000 0.008563 | 0.906132 | 0.922246 | 1.906132 | 4.7236
4 | 0.060000 0.010057 | 0.967364 | 0.961475 | 1.967364 | 1.1306
5 | 0.060000 0.010098 | 0.977293 | 0.978223 | 1.977293 | 0.1716
3 0.006000 0.000891 | 0.977293 | 0.978223 | 1.977293 | 14.3247
6 | 0.006000 0.000994 | 0.992649 | 0.992275 | 1.992649 | 3.9208
7 | 0.006000 0.001001 | 0.996651 | 0.996769 | 1.996651 | 0.9143
8 | 0.006000 0.001001 | 0.997834 | 0.997808 | 1.997834 | 0.1277
4 0.000600 0.000099 | 0.997834 | 0.997808 | 1.997834 | 13.9956
9 | 0.000600 0.000100 | 0.999254 | 0.999264 | 1.999254 | 3.8257
10 | 0.000600 0.000100 | 0.999676 | 0.999673 | 1.999676 | 0.8883
11 | 0.000600 0.000100 | 0.999782 | 0.999783 | 1.999782 | 0.1224
5 0.000060 0.000010 | 0.999782 | 0.999783 | 1.999782 | 13.9508
12 | 0.000060 0.000010 | 0.999926 | 0.999926 | 1.999926 | 3.8128
13 | 0.000060 0.000010 | 0.999967 | 0.999968 | 1.999967 | 0.8847
14 | 0.000060 0.000010 | 0.999978 | 0.999978 | 1.999978 | 0.1216

Table 6.4. Progress of the dual algorithm with large updates, 8 = 0.9.
Outer | Inner nu To Y1 Yo 89 )
0 0 | 6.000000 1.500000 | 0.000000 | 0.000000 | 1.000000 0.6124
1 0.060000 | —0.480000 | 0.000000 | 0.000000 | 1.000000 | 60.4235
1] 0.060000 | —0.133674 | 0.407010 | 0.797740 | 1.407010 | 28.2966
2 1 0.060000 0.008587 | 0.906680 | 0.860655 | 1.906680 7.0268
3 1 0.060000 0.009852 | 0.949767 | 0.964246 | 1.949767 1.7270
4 1 0.060000 0.010099 | 0.978068 | 0.974574 | 1.978068 0.2919
2 0.000600 | —0.000021 | 0.978068 | 0.974574 | 1.978068 | 166.4835
5 1 0.000600 0.000086 | 0.992297 | 0.993722 | 1.992297 | 48.2832
6 | 0.000600 0.000099 | 0.998161 | 0.997593 | 1.998161 | 13.7438
7 | 0.000600 0.000100 | 0.999183 | 0.999394 | 1.999183 3.6913
8 1 0.000600 0.000100 | 0.999720 | 0.999656 | 1.999720 0.8224
9 1 0.000600 0.000100 | 0.999781 | 0.999792 | 1.999781 0.1013
3 0.000006 0.000001 | 0.999781 | 0.999792 | 1.999781 | 149.4817
10 | 0.000006 0.000001 | 0.999939 | 0.999934 | 1.999939 | 43.4727
11 | 0.000006 0.000001 | 0.999980 | 0.999981 | 1.999980 | 12.4359
12 | 0.000006 0.000001 | 0.999994 | 0.999993 | 1.999994 3.3655
13 | 0.000006 0.000001 | 0.999997 | 0.999997 | 1.999997 0.7573
14 | 0.000006 0.000001 | 0.999998 | 0.999998 | 1.999998 0.0949

Table 6.5. Progress of the dual algorithm with large updates, § = 0.99.
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We conclude this section with a graphical illustration of the algorithm, with 8 = 0.9.
Figure 6.13 shows the first outer iteration, which consists of 2 inner iterations.

— 3(s,0.2) =7

[~ 3(s,2) =71

<~—— central path

— U

Figure 6.13 The first iterates for a large update with 6 = 0.9.
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The Primal-Dual Logarithmic
Barrier Method

7.1 Introduction

In the previous chapter we dealt extensively with the dual logarithmic barrier approach
to the LO problem. It has become clear that Newton’s method, when applied to find
the minimizer of the dual logarithmic barrier function, yields a search direction As in
the dual space that allows us to follow the dual central path (approximately) to the
dual optimal set. We were able to show that an e-solution of (D) can be obtained in a
number of iterations that is proportional to the product of the logarithm of the initial
duality gap divided by the desired accuracy, and +/n (for the full-step method and the
medium-update method) or n (for the large-update method). Although the driving
force in the dual logarithmic barrier approach is the desire to solve the dual problem
(D), it also yields an g-solution of the primal problem (P). The problem (P) also plays
a crucial role in the analysis of the method. For example, the Newton step As at (y, s)
for the barrier parameter value p is described by the primal variable z(s, ). Moreover,
the convergence proof of the method uses the duality gap ¢’ z(s, ) — b7y. Finally, the
analysis of the medium-update and large-update versions of the dual method strongly
depend on the properties of the primal-dual logarithmic barrier function ¢,(z, s).

The aim of this chapter is to show that we can benefit from the primal problem not
only in the analysis but also in the design of the algorithm. The idea is to solve both
the dual and the primal problemn simultaneously, by taking in each iteration a step
As in the dual space and a step Az in the primal space. Here, the search directions
As and Az still have to be defined. This is done in the next section. Again, Newton’s
name is given to the search directions, but now the search directions arise from an
iterative method — also due to Newton — for solving the system of equations defining
the p-centers of (P) and (D).

In the following paragraphs we follow the same program as for the dual algorithms:
we first introduce a proximity measure, then we deal with full-step methods, with both
fixed and adaptive updates of the barrier parameter, and finally we consider methods
that use deep (but fixed) updates and damped Newton steps.

For the sake of clarity, it might be useful to emphasize that it is not our aim to
take for As the dual Newton step and for Az its counterpart, the primal Newton step.
For this would mean that we were executing two algorithms simultaneously, namely
the dual logarithmic barrier algorithm and the primal logarithmic barrier algorithm.
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Apart from the fact that this makes no sense, it doubles the computational work
(roughly speaking). Instead, we define the search directions As and Az in a new
way and we show that the resulting algorithms, called primal-dual algorithms, allow
similar theoretical iteration bounds to their dual (or primal) counterparts. In practice,
however, primal-dual methods have a very good reputation. Many computational
studies give support to this reputation. This is especially true for the so-called
predictor-corrector method, which is discussed in Section 7.7.

7.2 Definition of the Newton step

In this section we are given a positive primal-dual feasible pair (z, (y, s)), and some
@ > 0. Our aim is to define search directions Az, Ay, As that move in the direction of
the p-center x(p), y(u), s(p). In fact, we want the new iterates x + Az, y + Ay, s+ As
to satisfy the KKT system (5.3) with respect to p. After substitution this yields the
following conditions on Az, Ay, As:

Az + Ax) = b, x4+ Az >0,
AT(y+ Ay) + s+ As = c, s+ As >0,
(x 4+ Az)(s + As) = HE.
If we neglect for the moment the inequality constraints, then, since Az = b and

ATy 4+ s = ¢, this system can be rewritten as follows:

AAzx = 0,
ATAy+As = 0, (7.1)
sAz + xAs + AxAs = pe — xs.

Unfortunately, this system of equations in Az, Ay and As is nonlinear, because of the
term AxzAs in the third equation. To overcome this difficulty we simply neglect this
quadratic term, according to Newton’s method for solving nonlinear equations, and
we obtain the linear system

AAzx = 0,
ATAy+As = 0, (7.2)
sAz + xAs = e — xs.

Below we show that this system determines the displacements Az, Ay and As
uniquely. We call them the primal-dual Newton directions and these are the directions
we are going to use.

Theorem I1.42 The system (7.2) has a unique solution, namely
Ay = (AXSTATY (b pAsT)
As = —AT Ay
Ax = ps P —x—xs tAs.
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Proof: We divide the third equation in (7.2) coordinatewise by s, and obtain
Azt xs 'As = pst — . (7.3)

Multiplying this equation from the left by A, and using that AAx = 0 and Az = b,
we get
AXS™'As = pAs™ — Az = pAs™' —b.

The second equation gives As = — AT Ay. Substituting this we find
AXS TATAy =b— pnAs

Since A is an m x n matrix of rank m, the matrix AXS~'A” has size m x m and is
nonsingular, so the last equation determines Ay uniquely as specified in the theorem.
Now As follows uniquely from As = —AT Ay. Finally, (7.3) yields the expression for
Azt a

Remark I1.43 In the analysis below we do not use the expressions just found for the search
directions in the primal and the dual space. But it is important to see that their computation
requires the solution of a linear system of equations with AXS ' AT as coefficient matrix.
We refer the reader to Chapter 20 for a discussion of computational issues related to efficient
solution methods for such systems. .

Remark I1.44 We can easily deduce from Theorem I1.42 that the primal-dual directions
for the y- and the s-space differ from the dual search directions used in the previous chapter.
For example, the dual direction for y was given by

(As724™)™ <3 - As—1>
I
whereas the primal-dual direction is given by
(AXST'AT) T (b— pAsTY).

The difference is that the scaling matrix S~2 in the dual case is replaced by the scaling matrix
XS7 '/ in the primal-dual case. Note that the two scaling matrices coincide if and only if
XS = ul, which happens if and only if 2 = z(u) and s = s(u). In that case both expressions
vanish, since then pAs™' = Az = b. We conclude that if s # s(u) then the dual directions
in the y- and in the s-space differ from the corresponding primal-dual directions. A similar
result holds for the search direction in the primal space. It may he worthwhile to point out
that the dual search direction at y depends only on y itself and the slack vector s = ¢ — ATy,
whereas the primal-dual direction at y also depends on the given primal variable x. .

1 Exercise 46 An alternative proof of the unicity property in Theorem 11.42 can be obtained by
showing that the matrix in the linear system (7.2) is nonsingular. This matrix is given by

A 0 0
o AT 1 |.
s 0 X

Prove that this matrix in nonsingular.
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7.3 Properties of the Newton step

We denote the result of the (full) Newton step at (z,y,s) by (z%,y*,s7):
T =x+Az, yt=y+Ay, sT=s+As

Note that the new iterates satisfy the affine equations Azt = b and ATyt + 57 =¢,
since AAz = 0 and ATAy + As = 0, so we ouly have to concentrate on the sign of
the vectors 21+ and st. We call the Newton step feasible if 7 and s are nonnegative
and strictly feasible if 1 and s are positive. The main aim of this section is to find
conditions for feasibility and strict feasibility of the (full) Newton step.

First we deal with two simple lemmas.?

Lemma I1.45 Az and As are orthogonal.

Proof: Since AAz =0, Az belongs to the null space of A, and since As = —AT Ay,
As belongs to the row space of A. Since these spaces are orthogonal, the lemma follows.
O

If z* and s* are nonnegative (positive), then their product is nonnegative (positive)
as well. We may write

zTst = (z+ Ax)(s + As) = x5 + (sAz + zAs) + AzAs.
Since sAz + xAs = e — s this leads to
xTsT = pe + AzAs. (7.4)

Thus it follows that zT and s are feasible only if pe + AzAs is nonnegative.
Surprisingly enough, the converse is also true. This is the content of our next lemma.

Lemma 11.46 The primal-dual Newton step is feasible if and only if e+ AxAs > 0
and strictly feasible if and only if ue + AxzAs > 0.

Proof: The ‘only if’ part of both statements in the lemma follows immediately from
(7.4). For the proof of the converse part we introduce a step length o,0 < o <1, and
we define

*=x+alAz, y*=y+aldy, s*=s+als.

We then have 20 = z, 2! = 27 and similar relations for the dual variables. Hence we
have z9s% = zs > 0. The proof uses a continuity argument, namely that z! and s!
are nonnegative if x*s® is positive for all « in the open interval (0, 1). This argument
has a simple geometric interpretation: ! and s' are feasible if and only if the open
segment connecting z° and z' lies in the interior of the primal feasible region, and the
open segment connecting s° and s' lies in the interior of the dual feasible region. Now
we write

%% = (z + @A) (s + aAs) = x5 + a (sAzx + 1As) + o’ AzAs.

2 One might observe that some of the results in this and the next section are quite similar to
analogous results in Section 2.7.2 in Part I for the Newton step for the self-dual model. To keep
the treatment here self-supporting we do not invoke these results, however.
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Using sAz + xAs = pe — xs gives
%% = x5+ a(ue — xs) + a*AzAs.
Now suppose pe + AxAs > 0. Then it follows that
%% > x5+ a(pe — xs) — o’ ue = (1 — o) (x5 + ape) .

Since zs and e are positive it follows that x%s® > 0 for 0 < o < 1. Hence, none of the
entries of % and s® vanish for 0 < o < 1. Since z° and s° are positive, this implies
that 2% > 0 and s® > 0 for 0 < o < 1. Therefore, by continuity, the vectors z' and
s' cannot have negative entries. This completes the proof of the first statement in the

lemma. Assuming pe + AxAs > 0, we derive in the same way
%% > x5+ a (e — xs) — a’pe = (1 — o) (zs 4+ aue) .

This implies that z's' > 0. Hence, by continuity, ' and s' must be positive, proving
the second statement in the lemma. a

We proceed with a discussion of the vector AzAs. From (7.4) it is clear that the
error made by neglecting the second-order term in the nonlinear system (7.1) is given
by this vector. It represents the so-called second-order effect in the Newton step.
Therefore it will not be surprising that the vector AxAs plays a crucial role in the
analysis of primal-dual methods.

It is worth considering the ideal case where the second-order term vanishes. If
AzxAs = 0, then Az and As solve the nonlinear system (7.1). By Lemma I1.46 the
Newton iterates T and st are feasible in this case. Hence they satisfy the KKT
conditions. Now the unicity property gives us that z+ = z(u) and s* = s(p). Thus
we see that the Newton process is exact in this case: it produces the p-centers in one
iteration.?

In general the second-order term is nonzero and the new iterates do not coincide
with the p-centers. But we have the surprising property that the duality gap always
assumes the same value as at the p-centers, where the duality gap equals nu.

Lemma I1.47 If the primal-dual Newton step is feasible then (ac"')T st =npu.

Proof: Using (7.4) and the fact that the vectors Az and As are orthogonal, the
duality gap after the Newton step can be written as follows:

(x+)T st =el (ztst) = el (e + AzAs) = pe’'e = np.
This proves the lemma. g

In the general case we need some quantity for measuring the progress of the
Newton iterates on the way to the p-centers. As in the case of the dual logarithmic
barrier method we start by considering a ‘full-step method’. We then deal with

3 Exercise 47 Let (z,s) be a positive primal-dual feasible pair with x = 2(u). Show that the
Newton process is exact in this case, with Az = 0 and As = s(u) — s. (A similar results holds if
s = s(p), and follows in the same way.)
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an ‘adaptive method’, in which the barrier parameter is updated ‘adaptively’, and
then turn to the ‘large-update method’, which uses large fixed updates and damped
Newton steps. For the large-update method we already have an excellent candidate
for measuring proximity to the u-centers, namely the primal-dual logarithmic barrier
function ¢, (z,s). For the full-step method and the adaptive method we need a new
measure that is introduced in the next section.

7.4 Proximity and local quadratic convergence

Recall that for the dual method we have used the Euclidean norm of the Newton step
As scaled by s as a proximity measure. It is not at all obvious how this successful
approach can be generalized to the primal-dual case. However, there is a natural way
of doing this, but we first have to reformulate the linear system (7.2) that defines the
Newton directions in the primal-dual case. To this end we introduce the vectors

d:\/g, u:zﬂﬁ.
S %

Using d we can rescale x and s to the same vector, namely u:

dtz ds

Vi Un

Now we scale Az and As similarly to d, and d,:

—1
AT g BB g (7.5)
NG Vi

For easy reference in the future we write

t =z +Ax = Vird (u+dy) (7.6)
sT =5+ As = VEAT (u+dy) (7.7)

and, using (7.4),
2Tst = pe + AzAs = (e +d.ds) . (7.8)

Thus we may restate Lemma 11.46 without further proof as follows.

Lemma I1.48 The primal-dual Newton step is feasible if and only if

e+dyds >0 (7.9)
and strictly feasible if and only if

e+ dgds > 0. (7.10)

Since
AxAs = ud,d,, (7.11)
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the orthogonality of Ax and As implies that the scaled displacements d, and d, are
orthogonal as well. Now we may reformulate the left-hand side in the third equation
of the KKT system as follows:

sAz 4+ xAs = /i (sddx + xd_lds) =pu (d; +ds),
and the right-hand side can be rewritten as
,uefms:uef,uuQ :,uu(uflfu).
The third equation can then be restated simply as
dy +dy =u™t —u.

On the other hand, the first and the second equations can be reformulated as ADd, = 0
and (AD)Td, + ds = 0, where
_ Ay

d
vV

We conclude that the scaled displacements d,, d, and d, satisty

ADd, =0
(AD)Tdy +ds =0 (7.12)
dy +ds = u 1 —w.

The first two equations show that the vectors d, and ds belong to the null space and
the row space of the matrix AD respectively. These two spaces are orthogonal and
the row space of AD is equal to the null space of the matrix HD !, where H is any
matrix whose null space is equal to the row space of A, as defined in Section 6.3 (page
111). The last equation makes clear that d, and ds form the orthogonal components
of the vector u~" — u in these complementary subspaces. Therefore, we find*?®

dy = PAD(U_l —u) (7.13)
ds = PHD—I(u_l - u) (714)

The orthogonality of d, and d, also implies
2 2 _ 2
lda|[* + [lds]|” = [Ju™" —u|” (7.15)

Note that the displacements d,,,d; (and also d,) are zero if and only if u=! — u = 0.
In this case z,y and s coincide with the respective u-centers. It will be clear that
the quantity Hu‘l — uH is a natural candidate for measuring closeness to the pair of

1 Exercise 48 Verify that the expressions for the scaled displacements dz and ds in (7.13) and
(7.14) are in accordance with Theorem I1.42.

5 Exercise 49 Show that
Pap+Pgp-1=1,
where I denotes the identity matrix in R™. Also show that

Pap = D 'HT (HD*HT) "HD™', Pyp 1 =DAT (AD*AT) " AD.
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p~centers. It turns out that it is more convenient not to use the norm of =1 — u itself,
but to divide it by 2. Therefore, we define

1 1
s = 3 o ol = B

By (7.15), §(z, s; 1) is simply half of the Euclidean norm of the concatenation of the
search direction vectors Az and As after some appropriate scaling.® 78

In the previous section we discussed that the quality of the Newton step greatly
depends on the second-order term AxzAs. Recall that this term, when expressed in
the scaled displacements, equals ud,ds. We proceed by showing that the vector d,d
can be nicely bounded in terms of the proximity measure.

. (7.16)

Lemma I1.49 Let (x,s) be any positive primal-dual pair and suppose p > 0. If
6= 8(z, s, ), then ||dyds| ., < 6% and ||d.ds|| < §%v/2.

Proof: Since the vectors d, and d, are orthogonal, the lemma follows immediately
from the first uv—lemma (Lemma C.4 in Appendix C) by noting that d, +ds = v~ ' —u
and Hu’l — uH = 20. O

We are now ready for the main result of this section (Theorem II.50 below), which
is the primal-dual analogue of Theorem II.21 for the dual logarithmic barrier method.

Theorem IL.50 If 6 := &(x,s;u) < 1, then the primal-dual Newton step is feasible,
i.e., xv and s are nonnegative. Moreover, if 6 < 1, then 7 and s¥ are positive and

2
St 5 p) < ——n

/20 -62)

This proximity measure was introduced by Jansen et al. [157]. In the context of primal-dual
methods, most authors used a different but closely related proximity measure. See Section 7.5.3.
Because of the analogy with the proximity measure in the dual case, and also because of its natural
interpretation as the norm of the scaled Newton direction, we prefer the proximity measure as
defined by (7.16). Another motivation for the use of this measure is that it allows sharper estimates
in the analysis of the primal-dual methods. This will become clear later.

1

Exercise 50 Let § = §(x, s;u). In general the vector £ = ps™! is not primal feasible, and the
vector 3 = px~! not dual feasible. The aim of this exercise is to show that the deviation from
feasibility can be measured in a natural way. Defining

Gp=AD?*AT, Gy=HD ?HT,

we have
Az — bllg;l =voldsll, |Hs- HCHG71 = Villde|l.

As a consequence, prove that
2 . 2 _ 2
[|Az bHG;1 + ||H5 Hc||G;1 4467,

Exercise 51 Prove that

n

n
&z, s5u) = 5 E (cosh log % — 1) = E sinh? (5 log %)
i=1

=1
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Proof: The first part of the theorem is a direct consequence of Lemma I1.49 and
Lemma I1.48. The second lemma yields that ||d,d,||,, < 1 and the first lemma that
the primal-dual Newton step is feasible in this case. Now let us turn to the proof of
the second statement. Let 67 := d(zt,sT; 1) and

ut = vrst
7
Then we have, by definition,
267 = [T =T = () (e = wh)?) -

Recall from (7.8) that
rtst =ple+d.ds).

Hence,

ut = /e + dyds.

e ds |

T V= deds

Now using the bounds in Lemma I1.49 we obtain

2
25" < M
v1—462

Dividing both sides by 2 we arrive at the result in the theorem. a

Substitution gives

5+f

e+d dg

Theorem II1.50 makes clear that the primal-dual Newton method is quadratically
convergent in the region

1
{(m,s) EP XD : 8z, s;p4) < 7 = 0.7071}, (7.17)

where we have 67 < §2. It is clear that Theorem I1.50 has no value if the upper bound
for 6(z*, s*; 1) is not smaller than &, which is the case if § > 1/2/3 = 0.8165.

As for the dual Newton method, we provide a graphical example to illustrate how
the primal-dual Newton process behaves.

Example I1.51 We use the same problem as in Example 1.7 with b = (1,1)?. So

A, b and ¢ are given by
1
1 -1 0] [ W l1]
, ¢c=111, = .

0 0 1 [1J

Instead of drawing a graph in the dual (or primal) space we take another approach. We
associate with each primal-dual pair (z, s) the positive vector w = zs, and represent
this vector by a point in the so-called w-space, which is the interior of the nonnegative
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.. central path
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0 1 2 3 4

Figure 7.1 Quadratic convergence of primal-dual Newton process (u = 1).

orthant of IR™, with n = 3. Note that §(z,s; ) = 0 if and only if x = 2z(u) and
s = s(u), and that in that case xs = pe. Hence, in the w-space the central path is
represented by the half-line pe, g1 > 0. Figure 7.1 (page 158) shows the level curves
(in the w-space) for the proximity values 7 = 1/v/2 and 72 with respect to g = 1, and
also how the Newton step behaves when applied at some points on the boundary of
the region of quadratic convergence. This figure depicts the w-space projected onto
its first two coordinates. The starting point for a Newton step is always indicated by
the symbol “°’, and the point resulting from the step by the symbol “’.9 The curve
connecting the two points shows the intermediate values of s on the way from the
starting point to the point after the full Newton step. The points on these curves
represent
%% = (z + aAz)(s + aAs) = x5 + a(zAs + sAx) + o*AzAs, 0 < a <1,

where (20, 5°) is the starting point of the iteration and (x!,s!) the result of the full
Newton step. If there were no second-order effects (i.e., if AzAs = 0) then this curve
would be a straight line. So the curvature of the line connecting the point before and
after a step is an indication of the second-order effect. Note that after the Newton
step the new proximity value is always smaller than 72 = 1/2, in agreement with
Theorem I1.50. In fact, one may observe that often the decrease in the proximity to
the 1-center is much more significant.

9 The starting points in this example were obtained by using theory that will be developed later in
the book, in Part II1. There we show that for any positive vector w € IR™ there exists a primal-dual
pair (z, 8) such that s = w and we also deal with methods that yield such a pair. For each starting
point the first two entries of w can be read from the figure; for the third coordinate of w we used
the value 1, which is the value of w3 at the 1-center, since x(1)s(1) = e.
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When starting outside the region of quadratic convergence the behavior of the
Newton process is quite unpredictable. Note that the feasibility of the (full) Newton
step is then not guaranteed by the theory.

: céntral ﬁath
N, 1.25 ' '

1 dw, 1) : 1.5

(23
T

0.5

Figure 7.2 Demonstration of the primal-dual Newton process.

In Figure 7.2 we consider the behavior of the Newton process outside this region,
even for proximity values larger than 1. The behavior (in this simple example) is
surprisingly good if we start on (or close to) the central path. When starting closer
to the boundary of the w-space the second-order effect becomes more evident and
this may result in infeasibility of the Newton step, as Figure 7.2 demonstrates (for
example if w; = 8 and we = 1). This observation, that Newton’s method performs
better when the starting point is on or close to the central path than when we start
close to the boundary of the nonnegative orthant, is not supported by the theory, but
is in agreement with common computational practice. &

7.4.1 A sharper local quadratic convergence result

In this section we show that Theorem I1.50 can be slightly improved. By using the
third uv—lemma (Lemma C.7 in Appendix C) we obtain the following.

Theorem I1.52 If § = d(x, s;p) < 1 then

2
8z, 575 p) < —mmn

— /200
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Proof: From the proof of Theorem I1.50 we recall the definitions of 61 and ™, and

the relation
ut = +/e+d.d,.

Since d, and d, are orthogonal this implies that Huﬂ\2 = n. Now we may write
a0 = e =P = ) et - 2n

—1(2 €
= @™ —n=€T(m‘e)~

Application of Lemma C.7 to the last expression (with u = d, and v = d;) yields the
result of the theorem, since ||d, + ds|| = 2d, with § < 1. O

7.5 Primal-dual logarithmic barrier algorithm with full Newton
steps

In this section we investigate a primal-dual algorithm using approximate centers. The
algorithm is described below. It is assumed that we are given a positive primal-dual
pair (22,5%) € P* x Dt and p° > 0 such that (20, 5%) is close to the u’-center in the
sense of the proximity measure §(z°, s%; 1°). In the algorithm Az and As denote the
primal-dual Newton step, as defined before.

Primal-Dual Logarithmic Barrier Algorithm with full Newton steps

Input:
A proximity parameter 7, 0 < 7 < 1;
an accuracy parameter & > 0;
(2°,5%) € PT x DT and p® > 0 such that (z°)7s% = nu® and
5(x%,s% u) < 7
a barrier update parameter 6, 0 < 8 < 1.
begin
=120 5:= 8% = u
while np > (1 —0)e do

begin
r:=z+ Ax;
s:=s+ As;
= (1—0)u;
end
end

We have the following theorem. The proof will follow below.
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Theorem I1.53 If 7 = 1/v/2 and 0 = 1/v/2n, then the Primal-Dual Logarithmic
Barrier Algorithm with full Newton steps requires at most

0
{\/ 2n log %—‘
€
iterations. The output is a primal-dual pair (x,s) such that 7s < .

7.5.1 Convergence analysis

Just as in the dual case the proof depends on a lemma that quantifies the effect on
the proximity measure of an update of the barrier parameter to p™ = (1 — §)p.

Lemma I1.54 Let (x,s) be a positive primal-dual pair and p > 0 such that x¥'s = np.
Moreover, let 6 := §(x, s; u) and let ™ = (1 — @)u. Then

6°n
2 = _ 2
Sz, s07)° =(1—0)8 +4(179).

Proof: Let 6" := d(x,s;u") and u = v/xs/pu. Then, by definition,

2

2
fu
4(67)% = ‘\/1—9u_1—L = ‘\/1—9 ut —u) +
(57) v1—6 ( ) 1-6
From z7s = ny it follows that |ju||* = n. Hence, u is orthogonal to u™! — u:
ul (umh —u) =n— ul]* = 0.
Therefore,
G (o B
1—6
Finally, since Hu‘l — uH — 2§ and ||u|® = n the result follows. O

The proof of Theorem I1.53 now goes as follows. At the start of the algorithm we
have 6(x,s;u) < 7 = 1/y/2. After the primal-dual Newton step to the u-center we
have, by Theorem I1.50, §(x+,st;u) < 1/2. Also, from Lemma I1.47, (x)Tst = npu.
Then, after the barrier parameter is updated to ut = (1 — )u, with 6 = 1/v/2n,
Lemma I1.54 yields the following upper bound for §(z ™, s™; u™):

+ ot 2o 10 1 3
Oz, sTipT) < = +8u_9)§8.
Assuming n > 2, the last inequality follows since its left hand side is a convex function
of 6, whose value is 3/8 both in § = 0 and 6 = 1/2. Since € € [0,1/2], the left hand
side does not exceed 3/8. Since 3/8 < 1/2, we obtain §(x*, st; u*) < 1/v/2 = 7. Thus,
after each iteration of the algorithm the property

5(a, i) < 7
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is maintained, and hence the algorithin is well defined. The iteration bound in the
theorem follows from Lemma I1.36. Finally, since after each full Newton step the
duality gap attains its target value, by Lemma I1.47, the duality gap for the pair (z, s)
generated by the algorithm is at most . This completes the proof of the theorem. O

Remark II.55 It is worthwhile to discuss the quality of the iteration bound in Theorem
11.53. For that purpose we consider the hypothetical situation where the Newton step in
each iteration is exact. Then, putting 67 = §(z™,s",u™), after the update of the barrier
parameter we have
2 _ 9277/

10
and hence we have §7 < 1/y/2 only if §2n < 2(1 — 0). This occurs only if & < /2/n. Hence,
if we maintain the property 6(z,s;u) <1/ V2 after the update of the barrier parameter, then
the iteration bound will never be smaller than

[T e (a8

Note that the iteration bound of Theorem I1.53 is only a factor 2 worse than the ‘ideal’
iteration bound (7.18). Recall that the bound (7.18) assumes that the Newton step is exact
in each iteration. In this respect it is interesting to indicate that for larger values of n the
result of Theorem I1.53 can be improved so that it becomes closer to the ‘ideal’ iteration
bound. But then we need to use the stronger quadratic convergence result of Theorem I1.52.
If we take & = 1/+/n, then by using Lemma I1.54 and Theorem I1.52, we may easily verify
that the property §(x, s; ) < 7 = 1/+/2 is maintained if

4(51)

_1 ,1-9
-0 6 -

[N

This holds if § < 0.36602, which corresponds to n > 8. Thus, for n > 8 the iteration bound
of Theorem 11.53 can be improved to

{\/ﬁlog nTMO—‘ . (7.19)

This iteration bound is the best among all known iteration bounds for interior-point methods.
It differs by only a factor v/2 from the ideal bound (7.18). °

7.5.2  Hlustration of the algorithm with full Newton steps

We use the same sample problem as before (see Sections 6.7.2, 6.8.4 and 6.9.7). As
starting point we use the vectors z = (2,1,1), y = (0,0) and s = (1,1, 1), and since
xTs = 4, we take the initial value of the barrier parameter u equal to 4/3. We can
easily check that 6(z, s; 1) = 0.2887. So these data can indeed be used to initialize the
algorithm. With ¢ = 10™%, the algorithm generates the data collected in Table 7.1..
As before, Table 7.1. contains one entry (the first) of the vectors z and s. The seventh
column contains the values of the proximity é = §(z, s; 1) before the Newton step, and
the eighth column the proximity 6% = 8(z™, s*; ) after the Newton step at (x,s) to

the current u-center.
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It. ny T Y1 Y2 51 5 ot 0
0| 4.000000 | 2.000000 | 0.000000 |  0.000000 | 1.000000 | 0.2887 | 0.0000 | 0.4082
1]2.367007 | 2.000000 | 0.333333 | —0.333333 | 0.666667 | 0.4596 | 0.0479 | 0.4082
2 (1.400680 | 1.510102 | 0.442200 | 0.210998 | 0.557800 | 0.4611 | 0.0586 | 0.4082
310.828855 | 1.267497 | 0.601207 | 0.533107 | 0.398793 | 0.4618 | 0.0437 | 0.4082
410.490476 | 1.148591 | 0.744612 | 0.723715 | 0.255388 | 0.4608 | 0.0271 | 0.4082
510.290240 | 1.085283 | 0.843582 | 0.836508 | 0.156418 | 0.4601 | 0.0162 | 0.4082
6 (0.171750 | 1.049603 | 0.905713 | 0.903253 | 0.094287 | 0.4598 | 0.0096 | 0.4082
710.101633 | 1.029055 | 0.943610 | 0.942750 | 0.056390 | 0.4597 | 0.0057 | 0.4082
810.060142 | 1.017089 | 0.966423 | 0.966122 | 0.033577 | 0.4596 | 0.0034 | 0.4082
910.035589 | 1.010076 | 0.980058 | 0.979953 | 0.019942 | 0.4596 | 0.0020 | 0.4082

101 0.021060 | 1.005950 | 0.988174 | 0.988137 | 0.011826 | 0.4596 | 0.0012 | 0.4082

11 10.012462 | 1.003516 | 0.992993 | 0.992980 | 0.007007 | 0.4596 | 0.0007 | 0.4082

12 10.007375 | 1.002079 | 0.995850 | 0.995846 | 0.004150 | 0.4596 | 0.0004 | 0.4082

1310.004364 | 1.001230 | 0.997543 | 0.997542 | 0.002457 | 0.4596 | 0.0002 | 0.4082

141 0.002582 | 1.000728 | 0.998546 | 0.998545 | 0.001454 | 0.4596 | 0.0001 | 0.4082

151 0.001528 | 1.000430 | 0.999139 | 0.999139 | 0.000861 | 0.4596 | 0.0001 | 0.4082

16 | 0.000904 | 1.000255 | 0.999491 [ 0.999491 | 0.000509 | 0.4596 | 0.0001 | 0.4082

17 10.000535 | 1.000151 | 0.999699 [ 0.999699 | 0.000301 | 0.4596 | 0.0000 | 0.4082

181 0.000317 | 1.000089 | 0.999822 | 0.999822 | 0.000178 | 0.4596 | 0.0000 | 0.4082

191 0.000187 | 1.000053 | 0.999894 | 0.999894 | 0.000106 | 0.4596 | 0.0000 | 0.4082

20| 0.000111 | 1.000031 | 0.999938 | 0.999938 | 0.000062 | 0.4596 | 0.0000 | 0.4082

21| 0.000066 | 1.000018 | 0.999963 | 0.999963 | 0.000037 | 0.4596 | 0.0000 | 0.4082

22| 0.000039 | 1.000011 | 0.999978 | 0.999978 [ 0.000022 — — —

Table 7.1. Output of the primal-dual full-step algorithm.

Comparing the results in Table 7.1. with those in the corresponding table for the
dual algorithm with full steps (Table 6.1., page 124), the most striking differences are
the number of iterations and the behavior of the proximity measure. In the primal-dual
case the number of iterations is 22 (instead of 53). This can be easily understood from
the fact that we could use the larger barrier update parameter 6 = 1/ v2n (instead of
0 =1/(3y/n)).

The second difference is probably more important. In the primal-dual case Newton’s
method is much more efficient than in the dual case. This is especially evident in the
final iterations where both methods show very stable behavior. In the dual case the
proximity takes in these iterations the values 0.2722 (before) and 0.0524 (after the
Newton step), whereas in the primal-dual case these values are respectively 0.4596 and
0.0000. Note that in the dual case the effect of the Newton step is slightly better than
the quadratic convergence result of Theorem II.21. In the primal-dual case, however,
the effect of the Newton step is much better than predicted by Theorem II.50, and
even much better than the improved quadratic convergence result of Theorem I1.52.
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The figures in Table 7.1. justify the statement (at least for this sample problem, but
we observed the same phenomenon in other experiments) that asymptotically the
primal-dual Newton method is almost exact.

Remark IL.56 Tt is of interest to have a closer (and more accurate) look at the proximity
values in the final iterations. They are given in Table 7.2. (page 164). These figures show that

It. ) &t

11 | 0.45960642869434 | 0.00069902816289
12 [ 0.45960584496214 | 0.00041365328341
13 | 0.45960564054812 | 0.00024478048789
14 | 0.45960556896741 | 0.00014484936548
15 | 0.45960554390189 | 0.00008571487895
16 | 0.45960553512461 | 0.00005072193012
17 | 0.45960553205110 | 0.00003001478966
18 | 0.45960553097480 | 0.00001776130347
19 | 0.45960553059816 | 0.00001051028182
20 | 0.45960553046642 | 0.00000621947704
21 | 0.45960553041942 | 0.00000368038542

Table 7.2. Proximity values in the final iterations.

in the final iterations, where Newton’s method is almost exact, the quality of the method
gradually improves. After the step the proximity decreases monotonically. In fact, surprisingly
enough, the rate of decrease of subsequent values of the proximity after the step is almost
constant (0.59175). Remember that the barrier parameter p also decreases at a linear rate
by a factor 1 — 8, where 8 = 1/\/% In our case we have n = 3. This gives § = 0.4082 and
1 — 6 = 0.59175, precisely the rate of decrease in 7. Before the Newton step the proximity
is almost constant (0.4596). Not surprisingly, this is precisely the value of 8y/n/(2(1 — 8)).
Thus, our numerical experiment gives rise to a conjecture:

Conjecture I1.57 Asymptotically the quality of the primal-dual Newton step gradually
improves. The proximity before the step converges to some constant and the proximity after the
step decreases monotonically to zero with a linear convergence rate. The rate of convergence
is equal to 1 — 6.

This observed behavior of the primal-dual Newton method has no theoretical justification at
the moment. .

We conclude this section with a graphical illustration. Figure 7.3 shows on two
graphs the progress of the algorithm in the w-space (cf. Example II.51 on page 157).
In both figures the w-space is projected onto its first two coordinates. The difference
between the two graphs is due to the scaling of the axes. On the left graph the scale
is linear and on the right graph it is logarithmic. As in Example II.51, the curves
connecting the subsequent iterates show the intermediate values of xs on the way to
the next iterate. The graphs show that after the first iteration the iterates follow the
central path quite accurately.
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Figure 7.3 The iterates of the primal-dual algorithm with full steps.

7.5.3 The classical analysis of the algorithm

In this section we give a different analysis of the primal-dual logarithmic barrier
algorithm with full Newton steps. The analysis uses the proximity measure

s
——e

oz, s p) = .

7

which is very common in the literature on primal-dual methods.'®

Because of its widespread use, it seems useful to show in this section how the analysis
can be easily adapted to the use of the classical proximity measure. In fact, the only
thing we have to do is find suitable analogues of the quadratic convergence result in
Theorem I1.50 and the barrier update result of Lemma I11.54.

Theorem I1.58 ! If o := o(x,s;1) < 2/ (1 +V1+ \/5) = 0.783155, then the pri-
mal-dual Newton step is feasible. Moreover, in that case

o2

olat s i) < e

221 —o)
Proof: First we derive from Hu2 — eH = ¢ the obvious inequality

1—0§u?§1+0, 1 << n.

10 It was introduced by Kojima, Mizuno and Yoshise [178] and used in many other papers. See, e.g.,
Gonzaga [124], den Hertog [140], Marsten Shanno and Simantiraki [196], McShane, Monma and
Shanno [199], Mehrotra and Sun [205], Mizuno [215], Monteiro and Adler [218], Todd [262, 264],
Zhang and Tapia [319].

I This result is due to Mizuno [212].
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This implies

1
2 < : 7.20
R (720
From (7.4) we recall that
xtsT = pe + AzAs.

Hence, using (7.11), we have 1%13

+gt AxA

ot 7 i= |25 o] = [ 222 < .

I

By the first uv-lemma (Lemma C.4 in Appendix C) we have
1 2 1 1 2
dpdsl| < —=||ldy +ds||" = —=||u " —uf| .
ldeds | < 57 llde + dolf* = =% | |
Using (7.20) we write
2
-1 2 1 2\ (12 _9 2112 g
=" =" = [l e =) |” < [Ju?[[ le = w*|]" < 77—
Hence we get
+ o o?
olx", s n) < ————.
( 1) A1 — o)

Since o(x™, s1; u) = ||dyds]|, feasibility of the new iterates is certainly guaranteed if

o(zt,sT;p) <1, from (7.9). This condition is certainly satisfied if

0'2 <1
221 —0o)

and this inequality holds if and only if o < 2/ (1 +vV1+ \/5) , as can easily be
verified. The theorem follows. O

12 Exercise 52 This exercise provides an alternative proof of the first inequality in Lemma C.4. Let
u and v denote vectors in R™ and § > 0 (6 € R). First prove that

n n
min € u1vy E wu;v; = 0, E (uf +UZ~2) =452 % = §2.
u,v

i=1 3=1

Using this, show that if u and v are orthogonal and ||u + v|| = 2§ then [juv|, < 2.

13 Exercise 53 This exercise provides tighter version of the second inequality in Lemma C.4. Let u
and v denote vectors in R™ and § > 0 (6 € R). First prove that

n
max E ufu? : E u;v; =0, E (u? + Uf) =462} = .
u,v n—1
i=1 i=1 i=1

Using this show that if « and v are orthogonal and ||u + v|| = 2§ then |luv| < §2v/2.
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Lemma I1.59 Let (x,s) be a positive primal-dual pair and u > 0 such that x*'s = nu.
Moreover, let o := o(x,s;p) and let p+ = (1 — 0)p. Then we have

Vo 02n

o, 51t = Y

Proof: Let o7 :=o(x,s;ut), with z7's = nyu. Then, by definition,

2 2

1
10

1—0u

The vectors e and xs/u — e are orthogonal, as easily follows. Hence

E—e—I—Ge
1

- J -

xTs

— —e+0e
I

2 2
= + ||6e|” = 0% + 67n.

‘xs
——e
7
The lemma follows. o

From the above results, it is clear that maintaining the property o(z,s : p) < 7
during the course of the algorithm amounts to the following condition on 6:

L LR (7.21)
1 o\lsa o2 " =T '

For any given 7 this inequality determines how deep the updates of the barrier
parameter are allowed to be. Since the full Newton step must be feasible we may
assuine that

= 0.783155.

2
T
1+vV1+V2
Squaring both sides of (7.21) gives

T 2 2 2
— +nf* < 1—8)°.
s =m0
This implies n62 < 72, and hence the parameter § must satisfy § < 7//n.

The iteration bound of Lemma 1.36 becomes smaller for larger values of . Our aim
here is to show that for the best possible choice of 6 the iteration bound resulting
from the classical analysis cannot be better than the bound of Theorem II.53. For
that purpose we may assume that n is so large that 1 — 8 ~ 1. Then the condition on

f becomes .

.
92< 2
sa_nz ST

or equivalently,

4

Note that the right-hand side expression must be nonnegative, which holds only if

2+/2
il S
1+2v2

nh* <% - (7.22)

= 0.738796.
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We can easily verify that the right-hand side expression in (7.22) is maximal if
73— 2272 4 247 — 8 =0,
which occurs for 7 = 0.60155. Substituting this value in (7.22) we obtain
nd? < 0.258765,

which amounts to
g < 0.508689 1

= Vn 2yn
Obviously, this upper bound for € is too optimistic. The above argument makes clear
that by using the ‘classical’ proximity measure o(z, s; 1) in the analysis of the primal-

dual method with full Newton steps, the iteration bound obtained with the proximity
measure 6(z, s; 1) cannot be improved.

7.6 A version of the algorithm with adaptive updates

7.6.1 Adaptive updating
We have seen in Section 7.5 that when the property

Sz, sp) <1=— (7.23)

is maintained after the update of the barrier parameter, the values of the barrier
update parameter ¢ are limited by the upper bound 8 < +/2/n, and therefore, the
iteration bound cannot be better than the ‘ideal’ bound

0
n nu
(=

Thus, larger updates of the barrier parameter are possible only when abandoning the
idea that property (7.23) must hold after each update of the barrier parameter.

To make clear how this can be done without losing the iteration bound of
Theorem I1.53, we briefly recall the idea behind the proof of this theorem. After
each Newton step we have a primal-dual pair (z,s) and g > 0 such that

7_2

M, s p0) < T = m (7.24)

Then we update i to a smaller value u+ = (1 — §)u such that
Sz, sty < T, (7.25)

and we perform a Newton step to the pu'-center, yielding a primal-dual pair (z7, s™)
such that §(z™, s*; ut) < 7. Figure 7.4 illustrates this.

Why does this scheme work? It works because every time we perform a Newton
step the iterates z and s are such that zs is in the region around the p-center where



I1.7 Primal-Dual Logarithmic Barrier Method 169

central path

Oz, s, 1) =T

Figure 7.4 The primal-dual full-step approach.

Newton’s method behaves well. The theory guarantees that if the proximity does not
exceed the parameter 7 = 1/ V/2 then we stay within this region. However, in practice
the region where Newton’s method behaves well may be much larger.

Thus we can adapt our strategy to this phenomenon and choose the smallest barrier
parameter u = (1 — #)u so that after the Newton step to the uT-center the iterates
satisly §(xz ¥, sT; u™) < 7. Therefore, let us consider the following problem:

Given a primal-dual pair (z,s) and g > 0 such that 6 := é(z, s;u) < 7,
find the largest 6 such that after the Newton step at (x,s) with barrier
parameter value p = (1 — @) we have §T = §(x™, st ut) < 7.

Here we use the parameter 7 instead of 7, because until now 7 referred to the proximity
before the Newton step, whereas T is an upper bound for the proximity just after the
Newton step. It is natural to take for 7 the value 1/2, because this is an upper bound
for the proximity after the Newton step when the proximity before the step is 1/1/2.
Our aim in this section is to investigate how deep the updates can be taken, so as to
enhance the performance of the algorithm as much as possible. See Figure 7.5.1% Just
as in the case of the dual method with adaptive updates, we need to introduce the
so-called primal-dual affine-scaling and primal-dual centering directions at (z, s).

14 The idea of using adaptive updates of the barrier parameter in a primal-dual method can be found
in, e.g., Jarre and Saunders [163].
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Figure 7.5 The full-step method with an adaptive barrier update.

7.6.2 The primal-dual affine-scaling and centering direction

We first recall some definitions and properties from Section 7.4. With

d:\/g, U= E,
5 V u

the vectors x and s can be scaled by d to the vector u as follows:

d 'z ds

VE VB

The same scaling applied to the Newton steps Az and As yields the scaled Newton
steps d, and d:

d—'A dA
drc = :ra ds - Sv
i i
and these satisfy
d, +d, =u"t —u.

Moreover, the vectors d,, and dg are orthogonal. They are the components of the vector
v~ — u in the null space of AD and the null space of HD~! respectively:
dy = PAD(U71 - u) (7.26)
ds PHD*1 (U_l — U) (727)
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In this section we work mainly with the scaled Newton steps d, and d;. The last
expressions yield a natural way of separating these directions into a so-called affine-

scaling component and a centering component. The (scaled) centering directions are
defined by

dy :PAD(uil)a dg :PHDfl(uil)a (7.28)
and the (scaled) affine directions by

dg = —Pap(u), dg = —PHD—l(u). (7.29)

Now we have the obvious relations

dz - d;; + dg:
ds = ds +ds
and
ds +d =t
dy +di = —u.

The unscaled centering and affine-scaling directions are defined in the obvious way:
Aty := \/uddg, etc. For the sake of completeness we list these definitions below and
we also give some alternative expressions which can straightforwardly be verified.

Aal‘ = \/ﬂddg = —\/HDPAD(U) = —DPAD(\/ﬁ)
A%s = \/[_,Ldildg = *\/[_,LDil_PHD—l(’LL) = 7D71PHD71(\/E)
Az = \/pddS = \JiDPap(u~') = ,U,_DPAD(\/%)

Ats = /pd~'d; = \/uD ' Pyp-a(u™t) = /v‘D_lpHDfl(\/%)'

Note that the affine-scaling directions A%z and A%s depend only on the iterates x and
s and not on the barrier parameter u. For the centering directions we have that Ax/pu
and A¢s/u depend only on the iterates z and s and not on the barrier parameter p.
Also note that if we are on the central path, ie., if z = z(u) and s = s(u), then we
have v = e. This implies v~ —u = 0, whence d, = d; = 0. Hence, on the central path
we have d? = —dS and d? = —d¢.

For future reference we observe that the above definitions imply the obvious relations

Ax = A%z + Az
(7.30)
As = A%s + A°s,

which show that the (unscaled) full Newton step (Az,As) — at (z,s) and for the
barrier parameter value 4 — can be nicely decomposed in its affine scaling and its
centering component.
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7.6.3 Condition for adaptive updates

In this section we start to deal with the problem stated before. Let (z, s) be a positive
primal-dual pair and g > 0 such that § = §(x, s; p) < 7. We want to investigate how
large # can be so that after the Newton step at (x,s) with barrier parameter value
ut = (1—0)p we have §7 = §(z™,sT; ut) < 7. We derive a condition for the barrier
update parameter § that guarantees the desired behavior.

The vector u, the scaled search directions d, and ds and their (scaled) centering
components d¢,dS¢ and (scaled) affine components d%,d?, have the same meaning as
in the previous section; the entities u, d% and d? depend on the given value p of the
barrier parameter. The scaled search directions at (z, s) with barrier parameter value
' are denoted by d} and d}. Letting Az and As denote the (unscaled) Newton
directions with respect to u*, we have

sAx + xAs = pte — s,
and therefore, also using (7.11),
stst =pte+ AzAs = pt (e+didY).
By Lemma I1.48, the step is feasible if e + dj d} > 0, and this certainly holds if
ldids | < 1.

Moreover, from the proof of Theorem IL.50 we recall that the proximity 6T :=
§(xt,sT; uT) of the new pair (™, s1) with respect to the ut-center is given by

didf
Ve+didT

This implies that we have 6T < 7 if and only if

26T = ‘

_ A e
Vetdidi| .
In the sequel we use the weaker condition
|dfd||” <472 (1 || dtdS)) . (7.31)

which we refer to as the condition for adaptive updating. A very important observation
is that when this condition is satisfied, the Newton step is feasible. Because, if (7.31)
holds, since the left-hand side expression is nonnegative, the right-hand side expression
must be nonnegative as well, and hence ||dfd]||,, < 1. Thus, in the further analysis
we may concentrate on the condition for adaptive updating (7.31).

7.6.4 Calculation of the adaptive update

We proceed by deriving upper bounds for the 2-norm and the infinity norm of the
vector dFdl. It is convenient to introduce the vector
_ s

u = M_‘l'
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L (= T

Hence, using this and (7.26),

We then have

1
df =Pap (@' —0) =vV1—0Pap (ut) - Pup (u
; a0 ( ) ap (u™h) =gl Ap (u)
and )
d:— = PHD—l (ﬂ_l — ﬂ) =V 1-— QPHD—l (U_l) — ﬁPHD—l (U) .
Now using (7.28) and (7.29) we obtain
da
df = V1-0d5+—== 7.32
a
df = V1-0di+—==. 7.33
S 8 \/ﬂ ( )
Note that d can be rewritten in the following way:
ds 1
V1 0ds + —== = \/—d0+da+( \/ﬁ>da
et ( ) > 2
)
= V1 —0d, + —=d2.
Vi—0*
Since d can be reformulated in exactly the same way we find
6
df =  V1-0d, + —=d¢
x /1 — 9 x
)
df =  V1-0ds; + ——=d?
Vv1—126
Multiplication of both expressions gives
didf = (1 —0)duds + 0 (dod + dsdy) + ads. (7.34)

At this stage we see how the coordinates of the vector d}df depend on 6. The
coordinates of (1 — #)d!d/ are quadratic functions of 6:

(1-0)dfdf = (1 —0)%d.d, +0(1 — 0) (dpd® + dyd?®) + 62d2dC.

When multiplying the condition (7.31) for adaptive updating by (1—6)?2, this condition
can be rewritten as

2102 — |1 —0)didS|* = 472(1 - 0) |1 — O)didF || . (7.35)

Now denoting the left-hand side member by p(#) and the i-th coordinate of the vector
(1—0)drdl by q;(6), with T given, we need to find the largest positive § that satisfies
the following inequalities:
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Since p(0) is a polynomial of degree 4 in 6, and each ¢;(f) is a polynomial of degree
2 in 6, the largest positive 6 satisfying each single one of these 2n inequalities can be
found straightforwardly by solving a polynomial equation of degree 4. The smallest of
the 2n positive numbers obtained in this way (some of them may be infinite, but not
all of them!) is the value of # determined by the condition of adaptive updating. Thus
we have shown that the largest ¢ satisfying the condition for adaptive updating can
be found by solving 2n polynomial equations of degree 4.1°

Below we deal with a second approach. We consider a further relaxation of the
condition for adaptive updating that requires the solution of only one quadratic
equation. Of course, this approach yields a smaller value of 8 than the above procedure,
which gives the exact solution of the condition (7.31) for adaptive updating. Before
proceeding it is of interest to investigate the special case where we start at the u-centers
x = xz(u) and s = s(u).

7.6.5 Special case: adaptive update at the u-center

When we start with x = z(p) and s = s(u), we established earlier that v = e,
dy = ds =0, d% = —df and d® = —d¢. Substituting this in (7.34) we obtain

92
dfdf = T edgdg.
Now we can use the first wv-lemma (Lemma C.4 in Appendix C) to estimate the
2-norm and the infinity norm of d$d%. Since d% + d? = —u = —e, we obtain
n n
2] < S sl < .

Substitution in (7.31) gives

This can be rewritten as

which is equivalent to

6%n 2
— 2\/§> < 472 4274,
(2\/5(1 — ) T <47 T

2
19 L <22 (Var s - 7VE).

or

Substituting 7 = 1/2 gives
6%n
1-46

<2

15 In fact, more efficient procedures exist for solving the condition for adaptive updating, but here
our only aim has been to show that there exists an efficient procedure for finding the maximal
value of the parameter 6 satisfying the condition for adaptive updating.
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This result has its own interest. The bound obtained is exactly the ‘ideal’ bound for
derived in Section 7.5 for the hypothetical situation where the Newton step is exact.
Here we obtained a better bound without this assumption, but under the more realistic
assumption that we start at the u-centers x = x(u) and s = s(p).

7.6.6 A simple version of the condition for adaptive updating

We return to the general case, and show how a weakened version of the condition for
adaptive updating

latdf | <4 (1 - [ldrdf]|,)
can be reduced to a quadratic inequality in 8. With

dt :=d; +df,
the first wwv-lemma (Lemma C.4 in Appendix C) implies that
PN PENIE:
Jazar) < YL arar), < 121
2V/2 % 4

Substituting these bounds in the condition for adaptive updating we obtain the weaker

condition . )
+ +
Py RNy
8 4

(lla))* + 4%2)2 < 3272 4 1674,

[d*]|* < v/3272 + 1671 —

Substituting 7 = 1/2 leads to the condition

Rewriting this as

we obtain

a7 < 2. (7.36)

From the expressions (7.32) and (7.33) for d} and dJ, and also using that d+d¢ = u=!
and d% + d? = —u, we find

A= VI—fu o %
YT ioe

From this expression we can calculate the norm of d+:

- IUH
lar =0y Ju |+

Since ||u]” = n and Hu_1H2 = n + 462, where § = 6(x, s; i), we obtain

12 9 2 ’n
|at||" =1 9)(n+45)+——2n—4(1—9)5 .
0 1-6
16 Since HdJr H = 28(x, s : ) this analysis yields in a different way the same result as in Lemma 11.54,
namely
0°n

Sz = (1 - 0)6" +

41 -0y
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Putting this in (7.36) we obtain the following condition on 6:

6%n

4(1 — 6)5% + <%

The largest 6 satisfying this inequality is given by

V21— 4nd? +46% -1

0
n + 462

(7.37)

With this value of 8 we are sure that when starting with §(z, s; u) = 9§, after the Newton
step with barrier parameter value u+ = (1—0)u we have §(z+,sT; u*) < 1/2. 1§ = 0,
the above expression reduces to

2 1

0= <
1++v2n+1 " /2n

and if 6 = 1/2 to
6 = 1 17
NIESE
as easily may be verified. Hence, when using cheap adaptive updates the actual value
of 0 varies from iteration to iteration but it always lies between the above two extreme
values. The ratio between these extreme values is about v/2. As a consequence, the
speedup factor is bounded above by (approximately) V2.

7.6.7 Illustration of the algorithm with adaptive updates

With the same example as in the previous illustrations, and the same initialization
of the algorithm as in Section 7.5.2, we experiment in this section with two adaptive-
update strategies. First we consider the most expensive strategy, and calculate the
barrier update parameter € from (7.35). In this case we need to solve 2n polynomial
inequalities of degree four. The algorithm, with ¢ = 107%, then runs as shown in
Table 7.3.. As before, Table 7.3. contains one entry (the first) of the vectors z and
s. A new column shows the value of the barrier update parameter in each iteration.
The fast increase of this parameter to almost 1 is surprising. It results in very fast
convergence of the method: only 5 iterations yield the desired accuracy.

When we calculate 6 according to (7.37), the performance of the algorithm is as
shown in Table 7.4.. Now 15 iterations are needed instead of 6. In this example in
the final iterations 6 seems to stabilize around the value 0.58486. This implies that
the convergence rate for the duality gap is linear. This is in contrast with the other
approach, where the convergence rate for the duality gap appears to be quadratic.

Unfortunately, at this time no theoretical justification for a quadratic convergence
rate of the adaptive version of the full-step method exists. For the moment we leave

17 We could have used this value of 8 in Theorem 11.53, leading to the iteration bound
nul
vn+1log —
€

for the Primal-Dual Logarithmic Barrier Algorithm with full Newton steps.
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It. nu 1 i Yo $1 ) st 0

4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887 | 0.7071 | 0.679623
1.281509 | 1.093836 | 0.333333 | 0.572830 | 0.666667 | 0.7071 | 0.7071 | 0.846142
0.197170 | 1.010191 | 0.888935 | 0.934277 | 0.111065 | 0.7071 | 0.7071 | 0.976740
0.004586 | 1.000224 | 0.997391 | 0.998471 | 0.002609 | 0.7071 | 0.7071 | 0.999460
0.000002 | 1.000000 | 0.999999 | 0.999999 | 0.000001 | 0.7071 | 0.1472 | 0.999999
0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 — — —

G W N = O

Table 7.3. The primal-dual full-step algorithm with expensive adaptive updates.

—
t

T T Y1 Y2 s1 o i g

4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887 | 0.2934 | 0.534847
1.860612 | 1.286871 | 0.333333 | 0.379796 | 0.666667 | 0.2934 | 0.1355 | 0.534357
0.866381 | 1.138033 | 0.698479 | 0.711206 | 0.301521 | 0.1355 | 0.0670 | 0.545715
0.393584 | 1.063707 | 0.865026 | 0.868805 | 0.134974 | 0.0670 | 0.0308 | 0.547890
0.177943 | 1.029247 | 0.939865 | 0.940686 | 0.060135 | 0.0308 | 0.0140 | 0.548438
0.080352 | 1.013307 | 0.973046 | 0.973216 | 0.026954 | 0.0140 | 0.0063 | 0.548554
0.036275 | 1.006028 | 0.987874 | 0.987908 | 0.012126 | 0.0063 | 0.0028 | 0.548578
0.016375 | 1.002726 | 0.994534 | 0.994542 | 0.005466 | 0.0028 | 0.0013 | 0.548583
0.007392 | 1.001231 | 0.997535 | 0.997536 | 0.002465 | 0.0013 | 0.0006 | 0.548584
0.003337 | 1.000556 | 0.998887 | 0.998888 | 0.001113 | 0.0006 | 0.0003 | 0.548584
10| 0.001506 | 1.000251 | 0.999498 | 0.999498 [ 0.000502 | 0.0003 | 0.0001 | 0.548584
11 |1 0.000680 | 1.000113 | 0.999773 | 0.999773 | 0.000227 | 0.0001 | 0.0001 | 0.548584
121 0.000307 | 1.000051 | 0.999898 | 0.999898 | 0.000102 | 0.0001 | 0.0000 | 0.548584
131 0.000139 | 1.000023 | 0.999954 | 0.999954 [ 0.000046 | 0.0000 | 0.0000 | 0.548584
14 1 0.000063 | 1.000010 | 0.999979 | 0.999979 [ 0.000021 | 0.0000 | 0.0000 | 0.548584
15| 0.000028 | 1.000005 | 0.999991 | 0.999991 | 0.000009 — — —

Nelv BN Repiis) BENEULE Nl aw]

Table 7.4. The primal-dual full-step algorithm with cheap adaptive updates.

this topic with the conclusion that the above comparison between the ‘expensive’ and
the ‘cheap’ adaptive update full-step method suggests that it is worth spending extra
effort in finding as large values for 6 as possible.

We conclude the section with a graphical illustration of the adaptive updating
strategy. Figure 7.6 shows on two graphs the progress of the algorithmm with the
expensive update. The graphs show the first two coordinates of the iterates in the
w-space. The left graph has a linear scale and the right graph a logarithinic scale.
Figure 7.7 concerns the case when cheap updates are used.

7.7 The predictor-corrector method

In the previous section it became clear that the Newton step can be decomposed into an
affine-scaling component and a centering component. Using the notations introduced
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Figure 7.6 Iterates of the primal-dual algorithm with adaptive updates.

there, we recall from Section 7.6.2 that the (scaled) centering components are given
by
d¢ = Pap(u™"'), d¢=Pgp:(ul),

and the (scaled) affine components by
dg == *PAD(’LL), dg = *PHD—l(’U,),

where

1077
10-7 107% 1077 10~* 1073 1072 107! 10° 10!

—

Figure 7.7 Iterates of the primal-dual algorithm with cheap adaptive updates.
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We also recall the relations

d, = ds + dg
ds - dg + d?
and
dé+ds =ut
dy +di = —u.

The unscaled centering and affine-scaling components are given by

Ax = Judds,  A%s = /ud 'd?

and
Ay = \/udds, A°s=./nd"'d%
as a consequence we have
A%xA%s = pdidy,  ASxACs = pdids.
It is interesting to consider the effect of moving along these directions. Let us define
z%(0) = x4+ 0A%x s%(8) s+ 0A%s
x¢ = x+ Atz s¢ = s+ A%s.

We say that £%(0) and s%(0) result from an affine-scaling step of size 8 at (x,s). In
preparation for the next lemma we first establish the following two relations:

A%+ sA%x = —xs (7.38)
xA%s + sA°x = ue. (7.39)

These relations easily follow from the previous ones. We show this for the first of the
two relations. We first write

rA%s = Jpzd 'd® = pud?,

and
sA%r = \/usddy = pudj.

Adding the last two equalities we get (7.38):
TA%s + sA% = pu (dS + d%) = —pu® = —xs.
Now we can prove

Lemma I1.60 Let 27's = nu. Assuming feasibility of the steps, the affine-scaling step
reduces the duality gap by a factor 1 — 0 and the step along the centering components
doubles the duality gap.
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Proof: We have
£%(0)5%(6) = (z + 0A°x) (s + OA%s) = x5 + 0 (xA”s + sA%z) + B2 AT A"s.
Using (7.38) we find
z(0)s(0) = (1 — O)xs + O* A%z A%s.

Using that A%z and A%s are orthogonal we obtain

(z2())" s(6) = " (1 - 6)zs + 2 A%zA%s) = (1 — O)z' s,
proving the first statement. For the second statement we write

2%s¢ = (x + Az) (s + A%s) = xs + (xA°s + sA°z) + AzACs.
Substitution of (7.39) gives
x¢5¢ = x5 + pe + 02 Az ASs.

Thus we obtain

(wC)T s¢=el (zs+ pe+ GQACJCACS) =zls + pel'e = 2np.

This completes the proof. O

Recall from (7.30) that the (unscaled) full Newton step (Az, As) at (z,s) — with
barrier parameter value 4 — can be decomposed in its affine scaling and its centering
component. The above lemma makes clear that in the algorithms we dealt with before,
the reduction in the duality gap during a (full) Newton step is delivered by the afline-
scaling component in the Newton step. The centering component in the Newton step
forces the iterates to stay close to the central path.

When solving a given LLO problem, we wish to find a primal-dual pair with a
duality gap close to zero. We want to reduce the duality gap as fast as possible to
zero. Therefore, it becomes natural to consider algorithms that put more emphasis on
the affine-scaling component. That is the underlying idea of the predictor-corrector
method which is the subject of this section. Note that when the full affine-scaling step
(with step-size 1) is feasible, it produces a feasible pair with duality gap zero, and
hence it yields an optimal solution pair in a single step. This makes clear that the full
affine step will be infeasible in general.

In the predictor-corrector method, instead of combining the two directions in a
single Newton step, we decompose the Newton step into two steps, an affine-scaling
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step first and, next, a so-called pure centering step.'® Since a full affine-scaling step
is infeasible, we use a damping parameter 0. By taking 6 small enough we enforce
feasibility of the step, and at the same time gain control over the loss of proximity
to the central path. The aim of the centering step is to restore the proximity to the
central path. This is obtained by using a Newton step with barrier parameter value
1, where np is equal to the present duality gap. Such a step leaves the duality gap
unchanged, by Lemma I1.47.

7.7.1 The predictor-corrector algorithm

In the description of the predictor-corrector algorithm below (page 182), Az and As

denote the full Newton step at (z,s) with the current value of the barrier parameter

w, and A%z and A%s denote the full affine-scaling step at the current iterate (z,s).

Observe that according to Lemma I1.60 the damping factor € for the affine-scaling

step can also be interpreted as an updating parameter for the barrier parameter p.
We have the following theorem.

Theorem I1.61 If 7 = 1/2 and 8 = 1/(2/n), then the Predictor-Corrector Algorithm
requires at most

0
[2\/5 log %—‘
13
iterations. The output is a primal-dual pair (x,s) such that z7s < .

The proof of this result is postponed to Section 7.7.3. It requires a careful analysis
of the affine-scaling step, which is the subject of the next section. Let us note now
that the iteration bound is a factor /2 worse than the bound in Theorem I1.53 for
the algorithm with full Newton steps. Moreover, each major iteration in the predictor-
corrector algorithm consists of two steps: the centering step (also called the corrector
step) and the affine-scaling step (also called the predictor step).

7.7.2 Properties of the affine-scaling step

The purpose of this section is to analyze the effect of an affine-scaling step with size
0 on the proximity measure. As before, (z, s) denotes a positive primal-dual pair. We

18 The idea of breaking down the Newton direction into its affine-scaling and its centering component
seems to be due to Mehrotra [205]. The method considered in this chapter was proposed first by
Mizuno, Todd and Ye [217]; they were the first to use the name predictor-corrector method. The
analysis in this chapter closely resembles their analysis. Like them we alternate (single) primal-
dual affine-scaling steps and (single) primal-dual centering steps. An earlier paper of Sonnevend,
Stoer and Zhao [258] is based on similar ideas, except that they use multiple centering steps. It
soon appeared that one could prove that the method asymptotically has a quadratic convergence
rate (see, e.g., Mehrotra [206, 205], Ye et al. [317], Gonzaga and Tapia [126, 127], Ye [309] and
Luo and Ye [188].). Quadratic convergence of the primal-dual predictor-corrector method is the
subject in Section 7.7.6. A dual version of the predictor-corrector method was considered by Barnes,
Chopra and Jensen [36]; they showed polynomial-time convergence with an O(nL) iteration bound.
Mehrotra’s variant of the primal-dual predictor-corrector method will be discussed in Chapter 20. It
significantly cuts down the computational effort to achieve the greatest practical efficiency among
all interior-point methods. See, e.g., Lustig, Marsten and Shanno [192]. As a consequence the
method has become very popular.
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Predictor-Corrector Algorithm

Input:
A proximity parameter 7, 0 < 7 < 1;
an accuracy parameter £ > 0;
(29,5%) € P x D, u® > 0 with (20)7s® = nu®, §(z°, 5% u°) < 7
a barrier update parameter 6, 0 < 8 < 1.
begin
x:=2x0 s := 5% pi=pu;
while np > (1 —0)e do

begin
r:=z+ Ax;
s:=s+ As;
T =1+ 0A%x;
8:= 8+ OA%s;
p=(1—-0)u;

end

end

assume that g > 0 is such that #7's = np, and 6 := 6(x, s; u). Recall from (7.16) that

5:1 e—u?

q

1
=

u

where

xs
U = —_—.

I

We need a simple bound on the coordinates of the vector u.

Lemma I1.62 Let p(6) := 6 + 1+ 62. Then

1
— <u; <p6), 1<i<n.
p(6) =
Proof: Since u; is positive for each i, we have

—20u; <1— uf < 26u;.

This implies
uf —206u; — 1 <0 < u? + 20u; — 1.

Rewriting this as

(u;—6)?—=1-62<0< (u;4+6)*—1—6
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we obtain
(ui—6)> <1402 < (u; +9)°,

which implies

Thus we arrive at

—0+ V1462 <uy <6+ V1467 =p(d).

For the left-hand expression we write

1 1
B Ry . S
§+v1I+02  p(d)

This proves the lemma. g
Now we can prove the following.

Lemma I1.63 Let the pair (x7,s%) resull from an affine-scaling step al (x,s) with
step-size 0. If z¥s = nu and § == §(x,s;p) < 7, then we have 6T = §(zt,sT; (1 —
Np) < 7 if O satisfies the inequality

0%n

—p <22 <T\/ ﬁ +40p(8)V2 + 272 — 26p(5) — 72\/§> . (7.40)

For fixed T, the right-hand side expression in (7.40) is a monotonically decreasing
function of 6.

Proof: From the proof of Lemma II.60 we recall that
zhst = (1 - 0)zs + H?A%A%s.
This can be rewritten as

atst = p((1—0)u® +6%ded?) .

Defining
+gt
P A
(L= O)p
we thus have
2 ja ja
+\2_ 2 0-d2d¢
(u ) u” + -0

The proximity after the affine-scaling step satisfies

=3l = @) = gl e o]

[ee]
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We proceed by deriving bounds for the last two norms. First we consider the second
norm:

82dede 62
“6—(U+)2“ = 6—’11/2— 1:398 S HG—UQH—FdeZd?H
< fe—wf+ 2"
- 2v/2(1 — 6)

For the last inequality we applied the first uv-lemma (Lemma C.4 in Appendix C) to
the vectors d% and d* and further utilized |u|> = n. From Lemma IL.62, we further

obtain
2

67’[1,2 — U

o7 =

u < 26p(9).

u

€
<ullog

For the estimate of H(u"’)_lH we write, using Lemma I1.62 and the first uv-lemma
>0

2 6%

once more,
1 6%n
p0F A1 0)

We conclude, by substitution of these estimates, that

20p(0) + s AL g;f_g)

2 1 02n

P07 T W1-0)

5t <

Hence, 6 < 7 holds if

2 2 2 2,2
4
64n ) T O*nr (7.41)

(25’)(‘” Tane) Swr 10

This can be rewritten as
0%n ? 0%n 472
26p(8) + ————— +22\/§(25 §) + >< + 4726 p(8)V/2,
( p(0) 2«5(19)) " o0) 221 -0)) ~ e o)

or equivalently,

2, 2 72
(2(5p(5) + % + 7'2\/§> < pzté)Q +4725p(8)V/2 + 27

By taking the square root we get

+ 45p(6)V2 + 272,

0°n 9
200(8) + —=—— +T2V/2 <7

4
2V2(1 — 6) p(0)2

By rearranging terms this can be rewritten as

92n 4
2v2(1—0) = T\/W +48p(6WW2 + 272 — 26p(8) — T2V/2.
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This implies the first statement in the lemma. For the proof of the second statement
we observe that the inequality (7.40) in the lemma is equivalent to the inequality
(7.41). We can easily verify that the left-hand side expression in (7.41) is increasing in
both § and # and the right-hand side expression is decreasing in both ¢ and 6. Hence,
if 6 satisfies (7.41) for some value of §, then the same value of § satisfies (7.41) also
for smaller values of §. Since the inequalities (7.40) and (7.41) are equivalent, the last
inequality has the same property: if 0 satisfies (7.40) for some value of §, then the
same value of # satisfies (7.40) also for smaller values of 4. This implies the second
statement in the lemma and completes the proof. a

upper bound for 7~

i /; ]

@3

o ‘ i i
0 0.1 0.2 0.3 0.4

— =10z, s 1)

Figure 7.8 The right-hand side of (7.40) for 7 = 1/2.

Figure 7.8 shows the graph of the right-hand side of (7.40) as a function of 4.

With the above lemma the analysis of the predictor-corrector algorithm can easily
be accomplished. We do this in the next section. At the end of this section we apply
the lemma to the special case where we start the affine-scaling step at the p-centers.
Then 6 = 0 and p(6) = 1. Substitution of these values in the lemma yields that the
proximity after the step does not exceed 7 if

2
19 n@ <22 (T\/4 4+ 9272 — 72\/§> .

Note that this bound coincides with the corresponding bound obtained in Section 7.6.5
for an adaptive update at the y-center with the full-step method.

7.7.3  Analysis of the predictor-corrector algorithm

In this section we provide the proof of Theorem I1.61. Taking 7 = 1/2 and § = 1/(2/n)
we show that each iteration starts with z, s and p such that §(z, s; p) < 7. This makes
the algorithm well defined, and implies the result of the theorem.
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The corrector step is simply a Newton step to the p-center. By Theorem II1.50 (on
page 156) the result is a pair (z,s) such that

1 1
§:=0(z,s;p) < =
17

21— vV

Now we apply Lemma I1.63 to this pair (z, s). This lemma states that the affine step
with step-size 6 leaves the proximity with respect to the barrier parameter (1 — 6)u
smaller than (or equal to) 7 if # satisfies (7.40) and, moreover, that for fixed 7 the
right-hand side of (7.40) is monotonically decreasing in §. For § = 1/4/24 we have

Substitution of the given values in the right-hand side of (7.40) yields the value
0.612626 (cf. Figure 7.8, with § = 1/4v/24 = 0.204124). Hence (7.40) is certainly
satisfied if 52

ne < 0.612626.

If 8 = 1/(24/n) this condition is satisfied for each n > 1. This proves Theorem II1.61.
O

Remark I1.64 In the above analysis we could also have used the improved quadratic
convergence result of Theorem 11.52. However, this does not give a significant change. After
the centering step the proximity satisfies

1
- I 1
§=68(z,8p) < —E0—x = —,
2(1 — %) V30
and the condition on € becomes a little weaker, namely:
6*n
< 0.768349. ¢
1—0 —

7.7.4 An adaptive version of the predictor-corrector algorithm

As stated before, the predictor-corrector method is the most popular interior-point
method for solving LO problems in practice. But this is not true for the version we
dealt with in the previous section. When we update the barrier parameter each time
by the factor 1 — 8, with # = 1/(2y/n), as in that algorithm, the required number of
iterations will be as predicted by Theorem II1.61. That is, each iteration reduces the
duality gap by the constant factor 1 — @ and hence the duality gap reaches the desired
accuracy in a number of iterations that is proportional to 1/n. The obvious way to
reduce the number of iterations is to use adaptive updates of the barrier parameter.
The following lemma is crucial.

Lemma 11.65 Let the pair (xt,s1) result from an affine-scaling step at (x,s) with
step-size 0. If x7s = nu and § := §(x, 87 ) < 7, then 6+ :=o(xt, st u(l —0)) <7 if

0? 1
a Ja < 2 o . .
7 |ldeds|| <27 (\/—p(5)2 +26p(6) + 7 T> 26p(8) (7.42)
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Proof: The proof is a slight modification of the proof of Lemma II1.63. We recall from
that proof that the proximity after the affine-scaling step satisfies

=gl - @) g e fe -’

where, as before,

?

+2_ 2 92dgdg'
(uh)” = v+ 55"

d% and d% denote the scaled affine-scaling components, and v = \/xs/u. We also recall
some estimates:

Je= )2 < e = o2l + 75 s
and
He — u2H < 26p(9).
Moreover,
)2 > 2 > 1 d%d?
()" 2 uf g il >~y — g sl
By substitution of these estimates we obtain
2
s+ < 20000) + 15 lldzds]
2\/p(o — 1% lldads|
Hence, 67 < 7 holds if
2 472 16272
26p(0) + dsds < — dsd?
(20000 + 1 Zg 1) < 7 AT .

This can be rewritten as

2 a ja 2 92 a ja 4t 2 2
(25,0(5) Hd ds ) 447 (25/)(5) ||d d ||> POE + 8746p(6),
or equivalently,
§ 2 2 47* 2 4
2 < de 2 < 47,
< dp(8) + 7 lldeds || + 27 ) S 07 + 87°0p(8) + 4T

By taking the square root we get

2
20p(0) +

+26p(6) + 72,

1
didy|| + 272 < o7y | ——
- ldzas) \/ 5

which reduces to

92

|dzd] < 27 Q/ﬁ +26p(5) < 77 T> — 26p(9).

This completes the proof. a

From this lemma we derive the next theorem.
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Theorem I1.66 If 7 = 1/3 then the property 6(x,s;u) < 7 is maintained in each
iteration if 0 is taken equal to

1+ 13]|dade]|

Proof: We only need to show that when we start some iteration with z,s and p such
that §(z, s; 1) < 7, then after this iteration the property d(z, s; u) < 7 is maintained.

By Theorem I1.50 (on page 156) the result of the corrector step is a pair (z, s) such
that

= ; < = —.
§:=4d(z,s;u) < T

[
—
|l | =TSN
O
~—

Now we apply Lemma I1.65 to (z,s). By this lemma the affine step with step-size
leaves the proximity with respect to the barrier parameter (1 — 6)u smaller than (or
equal to) 7 if # satisfies (7.42). For § = 1/12 we have p(6) = 1.0868. Substitution of
the given values in the right-hand side expression yields 0.308103, which is greater
than 4/13. The right-hand side is monotonic in §, as can be verified by elementary
means, so smaller values of § yield larger values than 4/13. Thus the proximity after
the affine-scaling step does not exceed 7 if 8 satisfies

6? 4
deds|| < —=.
] < =

8

We may easily verify that the value in the theorem satisfies this condition with equality.
Hence the proof is complete. O

7.7.5 Illustration of adaptive predictor-corrector algorithm

With the same example as in the previous illustrations, and the same initialization,
the adaptive predictor-corrector algorithm, with ¢ = 10~*, runs as shown in Table 7.5.
(page 189). Each iteration consists of two steps: the corrector step (with ¢ = 0) and
the affine-scaling step (with @ as given by Theorem I1.66). Table 7.5. shows that only
7 iterations yield the desired accuracy. After the corrector step the proximity is always
very small, especially in the final iterations. This is the same phenomenon as observed
previously, namely that the Newton process is almost exact. For the affine-scaling steps
we see the same behavior as in the full-step method with adaptive updates. The value
of the barrier update parameter increases very quickly to 1. As a result the duality
gap goes very quickly to zero. This is not accidental. It is a property of the predictor-
corrector method with adaptive updates, as shown in the next section. Figure 7.9
(page 190) shows on two graphs the progress of the algorithm in the w-space.

7.7.6 Quadratic convergence of the predictor-corrector algorithm

It is clear that the rate of convergence in the predictor-corrector method depends on
the values taken by the barrier update parameter 8. We show in this section that the
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It ny T Y1 Y2 51 4 g
1| 4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887 | 0.000000
1| 4.000000 | 2.000000 | 0.333333 | —0.333333 | 0.666667 | 0.0000 | 0.601242
21 1.595030 | 1.278509 | 0.493665 | 0.468323 | 0.506335 | 0.1576 | 0.000000
21 1.595030 | 1.334918 | 0.606483 | 0.468323 | 0.393517 | 0.0085 | 0.628030
310.593303 | 1.088217 | 0.780899 | 0.802232 | 0.219101 | 0.1486 | 0.000000
310.593303 | 1.108991 | 0.822447 | 0.802232 | 0.177553 | 0.0031 | 0.752648
410.146755 | 1.019821 | 0.941805 | 0.951082 | 0.058195 | 0.1543 | 0.000000
410.146755 | 1.025085 | 0.952333 | 0.951082 | 0.047667 | 0.0008 | 0.907623
510.013557 | 1.001775 | 0.994513 | 0.995481 | 0.005487 | 0.1568 | 0.000000
510.013557 | 1.002265 | 0.995492 | 0.995481 | 0.004508 | 0.0001 | 0.989826
6| 0.000138 | 1.000018 | 0.999944 | 0.999954 | 0.000056 | 0.1575 | 0.000000
6| 0.000138 | 1.000023 | 0.999954 | 0.999954 | 0.000046 | 0.0000 | 0.999894
71 0.000000 | 1.000000 | 1.000000 1.000000 [ 0.000000 | 0.1576 | 0.000000
71 0.000000 | 1.000000 | 1.000000 1.000000 [ 0.000000 | 0.0000 | 1.000000

Table 7.5. The adaptive predictor-corrector algorithm.

189

rate of convergence eventually becomes quadratic. To achieve a quadratic convergence
rate it must be true that in the limit, (1—6)u is of the order O(p2), so that 1—6 = O(p).
In this section we show that the value of € in Theorem II1.66 has this property. The
following lemma makes clear that for our purpose it is sufficient to concentrate on the
magnitude of the norm of the vector d%d?.

Lemma I1.67 The value of the barrier update parameter 6 in Theorem I1.66 satisfies

13
1—6< — ||d2d%|.
< =zt

Hence, the rate of convergence for the adaptive predictor-corrector method is quadratic

if [|dzdg |l = O(p).-

Proof: The lemma is an easy consequence of properties of the function f : [0,00) —

R, defined by

The derivative is given by

and the second derivative by

flz) =

1

flz)=1

2

13

113z

VIF 18z (1+ I+ 132)°

—169 (1 + 3v/1 + 13z)

3

(1+132)° (1+vI+132)°
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Figure 7.9 The iterates of the adaptive predictor-corrector algorithm.

This implies that f is monotonically increasing and concave. Since f'(0) = 13/4, it
follows that f(z) < 13x/4 for each x > 0. Putting = = ||d%d?|| gives the lemma. O

We need one more basic fact in the analysis below. This concerns the optimal sets
P* and D* of the primal and dual problems. Defining the index sets

B:={i : x; > 0 for some x € P*}

and
N:={i : s; > 0 for some s € D"},

we know that these sets are disjoint, because z7s = 0 whenever x € P* and s € D*.
We need the far from obvious fact that each index i, 1 < i < n, belongs either to
B or N.'9 As a consequence, the sets B and N form a partition of the index set
{i : 1 <i<n}. This partition is called the optimal partition of the problems (P)
and (D).

The behavior of the components of the vectors d2 and d¢ strongly depends
on whether a component belongs to one set of the optimal partition or to the
complementary set. Table 7.6. summarizes some facts concerning the order of
magnitude of the components of various vectors of interest. From this table we
read, for example, that zp = ©(1) and A%zy = O(n). According to the definition
of the symbols © and O this means that there exist positive constants ¢1, ¢z, ¢z such
that c1e < xp < cge and A%z < 03,u.20 In our case it is important to stress that

19 This is the content of the Goldman—Tucker Theorem (Theorem II.3), an early result in the theory
of Linear Optimization that has often been considered exotic. The original proof was based on
Farkas’ lemma (see, e.g., Schrijver [250], pp. 95-96). In Part I of this book we have shown that
the corresponding result for the self-dual model is a natural byproduct of the limiting behavior of
the central path. We also refer the reader to Giiler et al. [134], who derived the Goldman—Tucker
Theorem from the limiting behavior of the central path for the standard format. Giiler and Ye [135]
showed that interior-point algorithms — in a wide class — keep the iterates so close to the central
path that these algorithms yield the optimal partition of the problem.

20 See Section 1.7.4 for definitions of the order symbols @ and ©.
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Vector B N
¢ | e | ew
s | ew | e
u e(1) e(1)

( (
d o(z)| eln)
dg | O | Of

dg o) | ow”
Atz | O | O
A% | O(p) | Ow*

QO | =T [ O | O | = |||+~

Table 7.6. Asymptotic orders of magnitude of some relevant vectors.

these constants are independent of the iterates x, s and of the value u of the barrier
parameter. They depend only on the problem data A, b and c. Some of the statements
in the table are almost trivial; the more difficult ones are indicated by an asterisk.
Below we present the relevant proofs.

Let us temporarily postpone the proof of the statements in Table 7.6. and show
that the order estimates given in the table immediately imply quadratic convergence
of the adaptive predictor-corrector method.

Theorem I1.68 The adaptive predictor-corrector method is asymptotically quadrati-
cally convergent.

Proof: From Table 7.6. we deduce that each component of the vector d2d? is bounded

by O(u). From our conventions this implies that d%d% = O(u). Hence the result follows
from Lemma I1.67. O

The rest of this section is devoted to proving the estimates in Table 7.6.. Note that
at the start of an affine-scaling step we have § = d(x, s; ) < 1/12, from the proof of
Theorem 11.66. This property will be used several times in the sequel. We start with
line 3 in the table.

Line 3: With § < 1/12, Lemma I1.62 implies that each component w; of u satisfies

1
092013 < — < u; < p((5 < 1.0868.
) )

This proves that u = ©(1).
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Lines 1 and 2: We start with the estimates for xp and sg. We need the following
two positive numbers:?!

op = minmax{z; : = € P"}
i€EB

od = minmax{s; : s € D*}.
iEN

Note that these numbers depend only on the data of the problem and not on the
iterates. Moreover, due to the existence of a strictly complementary optimal solution
pair, both numbers are positive. Now let ¢+ € B and let £ € P* be such that Z; is
maximal. Then, using that z; > o, > 0, we may write

SiT; $° T $° T

T; Z; Op ’
Since z is optimal, ¢’ % < ¢ 2. Hence, with y such that s = ¢ — ATy, we have
sfe=clz-bvy<cla—bvly=s"2=np,

so that
;<™ vien.
Ip
This implies that sp = O(u). From the third line in Table 7.6. we derive that
zrpsp = pu% = O(u). The last two estimates imply that

-1_ 8B O(p) o
T T R

This implies that zp is bounded away from zero. On the other hand, since the pair
(z, s) has duality gap nu and hence, by Theorem II1.9 (on page 100), belongs to a
bounded set, we have xp = O(1). Thus we may conclude that x5 = O(1). Since we
also have xpsp = ©(p), it follows that sp = O(p). In exactly the same way we derive
that sy = ©(1) and znx = O(p).

Line 4: The estimates in the fourth line follow directly from the definition of d and
the estimates for x and s in the first two lines.

Line 5 and 6: We obtain an order estimate for (d%)y and (d%)p by the following
simple argument. By its definition d is the component of the vector —u in the null
space of the matrix AD. Hence we have ||d%|| < |lu|| = v/n. Therefore, d* = O(1).
Since (d%)n is a subvector of d%, we must also have (d%)n = O(1). A similar argument
applies to (d%)p.

The estimates for (d%)g and (d%)x are much more difficult to obtain. We only deal
with the estimate for (d%)p; the result for (d)y can be obtained in a similar way.

21 These quantities were introduced by Ye [311]. See also Vavasis and Ye [280]. The numbers op
and o4 closely resemble the numbers %, and o, for the self-dual model, as introduced in
Section 3.3.2 of Part I. According to the definition of the condition number ogp for the self-dual
model, the smallest of the two numbers o, and o4 is a natural candidate for a condition number
for the standard problems (P) and (D). We refer the reader to the above-mentioned papers for a
discussion of other condition numbers and their mutual relations.
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The main force in the derivation below is the observation that d can be written as
the projection on the null space of AD of a vector that vanishes on the index set B.2?
This can be seen as follows. We may write

di=—Psp(u) = —#PAD(\/E) = —#PAD(dS)-

Now let (g, §) be any dual optimal pair. Then
s=c— ATy =ATj+5 - ATy =5+ AT (5 —y),
so we have
ds = dé + (AD)"(§ — y).

This means that ds — d§ belongs to the row space of AD. The row space being
orthogonal to the null space of AD, it follows that

PAD(dS) = PAD(dg).

Thus we obtain

ds = —#PAD(OE). (7.43)

Since § is dual optimal, all its positive coordinates belong to the index set NV, and
hence we have §5 = 0. Now we can rewrite (7.43) in the following way:

—/pdi = argmin,, (Hd§ —h|)® . ADh = O) )
or equivalently,
7\/,1_1,dg = argmin,, (HngB — hBH2 +|ldnSn — hN||2 :ApDphp + ANDyhy = 0) .

This means that the solution of the last minimization problem is given by hp =
—/1(d3)p and hy = —,/i(d})n. Hence, substituting the optimal value for hy as
above, and also using that §g = 0, we obtain

—\/ﬁ(dg’)B = aI‘ngiIlhB (HhBHQ : ABDBhB = \/EANDN(dZ)N) .

Stated otherwise, —,/fi (d5)p can be characterized as the vector of smallest norm in
the affine space

S={¢ : ApDp§ = uANDn(dZ)n}-

Now consider the least norm solution of the equation Agz = \/ﬁA ~NDn(d%) . This
solution is given by

2* = uAGANDN(dS)N,

22 We kindly acknowledge that the basic idea of the analysis below was communicated privately to us
by our colleague Gonzaga. We also refer the reader to Gonzaga and Tapia [127] and Ye et al. [317);
these papers deal with the asymptotically quadratic convergence rate of the predictor-corrector
method.
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where Ag denotes the pseudo-inverse?® of the matrix Ag. It is obvious that Dglz*
belongs to the affine space S. Hence, —/p(d})p being the vector of smallest norm in
S, we obtain

Ve ()] < || D5'2"|| = v | D5 AL An Dy (dg)x

or, dividing both sides by /1,

K

Itd) ]l < [|Dp' AL Ay D (d5)n | -

This implies
1d2) sl < [|[ DB | | A 1A~ DIl I1(d5) w1 -

Since, by convention, HAEH and ||An|| are bounded by O(1), and the order of mag-
nitudes of the other norms on the right-hand side multiply to O(u), we obtain that
[(d%)g|| = O(p). This implies the entry (d%)p = O(u) in the table.

Line 7 and 8: These lines are not necessary for the proof of Theorem I1.68. We only
add them because of their own interest. They immediately follow from the previous
lines in the table and the relations

Az = /Hdd,, As=./id"d,.

This completes the proof of all the entries in Table 7.6..

7.8 A version of the algorithm with large updates

The primal-dual methods considered so far share the property that the iterates stay
close to the central path. More precisely, each generated primal-dual pair (z, s) belongs
to the region of quadratic convergence around some p-center. In this section we
consider an algorithm in which the iterates may temporarily get quite far from the
central path, because of a large, but fixed, update of the barrier parameter. Then, by
using damped Newton steps, we return to the neighborhood of the point of the central
path corresponding to the new value of the barrier parameter. The algorithm is the
natural primal-dual analogue of the dual algorithm with large updates in Section 6.9.
Just as in the dual case, when the iterates leave the neighborhood of the central path
the proximity measure for the full-step method, §(z, s; i), becomes less relevant as a
measure for closeness to the central path. It will be of no surprise that in the primal-
dual case the primal-dual logarithmic barrier function ¢, (x, s) is a perfect tool for this
job. Recall from (6.23), on page 133, that ¢,(z, s) is given by

bu(, 3) :m(%-% — T <%—e) —Zlog%, (7.44)
j=1

and from Section 6.9 (page 130) that ¢, (x, s) is nonnegative on its domain (the set
of all positive primal-dual pairs), is strictly convex, has a (unique) minimizer, namely

22 See Appendix B.
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(,5) = ((2), 5(1)) and, finally that ¢, (z(s), s(u)) = 0.2

The algorithm is described below (page 195). As usual, Az and As denote the
Newton step at the current pair (z,s) with the barrier parameter equal to its current
value p. The first while-loop in the algorithm is called the outer loop and the second

Primal-Dual Logarithmic Barrier Algorithm with Large Updates

Input:
A proximity parameter 7;
an accuracy parameter € > 0;
a variable damping factor «;
a fixed barrier update parameter 8, 0 < 6 < 1;
(2°,8%) € P x D and u¥ > 0 such that §(2°,s% u0) < 7.
begin
z:=x2% 5:= 8% p:=pul
while nu > ¢ do
begin
po=(1—0)u
while é(x,s;p) > 7 do
begin
=1z + aAxz;
s:=s+ als;
(The damping factor o must be such that ¢,(z, s) decreases

sufficiently. Lemma I1.72 gives a default value for «.)
end
end
end

while-loop the inner loop. Each execution of the outer loop is called an outer iteration
and each execution of the inner loop an inner iteration. The required number of outer
iterations depends only on the dimension n of the problem, on u° and &, and on the
(fixed) barrier update parameter #. This number immediately follows from Lemma

[.36 and is given by
1 np®
—log—|.
{9 e W

Just as in the dual case, the main task in the analysis of the algorithin is the estimation
of the number of iterations between two successive updates of the barrier parameter.

24 Exercise 54 Let the positive primal-dual pair (z, s) be given. We want to find g > 0 such that
¢u(z, s) is minimal. Show that this happens if p = 2T s/n and verify that for this value of u we

have
T n
nxs x
Pulz,s) =T (E —e) = nlogT — E loga;s;.
j=1
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This is the purpose of the next sections. We first derive some estimates of ¢,(z, s) in
terms of the proximity measure §(z, s; pt).

7.8.1 FEstimates of barrier function values

The estimates in this section are of the same type as the estimates in Section 6.9.1
for the dual case.?® Many of these estimates there were given in terms of the function
¥ (=1,00) — R determined by (5.5):

P(t) =t —log(l +t),

which is nonnegative on its domain, strictly convex and zero at t = 0. For z € R",
with z + e > 0, we defined in (6.22), page 133,

¥(z) = S w(z): (7.45)
j=1

The estimates in Section 6.9.1 were given in terms of the dual proximity measure
8(y, 1). Our aim is to derive similar estimates, but now in terms of the primal-dual
proximity measure &(x, s; 1.

Let (x,s) be any positive primal-dual pair and g > 0. Then, with v as usual:

U = 5

s
7

we may write
n

bu(z,8) =€l (u* —¢) —Zlogu? =T (u” —¢).

j=1
Using this we prove the next lemma.
Lemma I1.69 Let § := 6(x, s; 1) and p(6) := 6 ++/1+62. Then
6 (557) < outes) < 6 (20000)
— ) < dulz,8) < p(8)).
p(0) g

The first (second) inequality holds with equalily if and only if one of the coordinates
of w attains the value p(8) (1/p(8)) and all other coordinaies are equal to 1.

Proof: Fixing §, we consider the behavior of ¥ (u2 — e) on the set
7= {uGIR” : Hu_lqu = 29, uzO}.

Note that this set is invariant under inverting coordinates of u. Because of the
inequality

w(t1)>¢<%1>,t>1, (7.46)

25 The estimates in this section are new and dramatically improve existing estimates from the
literature. See, e.g., Monteiro and Adler [218], Mizuno and Todd [216], Jansen et al. [157] and
den Hertog [140].



I1.7 Primal-Dual Logarithmic Barrier Method 197

whose elementary proof is left as an exercise 2%, this implies that v > e if v maximizes
U(u? —e) on 7 and u < e if v minimizes ¥(u? —e) on 7.

Consider first the case where u is a maximizer of ¥ on the set 7. The first-order
optimality conditions are

U2—€

u2

e

2u = 2) (u - E) , (7.47)

where A € R. This can be rewritten as

u? (uQ—e) :)\(ug—e) (u2+e).
It follows that each coordinate of u satisfies

u; =1 or u?:)\(u?Jrl).

Since u > 0, we may conclude from this that the coordinates of u that differ from 1
are mutually equal. Suppose that u has k£ such coordinates, and that their common
value is v. Note that k£ > 0, unless § = 0, in which case the lemma is trivial. Therefore,
we may assume that k > 1. Now, since u € 7T,

2
k(ly> = 467,
v

26

-

Since v is a maximizer, we have v > 1, and hence
( 5 )
v=pl—].
Vk

p(t)? —1=2tp(t), tcT, (7.48)

w(ﬁ@m(ﬁgw(%;;(%)).

The expression on the right-hand side is decreasing as a function of k.2” Hemnce the
maximal value is attained if & = 1, and this value equals (20 p (§)). The second
inequality in the lemma follows.

The first inequality is obtained in the same way. If u is a minimizer of ¥ on the set
7T, then the first-order optimality conditions (7.47) imply in the same way as before

which gives

1
——v
v

Therefore, using that

we obtain

26 Exercise 55 Derive (7.46) from the inequalities in Exercise 42 (page 137).
27 Exercise 56 Let § and p(d) be as defined in Lemma I1.69, and let & > 1. Prove that

(G () = (25)

and that this expression is maximal if k£ = 1.
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that the coordinates of u that differ from 1 are mutually equal. Assuming that » has
k such coordinates, and that their common value is v again, we now have v < 1, and
hence

L 1
"
(%)
Using (7.48), it follows that
1 - 1—p()??  —2tp(t) 2t
p(t)? p(t)? p()?  p(t)

Hence we may write

U (u? —e) =kt (V2 —1) =k =%

n ()

The expression on the right-hand side is increasing as a function of k.2® Hence the
minimal value is attained if £ = 1, and this value equals ¥ (—2§/p (§)). Thus the proof
of the lemma, is complete. O

¥ (20p(6))

— 0 ="5(z,sip)

Figure 7.10 Bounds for ¢, (x, s).

28 Exercise 57 Let § and p(8) be as defined in Lemma I1.69, and let k > 1. Prove that

—26

’“” Vio (%) - (7vme)

and that this expression is minimal if &£ = 1.



I1.7 Primal-Dual Logarithmic Barrier Method 199

Figure 7.10 shows the graphs of the bounds in Lemma I1.69 for ¢, (z, s) as a function
of the proximity §.

Remark I1.70 It may be worthwhile to discuss the quality of these bounds. Both bounds
are valid for all (nonnegative) values of the proximity. Especially for the upper bound this
is worth noting. Proximity measures known in the literature do not have this feature. For
example, with the popular measure

s
— —e
7

all known upper bounds grow to infinity if the measure approaches 1. The upper bound of

Lemma I1.69 goes to infinity only if our proximity measure goes to infinity.

The lower bound goes to infinity as well if if our proximity measure goes to infinity, due
to the fact that —25/p(d) converges to -1 if § goes to infinity. This is a new feature, which
will be used below in the analysis of the large-update method. On the other hand, it must be
noted that the lower bound grows very slowly if § increases. For example, if § = 1,000, 000
then the lower bound is only 28.0168. .

7.8.2 Decrease of barrier function value

Suppose again that (z, s) is any positive primal-dual pair and g > 0. In this section we
analyze the effect on the barrier function value of a damped Newton step at (z,s) to
the p-center. With u as defined before, the Newton displacements Ax and As satisfy

xAs + sAx = pe — xs.
Let % and s™ result from a damped Newton step of size a at (x,s). Then we have
2T =z +alAz, sT=s+als.
Using the scaled displacements d, and d,, defined in (7.5), page 154, we can also write
ot = pd(utad,), st=pd ' (utad).
As a consequence,
tst = plutady) (u+ ads) = p (v +a (e —u?) + a’dyd,) .

Here we used that u (d; + ds) = e — u?, which follows from

de +ds =u"" — . (7.49)
Now, defining
+gt
N AL ’
Iz
it follows that
(u*)” = (u+ ady) (u+ ady) = v + & (e — 0?) + a*dod,. (7.50)

Subtracting e we get

(u+)2 —e=(1-0a) (v’ —e) +a’d,ds.
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Note that the orthogonality of d, and d, implies that e’d,d, = 0. Using this we find
the following expression for ¢, (z*,sT):

¢H(x+, s = el ((u+)2 — e) — zn:log (uj')2
j=1

- (1—a)er (que)fZIOg(uj')Q.
i=1

The next lemma provides an expression for the decrease of the barrier function value
during a damped Newton step.

Lemma I1.71 Let § = &(x,s;u) and let o be such that the pair (x7,s%) resulting
from the damped Newton step of size o is feasible. Then we have

Pu(z,8) — ¢5u($+,$+) =4ad? -0 (O‘_df0> W (Ozds> ’

(2 (2

Proof: For the moment let us denote A := ¢, (z,s) — ¢, (xt,sT). Then we have

n T
A = el (u2 —e) — Z log uf — (1 —a)e” (u2 —e) + Z log (uj)2
j=1 j=1
n u+ 2
= ael (u* —e) + ) log | L
=\

Since )
(u™)” = (u+ ady) (u+ ady)

(5 () o).

Substituting this we obtain

we may write

n d,). n d,).

— aeT(u2fe)+E log(1+a( )J>+E log(1+a( )j>
1 1

j=1 J =1 J

Observe that, by the definition of ¥,

jzn:llog (1 +a(dl;—”?j> — e’ (%) — (al‘fI)

S0 ) o (£) (%),

and, similarly,
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Substituting this in the last expression for A we arrive at

Aot () od () +od () —w (%) v ().
U U u U

Using (7.49) once more, the coeflicients of « in the first three terms can be taken
together as follows:

el <u2—e+%> :eT(u2—6+(u_2—e)) :eT(u_l—u)2.

A=« Hu_l —uH2—\I/ (adx) —\Il(ads).
u U

29,30 0

Thus we obtain

Since Hu‘l — uH = 26, the lemma follows.

We proceed by deriving a lower bound for the expression in the above lemma. The
next lemma also specifies a value of the damping parameter o for which the decrease
in the barrier function value attains the lower bound.

Lemma I1.72 Let § = §(z, s; ) and let a = 1/w — 1/(w + 462), where

NEIER

Then the pair (z7,sT) resulting from the damped Newton step of size o is feasible.
Moreover, the barrier function value decreases by at least V(25 /p(6)). In other words,

2 2

Az

xT

As
S

da

U

ds

2
‘ u

bulz,5) — du(ct,sT) >y (%) .

29 Exercise 58 Verify that
Az _ dz As _ ds

’
T u 8 u

30 Exercise 59 Using Lemma I1.71, show that the decrease in the primal-dual barrier function value
after a damped step of size o can be written as:

oady ads
A= bulas) — dulat D) = alldel® raldl? v (2 - w (22,

Now let z be the concatenation of the vectors dg and ds. Then we may write
az
A=alz]? -0 (—) .
u

Using this, show that the decrease is maximal for the unique step-size & determined by the equation

and that for this value the decrease is given by

( —az ) ( —ady ) ( —ads )
R — = — + v — .
u+ az U+ ady u+ adg
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Proof:  Assuming feasibility of the damped step with size «, we know from
Lemma II.71 that the decrease in the barrier function value is given by

A = dad? — U (O‘—df”> v (ads)
U U

We now apply the right-hand side inequality in (6.24), page 134, to the vector in R*"
obtained by concatenating the vectors ad, /u and ad,/u. Note that the norm of this
vector is given by aw, with w as defined in the lemma, and that cw < 1 for the value
of « specified in the lemma. Then we obtain

A > 4ab? — op (—aw) = dad? + aw + log (1 — aw) . (7.51)

As a function of «, the derivative of the right-hand side expression is given by

452 - Y :452(17aw)7aw2.
1 —aw 1 —aw

From this we see that the right-hand side expression in (7.51) is increasing for
0<a<a 462 1 1
a<qi=———mm = — — ————
- wlw+46%) w w462

and decreasing for larger values of a. Hence it attains its maximal value at o = &,
which is the value specified in the lemma. Moreover, since the barrier function is finite
for 0 < a < &, the damped Newton step of size & is feasible. Substitution of & = & in
(7.51) yields the following bound for A:

462 w 4682 4% 462
A>2 flog—2 =20 g1 )= (2.
T w +ng—i—462 w Og<+w> w(w)

In this bound we may replace w by a larger value, since ¥(t) is monotonically increasing
for t nonnegative. An upper bound for w can be obtained as follows:

<l Y| Vel + lldsl® = [Ju|, fu=" =]

Since Hu‘lﬂoo < p(6), by Lemma I1.62, page 182, and Hu‘l — uH = 20 we obtain

w < 20p(d). (7.52)
Substitution of this bound yields

A>w(%>,

completing the proof.3! O

2 2

dz

u

ds

w =

:

31 Exercise 60 With w as defined in Lemma, I1.72, show that

S 26
w> —.
p(d)
Using this and (7.52), prove that the step-size « specified in Lemma I1.72 satisfies
1 5?2 §)?
<a= < P

20(6) (29(6) + 9) w(w+e?) = 22+ 6p(0))
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Remark I1.73 The same analysis as in Lemma I1.72 can be applied to the case where
different step-sizes are taken for the z-space and the s-space. Let 7 = z + aAz and
st = s+ BAs, with @ and 3 such that both steps are feasible. Then the decrease in the
primal-dual barrier function value is given by

A= gz, s) 7¢M(m+?s+) = O‘HdZHZ - (ad ) +ods H (%) .

Defining w := ||dz/u||, the z-part of the right-hand side can be bounded by

A=l - w (24 >>¢(MJ)’

and this bound holds with equality if

1 1
N PAT

Similarly, defining wy = ||ds/ul|, the s-part of the right-hand side can be bounded by

6WI—W(W)>w<wJ),

and this bound holds with equality if

~ 1 1
B=B8=——-——
e wat el

2
A—A1+A2>w(|i| >+¢(|w2| >

We can easily verify that

Hence,

w1 < p(0) ldell, w2 < p(6) [|ds]| -

Using the monotonicity of 2, it follows that
|d1|> (Ids|>
AN R U] . De >y .
' ( p(0) ’ P(0)

A—A1+A2>Z/J<|p(z|)> Jr?lf('((i )|>

Finally, applying the left inequality in (6.24) to the right-hand side expression, we can easily

derive that
Ide 1> + [Ids ]| ( 28 )
A> Haall T1GsH Y o [ 22,
=Y ) V)

‘We obtain in this way
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Note that this is exactly the same bound as obtained in Lemma I1.72. Thus, different step-
sizes in the x-space and s-space give in this analysis no advantage over equal step-sizes in
both spaces. This contradicts an earlier (and incorrect) result of Roos and Vial in [246].? e

For our goal it is of interest to derive the following two conclusions from the above
lemma. First, if (x,s; ) = 1/v/2 then a damped Newton step reduces the barrier
function by at least 0.182745, which is larger than 1/6. On the other hand for larger
values of §(x, s; u) the lower bound for the reduction in the barrier function value
seems to be rather poor. It seems reasonable to expect that the reduction grows to
infinity if d goes to infinity. However, if § goes to infinity then 26/p(8) goes to 1,
and hence the lower bound in the lemma is bounded by the rather small constant
P(1) =1 —log2.33

7.8.83 A bound for the number of inner iterations

As before, we assume that we have an iterate (x, s) and p > 0 such that (z, s) belongs
to the region around the p-center determined by

§=0(x,s) <,

for some positive 7. Starting at (x, s) we count the number of inner iterations needed
to reach the corresponding region around the p™-center, with

pt=(1-0)p.

Implicitly it is assumed that 8 is so large that (z, s) lies outside the region of quadratic
convergence around the u*-center, but this is not essential for the analysis below.
Recall that the target centers x(u™) and s(u™) are the (unique) minimizers of the
primal-dual logarithmic barrier function ¢,+ (x, s), and that the value of this function
is an indicator for the ‘distance’ from (z, s) to (x(u™), s(u™)).

We start by counsidering the effect of an update of the barrier parameter to
ut = (1 —@)p with 0 < 6 < 1, on the barrier function value. Note that Lemma
11.69 gives the answer if § = 0:

Ou(x, s) < P(26p(0)).

32 Exercise 61 In this exercise we consider the case where different step-sizes are taken for the z-
space and the s-space. Let T = 2 + oAz and sT = s + SAs, with o and 8 such that both steps
are feasible. Prove that the decrease in the primal-dual barrier function value is given by

de ds
A= 0u(@s) - gulatist) = a1 Bl - w () —w (22,

u

Using this, show that the decrease is maximal for the unique step-sizes & and 3 determined by the

equations
dz\2 dg )2
. o (&= . ﬂ 8s
eT (dz)z :eT ( uo)l ’ eT (ds)z :eT (u?l >
ety e+ 35

and that for these values of a and 3 the decrease is given by

v( ) o (L),

32 We want to explicitly show the inherent weakness of the lower bound in Lemma I1.72 in the hope
that it will stimulate the reader to look for a stronger result.
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For the general case, with 6§ > 0, we have the following lemma.

Lemma I1.74 Using the above notation, we have

2p()0VT (0
By (,5) < Bl 5) + 2N Ly (1__9> |

Proof: The proof is more or less straightforward. The vector u is defined as usual.

G (z,8) = eT(19 )Zlog

u —e) Zlogu +el ( 9—u2>+nlog(1—9)

T 2

1-6

= du(x,s)+ + nlog(l — 0)

on
T -1
—¢ (u—u )erJrnlog(l—G).
The second term in the last expression can be bounded by using
ul (u—ut) < lull ||u - u ] < 26p(8)V/n.

The first inequality is simply the Cauchy—Schwarz inequality and the second inequality
follows from [[u™! —u|| = 26 and |ul| < Vnllull, < Vnp(5), where we used
Lemma I1.62, page 182. We also have

on 0 0 6
ﬁ—&-nlog(l—e)—n(ﬁ—log <1+ﬁ)> =ny <ﬁ>

Substitution yields

- ¢M(x’$) =+

¢u+(x’3) < (bu(xwg) + W +ny <%> )

and hence the lemma has been proved. a

Now we are ready to estimate the number of (inner) iterations between two
successive updates of the barrier parameter.

Lemma I1.75 For given 6 (0 < 0 < 1), let

R = 9\/5.
1—6

Then, when
VR

W1+ VR

the number of (inner) ilerations belween two successive updates of the barrier
parameter is not larger than

G
-0

211+
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Proof: Suppose that § = §(z, s; ) < 7. Then it follows from Lemma I1.74 that after
the update of the barrier parameter to p™ = (1 — 8)u we have

25/)( )9\/_ 0
gb/ﬁ“(‘ras) §¢u(m75)+ 1-6 w(m> R

By Lemma I1.69 we have ¢,(z,s) < ¢ (26p(d)). Using the monotonicity of ¢ and,
since § <7, 26p(d) < 27p(7) we obtain

by 2.5) < 0 (2mptr) + TEDBE s (25

Application of the inequality 1(t) < #2/2 for ¢ > 0 to the first and the third terms
yields

b @.s) < 2rtp(ry 4 TR b :< prVE+ )) '

1-6 2(1 —0)2 V2(1 -0

The algorithm repeats damped Newton steps until the iterate (z,s) satisfies § =
§(z,s;uT) < 7. Each damped step decreases the barrier function value by at least
¥ (27/p(7)). Hence, after

1 v\’
S

iterations the value of the barrier function will have reached (or bypassed) the value
¥ (27/p(7)). From Lemma I1.69, using that ¢ (27/p(7)) < ¢ (—27/p(7)), the iterate
(z,s) then certainly satisfies 6(x,s;u™) < 7, and hence (7.53) provides an upper
bound for the number of inner iterations between two successive updates of the barrier
parameter.

The rest of the proof consists in manipulating this expression. First, using #(t) >
t2/(2(1 +1)) and 0 < 27/p(7) < 1, we obtain

472

27 G 2 72 72

w(p(’l’)) = (1p+ ) :]_+ 27 p(T)Q 2
ro 77

Substitution reduces the upper bound (7.53) to

)2 2 Oo(1)v/n \ >

T f(1 ) 2r(1-0)
For fixed 8 the number of inner iterations is a function of 7. Note that this function
goes to infinity if 7 goes to zero or to infinity. Our aim is to determine 7 such that
this function is minimized. To this end we consider
)R

T(7) = pir)? + 228,
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with R as given in the lemma. The derivative of T'(7) with respect to 7 can be simplified

to
B 47%p(7)%2 — R

T .
)= AT

Hence T(7) is minimal if
27p(1) = VR.

We can solve this equation for 7. It can be rewritten as

,O(T)2 —1= \/Ea

p(t) =1+ VR
Hence,

o L)L 1 ) __VE
72(;)() > 2<1+¢E Tﬁ) T (7.54)

which gives

Substitution of this value in T'(7) gives

R R(1+VE)

p(r) =1+VR+ ——1n~
27 VR

For the value of T given by (7.54) the number of inner iterations between two successive

updates of the barrier parameter will not be larger than

{2(1+\/§ﬂ= P 1+m 4 ,

which proves the lemma. a

T(r) = pl(7)? + — (1+ m)?

Remark I1.76 Note that for small values of 8, so that 8/n is bounded by a constant, the
above lemma implies that the number of inner iterations between two successive updates of
the barrier parameter is bounded by a constant. For example, with § =1/ v2n, which gives
(for large values of n) 7 = 0.309883, this number is given by

)]

Unfortunately the constant is rather large. Because, if 7 = 0.309883 then we know that after
an update with 6 = 1/ v2n one full Newton step will be sufficient to reach the vicinity of
the new target. In fact, it turns out that the bound has the same weakness as the bound
in Theorem II.41 for the dual case. As discussed earlier, this weak result is due to the poor
analysis. .

In practice the number of inner iterations is much smaller than the number predicted
by the lemma. This is illustrated by some examples in the next section. But first we
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formulate the main conclusion of this section, namely that the primal-dual logarithmic
barrier method with large updates is polynomial. This is the content of our final result
in this section.

Theorem I1.77 The following expression is an upper bound for the total number of
iterations required by the logarithmic barrier algorithm with line searches:

4
N nu®
log 2
1-6 %6

121+
0

Here it is assumed that T is chosen as in Lemma I1.75:

T:i, where R = 9\/5.
2v/1+ VR 1—0

If 6 < n/(n+\/n) the output is a primal-dual pair (z,s) such that x7's < 2e.

Proof: The number of outer iterations follows from Lemma 1.36. The bound in the
theorem is obtained by multiplying this number by the bound of Lemma I1.75 for
the number of inner iterations per outer iteration and rounding the product, if not
integral, to the smallest integer above it. Finally, for the last statement we use the

inequality
26p(d
z%s < <1 + ﬂ) nik,

NG
where & = 0(x, s; t); the elementary proof of this inequality is left as an exercise.
For the output pair (z, s) we may apply this inequality with § < 7. Since

IR N e
7—2 1+\/§, p(r) = 1+ VR,

we have 27p(7) = VR. Now 6 < n/(n -+ /n) implies that R < n, and hence we obtain
that zTs < 2np < 2e. O

34,35

Just as in the dual case, we draw two conclusions from the last theorem. If we take
for @ a fixed constant (independent of n), for example § = 1/2, the algorithm is called
a large-update algorithm and the iteration bound of Theorem II.77 becomes

0
o<n log %).
I

34 Exercise 62 Let (z,s) be a positive primal-dual pair and p > 0. If § = §(x, s; 1), prove that

‘st —nu‘ =u ‘uT (u—u’1)| < 20p(5) -

T Vn

35 Exercise 63 The bound in Exercise 62 is based on the estimate ||u|| < p(8)+/n. Prove the sharper

estimate 5
lull < p (ﬁ) N
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If we take 8 = v/+/n for some fixed constant v (independent of n), the algorithm is
called a medium-update algorithm and the iteration bound of Theorem II1.77 becomes

0
O <\/ﬁ log %) ,
€
provided that n is large enough (n > 12 say).

7.8.4 Illustration of the algorithm with large updates

We use the same sample problem as in the numerical examples given before, and solve
this problem using the primal-dual logarithmic barrier algorithm with large updates.
We use the same initialization as before, namely x = (2,1,1), y = (0,0), s = (1,1, 1)
and u = 4/3. We do this for the values 0.5,0.9,0.99 and 0.999 of the barrier update
parameter 6. It may be interesting to mention the values of the parameter 7, as given
by Lemma II.75, for these values of #. With n = 3, these values are respectively
0.43239,0.88746,1.74397 and 3.18671. The progress of the algorithm for the three
successive values of 6 is shown in Tables 7.7. (page 210), 7.8., 7.9. and 7.10. (page
211). The tables need some explanation. They show only the first coordinates of z
and of s. As in the corresponding tables for the dual case, the tables not only have
lines for the inner iterations, but also for the outer iterations, which multiply the value
of the barrier parameter by the fixed factor 1 —6. The last column shows the proximity
to the current p-center. The proximity value § increases in the outer iterations and
decreases in the inner iterations.

The tables clearly demonstrate the advantages of the large-update strategy. The
number of inner iterations between two successive updates of the barrier parameter is
never more than two.

In the last table (with 6 = 0.999) the sample problem is solved in only 3 iterations,
which is the best result obtained so far. The practical behavior is significantly better
than the theoretical analysis justifies. This is typical, and the same phenomenon occurs
for larger problems than the small sample problem.

We conclude this section with a graphical illustration of the algorithm, in Figure
7.11 (page 212).
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Quter | Inner ny T1 Y1 Y S1 )
0 0 | 4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887
1 2.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.6455

1]2.000000 | 1.372070 | 0.313965 | 0.313965 | 0.686035 | 0.2334

2 1.000000 | 1.372070 | 0.313965 | 0.313965 | 0.686035 | 0.6838
21 1.000000 | 1.158784 | 0.649743 | 0.666131 | 0.350257 | 0.1559

3 0.500000 | 1.158784 | 0.649743 | 0.666131 | 0.350257 | 0.6237
310.500000 | 1.082488 | 0.835475 | 0.835249 | 0.164525 | 0.0587

4 0.250000 | 1.082488 | 0.835475 | 0.835249 | 0.164525 | 0.6031
410.250000 | 1.041691 [ 0.916934 | 0.916776 | 0.083066 | 0.0281

5 0.125000 | 1.041691 | 0.916934 | 0.916776 | 0.083066 | 0.6115
510.125000 | 1.020805 | 0.958399 | 0.958395 | 0.041601 | 0.0147

6 0.062500 | 1.020805 | 0.958399 | 0.958395 | 0.041601 | 0.6111
6 | 0.062500 | 1.010423 | 0.979157 | 0.979156 | 0.020843 | 0.0073

7 0.031250 | 1.010423 | 0.979157 | 0.979156 | 0.020843 | 0.6129
710.031250 | 1.005201 | 0.989597 | 0.989598 | 0.010403 | 0.0039

8 0.015625 | 1.005201 | 0.989597 | 0.989598 | 0.010403 | 0.6111
8 10.015625 | 1.002606 | 0.994789 | 0.994789 | 0.005211 | 0.0019

9 0.007812 | 1.002606 | 0.994789 | 0.994789 | 0.005211 | 0.6129
910.007812 | 1.001300 | 0.997399 | 0.997399 | 0.002601 | 0.0015

10 0.003906 | 1.001300 | 0.997399 | 0.997399 | 0.002601 | 0.6111
10 | 0.003906 | 1.000651 | 0.998697 | 0.998697 | 0.001303 | 0.0007

11 0.001953 | 1.000651 | 0.998697 | 0.998697 | 0.001303 | 0.6129
11 | 0.001953 | 1.000325 | 0.999350 | 0.999350 | 0.000650 | 0.0012

12 0.000977 | 1.000325 | 0.999350 | 0.999350 | 0.000650 | 0.6112
121 0.000977 | 1.000163 | 0.999674 | 0.999674 | 0.000326 | 0.0006

13 0.000488 | 1.000163 | 0.999674 | 0.999674 | 0.000326 | 0.6129
13 | 0.000488 | 1.000081 [ 0.999837 | 0.999837 | 0.000163 | 0.0011

14 0.000244 | 1.000081 | 0.999837 | 0.999837 | 0.000163 | 0.6112
14 | 0.000244 | 1.000041 | 0.999919 | 0.999919 | 0.000081 | 0.0005

15 0.000122 | 1.000041 | 0.999919 | 0.999919 | 0.000081 | 0.6129
151 0.000122 | 1.000020 | 0.999959 | 0.999959 | 0.000041 | 0.0012

16 0.000061 | 1.000020 | 0.999959 | 0.999959 | 0.000041 | 0.6112
16 | 0.000061 | 1.000010 | 0.999980 | 0.999980 | 0.000020 | 0.0005

Table 7.7. Progress of the primal-dual algorithm with large updates, 8 = 0.5.
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Outer | Inner np T 7 Y S1 0
0 0] 4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887

1 0.400000 | 2.000000 [ 0.000000 | 0.000000 | 1.000000 | 2.4664
1(0.400000 | 1.051758 [ 0.263401 | 0.684842 | 0.736599 | 1.1510

2 { 0.400000 | 1.078981 | 0.875555 | 0.861676 | 0.124445 | 0.0559

2 0.040000 | 1.078981 [ 0.875555 | 0.861676 | 0.124445 | 2.5417

3 {0.040000 | 1.004551 | 0.976424 | 0.983729 | 0.023576 | 0.3661

3 0.004000 | 1.004551 [ 0.976424 | 0.983729 | 0.023576 | 2.7838
410.004000 | 1.000621 | 0.998596 | 0.998677 | 0.001404 | 0.0447

4 0.000400 | 1.000621 [ 0.998596 | 0.998677 | 0.001404 | 2.4533

5 | 0.000400 | 1.000066 | 0.999867 | 0.999868 | 0.000133 | 0.0070

5 0.000040 | 1.000066 | 0.999867 | 0.999868 | 0.000133 | 2.4543

6 | 0.000040 | 1.000007 | 0.999987 | 0.999987 | 0.000013 | 0.0027

Table 7.8. Progress of the primal-dual algorithm with large updates, 8 = 0.9.

Outer | Inner

ny

€1

N

Yo

S1

5

4.000000
0.040000
0.040000
0.040000
0.000400
0.000400
0.000004
0.000004

2.000000
2.000000
2.000000
1.004883
1.004883
1.007772
1.007772
1.000038

0.000000
0.000000
0.000000
0.251292
0.251292
0.987570
0.987570
0.999743

0.000000
0.000000
0.000000
0.743825
0.743825
0.986233
0.986233
0.999834

1.000000
1.000000
1.000000
0.748708
0.748708
0.012430
0.012430
0.000257

0.2887
8.5737
4.2530
0.0816
8.7620
0.4532
9.5961
0.0392

Table 7.9. Progress of the primal-dual algorithm with large updates, 8 = 0.99.

Quter | Inner ny T 71 Y2 S1 0
0 0 | 4.000000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 0.2887

1 0.004000 | 2.000000 | 0.000000 | 0.000000 | 1.000000 | 27.3587

1] 0.004000 | 1.000977 | 0.250006 | 0.749018 | 0.749994 | 13.6684

2 1 0.004000 | 1.000481 | 0.999268 | 0.998990 | 0.000732 | 0.3722

2 0.000004 | 1.000481 | 0.999268 | 0.998990 | 0.000732 | 22.4872

31 0.000004 | 1.000000 | 0.999998 | 0.999999 | 0.000002 | 0.2066

Table 7.10. Progress of the primal-dual algorithm with large updates, 8 = 0.999.
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8
Initialization

All the methods of this part of the book assume the availability of a starting point
on or close to the central path of the problem. Sometimes such a point is known, but
more often we have no foreknowledge of the problem under consideration. For these
cases we provide in this chapter a transformation of the problem yielding an equivalent
problem for which a point on the central path is available. This transformation is based
on results in Part I and is described below in detail.!

Suppose that we want to solve the problem (P) in standard format:

(P) min {ch : Az =b, z >0},

where A is an m X n matrix of rank m, ¢,z € IR", and b € R™. Let I be a subset of
the full index set {1,2,...,n} such that the submatrix A; of A has size m x m and is
nonsingular. Thus, Aj is a basis for (P). After reordering the columuns of A, we may
write

A=(Ar Ay),
where J denotes the complement of . Now Ax = b can be rewritten as
Arer+Ajxy =0b,

which is equivalent to
Ty :Al_l (b*A‘]mJ).

As a consequence we have
- _ _ T
lr= cITxI + cng = cITAI ! (b—Ajxg)+ c?xJ = C?AI - (CJ — A?;AITC]) TJ.
Hence, omitting the constant C?Aj_lb we can reformulate (P) as
T
(P9) min {(CJ - A?A;Tcl) Ty A;l (b—Ayz;)>0,25> 0},
or equivalently,

(P9 min {(CJ — A?A;Tcl)TmJ : 7AI71AJ$J > fAflb, Ty > O}.

1 We want to point out an advantage of the approach in this chapter over the approach in the exis-
ting literature. The technique of embedding a given standard form problem in a homogeneous and
self-dual problem was introduced by Ye, Todd and Mizuno [316] in 1994. See also Wu, Wu and
Ye [299]; their final model contains free variables. In our approach the occurrence of free variables
is avoided by first reducing the given standard problem to a canonical problem. For a different
approach to the initialization problem we refer to, e.g., Lustig [189, 190].
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Thus we have transformed (P) to the equivalent problem (P€), which is in canonical
format. Chapter 4 describes how we can embed any canonical model in a self-dual
model so that a strictly complementary solution of the latter model either yields a
strictly complementary solution of the canonical problem or makes clear that the
canonical problem is infeasible or unbounded. Moreover, for the embedding problem
we have a point on its central path available. If we apply such an embedding to (P°¢),
the resulting self-dual model may be given by

(SP°) min {qT§ s ME> —q, £E> O},

where M is skew-symmetric and g > 0. Let £(u) be a given point on the central path
of (SP¢) for some positive pu. Now (SP¢) can be written in the standard form by
associating the surplus vector o(§) := M+ ¢ with any £. We then may rewrite (SP¢)
as

(SSP°) min {¢"¢ : Mé —0=—¢,£>0,0 >0},

and we have
E(p)o(E(p) = pe,

where e is an all-one vector of appropriate size. Note that (SSP¢) is in the standard
format. We can rewrite it as

with

The problem (P) is in the standard format and hence the methods of this chapter
can be used to yield an e-solution of (P) provided that we have a solution on or close
to its central path. We now show that this condition is satisfied by showing that the
p-center of (P) is known. To this end we need to consider also the dual problem of
(P), namely

(D) max {b"j : ATg+5=¢5>0}.
For the slack vector 5 we have

q+ My

Y

s—e— ATy — [q_MTy] -

Y

Here we used that MT = —M. Now with the definition

7 is feasible for (P) and 7 is feasible for (D). The feasibility of 7 follows by considering
its slack vector:

q+ My

Y

s =

g+ Me(p) ] _ l o (¢(n)) ]
&(w) ) |
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For the product of Z and 5 we have

[ e Y[ eewn ] [ ewetewn ] [ne]
o(&(u)) &(1) o (&(p)&(n) pie
This proves that Z is the y-center of (P), as required.

By way of example we apply the above transformation to the sample problem used
throughout this part of the book.

Example I1.78 Taking A and ¢ as in Example I1.7 (page 97), and b = (1,1)T, we
have
1 1 0 1 !
] e [ ] Cem |1,
0 0 1 1
1

(P) min{z; +xo+x3 : 1 —x2=1, 23 =1, x > 0}.

and (P) is the problem

The first and the third column of A form a basis. With the index set I defined
accordingly, the matrix A; is the identity matrix. Then we express x; and z3 in

terms of xo:
T -
z3

Using this we eliminate z1 and z3 from (P) and we obtain the canonical problem (P¢):

(P°) min{2x2+2: [é]xQZ[_il,xQZO}.

Being unrealistic, but just to demonstrate the transformation process for this simple
case, we do not assume any foreknowledge and embed this problem in a self-dual
problem as described in Section 4.3.2 Taking 1 for z° and s°, and for 3° and ¢° the
all-one vector of length 2, the self-dual embedding problem is given by (SP€¢) with

1+ x2
1

0o 0 1 1 -1 0

0o 0 0 1 © 0
M=]-1 0 0 2 0|, g=10
-1 -1 -2 0 5 0

1 0 0 -5 0 )

Now the all-one vector is feasible for (SP°) and its surplus vector is also the all-one
vector, as easily can be verified. It follows that the all-one vector is the point on the
central path for y = 1. Adding surplus variables to this problem we get a problem in
the standard format with 5 equality constraints and 10 variables. Solving this problem

2 Exercise 64 The canonical problem (P°) contains an empty row. Remove this row and then
perform the embedding. Show that this leads to the same solution of (P¢).



216 IT Logarithmic Barrier Approach

with the large-update logarithmic barrier method (with § = 0.999 and ¢ = 10~%), we
find in 4 iterations the strictly complementary solution

4 4 4 8
= 2,0,=,=,-,0,1).
5 (07070’570757575707 )
The slack vector is 448 4
=(=,-,-,0,1,0,0,0,=,0).
0-(5) (57575a s L Vs Yy a57 )

Note that the first five coordinates of £ are equal to the last five coordinates of o(¢)
and vice versa. In fact, the first five coordinates of £ form a solution of the self-dual
embedding (SP¢) of (P¢). The homogenizing variable, the fourth entry in &, is positive.
Therefore, we have found an optimal solution of (P¢). The optimal value of x5 in (P¢),
the third coordinate in the vector &, is given by z2 = 0. Hence = = (1,0, 1) is optimal
for the original problem (P). &

A clear disadvantage of the above embedding procedure seems to be that it increases
the size of the problem. If the constraint matrix A of (P) has size m x n then the final
standard form problem that we have to solve has size (n + 2) x 2(n + 2). However,
when the procedure is implemented efficiently the amount of extra computation can
be reduced significantly. In fact, the computation of the search direction for the larger
problem can be organized in such a way that it requires the solution of three linear
systems with the same matrix of size (in+2) x (m+2). This is explained in Chapter 20.
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The Target-following
Approach



9
Preliminaries

9.1 Introduction

In this part we deal again with the problems (P) and (D) in the standard form:

(P) min {ch cAx=0b, x> 0} ,

(D) max {67y : ATy <c}.

As before, the matrix A is of size m x n with full row rank and the vectors ¢ and x are
in R™ and b in IR™. Assuming that the interior-point condition is satisfied we recall
from Theorem I1.4 that the KKT system (5.3)

Azx = b, x>0,
ATy +s = e, 5>0, (9.1)
xs = pe

has a unique solution for every positive value of p. These solutions are called the pu-
centers of (P) and (D). The above result is fundamental for the algorithms analyzed
in Part II. When p runs through the positive real line then the solutions of the KKT
system run through the central paths of (P) and (D); the methods in Part IT just
approximately follow the central path to the optimal sets of (P) and (D). These
methods were called logarithmic barrier methods because the points on the central
path are minimizers of the logarithmic barrier functions for (P) and (D). For obvious
reasons they have also become known under the name central-path-following methods.
In each (outer) iteration of such a method the value of the parameter y is fixed
and starting at a given feasible solution of (P) and/or (D) a good approximation is
constructed of the p-centers of (P) and (D). Numerically the approximate solutions
are obtained either by using Newton’s method for solving the KKT system or by
using Newton’s method for minimizing the logarithmic barrier function of (P) and
(D). In the first case Newton’s method provides displacements for both (P) and (D);
then we speak of a primal-dual method. In the second case Newton’s method provides
a displacement for either (P) or (D), depending on whether the logarithmic barrier
function of (P) or (D) is used in Newton’s method. This gives the so-called primal
methods and dual methods respectively. In all cases the result of an (outer) iteration
is a primal-dual pair approximating the p-centers and such that the duality gap is
approximately nu.
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In this part we present a generalization of the above results. The starting point is
the observation that if the vector pe on the right-hand side of the KKT system (9.1)
is replaced by any positive vector w then the resulting system still has a (unique)
solution. Thus, for any positive vector w the system

Ax = b, x>0,
ATy 15 = e, 5 >0, (9.2)
zs = w

has a unique solution, denoted by z(w), y(w), s(w).! This result is interesting in itself.
It means that we can associate with each positive vector w the primal-dual pair
(x(w), s(w)).2 The map ®pp associating with any w > 0 the pair (z(w), s(w)) will
be called the target map associated with (P) and (D). In the next section we discuss
its existence and also some interesting properties.

In the present context, it is convenient to refer to the interior of the nonnegative
orthant in IR"™ as the w-space. Any (possibly infinite) sequence of positive vectors
w* (k = 1,2,...) in the w-space is called a target sequence. If a target sequence
converges to the origin, then the duality gap e’ w” for the corresponding pair in the
sequence ®pp(w”) converges to zero. We are especially interested in target sequences
of this type for which the sequence ® pp(wF) is convergent as well, and for which the
limiting primal-dual pair is strictly complementary. In Section 9.3 we derive a sufficient
condition on target sequences (converging to the origin) that yields this property. We
also give a condition such that the limiting pair consists of so-called weighted-analytic
centers of the optimal sets of (P) and (D).

With any central-path-following method we can associate a target sequence on the
central path by specifying the values of the barrier parameter p used in the successive
(outer) iterations. The central-path-following method can be interpreted as a method
that takes the points on the central path as intermediate targets on the way to the
origin. Thus it becomes apparent how the notion of central-path-following methods
can be generalized to target-following methods, which (approximately) follow arbitrary
target sequences. To develop this idea further we need numerical procedures that can
be used to obtain a good approximation of the primal-dual pair corresponding to
some specified positive target vector. Chapters 10, 12 and 13 are devoted to such
procedures. The basic principle is again Newton’s method. Chapter 10 describes a
primal-dual method, Chapter 12 a dual method, and Chapter 13 a primal method.

The target-following approach offers a very general framework for the analysis
of almost all known interior-point methods. In Chapter 11 we analyze some of the
methods of Part II in this framework. We also deal with some other applications,
including a target-following method that is based on the Dikin direction, as introduced
in Appendix E. Finally, in Chapter 14 we deal with the so-called method of centers.
This method will be described and after putting it into the target-following framework
we provide a new and relatively easy analysis of the method.

1 This result, which establishes a one-to-one correspondence between primal-dual pairs (z,s) and

positive vectors in IR™, was proved first in Kojima et al. [175]. Below we present a simple alternative
proof. Mizuno [212, 214] was the first to use this property in the design of an algorithm.

Here, as before, we use that any dual feasible pair (y, s) can be uniquely represented by either y
or s. This is due to the assumption that A has full row rank.
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9.2 The target map and its inverse

Our first aim in this section is to establish that the target map ®pp is well defined.
That is, we need to show that for any positive vector w € R"™ the system (9.2) has
a unique solution. To this end we use a modification of the primal-dual logarithmic
barrier as given by (6.23). Replacing the role of the vector pe in this function by the
vector w, we consider the modified primal-dual logarithmic barrier function defined
by

bl ) = —— Z i (222 1), 93)

max (w) w;

Here the function % has its usual meaning (cf. (5.5), page 92). The scaling factor
1/ max (w) serves to scale ¢, (x,s) in such a way that ¢, (x,s) coincides with the
primal-dual logarithmic barrier function (7.44) in Section 7.8 (page 194) if w is on the
central path.?

Note that ¢ (z,s) is defined for all positive primal-dual pairs (z,s). Moreover,
¢dw(,s) > 0 and the equality holds if and only if s = w. Hence, the weighted KKT
system (9.2) has a solution if and only if the minimal value of ¢, is 0.

By expanding ¢, (z,s) we get

n
;S T;S;
max (w) ¢y, (z, 8) Z w; (# —1—log %)
j:1 J J
n n
ijsj ij ij logz;s; + ij log w;
i=1 i=1 j=1
n
zls — Z w;logw;s; —elw + ij log w;. (9.4)
J=1 j=1

Neglecting for the moment the constant part, that is the part that does not depend
on x and s, we are left with the function

n
zTs — ij log x;s;. (9.5)
j=1

This function is usually called a weighted primal-dual logarithmic barrier function
with the coefficients of the vector w as weighting coefficients. Since z7s = Tz — b7y,
the first term in (9.5) is linear on the domain of ¢, (z, s). The second term, called the
barrier term, is strictly convex and hence it follows that ¢, (x, s) is strictly convex on
its domain.

3 If w = pe then max (w) = u and hence

P () S () - ()

this is precisely the primal-dual logarithmic barrier function ¢, (x, s) as given by (6.23) and (7.44),
and that was used in the analysis of the large-update central-path-following logarithmic barrier
method.
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In the sequel we need a quantity to measure the distance from a positive vector w
to the central path of the w-space. Such a measure was introduced in Section 3.3.4 in
(3.20). We use the same measure here, namely

max (w)
1) = 9.6
e() min (w) (96)
Now we are ready to derive the desired result by adapting Theorem 11.4 and its proof
to the present case. With w fixed, for given K € IR the level set L of ¢, is defined
by
L= {(x,s) cxzePt seDT, dylx,s) < K}.

Theorem IT1.1 Letw € R"™ and w > 0. Then the following statements are equivalent:
(i) (P) and (D) satisfy the interior-point condition.
(i) There exists K > 0 such that the level set Ly is nonemply and compact.
(iii) There exists a (unique) primal-dual pair (x, s) minimizing ¢,, with x and s both
positive.
(iv) There exist (unique) z,s € R™ and y € R™ satisfying (9.2);
(v) For each K > 0 the level set Lk is nonempty and compact.

Proof: (i) = (ii): Assuming (i), there exists a positive z° € P* and a positive

s € DT. With K = ¢, (mo, so) the level set Lx contains the pair (mo, 50). Thus, Lx
is not empty, and we need to show that Lx is compact. Let (z,s) € L. Then, by the

definition of Lk,
n
x;8;
Zwﬂ/} ( — - 1) < K max (w).
: w;
i=1
Since each terin in the sum is nonnegative, this implies

w(@l><wm(w>, l<i<n

min (w)

Since v is strictly convex on its domain and goes to infinity at its boundaries, there
exist unique positive numbers a and b, with a < 1, such that

U(=a) = P(b) = Kéc(w).

We conclude that

—a <22 _1<h, 1<i<n,
w;

which gives
w;(l—a) <zs; <w;(1+b), 1<i<n. (9.7)

From the right-hand side inequality we deduce that
s < (1 + b)elw.

We proceed by showing that this and (¢) imply that the coordinates of = and s can
be bounded above. Since A(z —2°) = 0, the vector x — 2" belongs to the null space of
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A. Similarly, s — s* = AT (y° — y) implies that s — s¥ lies in the row space of A. The
row space and the null space of A are orthogonal and hence we have

(z — 297 (s — s%) =o. (9.8)

Writing this as
270 4 5720 = 2Ts + (29)7(s°)

and using 7's < (1 + b)eTw, we find
Tl psT2® < (14 b)eTw + ()1 (sY). (9.9)
Since s7z% > 0,z > 0, and s" > 0, this implies for each index ¢ that
2,89 <als® 45720 < (1 +b)elw+ (29T (sY),
whence

- (14 b)eTw + (9T (s%)

€T > 9
5]

proving that the coordinates of the vector z are bounded above. The coordinates of
the vector s are bounded above as well. This can be derived from (9.9) in exactly the
same way as for the coordinates of z. Using 27s” > 0,5 > 0, and z° > 0, we obtain
for each index ¢ that

- (1+b)eTw + (:rO)T(so)’

S5
= 0
2

Thus we have shown that the level set Lx is bounded. We proceed by showing that
L is compact. Each s; being bounded above, the left inequality in (9.7) implies that
x; is bounded away from zero. In fact, we have

(1-—a)w; (1— a)zx%w;
- s >(1+beTw+( 0)T(s0)"

X4

In the same way we derive that for each ¢,

(1-—a)w; (1— a)sdw;
85 > > .
T (1+b)eTw + (z%)T(sY)
We conclude that for each 7 there exist positive numbers «; and 3; with 0 < o; < 3;,

such that
o Lw4,5 <3, 1<i<n.

Thus we have proved the inclusion
n
H v, Bi] X [, Byl

The set on the right-hand side lies in the positive orthant of IR"™ x R™, and being the
Cartesian product of closed intervals, it is compact. Since ¢,, is continuous, and well
defined on this set, it follows that L£x is compact. Thus we have shown that (¢7) holds.
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(#4) = (41): Suppose that (74) holds. Then, for some nonnegative K the level set Lx
is nonempty and compact. Since ¢,, is continuous, it follows that ¢, has a minimizer
(z,8) in Lx. Moreover, since ¢,, is strictly convex, this minimizer is unique. Finally,
from the definition of ¢y, ¥ ({x;s;/w;) — 1) must be finite, and hence x;s; > 0 for each
¢. This implies that £ > 0 and s > 0, proving (i47).

(#it) = (iv): Suppose that (i#i) holds. Then ¢,, has a (unique) minimizer. Since the
domain Pt x DT of ¢, is open, (z,5) € PT x DT is a minimizer of ¢,, if and only
if the gradient of ¢, is orthogonal to the linear space parallel to the smallest affine
space containing PT x D (cf. Proposition A.1). This linear space is determined by
the affine system

Ax =0, Hs=0,

where H is a matrix such that its row space is the null space of A and vice versa. The
gradient of ¢,, with respect to the coordinates of x satisfies

w
max (w)vz(bw(was) =S5—= ;a

and with respect to the coordinates of s we have

max (w)Vspyu(z,s) =2 — %

Application of Proposition A.1 yields that V¢, (x, s) must lie in the row space of A
and V¢, (x, s) must lie in the row space of H. These two spaces are orthogonal, and

hence we obtain
w\7T w
T s

() s ) o

Since XS~ is a diagonal matrix with positive elements on the diagonal, this implies

This can be rewritten as

w
A
x
Hence,
w
s —— =0,
x

whence xs = w. This proves that (z, s) is a minimizer of ¢,, if and only if (z, s) satisfies
(9.2). Hence (iv) follows from (ii7).

(iv) = (1): Let (z, s) be a solution of (9.1). Since w > 0 and x and s are nonnegative,
both x and s are positive. This proves that (P) and (D) satisly the interior-point
condition.

Thus it has been shown that statements () to (év) in the theorem are equivalent. We
finally prove that statement (v) is equivalent with each of these statements. Obviously
(v) implies (é7). On the other hand, assuming that statements (i) to (iv) hold, let x and
s solve (9.2). Then we have > 0, s > 0 and s = w. This implies that ¢, (z,s) =0,
as easily follows by substitution. Now let K be any nonnegative number. Then the
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level set Ly contains the pair (z, s) and hence it is nonempty. Finally, from the above
proof of the implication (i) = (4i) it is clear that Lx is compact. This completes the
proof of the theorem. m|

If the interior-point condition is satisfied, then the target map ®pp provides a
tool for representing any positive primal-dual pair (z,s) by the positive vector xs,
which is the inverse image of the pair (z,s). The importance of this feature cannot
be overestimated. It means that the interior of the nonnegative orthant in R™ can
be used to represent all positive primal-dual pairs. As a consequence, the behavior
of primal-dual methods that generate sequences of positive primal-dual pairs, can be
described in the nonnegative orthant in R"™. Obviously, the central paths of (P) and
(D) are represented by the bisector {ue : u > 0} of the w-space; in the sequel we
refer to the bisector as the central path of the w-space. See Figure 9.1.

w2

T central path

duality gap constant

— U1

Figure 9.1 The central path in the w-space (n = 2).

For central-path-following methods the target sequence is a sequence on this path
converging to the origin. The iterates of these methods are positive primal-dual pairs
‘close’ to the target points on the central path, in the sense of some proximity measure.
In the next sections we deal with target sequences that are not necessarily on the
central path.

Remark ITI.2 We conclude this section with an interesting observation, namely that the
target map of (P) and (D) contains so much information that we can reconstruct the data 4,5
and ¢ from the target map.* This can be shown as follows. We take partial derivatives with

4 This result was established by Crouzeix and Roos [57] in an unpublished note.
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respect to the coordinates of w in the weighted KKT system (9.2). Denoting the Jacobians
of =, y and s simply by o', ¥ and s’ respectively, we have
g0 s
T YT dw T ow’

where the (4,j) entry of #’ is the partial derivative dz;/0wj;, etc. Note that &’ and s are
n X n matrices and 3’ is an m x n matrix. Thus we obtain

A = 0,
ATy 4+ = 0, (9.10)
XS/ + Sm/ - In'ru

where I denotes the identity matrix of size n x n.° The third equation is equivalent to
s' =X (Inn — S2).
Using also the second equation we get
ATy = X7 (S2' — Inn) . (9.11)

Since 3/ is an m x n matrix of rank m there exists an n x m matrix R such that 3’ R = L.
Multiplying (9.11) from the right by R we obtain

AT = AT Ly = ATy R = X""(S2’ — Ii) R,

which determines the matrix A uniquely. Finally, for any positive w, the vectors b and ¢
follow from b = Az(w) and ¢ = ATy(w) + s(w). )

9.3 Target sequences

Let us consider a target sequence
WO wt w?, L wk (9.12)
which converges to the origin. The vectors w® in the sequence are positive and

lim w® = 0.

k—oo

As a consequence, for the duality gap e’ w* at w* we have limj_ ., e”w* = 0; this
implies that the accumulation points of the sequence

q)PD (wo) ,@pD (wl) 7q)PD (wQ) IREEE) q)PD (wk) SR (913)

are optimal primal-dual pairs.® In the sequel (z*, s*) denotes any such optimal primal-
dual pair.

5 Since the matrix of system (9.10) is nonsingular, the implicit function theorem (cf. Proposition A.2

in Appendix A) implies the existence of all the relevant partial derivatives.

Exercise 65 By definition, an accumulation point of the sequence (9.13) is a primal-dual pair
that is the limiting point of some convergent subsequence of (9.13). Verify the existence of such a
convergent subsequence.
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We are especially interested in target sequences for which the accumulation pairs
(z*,s*) are strictly complementary. We prove below that this happens if the target
sequence lies in some cone neighborhood of the central path defined by

56 (w) é T,

where 7 is fixed and 7 > 1. Recall that §.(w) > 1, with equality if and only if w is on
the central path. Also, §.(w) is homogeneous in w: for any positive scalar A and for
any positive vector w we have

be(Aw) = be(w).

As a consequence, the inequality d.(w) < 7 determines a cone in the w-space.

In Theorem 1.20 we showed for the self-dual model that the limiting pairs of any
target sequence on the central path are strictly complementary optimal solutions. Our
next result not only implies an analogous result for the standard format but it extends
it to target sequences lying inside a cone around the central path in the w-space.

Theorem II1.3 Let 7 > 1 and let the target sequence (9.12) be such that d.(w*) < 1
for each k. Then every accumulation pair (x*,s*) of the sequence (9.13) is strictly
complementary.

Proof: For each k =1,2,..., let (z*, s*) := ®pp(w¥). Then we have

Now let (z*,s*) be any accumulation point of the sequence (9.13). Then there
exists a subsequence of the given sequence whose primal-dual pairs converge to
(x*, s*). Without loss of generality we assume that the given sequence itself is such a
subsequence. Since zF — 2* and s® — s* belong respectively to the null space and the
row space of A, these vectors are orthogonal. Hence,

(xk — x*)T (sk — 3*) =0.
Expanding the product and rearranging terms, we get
(w*)T L (s*)T zk = (sk)Txk + (s*)T ™.
Using that (sk)Txk =eTw* and (z*)7s* = 0, we arrive at

E xjs; + E sjay =ewt,  k=1,2,....

jea(z*) j€a(s*)

Here o(x*) denotes the support of z* and o(s*) the support of s*.7 Using that

xFs* = wP, we can write the last equation as

k x k ox
wha w st
Z ka + ka =eTwk, k=1,2,....
v S%
je€o(z)y 7 j€ao(s*) I

7 The support of a vector is defined in Section 2.8, Definition .19, page 36.
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Now let & be a (small) positive number such that

1+¢
ne

>T.

Then, since (z*,s*) is the limit of the sequence (x*,s*)%° ., there exists a natural
number K such that

. <1+¢ and §1+

H|H
(S-S LN
w Vol
R

for each j (1 <7 <n) and for all k£ > K. Hence, for k > K we have

<1+ 3w+ Y w

j€o(x*) jE€o(s*)

If the pair (z*, s*) is not strictly complementary, there exists an index i that does not
belong to the union o(z*) U o(s*) of the supports of z* and s*. Then we have

Z w + Z w <el
j€o(x*) jEo(s*)

Substitution gives
eTwh < (1+¢) (eka — wk) .

This implies

(1+e)w? < eelwh.

The average value of the elements of w® is e”w*/n. Since §.(w*) < 7, the average
value does not exceed Tw?. Hence, eTw* < nrw¥. Substituting this we obtain

(1 +e)wk < nerw”,
Now dividing both sides by w¥ we arrive at the contradiction
1+ e < ner.

This proves that (z*, s*) is strictly complementary. O

If a target sequence satisfies the condition in Theorem II1.3 for some 7 > 1, it is

clear that the ratios between the coordinates of the vectors w* are bounded. In fact,
1 wf
— <=7
T 7wy

for all k£ and for all ¢ and j. For target sequences on the central path these ratios are
all equal to one, so the limits of the ratios exist if k£ goes to infinity. In general we are
interested in target sequences for which the limits of these ratios exist when & goes to
infinity. Since the ratios between the coordinates do not change if w” is multiplied by
a positive constant, this happens if and only if there exists a positive vector w* such

that

7’L’UJk
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and then the limiting values of the ratios are given by the ratios between the
coordinates of w*. Note that we have eTw* = n, because the sum of the coordinates
of each vector nw* /eTw* is equal to n. Also note that if a target sequence satisfies
(9.14), we may find a 7 > 1 such that §.(w*) < 7 for each k. In fact, we may take

wy
7 = Inax e
0.4,k wj

Hence, by Theorem I11.3, any accumulation pair (z*, s*) for such a sequence is strictly
complementary.

Our next result shows that if (9.14) holds then the limiting pair (z*, s*) is unique
and can be characterized as a weighted-analytic center of the optimal sets of (P) and
(D). Let us first define this notion.

Definition IT1.4 (Weighted-analytic center) Let the nonempty and bounded set
T be the intersection of an affine space in IRP with the nonnegative orthant of R?. We
define the support o(T) of T as the subset of the full index set {1,2,...,p} given by

o(T)={i : dz €T such that x; > 0}.

If w is any positive vector in RP then the corresponding weighted-analytic center of
T is defined as the zero vector if o(T) is empty, otherwise it is the vector in T that
mazximizes the product
I] = zeT. (9.15)
ico(T)

If the support of 7 is not empty then the convexity of 7 implies the existence of a
vector € 7 such that x,(7) > 0. Moreover, if 0(7') is not empty then the maximum
value of the product (9.15) exists since 7 is bounded. Since the product (9.15) is
strictly concave, the maximum value is attained at a unique point of 7. The above
definition generalizes the notion of analytic center, as defined by Definition 1.29 and
it uniquely defines the weighted-analytic center (for any positive weighting vector w)
for any bounded subset that is the intersection of an affine space in IR? with the
nonnegative orthant of R". 8

Below we apply this notion to the optimal sets of (P) and (D). If a target sequence
satisfies (9.14) then the next result states that the sequence of its primal-dual pairs
converges to the pair of weighted-analytic centers of the optimal sets of (P) and (D).

Theorem IIL.5 Let the target sequence (9.12) be such that (9.14) holds for some
w*, and let (x*,s*) be an accumulation point of the sequence (9.13). Then z* is the
weighted-analytic center of P* with respect to w*, and s* is the weighted-analytic
center of D* with respect to w*.

Proof: We have already established that the limiting pair (z*, s*) is strictly comp-
lementary, from Theorem III.3. As a consequence, the support of the optimal set P*

8 Exercise 66 Let w be any positive vector in IRP and let the bounded set 7 be the intersection of
an affine space in IRP with the nonnegative orthant of IRP. Show that the weighted-analytic center
(with w as weighting vector) of T coincides with the analytic center of 7 if and only if w is a scalar
multiple of the all-one vector.
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of (P) is equal to the support o(z*) of z*, and the support of the optimal set D* of
(D) is equal to the support o(s*) of s*.

Now let Z be optimal for (P) and § for (D). Applying the orthogonality property
to the pairs (Z,5) and (z*, s¥) := ®pp(w*) we obtain

(F — )T (sF —5) =0.
Expanding the product and rearranging terms, we get

()" "+ (5)" 2k = (sk)T 4 ()" z.

Since (sk)Txk = eTwk and (2)75 = 0, we get
Z fij?‘l’ Ejm’;:eka, k=1,2,....
jeo(a*) jeo(s*)
Here we have also used that o(z) C o(z*) and o(5) C o(s*). Using 2FsF = w¥ we
have
wiEs WS gk
Z T + Z —k:ew, k:1,2,
x" 5%
jeo(zr) J jeo(s*y 7

Multiplying both sides by n/efw* we get

k= k-
e ML AR L S A T8 - N
e wr x e

j€a(x*) 7 jeo(s®) J

Letting £ — o0, it follows that

* * g

’U.)jl'] n ’szj _
* ®
€T S

jEo(z*) J jEo(s*) J

At this stage we apply the geometric inequality,” which states that for any two positive
vectors o and 3 in IR™,

ﬁ(ﬁ)ﬁk Yo 2B
S\G) T\ XL :

We apply this inequality with § = w* and

wirT; . wis; .
0= U7 (o), =02 (jeo(s).
7 J

Thus we obtain, using that the sum of the weights w} equals n,

n
*

— wy - w; 7. .
0(2) 1 () (s =) -

X
jeo(z*) \J j€o(s*) \ 7 jea(z*) 7 j€a(s*)

—_

9 When 83 is the all-one vector e, the geometric inequality reduces to the arithmetic-geometric-mean
inequality. For a proof of the geometric inequality we refer to Hardy, Littlewood and Pélya [139)].
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Substituting § = s* in the above inequality we get

wri *
Ry W’
| I T; < I | x; 7,

jeo(z*) jeo(z*)

*

and substituting T = x* gives

and s* the product
over the optimal sets of (P) and (D) respectively. Hence the proof is complete. O

9.4 The target-following scheme

We are ready to describe more formally the main idea of the target-following approach.
Assume we are given some positive primal-dual feasible pair (2, s%). Put w® := 2%s°

and assume that we have a sequence
w® wl R wE (9.16)
of points w* in the w-space with the following property:

Given the primal-dual pair for w*, with 0 < k < K, it is ‘easy’ to compute
the primal-dual pair for w**!,

We call such a sequence a traceable target sequence of length K.

If a traceable sequence of length K is available, then we can solve the given
problem pair (P) and (D), up to the precision level e w!, in K iterations. The k-th
iteration in this method would consist of the computation of the primal-dual target-
pair corresponding to the target point w*. Conceptually, the algorithim is described as
follows (page 232).

Some remarks are in order. Firstly, in practice the primal-dual pair (z(@), s(w))
corresponding to an intermediate target w is not computed exactly. Instead we
compute it approximately, but so that the approximating pair is close to w in the
sense of a suitable proximity measure.

Secondly, the target sequence is not necessarily prescribed beforehand. It may be
generated in the course of the algorithm. Both cases occurred in Chapter 7. For
example, the primal-dual logarithmic barrier algorithm with full Newton steps in
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Conceptual Target-following Algorithm

Input:
A positive primal-dual pair (z°, s°);
a final target vector w.
begin
w = 295
while w is not ‘close’ to w do
begin
choose an ‘intermediate’ target w;
compute z(w) and s(@);
w = z(w)s(w);
end
end

Section 7.5 uses intermediate targets of the form w = pe, and each subsequent target is
given by (1—8)w, with € fixed. The same is true for the primal-dual logarithmic barrier
algorithm with large updates in Section 7.8. In contrast, the primal-dual logarithmic
barrier algorithm with adaptive updates (cf. Section 7.6.1) defines its target points
adaptively.

Thirdly, if we say that the primal-dual pair corresponding to a given target can
be computed ‘easily’, we mean that we have an efficient numerical procedure for
finding this primal-dual pair, at least approximately. The numerical method is always
Newton’s method, either for solving the KKT system defining the primal-dual pair, or
for finding the minimizer of a suitable barrier function. When full Newton steps are
taken, the target must be close to where we are, and one step must yield a sufficiently
accurate approximation of the primal-dual pair for this target. In the literature,
methods of this type are usually called short-step methods when the target sequence
is prescribed, and adaptive-step methods if the target sequence is defined adaptively.
We call them full-step methods. If subsequent targets are at a greater distance we
are forced to use damped Newton steps. The number of Newton steps necessary to
reach the next target (at least approximately) may then become larger than one. To
achieve polynomiality we need to guarantee that this number can be bounded either
by a constant or by some suitable function of n, e.g., O(y/n) or O(n). We refer to
such methods as multistep methods. They appear in the literature as medium-step
methods and large-step methods.

In general, a primal-dual target-following algorithm is based on some finite
underlying target sequence w®, w', ..., w*® = w. The final target @ is a vector with
small duality gap e”w if we are optimizing, but other final targets are allowable as
well; examples of both types of target sequence are given in Chapter 11 below. The
general structure is as follows.
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Generic (Primal-Dual) Target-following Algorithm

Input:
A positive primal-dual pair (2, s°) such that 2%s° = w°;
a final target vector w.
begin
z =120 5s=35" w:=w"
while w is not ‘close’ to w do
begin
replace w by the next target in the sequence;
while zs is not ‘close’ to w do
begin
apply Newton steps at (z, s) with w as target

end
end
end

For each target in the sequence the next target can be prescribed (in advance), but
it can also be defined adaptively. If it is close to the present target then a single (full)
Newton step may suffice to reach the next target, otherwise we apply a multistep
method, using damped Newton steps.

The target-following approach is more general than the standard central-path-
following schemes that appear in the literature. The vast majority of the latter use
target sequences on the central path.!® We show below, in Chapter 11, that many
classical results in the literature can be put in the target-following scheme and that
this scheme often dramatically simplifies the analysis.

First, we derive the necessary numerical tools in the next chapter. This amounts
to generalizing results obtained before in Part II for the case where the target is on
the central path to the case where it is off the central path. We first analyze the full
primal-dual Newton step method and the damped primal-dual Newton step method
for computing the primal-dual pair corresponding to a given target vector. To this end
we introduce a proximity measure, and we show that the full Newton step method
is quadratically convergent. For the damped Newton method we show that a single
step reduces the primal-dual barrier function by at least a constant, provided that the
proximity measure is bounded below by a constant. We then have the basic ingredients

10 There are so many papers on the subject that it is impossible to give an exhaustive list. We
mention a few of them. Short-step methods along the central path can be found in Renegar [237],
Gonzaga [118], Roos and Vial [245], Monteiro and Adler [218] and Kojima et al. [178]. We also
refer the reader to the excellent survey of Gonzaga [124]. The concept of target-following methods
was introduced by Jansen et al. [159]. Closely related methods, using so-called o-sequences, were
considered before by Mizuno for the linear complementarity problem in [212] and [214]. The first
results on multistep methods were those of Gonzaga [121, 122] and Roos and Vial [244]. We also
mention den Hertog, Roos and Vial [146] and Mizuno, Todd and Ye [217]. The target-following
scheme was applied first to multistep methods by Jansen et al. [158].
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for the analysis of primal-dual target-following methods.

The results of the next chapter are used in Chapter 11 for the analysis of several
interesting algorithms. There we restrict ourselves to full Newton step methods because
they give the best complexity results. Later we show that the target-following concept
is also useful when dealing with dual or primal methods. We also show that the primal-
dual pair belonging to a target vector can be efficiently computed by such methods.
This is the subject of Chapters 12 and 13.
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The Primal-Dual Newton Method

10.1 Introduction

Suppose that a positive primal-dual feasible pair (z, s) is given as well as some target
vector w > 0. Our aim is to find the primal-dual pair (z(w), s(w)). Recall that to the
dual feasible slack vector s belongs a unique y such that ATy + s = ¢. The vector in
the y-space corresponding to s(w) is denoted by y(w). In this section we define search
directions Ax, Ay, As at the given pair (z, s) that are aimed to bring us closer to the
target pair (z{w), s(w)) corresponding to w. The search directions in this section are
obtained by applying Newton’s method to the weighted KKT system (9.2), page 220.
The approach closely resembles the treatment in Chapter 7. There the target was on
the central path, but now the target may be any positive vector w. It will become
clear that the results of Chapter 7 can be generalized almost straightforwardly to the
present case. To avoid tiresome repetitions we to omit detailed arguments when they
are similar to arguments used in Chapter 7.

10.2 Definition of the primal-dual Newton step

We want the iterates = + Az, y + Ay, s + As to satisfy the weighted KKT system (9.2)
with respect to the target w. So we want Az, Ay and As to satisfy

Alx 4+ Az) = b, x+ Az >0,
ATy + Ay) + s+ As = ¢, s+ As >0,
(z + Az)(s + As) = w.
Neglecting the inequality constraints, we can rewrite this as follows:
AAzx = 0,
ATAy+As = 0, (10.1)
sAz + xAs + AzAs = w — TS.

Newton’s method amounts to linearizing this system by neglecting the second-order
term AzAs in the third equation. Thus we obtain the linear system

AAzx = 0,
ATAy+As = 0, (10.2)

sAz + xAs = w — TS.
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Comparing this system with (7.2), page 150, in Chapter 7, we see that the only
difference occurs in the third equation, where the target vector w replaces the target
pe on the central path. In particular, both systems have the same matrix. Since this
matrix is nonsingular (cf. Theorem I1.42, page 150, and Exercise 46, page 151), system
(10.2) determines the displacements Az, Ay and As uniquely. We call them the primal-
dual Newton directions at (z,s) corresponding to the target w."*3 It may be worth
pointing out that computation of the displacements Az, Ay and As amounts to solving
a positive definite system with the matrix AXS~'A” | just like when the target is on
the central path.

10.3 Feasibility of the primal-dual Newton step

In this section we investigate the feasibility of the (full) Newton step. As before, the
result of the Newton step at (x,y,s) is denoted by (z*,y*,s7), so

st =z4+ Az, yT=y+Ay, s =s5+As.

Since the new iterates satisfy the affine equations we only have to deal with the
question of whether ™ and st are nonnegative or not. We have

zhst = (z + Az)(s + As) = zs + (sAx + As) + AzAs.
Since sAz + zAs = w — xs this leads to
st = w+ AzAs. (10.3)

Hence, 21 and sT are feasible only if w + AzAs is nonnegative. The converse is also
true. This is the content of the next lemma.

Lemma I11.6 The primal-dual Newton step at (x,s) to the target w is feasible if and
only if w+ AxAs > 0.

Proof: The proof uses exactly the same arguments as the proof of Lemma I1.46; we
simply need to replace the vector e by w. We leave it to the reader to verify this. O

Note that Newton’s method is exact when the second-order term AxAs vanishes.
In that case we have x7s™ = w. This means that the pair (z*,s") is the image of w
under the target map, whence 4 = x(w) and s™ = s(w).

In general AzAs will not be zero and Newton’s method will not be exact. However,
the duality gap always assumes the correct value e’w after the Newton step.

! Exercise 67 Prove that the system (10.2) has a unique solution, namely

Ay = (axsT'AT) (b AwsT?)
As = —ATAy
Ax = ws ' —z—azs 1As.

Exercise 68 When w = 0 in (10.2), the resulting directions coincide with the primal-dual affine-
scaling directions introduced in Section 7.6.2. Verify this.

Exercise 69 When w = pe and g = 27 s/n in (10.2), the resulting directions coincide with the
primal-dual centering directions introduced in Section 7.6.2. Verify this.
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Lemma IT1.7 If the primal-dual Newton step is feasible then (m*)T st =eTw.

Proof: This is immediate from (10.3) because the vectors Az and As are orthogonal.
O

In the following sections we further analyze the primal-dual Newton method. This
requires a quantity for measuring the progress of the Newton iterates on the way to
the pair ®pp(w). As may be expected, two cases could occur. In the first case the
present pair (z, s) is ‘close’ to ®pp(w) and full Newton steps are feasible. In that case
the full Newton step method is (hopefully, and locally) quadratically convergent. In
the second case the present pair (z, s) is ‘far’ from ®pp(w) and the full Newton step
may not be feasible. Then we are forced to take damped Newton steps and we may
expect no more than a linear convergence rate. In both cases we need a new quantity
for measuring the proximity of the current iterate to the target vector w. The next
section deals with the first case and the second case is considered in Section 10.5. It
will be no surprise that we use the weighted primal-dual barrier function ¢,,(z,s) in
Section 10.5 to measure progress of the method.

10.4 Proximity and local quadratic convergence

Recall from (7.16), page 156, that in the analysis of the central-path-following primal-
dual method we measured the distance of the pair (z,s) to the target pe by the

quantity
5.5 1) ‘ [ue  [zs
xzs \ e

This can be rewritten as

5z, 5 1) = pe —xs

il

Note that the right-hand side measures, in some way, the distance in the w-space
between the inverse image pe of the pair of p-centers (z(ue), s(ue)) and the primal-
dual pair (z, s).* For a general target vector w we adapt this measure to

d(zs,w) := (10.4)

— s
24/min (w ‘

The quantity on the right measures the distance from the coordinatewise product xs
to w. It is defined for (ordered) pairs of vectors in the w-space. Therefore, and because
it will be more convenient in the future, we express this feature by using the notation

4 This observation makes clear that the proximity measure 8(x,s; 1) ignores the actual data of the
problems (P) and (D), which is contained in A, b and ¢. Since the behavior of Newton’s method
does depend on these data, it follows that the effect of a (full) Newton step on the proximity
measure depends on the data of the problem. This reveals the weakness of the analysis of the
full-step method (cf. Chapter 6.7). It ignores the actual data of the problem and only provides a
worst-case analysis. In contrast, with adaptive updates (cf. Chapter 6.8) the data of the problem
are taken into account and, as a result, the performance of the method is improved.
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d(xs,w) instead of the alternative notation §(x, s;w). We prove in this section that
the Newton method is quadratically convergent in terms of this proximity measure.’
As before we use scaling vectors d and u. The definition of u needs to be adapted

to the new situation:
d:= \/E wi= |2 (10.5)
s w

Note that xs = w if and only if u = e. We also introduce a vector v according to

v = /5.
With d we can rescale both z and s to the vector v:°
dlz=v, ds=w.
Rescaling Az and As similarly:

d 1Az =:d,, dAs=:d,, (10.6)

we see that
AxAs = dd,.

Consequently, the orthogonality of Ax and As implies that the scaled displacements
d, and dg are orthogonal as well. Now we may reduce the left-hand side in the third
equation of the KKT system as follows:

sAz + xAs = sdd ' Ax + xd"'dAs = v (d, +d,),
so the third equation can be restated simply as

dy+ds = v (w—ms).

5 Exercise 70 The definition (10.4) of the primal-dual proximity measure § = §(xs, w) implies that

w— xS [w xs
26(xs,w) 2 || ——=|| = — =/ |-
( )z H Vwyxs H xs w
Using this and Lemma 11.62, prove
1 X485 .
— < <p(d), 1<i<n
p(8) w;

Here we deviate from the approach in Chapter 7. The natural generalization of the approach there
would be to rescale x and s to u:

d 1z ds
=u, — =:u,
Vw Vw
and then rescale Ax and As accordingly to
d—1A dA
i =:dg, i =:ds.
Vw Vw
But then we have
AzxAs = wd.ds

and we lose the orthogonality of d; and ds with respect to the standard inner product. This could
be resolved by changing the inner product in such a way that orthogonality is preserved. We leave
it as an (interesting) exercise to the reader to work this out. Here the difficulty is circumvented by
using a different scaling.
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On the other hand, the first and second equations can be reformulated as ADd, = 0
and (AD)?d, + ds = 0, where d, = Ay. We conclude that the scaled displacements
dy,dy and dy satisfy

ADd, = 0
(AD)Td, +d, = 0 (10.7)
d, +ds = v (w — x8).

Using the same arguments as in Chapter 7 we conclude that d, and dg form the
components of v™! (w — xs) in the null space and the row space of AD, respectively.
Note that w — xs represents the move we want to make in the w-space. Therefore we
denote it as Aw. It is also convenient to use a scaled version d,, of Aw, namely

dy =v7 1 (w—28) = v Aw. (10.8)
Then we have
dp +dy = dy (10.9)

and, since d, and d, are orthogonal,
2 2 2
da||” + llds[|” = lldwl”- (10.10)

This makes clear that the scaled displacements d,ds (and also d,) are zero if and
only if d,, = 0. In that case z,y and s coincide with their values at w. An immediate
consequence of the definition (10.4) of the proximity §(zs,w) is

[l |

— 10.11
2y/min (w) ( )

§(xs,w) =

The next lemma contains upper bounds for the 2-norm and the infinity norm of the
second-order term d,d;.

Lemma IIL.8 We have ||dyds|., < § [ dull® and [|dods || < 555 [1du]|”.

Proof: The lemma follows immediately by applying the first uv-lemma (Lemma C.4)
to the vectors d, and d;. m|
Lemma II1.9 The Newton step is feasible if 6(xs,w) < 1.

Proof: Lemma II1.6 guarantees feasibility of the Newton step if w+ AzAs > 0. Since
AxAs = dd this certainly holds if the infinity norm of the quotient d,ds/w does not
exceed 1. Using Lemma II1.8 and (10.11) we may write

d,ds dyd dy||*
w || min(w) — 4min(w)
This implies the lemma. g

We are ready for the main result of this section, which is a perfect analogue of
Theorem 11.50, where the target is on the central path.
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Theorem II1.10 If § := §(zs;w) < 1, then the primal-dual Newton step is feasible
and (z7)T'st = eTw. Moreover, if § <1 then

2
S(zTsT,w) < d

- /20-62)

Proof: The first part of the theorem is a restatement of Lemma I11.9 and Lemma IT1.7.
We proceed with the proof of the second statement. By definition,

1 ottt |?
5(m+s+,w)2 _ : w 'S8
4dmin (w) || ztst

Recall from (10.3) that z7s™ = w + AzrAs = w + d,ds. Using also Lemma II1.8 and
(10.11), we write

* = min (w) (1-0%).

1
min (ztst) > min (w) — ||dzds|| o, > min (w) — 1 ||dw

Thus we find, by substitution,

_ et 2
5(m+s+,w)2 < lw —x 5 | _ Hdrcdsn. ’
4(1—=462)min (w)?  4(1 — 2) min (w)?

Finally, using the upper bound for ||d,d;|| in Lemma IIL.8 and also using (10.11) once
more, we obtain

§(ztst, w)? < I’ _
’ = 32(1 — 82)min (w)2  2(1 —4§2)°

This implies the theorem.” O

It is clear that the above result has value only if the given pair (z,s) is close
enough to the target vector w. It guarantees quadratic convergence to the target
if 3(zs,w) < 1/v/2. Convergence is guaranteed only if 6(xs,w) < \/2/3. For larger
values of é(xs, w) we need a different analysis. Then we measure progress of the iterates
in terms of the barrier function ¢,,(x,s) and we use damped Newton steps. This is
the subject of the next section.

10.5 The damped primal-dual Newton method

As before, we are given a positive primal-dual pair (z,s) and a target vector w > 0.
Let 7 and sT result from a damped Newton step of size « at (x,s). In this section

7 Recall from Lemma C.6 in Section 7.4.1 that we have the better estimate
52
2(1 — &%)

Sztstw) <

if the target w is on the central path. We were not able to get the same result if w is off the central
path. We leave this as a topic for further research.
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we analyze the effect of a damped Newton step — at (x, s) and for the target w — on
the value of the barrier function ¢.,(x, s) (as defined on page 221). We have

zT =x+alz, s =s+als,

where « denotes the step-size, and 0 < « < 1. Using the scaled displacements d, and
ds as defined in (10.6), we may also write

rt=dw+ad,), st=d'w+ad,),
where v = \/zs. As a consequence,
xtsT = (v +ad,) (v+ ady) = v? + av (dy + ds) + a?d,ds.

Since

v(dy +dg) =w— s =w — v,

we obtain
27T =0” +a(w—v?) + a’dyd,. (10.12)
Now, defining

vt = VaztsT,

we have

(vH)? = (v + ady) (v + ady) (10.13)

and )
(vh)” - v =a (w— 112) + a’dyd,. (10.14)

The next theorem provides a lower bound for the decrease of the barrier function value
during a damped Newton step. The bound coincides with the result of Lemma II.72
if w is on the central path and becomes worse if the ‘distance’ from w to the central
path increases.

Theorem IIL.11 Let § = 6(xs,w) and let a = 1/w — 1/(w + 46%/6.(w)), where®

TR

Then the pair (z7,sT) resulting from the damped Newton step of size o is feasible.
Moreover,

2 2

Az
x

As
s

da

v

ds

2
‘ v

(2, ) ¢w( s7) 2 <5C(w)p(5)) .

Proof: It will be convenient to express max (w) ¢, (z, s), given by (9.4), page 221, in
terms of v = \/xs. We obviously have

n mn
max (w) ¢ (z,5) = el v? — Z wj log UJQ- —elw+ Z w; logw;.
j=1 j=1

8 Exercise 71 Verify that
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Hence we have the following expression for max (w) ¢y, (z ™, s7):

T n
max (w) ¢, (z7,sT) = Z log (v)™ — efw+ ij log w;.

j=1
With A := ¢y, (x,8) — ¢y (xT, sT), subtracting both expressions yields
n +\2
max (w) A = e’ (v2 — (v+)2) + ij log (UU]—Q)
j=1 J
Substitution of (10.13) and (10.14) gives

max (w) A = —ae (w —v?) +ijlog(1+a >+Z 1og<1+a@>.

o
j=1 J

Here we took advantage of the orthogonality of d, and d; in omitting the term
containing e’ d,d,. The definition of ¥ implies

and a similar result for the terms containing entries of d;. Substituting this we obtain

—ae’ (w—v?) + ae” (w:ix> + el (ch18>
(o055 e (o551))

The contribution of the terms on the left of the sum can be reduced to o ||dy||”. This
follows because

max (w) A

— 2 2
_(w_vg)+w(dx+ds):_wa+wdw:(w v)dw:vdw—dQ
v v v v

It can easily be understood that the sum attains its maximal value if all the coordinates
of the concatenation of the vectors ad, /v and ad, /v are zero except one, and the
nonzero coordinate, for which w; must be maximal, is equal to minus the norm of this
concatenated vector. The norm of the concatenation of ad, /v and ad, /v being aw,
we arITive at

o [ldy||* — max (w)  (—aw)

4ad? min (w) — max (w) 1 (—aw) .

max (w) A

This can be rewritten as

406 4082

A2 5w V) =5

+ aw + log (1 — aw) . (10.15)
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The derivative of the right-hand side expression with respect to « is

7w
Se(w) 1—aw’

and it vanishes only for the value of a specified in the lemma. As in the proof of
Lemma I1.72 (page 201) we conclude that the specified value of o maximizes the lower
bound for A in (10.15), and, as a consequence, the damped Newton step of the specified
size is feasible. Substitution in (10.15) yields, after some elementary reductions, the
following bound for A:

In this bound we may replace w by a larger value, since ¢(t) is monotonically increasing
for t nonnegative. An upper bound for w can be obtained as follows:

2 2

e
v

ds
v

|dw||  26y/min (w)
= min (v)  min(v)

Let the index & be such that min (v) = v,. Then we may write

204/min (w)  25+/min (w) < 20wy _ 926, |k — 951
v

min (v) v & TESk

where u denotes the vector defined in (10.5). The coordinates of u can be bounded
nicely by using the function p(é) defined in Lemma I1.62 (page 182). This can be
achieved by reducing é = §(xs, w), as given in (10.4), in the following way:

—xs

52¢£mm¢%ﬁ§ sl (Vo %) 23—l

Hence we have Hu’l — uH < 26. Applying Lemma I1.62 it follows that the coordinates
of u and w1 are bounded above by p(8) (cf. Exercise 70, page 238). Hence we may
conclude that

w < 28p(9).
Substitution of this bound in the last lower bound for A yields
26
824 (s )
Se(w)p(9)
completing the proof. a

The damped Newton method will be used only if § = §(xs,w) > 1/v/2, because
for smaller values of § full Newton steps give quadratic convergence to the target. For
§ = &(xs, w) > 1/v/2 we have

26 2

2% V2
9) T 1 11 3
p(6) L1+l +V3

=+v3—1=0.73205,
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so outside the region of quadratic convergence around the target w, a damped Newton
step reduces the barrier function value by at least

0.2 T T T T

0.041

— 6.(w)

Figure 10.1 Lower bound for the decrease in ¢, during a damped Newton step.

The graph in Figure 10.1 depicts this function for 1 < §.(w) < 10.
Remark IT1.12 The above analysis is based on the barrier function ¢, (z,s) defined in

(9.3). We showed in (9.4) and (9.5) that, up to a constant factor max (w), the variable part
in this function is given by the weighted primal-dual logarithmic barrier function

n
T 1 o
s — wjlogax;s;.
=1

In this function the weights occur in the barrier term.
We want to point out that there exists an alternative way to analyze the damped Newton
method by using a barrier function for which the weights occur in the objective term. Consider

bu(z,s) =€l (% _e) _ znzlongv'—jf = zn:w (% - 1) =0 (% —e) . (10.16)
j=1 j=1

Clearly ¢ (x,s) is defined for all positive primal-dual pairs (z,s). Moreover, ¢ (z,s) > 0
and the equality holds if and only if s = w. Hence, the solution of the weighted KKT system
(9.2) is characterized by the fact that it satisfies the equation ¢, (x, ) = 0. The variable part

of ¢u(x,s) is given by
T8
e — — logx;s;,
w z; g LS55
=
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which has the weights in the objective term. It has recently been shown by de Klerk, Roos
and Terlaky [172] that this function can equally well serve in the analysis of the damped
Newton method. In fact, Theorem II1.11 remains true if ¢, is replaced by ¢.,. This might
be surprising because, whereas ¢, is strictly convex on its domain, ¢, is not convex unless
w is on the central path.® .

9 Exercise 72 Let (z,s) be any positive primal-dual pair. Show that

Puw(@,5) < Pu(z,s).



11
Applications

11.1 Introduction

In this Chapter we present some examples of traceable target sequences. The examples
are chosen to cover the most prominent primal-dual methods and results in the
literature. We restrict ourselves to sequences that can be traced by full Newton steps.!

To keep the presentation simple, we make a further assumption, namely that
Newton’s method is exact in its region of quadratic convergence. In other words,
we assume that the algorithm generates exact primal-dual pairs for the respective
targets in the target sequence. In a practical algorithin the generated primal-dual
pairs will never exactly match their respective targets. However, our assumption does
not, change the order of magnitude for the obtained iteration bounds. In fact, at the
cost of a little more involved analysis we can obtain the same iteration bounds for a
practical algorithm, except for a small constant factor. This can be understood from
the following theorem, where we assume that we are given a ‘good’ approximation
for the primal-dual pair (z(w), s(w)) corresponding to the target w and we consider
the effect of an update of the target to w. We make clear that é(zs,w) ~ é(w,w) if
d(xs,w) is small.

Thus, we assume that the proximity ¢ = §(xs, w) is small. Recall that the quadratic
convergence property of Newton’s method justifies this assumption. If § < 1/4/2 then
in no more than 6 full Newton steps we are sure that a primal-dual pair (z,s) is
obtained for which §(zs,w) < 1071°. Thus, if K denotes the length of the target
sequence, 6K additional Newton steps are sufficient to work with ‘exact’ primal-dual
pairs, at least from a computational point of view.

Theorem III.13 Let the primal-dual pair (x,s) and the target w be such that § =
d(xs,w). Then, for any other target vector w we have

§(xs,w) < % 5+ p(8) 6(w, w).

1 The motivation for this choice is that full Newton steps give the best iteration bounds. The results
in the previous chapter for the damped Newton step provide the ingredients for the analysis of
target-following methods using the multistep strategy. Target sequences for multistep methods
were treated extensively by Jansen in [151]. See also Jansen et al. [158].
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Proof: We may write

(s, @) — 1 8 — T ‘ 1 msw+wu_)‘
’ 2y/min (@) || VT 2+/min () Vs

Using the triangle inequality we get

5(zs, @) < 1 s —w ‘ ‘w T
xs, 1) < .
2¢/min ( 24/min (w
This implies
min (w)

§(xs, w) <

g

s N
———b(rs,w) + ——— — .
min () 2y/min () s Jw
From the result of Exercise 70 on page 238, this can be reduced to

min (w)

§(ws, @) < p(8)5(w, @),

min (@)
completing the proof. O

In the extreme case where d(xs,w) = 0, we have xs = w and hence 6(zs, @) =
d(w,w). In that case the bound in the lemma is sharp, since § =0 and p(0) = 1. If 6
is small, then the first term in the bound for d(xs,w) will be small compared to the
second term. This follows by noting that the square root can be bounded by

min (w) W (11.1)
min () wk ' '

Here the index k is such that min (w) = wy.? Since p(d) ~ 1 if § ~ 0, we conclude
that §(zs, @) ~ §(w,w) if 4 is srnall

11.2 Central-path-following method

Central-path-following methods were investigated extensively in Part II. The aim of
this section is twofold. It provides a first (and easy) illustration of the use of the target-
following approach, and it yields one of the main results of Part IT in a relatively cheap
way.

The target points have the form w = pe, u > 0. When at the target w, we let the
next target point be given by

w=(1-0w, 0<0<1.

2 When combining the bounds in Theorem II1.13 and (11.1) one gets the bound
d(xs, w) < p(6(w, w)) (xs,w) + p (6(zs, w)) 6(w, w),

which has a nice symmetry, but which is weaker than the bound of Theorem III.13.
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Then some straightforward calculations yield §(w, @):

L o—w|_ o)Vl _ ey
2\/M‘ ‘ 20/ O  2/1—0

Assuming that n > 4 we find that

d(w, ) =

Hence, by Lemma 1.36, a full Newton step method needs

0
\/ﬁlog%
B

iterations® to generate an e-solution when starting at w® = uCe.

11.8 Weighted-path-following method

With a little extra effort, we can also analyze the case where the target sequence lies on
the half line w = pw®, u > 0, for some fixed positive vector w®. This half line is a so-
called weighted path in the w-space. The primal-dual pairs on it converge to weighted-
analytic centers of the optimal sets of (P) and (D), due to Theorem IIL5. Note that
when using a target sequence of this type we can start the algorithm everywhere in the
w-space. However, as we shall see, not using the central path diminishes the efficiency
of the algorithm.
Letting the next target point be given by

w=(1-0)w 0<6<1, (11.2)

we obtain

(w, w) = QW ‘ ‘ NG Le;{)_mm(w) - 2\/19—6 ‘V mi;lu(w)"

Using é.(w), as defined in (9.6), page 222, which measures the proximity of w to the
central path, we may write

HlaX U) /—
mm = ” H min ’UJ

§(w, @) < 9' e
To2v/1—06

3 Formally, we should round the iteration bound to the smallest integer exceeding it. For simplicity we
omit the corresponding rounding operator in the iteration bounds in this chapter; this is common
practice in the literature.

Thus we obtain
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Assuming n > 4 again, we find that

5(11),1T1)§L it 0= L

V2 /né(w)’

Hence, when starting at w®, we are sure that the duality gap is smaller than  after

at most o
v/ 1nb.(wO) log cw (11.3)

I3

iterations. Here we used the obvious identity 6.(w®) = §.(w). Comparing this result
with the iteration bound of the previous section we observe that we introduce a factor
\/6.(w®) > 1 into the iteration bound by not using the central path.*

The above result indicates that in soine sense the central path is the best path to
follow to the optimal set. When starting further from the central path the iteration
bound becomes worse. This result gives us evidence of the very special status of the
central path among all possible weighted paths to the optimal set.

11.4 Centering method
If we are given a primal-dual pair (x°,s°) such that w® = 2%s° is not on the central
path, then instead of following the weighted path through w° to the origin, we can use
an alternative strategy. The idea is first to move to the central path and then follow
the central path to the origin. We know already how to follow the central path. But
the other problem, moving from some point w® in the w-space to the central path, is
new. This problem has become known as the centering problem.% 8

The centering problem can be solved by using a target sequence starting at w® and
ending on the central path. We shall propose a target sequence that converges in

Vv log 8.(w?) (11.4)

iterations.” The iteration bound (11.4) can be obtained as follows. Let w be obtained
from some point w outside the central path by replacing each entry w; such that

w; < (14 6) min (w)

Primal-dual weighted-path-following methods were first proposed and discussed by Megiddo [200].
Later they were also analyzed by Ding and Li [67]. A primal version was studied by Roos and den
Hertog [241].

The centering approach presented here was proposed independently by den Hertog [140] and Miz-
uno [212].

Exercise 73 The centering problem includes the problem of finding the analytic center of a
polytope. Why?

Note that the quantity d.(w") appears under a logarithm. This is very important from the viewpoint
of complexity analysis. If the weights were initially determined from a primal-dual feasible pair
(x0°,5%), we can say that .(w®) has the same input length as the two points. Tt is reasonable to
assume that this input length is at most equivalent to the input length of the data of the problem,
but there is no real reason to state that it is strictly smaller. Since an algorithm is claimed to be
polynomial only when the bound on the number of iterations is a function of the logarithm of the
length of the input data, it is better to have the quantity d.(w") under the logarithm.
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by (1 + 8) min (w), where 6 is some positive constant satisfying 1+ 8 < §.(w). It then
follows that 5. (o)
w
§.(w) = ——.
=177

Using that 0 < @; —w; < #min (w) we write

d(w, w)

‘Gmin(w)e

N

- zﬁ‘wf@w‘ = zm

This implies

5w, @) < 6 y/min (w) e < 6 el = 6y/n < 9\/5’
2y/(1+9) Vuw (1+06) 2T+ 2
so we have

At each iteration, §,(w) decreases by the factor 1 + #. Thus, when starting at w®, we
certainly have reached the central path if the iteration number k satisfies

(1+0)% > 5.(w°).
Substituting the value of 8 and then taking logarithms, we obtain

o JER— > o .
]{jloo (1 + \/ﬁ IOO 50(’[1) )

If n > 3, this inequality is satisfied if®

k
— >log 8. (w?).
= > log dc(w")

Thus we find that no more than

v log .(w®) (11.5)

iterations bring the iterate onto the central path. This proves the iteration bound
(11.4) for the centering problem.

The above-described target sequence ends at the point max (w)e on the central
path. From there on we can follow the central path as described in Section 11.2 and
we reach an e-solution after a total of

vn <log(5¢(w0) + log (11.6)

log (1 + %)

nmaj (w°)>

8 If n > 3 then we have

\Y%

L
=
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iterations.

Note that this bound for a strategy that first centralizes and then optimizes is better
than the one we obtained for the more direct strategy (11.2) of following a sequence
along the weighted path. In fact the bound (11.6) is the best one known until now
when the starting point lies away from the central path.

Remark II1.14 The above centering strategy pushes the small coordinates of w® upward
to max (wo). We can also consider the more obvious strategy of moving the large coordinates
of w® downward to min (w"). Following a similar analysis we obtain

0+/nd.(w®
d(w, w) < w
2
Hence,
" 1 V2
S(w, W) < —  if 0= —YZ
( ) V2 v/ nbe(w)

As a consequence, in the resulting iteration bound, which is proportional to 1/6, the quantity
Sc(wo) does not appear under the logarithm. This makes clear that we get a slightly worse
result than (11.5) in this case.’ .

11.5 Weighted-centering method

The converse of the centering problem consists in finding a primal-dual pair (z,s)
such that the ratios between the coordinates of xs are prescribed, when a point on the
central path is given. If w! is a positive vector whose coordinates have the prescribed
weights, then we want to find feasible = and s such that s = Aw! for some positive A.
In fact, the aim is not to solve this problem exactly; it is enough if we find a primal-
dual pair such that §(xs, Aw') < 1/4/2 for some positive A. This problem is known as
the weighted-centering problem.'®

Let the primal-dual pair be given for the point w® = e on the central path, with
i > 0. We first rescale the given vector w' by a positive scalar factor in such a way

 Exercise 74 Another strategy for reaching the central path from a given vector w® can be defined
as follows. When at w, we define @ according to

(1 + 6) min(w), if w; < (1 4+ 6) min(w),
W; = max(w) — 6 min(w), if w; > max(w) — 8 min(w),
Wi, otherwise.

Analyze this strategy and show that the iteration bound is the same as (11.5), but when the central
path is reached the duality gap is (in general) smaller, yielding a slight improvement of (11.6).

10 The treatment of the weighted-centering problem presented here was first proposed by Mizuno [214].
It closely resembles our approach to the centering problem. See also Jansen et al. [159, 158] and
Jansen [151]. A special case of the weighted-centering problem was considered by Atkinson and
Vaidya [29] and later also by Freund [85] and Goffin and Vial [102]. Their objective was to find the
weighted-analytic center of a polytope. Our approach generates the weighted-analytic center of the
primal polytope P if we take ¢ = 0, and the weighted-analytic center of the dual polytope D if we
take b = 0. The approach of Atkinson and Vaidya was put into the target-following framework by
Jansen et al. [158]. See also Jansen [151]. The last two references use two nested traceable target
sequences. The result is a significantly simpler analysis as well as a better iteration bound than
Atkinson and Vaidya’s bound.
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that

max (w') = p,
and we construct a traceable target sequence from w® to w'. When we put w := w?,
the coordinates of w corresponding to the largest coordinates of w' have their correct
value. We gradually decrease the other coordinates of w to their correct value by using
the same technique as in the previous section. Let @ be obtained from w by redefining
each entry w; according to

w; == max (w;, (1 — O)w;),

where 6 is some positive constant smaller than one. Note that w; can never becoimne
smaller than w} and if it has reached this value then it remains constant in subsequent
target vectors. Hence, this process leaves the ‘correct’ coordinates of w — those have
the larger values — invariant, and it decreases the other coordinates by a factor 1 —8,
or less if undershooting should occur. Thus, we have

min (w) > (1 — §) min (w),
with equality, except possibly for the last point in the target sequence, and
0 <w; —w; < Omin(w).

To make the sequence traceable, # cannot be taken too large. Using the last two
inequalities we write

5w, @) — 1 u‘)w‘< 1 ‘Gmin(w)e
T 2y/min(@) || Ve || T 24/ — 6) min (w) Vw
This gives

5w, ) < 0 /min (w) e < 6 el = N .
2y/(1 - 6) Vw 2,/(1 - 6) 2v/1 -0

As before, assuming n > 4 we get

1 1
§(w, ) if =

<— if 6=—.
V2 vn
Before the final iteration, which puts all entries of w at their correct values, each

iteration increases d.(w) by the factor 1/ (1 — #). We certainly have reached w! if the
iteration number k satisfies

; >4 (wl)

1=k =7
Taking logarithms, this inequality becomes

—klog (1 —6) > log 6.(w!)
and this certainly holds if
k6 > log d.(w'),

since 8 < —log (1 — 6). Substitution of # = 1/y/n yields that no more than

Vi log b (w')

iterations bring the iterate to w?.
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11.6 Centering and optimizing together

In Section 11.4 we discussed a two-phase strategy for the case where the initial primal-
dual feasible pair (2%, s°) is not on the central path. The first phase is devoted to
centralizing and the second phase to optimizing. Although this strategy achieves the
best possible iteration bound obtained so far, it is worth considering an alternative
strategy that combines the two phases at the same time.

Let w® := 2°s° and consider the function f : R, — R’} defined by

0

F(6) == (11.7)

_ 0
e+ 0w’ T

The image of f defines a path in the w-space starting at f(0) = w® and converging to
the origin when 6 goes to infinity. See Figure 11.1.

w2

central path

N

Dikin-path

— W1

Figure 11.1 A Dikin-path in the w-space (n = 2).

We refer to this path as the Dikin-path in the w-space starting at w®.!! It may easily
be checked that if w' lies on the Dikin-path starting at w®, then the Dikin-path

11 Dikin, well known for his primal affine-scaling method for LO, did not consider primal-dual
methods. Nevertheless, the discovery of this path in the w-space has been inspired by his work.
Therefore, we gave his name to it. The relation with Dikin’s work is as follows. The direction of
the tangent to the Dikin-path is obtained by differentiating f(#) with respect to 8. This yields

dre) -2 f
o~ (e+ w2 ~f(6)*.

This implies that the Dikin-path is a trajectory of the vector field —w? in the w-space. Without
going further into it we refer the reader to Jansen, Roos and Terlaky [156] where this field was
used to obtain the primal-dual analogue of the so-called primal affine-scaling direction of Dikin [63].
This is precisely the direction used in the Dikin Step Algorithm, in Appendix E.
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starting at w' is just the continuation of the path starting at w®.'? Asymptotically,
the Dikin-path becomes tangent to the central path, because for very large values of
6 we have

e
0) ~ —.
16~
We can easily establish that along the path the proximity to the central path is
improving. This goes as follows. Let w := f(#). Then, using that f preserves the

ordering of the coordinates,'®> we may write

max (w) .

max (w0 1 + 6 min (w°)

56 _ 140 max (w?) -3, 0 <5C 0 . 11.8
(w) min (w”) (w?) 1+ 6 max (w0) — (w?) (11.8)
1+6 min (wP)

The last inequality is strict if 6.(w®) > 1. Also, the duality gap is decreasing. This

follows because

0 T,.,0
T r W e w 0

= < <efu®,
CUTe T g0 1 + @ min (w?) o

Consequently, the Dikin-path achieves the two goals that were assigned to it. It
centralizes and optimizes at the same time.

Let us now try to devise a traceable target sequence along the Dikin-path. Suppose
that w is a point on this path. Without loss of generality we may assume that
w = f(0) = w°. Let w := f(0) for some positive §. Then we have

1 w—w 1
:zm‘ v ‘:2 min (@)

which can be simplified to

w
et+0w w

Vw

d(w, w)

Ow3
e+ 0w

1

ow, w) = 2+/min ()

Using that f preserves the ordering of the coordinates we further deduce

5w, @) = W1+ 0min(w) || fw? < max (w) ‘ fw "
2y/min (w) ||+ 0w 2y/min (w) || Ve + 0w
which gives
_ e (w) Hw ‘
o(w, < .
(w, @) < 2 Ve + 0w

Finally, since e 4+ 8w > e, we get

S, @) < 50V/5.() o]

12 Exercise 75 Show that if w! lies on the Dikin-path starting at w®, then the Dikin-path starting
at w! is just the continuation of the path starting at w©.

13 Exercise 76 Let wl <wd < ... <wd and w:= f(), with f(§) as defined in (11.7). Prove that
for each positive 8 we have w1 < w2 < ... < wp.
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So we have

< 1 if 9 — L

V2 [wl[ /e (w)
We established above that the duality gap is reduced by at least the factor 14+ min (w).
Replacing 8 by its value defined above, we have

1+ 60min(w) =1+ \/_min( > 1+ \/_min (w) =1+ V2

w]| /3o( max (w)+/né.(w) Se(w)/nd (w)

Using d.(w) < 8.(w?), we deduce in the usual way that after

0 elfw?
Y/ 18 (w?) log

iterations the duality gap is smaller than e.

For large values of §.(w®) this bound is significantly worse than the bounds obtained
in the previous sections when starting off the central path. It is even worse —
by a factor 6.(w’) — than the bound for the weighted-path-following method in
Section 11.3. The reason for this weak result is that in the final step, just before
(11.9), we replaced 6.(w) by 6.(w®). Thus we did not fully explore the centralizing
effect of the Dikin-path, which implies that in the final iterations d.(w) tends to 1.

To improve the bound we shall look at the process in a different way. Instead of
directly estimating the number of target moves until a suitable duality gap is achieved,
we shall concentrate on the number of steps that are required to get close to the central
path, a state that can be measured for instance by é.(w) < 2.

Using (11.8) and substituting the value of 8, we obtained

1+9min(w):5( ) | v/ +m1nw\/—
1+ @ max (w) l[w]] /B (w) + max (w)y/2

(11.9)

8c(10) = do(w)

This can be written as

[wll v/3e(w) + max (w)v/2

Using that ||w|| < max (w)y/n and max (w) = é.(w) min (w) we obtain

o(i) = bo(w) (1 B V2 (max (w) — min (w)) ) .

V2 (8(w) — 1)
w) (Vnd(w) + V2)

de(w) < de(w) | 1—

Now assuming n > 6 and d.(w) > 2 we get
V2 (e(w) = 1) - 1 .
w) (\/néc(w) + \/5) ~ 2¢/nde(w)

This can be verified by elementary means. As a consequence, under these assumptions,

. 1
Se() < 8e(w) (1 - m) .
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Hence, using that 6.(w) < 6.(w?), after k iterations we have

k
_ 1 w0
5.(@) < (172 néc(w0)> So(w®).

By the usual arguments, it follows that é.(w) < 2 after at most

Se(w?)
24/ nb:(w®) log 5

iterations. The proximity to the central path is then at most 2. Now from (11.9) it
follows that the number of iterations needed to reach an e-solution does not exceed

T,.,0

2vV2n loge e .
€

By adding the two numbers, we obtain the iteration bound

eTa? w
vn (2\/5 log — + 2+/6.(w?) log %) )

Note that this bound is better than the previous bound (11.9) and also better than
the bound (11.3) for following the weighted central path. But it is still worse than the
bound (11.6) for the two-phase strategy.

11.7 Adaptive and large target-update methods

The complexity bounds derived in the previous sections are based on a worst-case
analysis of full Newton step methods. Each target step is chosen to be short enough
so that, in any possible instance, proximity will remain under control. Moreover, the
target step is not at all influenced by the particular primal-dual feasible pair. As a
consequence, for an implementation of a full-step target-following method the required
running time may give rise to some disappointment.

It then becomes tempting to take larger target-updates. An obvious improvement
would be to relate the target move to the primal-dual feasible pair and to make the
move as large as possible while keeping proximity to the primal-dual feasible pair
under control; in that case a full Newton step still yields a new primal-dual feasible
pair closer to the target and the process may be repeated. This enhancement of the
full-step strategy into the so-called adaptive step or maximal step strategy does not
improve the overall theoretical complexity bound, but it has a dramatic effect on the
efficiency, especially on the asymptotic convergence rate.'*

Despite this nice asymptotic result, the steps in the adaptive-step method may in
general be too short to produce a really efficient method. In practical applications it
is often wise to work with larger target-updates. One obvious shortcoming of a large

14 In a recent paper [125], Gonzaga showed that the maximal step method — with some additional
safeguard steps — is asymptotically quadratically convergent; i.e., in the final iterations the duality
gap converges to zero quadratically. Gonzaga also showed that the iterates converge to the analytic
centers of the optimal sets of (P) and (D).
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target-update is that the full Newton step may cause infeasibility. To overcome this
difficulty one must use a damped Newton step. The progress is then measured by
the primal-dual barrier logarithmic function ¢, (x, s) analyzed in Section 10.5. Using
the results of that section, iteration bounds for the damped Newton method can be
derived for large-update versions of the target sequences dealt with in this chapter.
In accordance with the results in Chapter 7 for the logarithmic barrier central-path-
following method, the iteration bounds are always a factor +/n worse than those for
the full-step methods. We feel that it goes beyond the aim of this chapter to give a
detailed report of the results obtained in this direction. We refer the reader to the
references mentioned in the course of this chapter.'®

15 In this connection it may be useful to mention again the book of Jansen [151], which contains a
thorough treatment of the target-following approach. Jansen also deals with methods using large
target-updates. He provides some additional examples of traceable target sequences that can be
used to simplify drastically the analysis of existing methods, such as the cone-affine-scaling method
of Sturm and Zhang [260] and the shifted barrier method of Freund [84]. These results can also be
found in Jansen et al. [158].
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The Dual Newton Method

12.1 Introduction

The results in the previous sections have made clear that the image of a given target
vector w > 0 under the target map ®pp(w) can be computed provided that we are
given some positive primal-dual pair (z,s). If the given pair (z,s) is such that zs
is close to w, Newton’s method can be applied to the weighted KKT system (9.2).
Starting at (x, ) this method generates a sequence of primal-dual pairs converging to
®pp(w). The distance from the pair (x, s) to w is measured by the proximity measure
d(xs,w) in (10.4):

If §(xs,w) < 1/v/2 then the primal-dual method converges quadratically to ®pp(w).
For larger values of d(xs, w) we could realize a linear convergence rate by using damped
Newton steps of appropriate size. The sketched approach is called primal-dual because
it uses search steps in both the z-space and the s-space at each iteration.

The aim of this chapter and the next is to show that the same goal can be realized
by moving only in the primal space or the dual space. Assuming that we are given a
positive primal feasible solution x, a primal method moves in the primal space until
it reaches z(w). Similarly, a dual method starts at some given dual feasible solution
(y,s) with s > 0, and moves in the dual space until it reaches (y(w), s(w)). We deal
with dual methods in the next sections, and consider primal methods in the next
chapter. In both cases the search direction is obtained by applying Newton’s method
to a suitable weighted logarithmic barrier function. The general framework of a dual
target-following algorithm is described on page 260. The underlying target sequence
starts at w® and ends at .

6(xs,w) ==

12.2 The weighted dual barrier function

The search direction in a dual method is obtained by applying Newton’s method to
the weighted dual logarithmic barrier function ¢< (y), given by

ol (y) == b (bTy + zn:wi log si> ; (12.1)

min (w) p
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Generic Dual Target-following Algorithm

Input:
A dual feasible pair (y°, s") such that y° =y (wo) 180 =5 (wo);
a final target vector w.
begin
y=1%s =s%w:=w
while w is not ‘close’ to w do
begin
replace w by the next target in the sequence;
while (y,s) is not ‘close’ to (y(w), s(w)) do
begin
apply Newton steps at (y, s) to the target w

end
end
end

with s = ¢ — ATy. In this section we prove that ¢ (y) attains its minimal value at
y(w). In the next section it turns out that ¢ (y) is strictly convex. The first property
can easily be derived from the primal-dual logarithmic barrier function ¢,, used in
Section 10.5. With w fixed, we consider ¢,, at the pair (z(w), s). Starting {rom (9.4),

page 221, and using z(w)?s = cl'z(w) — bTy and z(w)s(w) = w we write

max (W) ¢y (z(w), s) = z(w)l's — Z w; log r;(w)s; —eTw + Z w; log w;
j=1 j=1

- z(w)l's — ij logs; —elw + Z w; log s;(w)
j=1 j=1

- clr(w) — by — Z w;logs; —elw+ ij log s;(w)
j=1 j=1

= min(w) ¢l ) +cu(w) - Fw+ Y w;logs;(w).
j=1

Since w is fixed, this shows that min (w) ¢Z (y) and max (w)d,, (x(w), s) differ by a
constant. Since ¢, (x(w),s) attains its minimal value at s(w), it follows that ¢¢ (y)

must attain its minimal value at y(w).!

! Exercise 77 For each positive primal-dual pair (z, s), prove that

Puw (@, 5) = P (x, s(w)) + Pu (@(w), 5).
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12.3 Definition of the dual Newton step

Let y be dual feasible and w > 0. We denote the gradient of ¢¢ (y) at y by g% (y) and
the Hessian by HZ(y). These are

—1

=—— (b— AWs~!
gw(y) min (w) (b Ws )
and 1
Hi(y) = ——— AW S 24T,
min (w)

as can be easily verified. Note that H?(y) is positive definite. It follows that ¢ (y) is
a strictly convex function.
The Newton step at y is given by

Ay = —He ()" g% (y) = (AWS2AT) " (h— AWs™1). (12.2)

Since y(w) is the minimizer of ¢&(y) we have Ay = 0 if and only if y = y(w). We
measure the proximity of y with respect to y(w) by a suitable norm of Ay, namely
the norm induced by the positive definite matrix H¢ (y):

54y, w) = || Ayl g (y)-

We call this the Hessian norm of Ay. We show below that it is an appropriate
generalization of the proximity measure used in Section 6.5 (page 114) for the analysis
of the dual logarithmic barrier approach. More precisely, we find that both measures
coincide if w is on the central path.

Using the definition of the Hessian norm of Ay = —H%(y) "¢ (y) we may write

) = /Ay HL (1) Ay = /ot (v)THE (1) g2 (). (12.3)

Remark III.15 The dual proximity measure 8%(y, w) can be characterized in a different
way as follows:

6d(y,w) = ;min{del (mf E) H : Ax = b},
min (w) @ s

where
PR (12.4)
S
‘We want to explain this here, because later on, for the primal method this characterization
provides a natural way of defining a primal proximity measure.
Let z satisfy Ax = b. We do not require x to be nonnegative. Replacing b by Az in the
above expression (12.2) for Ay and using d from (12.4), we obtain

Ay = (AD*AT) " (Ax — AWsTY).

This can be rewritten as

Ay = (AD*AT) " ADd ™ (2 — ws™') = (AD*AT) T AD Sm\/%w
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The corresponding displacement in the slack space is given by As = —AT Ay. This implies
ST — w

Jo

This makes clear that —dAs is equal to the orthogonal projection of the vector (sz — w) //w
into the row space of AD. Hence, we have

dAs = — (AD)T (AD?AT) ' AD

sx(s,w) —w

dAs = — ,

S T

where
z(s,w) = argmin,, { sx\/—aw : Az = b} .
Lemma II1.16 below implies
a 1
0y, w) = ——=—== [|dAs]|.
+/min (w)

The claim follows. .

12.4 Feasibility of the dual Newton step
Let y™ result from the Newton step at y:
Yy =y + Ay.
If we define
As = —AT Ay,
the slack vector for y T is just s + As, as easily follows. The Newton step is feasible if

and only if s + As > 0. It is convenient to introduce the vector v according to

vi= ﬁ (12.5)

Note that v > e and v = e if and only if w is on the central path. Now we can prove
the next lemma. From this lemma it becomes clear that §¢(y,w) coincides with the
proximity measure 6(y, 1), defined in (6.7), page 114, if w = pe.

Lemma II1.16

vAs E

S

As

d —
(5 (y,w)— B

Z ‘

Z ‘

If 8%y, w) < 1 then y* = y + Ay is dual feasible.
Proof: Using (12.3) and the above expression for H? (y), we write

1
d 2 AyTHE (DAY = ——— AyTAWS 24T Ay,
0y, w) y* Hy (y)Ay i () Y WS y
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Replacing AT Ay by —As and also using the definition (12.5) of v, we get

vAs||?
8y, w)? = AsTV2S2As = ‘ —
s
Thus we obtain
(yw) = |25 > ‘ =
s s 5 |0

The first inequality follows because v > e, and the second inequality is trivial. This
proves the first part of the lemma. For the second part, assume §?(y,w) < 1. Then
we derive from the last inequality in the first part of the lemma that |As| < s, which
implies s + As > 0. The lemma is proved. a

12.5 Quadratic convergence

The aim of this section is to generalize the quadratic convergence result of the dual
Newton method in Theorem I1.21, page 114, to the present case.’

Theorem II1.17 §4(y*, w) < 6%(y, w)?.
Proof: By definition
0yt w)? = gl (T HL () Tl ().

The main part of the proof consists of the calculation of H%(y) and g4 (yT).
It is convenient to work with the matrix

B:— AV (S+AS)™".

Using B we write
Hi(y*) = AV2(S + AS) ? AT = BBT.
Note that BB is nonsingular because A has full row rank. For g% (y*) we may write

geyt)y = ﬁiw) (b— AW (s +As)™)

—1 e e
—— (b—AWs L+ AW [ - — .
min (w) ( 5ot <s 5+As)>
The first two terms form g&(y). Replacing W in the third term by min (w) V2, we

obtain A
d(yt) = gly) — AVZ— 28
g (y™) = gy ly) — AV SG T Ay

2 An alternative proof of Theorem II1.17 can be given by generalizing the proof of Theorem I1.21;
this approach is followed in Jansen et al. [157] and also in the next chapter, where we deal with
the analogous result for primal target-following methods. The proof given here seems to be new,
and is more straightforward.
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Since
gl(y) = —Hi(y)Ay = —AV2S2AT Ay — AV25~2As

_ As As _ (As)”
) = AV (5 - g ) = AV (W) -

The definition of B enables us to rewrite this as

gl = BV (A—)

S

we get

Substituting the derived expressions for HZ(y") and g¢¢(y*) in the expression for
5%y T, w)? we find

syt w)? = (V (%>2>TBT (BB")'BV (EY.

S

Since BT (BBT)_1 B is a projection matrix,? this implies

As\ > ’ As\ > As\? ?
6d<y+,w>2s<v(—)> v(3) = (%) -
s s s
whence )
sz (2 < 2] )
s 5 |l s
Finally, using Lemina III.16, the theorem follows. O

12.6 The damped dual Newton method

In this section we consider a damped Newton step to a target vector w > 0 at an
arbitrary positive dual feasible y with positive slack vector s = ¢ — ATy. We use the
damping factor o and move from y to y* = y + aAy. The resulting slack vector is
sT = c— ATyt Obviously sT = s+aAs, where As = — AT Ay. We prove the following
generalization of Lemma I1.38.

Theorem I11.18 Let § = §%y,w). If a = 1/(0.(w)+0) then the damped Newton step
of size « is feasible and

o
AN ad g+ w .
580~ 640 > 8.00) ¥ (57 )

3 It may be worth mentioning here how the proof can be adapted to the case where A does not
have full row rank. First, §%(y, w) can be redefined by replacing the inverse of the Hessian matrix
HE(y) in (12.3) by its generalized inverse. Then, in the proof of Theorem II1.17 we may use the
generalized inverse of BBT instead of its inverse. We then also have that

BT (BB")" B

is a projection matrix and hence we can proceed in the same way.
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Proof: Defining A := ¢ (y) — ¢% (yT), we have

—1 " sf
A= by — byt —  log
min(w)( Y Y ;wl RCIP

or equivalently,

i=1

-1 al\s;
A = — TA 'Ll oll ‘ .
min (w) ( ab” Ay - Z wilos ( * S5 ) )

Using the definition of the function 1, we can write this as

_ migzw) (_abT Ay— X:;w <04A81 . (QASZ») |

Thus we obtain

1 T rAs als;
A_min(w) (ozb Ay + aw ?—Zwlw< ” ))

i=1

The first two terms between the outer brackets can be reduced to awmin (w) §2. To this
end we write

7 As
Ay +wl = = (b — AWs *1) Ay = — min (w) gi(y)TAy.
5
Since Ay = —H2(y)"'g% (y), we get
A
b Ay + wl 22— min (w)d?,
s
proving the claim. Using the same argument as in the proof of Theorem III.11, it can
easily be understood that the sum between the brackets attains its maximal value if all
the coordinates of the vector aAs/s are zero except one, and the nonzero coordinate,

for which w; must be maximal, is equal to minus the norm of this vector. Thus we
obtain

A > minl(w) (a min (w) 6% — max (w) ¥ (a % ))
_ 04(52—(50(10)1/)(—@ % )

Now also using Lemma III.16 and the monotonicity of ¢ we obtain
A>ad? — 5(w)h (—ad) = ad® + .(w) (ad + log (1 — ad)).

It is easily verified that the right-hand side expression is maximal if & = 1/(d.(w)+9).
Substitution of this value yields

A>5+5c(w)log(1m> 556(w)1og(1+$>.
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This can be written as

a2 0.0 (5 s (1 5 )) =2 (575)

completing the proof. O

12.7 Dual target-updating

When analysing a dual target-following method we need to quantify the effect of
an update of the target on the proximity measure. We derive the dual analogue of
Theorem II1.13 in this section. We assume that (y, s) is dual feasible and & = 6%(y, w)
for some target vector w, and letting w* be any other target vector we derive an
upper bound for §%(y, w*). We have the following result, in which 6 (w*, w) measures
the ‘distance’ from w* to w according to the primal-dual proximity measure introduced
n (10.4):

5w, w) ! \“’ v’ (12.6)
w*,w) = .
2+/min (w
Theorem III1.19
5d(y,w>k) < = mm ( 5d (y,w) + 20 (w* w))
min( w*
Proof: By definition 6%(y, w*) satisfies
-1
5d *Y d* (- AW -1
)= e ) 4 = | gy © A7),
This implies
1
d * -1 ® —1
0y, w*) = min (") Hb AWs ™ —A(W* -W)s HH, ()1
Using the triangle inequality we derive from this
b e min(w) |, 1 e
0%y, w™) < m ng(y)HHﬁ?*<y)—l + m HA(W ~W)s HHi*(y)ﬂ .
We have*
1 1 W*Ww
He, = AW*ST2AT = A s—2AT
u () min (w*) min (w*) w
1 *
= - min ( > AW S 2AT
min (w*) w
min (w) w* d
= —_— H
min (w*) i < ) w(¥)

4 The meaning of the symbol ‘>’ below is as follows. For any two square matrices P and Q we write
P Q (or P = Q) if the matrix P — @ is positive semidefinite. If this holds and @ is nonsingular
then P must also be nonsingular and Q~! < P~1. This property is used here.
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Hence

Hg*( )71 mln H

- mm

We use this inequality to estimate the first term in the above estimate for 6¢(y, w*):
min (w min (w) [ min( ‘
min (w* ng )HHI ! - min (w*) \| min(w ‘

min ( H
mln w*

For the second term it is convenient to use the positive vector v* defined by

A

ng(y) HH;{(y)*l

5d (y, w).

w*
min (w*)’

and the matrix B defined by B = AS~!. Then we have
Hi.(y) = B(V")*B"

and

so we may write

AW W) 571“1{;{?*@)71

where
s\ T \2 pT -1 *
H = (BV*) (B(V) B ) BV*.
Clearly, H = H2. Thus, H is a projection matrix, whence H =< I. Therefore,

2 w— w* ||

Y

The last equality follows by using the definition of v*. Thus we obtain

A = w)sF e < |77 )

— min (w*) ‘

1 sk
min (w*) HA(W -W)

‘w 2

)|
(l
Hiw(u)™ \/mm (w*)

Substituting the obtained bounds we arrive at

. min (w)
Hou < \/m w

5d (y,w

w—w*
\/HllIl
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Finally, using the definition of the primal-dual proximity measure ¢ (w*, w), according
o (10.4), we may write

‘w wr| _ 20 (w*, w) y/min (w)’ (12.7)
y/min (w*) min (w*)
and the theorem follows. O

In the special case where w* = (1 — )w the above result reduces to

A/ 1 54(y, w) 0 fwl \ 1 d 0 ||w]
M) s A= (ﬂ—e ' wl—emin(w)> T 10 (5 (y’mein(w))’

Moreover, if w = pe, this gives

1

13 ((5d(y,w) -+ 9\/5) .

My, w) < =
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The Primal Newton Method

13.1 Introduction

The aim of this chapter is to show that the idea of a target-following method can also be
realized by moving only in the primal space. Starting at a given positive primal feasible
solution = a primal method moves in the primal space until it reaches z(w) where
w denotes an intermediate (positive) target vector. The search direction follows by
applying Newton’s method to a weighted logarithmic barrier function. This function is
introduced in the next section. Its minimizer is precisely x(w). Hence, by taking (full or
damped) Newton steps with respect to this function we can (approximately) compute
z(w). The general framework of a primal target-following algorithm is described below.

Generic Primal Target-following Algorithm

Input:
A primal feasible vector 2 such that 2% = z (wo);
a final target vector .
begin
z:=z%w:=w"
while w is not ‘close’ to w do
begin
Replace w by the next target in the sequence;
while =z is not ‘close’ to z(w) do
begin
Apply Newton steps at = to the target w

end
end
end

The underlying target sequence starts at w® and ends — via some intermediate target
vectors — at w.
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13.2 The weighted primal barrier function

The search direction in a primal method is obtained by applying Newton’s method to
the weighted primal barrier function given by

1 PR
—— |- wilogz; |. (13.1)
(w) ; J J

min

w() =

We first establish that ¢ (x) attains its minimal value at z(w). This easily follows
by using the barrier function ¢,, in the same way as for the dual weighted barrier
function. Starting from (9.4), on page 221, and using 27 s(w) = ¢’z — bTy(w) and
x(w)s(w) = w we write

n n
max (w) ¢, (z, s(w)) = xls(w) — Z w;logz;s;(w) — elw + Z w; log w;
Jj=1 j=1

- xls(w) — Z w;logz; — elw + Z w; log x; (w)

i=1 i=1
- e — ij logz; — b y(w) —elw + Z w; log x;(w)
i=1 i=1
_ i P r T -
= min (w) @8 (z) — b y(w) — e w+ ij log x;(w).
j=1

This implies that 2(w) is a unique minimizer of ¢% (x).

13.3 Definition of the primal Newton step

Let x be primal feasible and let w > 0. We denote the gradient of ¢ (x) at = by g2 (x)
and the Hessian by H? (x). These are

() == . (C—E)

and
1

— WX ?2=V2X"2,
min (w)

HP (z) =
where V = diag (v), with v as defined in (12.5) in the previous chapter. Note that
HE (z) is positive definite. It follows that ¢F (x) is a strictly convex function.

The calculation of the Newton step Az is a little complicated by the fact that we
want z + Az to stay in the affine space Az = b. This means that Az must satisfy
AAxz = 0. The Newton step at z is then obtained by minimizing the second-order
Taylor polynomial at x subject to this constraint. Thus, Az is the solution of

HAlin {Angfu(m) + %AmTHfj,(m)Am i AAx = O} .
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The optimality conditions for this minimization problem are
gh(x) + Hi(x)Az = Alu
AAx = 0,

where the coordinates of u € IR™ are Lagrange multipliers. We introduce the scaling

vector d according to

x

Observe that H? (x) = D~2/min (w). The optimality conditions can be rewritten as
—d~'Az + min (w) (AD)u = d (c — E)
x
AD(d™'Az) = 0,

which shows that —d 1Az is the orthogonal projection of d(c —w/z) into the null
space of AD:

—d'Az = Pup (d (c - %)) — Az= DPap (ICJE“) . (13.2)

Remark III.20 When w = pe we have d = z/./fi. Since AD and AX have the same null
space, we have Pap = Pax. Therefore, in this case the Newton step is given by

1 xc — e Xc
Ax = ———XPy = —XP,y — —e}.
NG X( Vi ) X(M )

This search direction is used in the so-called primal logarithmic barrier method, which is

obtained by applying the results of this chapter to the case where the targets are on the
central path. It is the natural analogue of the dual logarithmic barrier method treated in
Chapter 6. 'y

We introduce the following proximity measure to quantify the distance from z to
z(w):

5p(x,w):;min{Hd(s—%)H : ATy+s:c}. (13.3)

min (w) ¥

This measure is inspired by the measure (6.8) for the dual logarithmic barrier method,
introduced in Section 6.5.! Let us denote by s(x,w) the minimizing s in (13.3).

Lemma I11.21 We have

vAzx
x

1

min(w)

Pz, w) =

x s(z,w) — w‘

N

Proof: For the proof of the first equality we eliminate s in (13.3) and write

o D)) o= mp{fofe %) o)

I Similar proximity measures were used in Roos and Vial [245], and Hertog and Roos [142] for primal
methods, and in Mizuno [212, 214] and Jansen et al. [159] for primal-dual methods.
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Let ¢ denote the solution of the last minimization problem. Then

d(c—%) — DATG + Pap ((d(c—ﬂ)).

xz

Thus we obtain

(e 2) oAty = s (e~ 2)).

Pap (d (cf %)) — —d'Au.

From (13.2),

Hence we get,

1 1 VwAz vAz
o (z,w) = ———=|ld" " Ax|| = _ ,
(@ w) +/min (w) | | +/min (w) ‘ x z

proving the first equality in the lemma. The second equality in the lemma follows from
the definition of s(x,w).? O

From the above proof and (13.2) we deduce that

zs(x,w) —w
\/@

Also observe that the lemma implies that, just as in the dual case, the proximity
measure is equal to the ‘Hessian—norm’ of the Newton step:

d1Ar = — (13.4)

§*(z,w) = [[Az| go (y) -

13.4 Feasibility of the primal Newton step
Let zt result from the Newton step at x:
2t =2+ Az

The Newton step is feasible if and only if x + Az > 0. Now we can prove the next
lemma.

Lemma I11.22 If 6?(z,w) < 1 then z* = z + Az is primal feasible.

Proof: From Lemma II1.21 we derive

vAx
T

Az
T

Ax
x

8P (x,w) =

> ‘

Z ‘

o

Hence, if §7(x,w) < 1, then |Az| < x, which implies  + Az > 0. The lemma follows.
O

2 Exercise 78 If 67 (z,w) < 1 then s(z,w) is dual feasible. Prove this.
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13.5 Quadratic convergence

We proceed by showing that the primal Newton method is quadratically convergent.
Theorem I11.23 67 (zF, w) < §7(z, w)?.

Proof: Using the definition of 6” (™, w) we may write

1 xts(zt,w) w‘
8P (", w = ’
( ) min(w) Vw
1 xts(z,w) — w‘
N min(w) Vw
< szt s(z, w) —wl.

(«/min(w))
Denote §:= s(z,w). From (13.4) we obtain

§Aﬂc=§dd_1A$:_d§$§_w :_acs(xs—w)
va w

This implies

(x5 —w)?

275 —w| = |(x + Az)5 —w|| = |25 —w —

r5(x5 — w) ‘ N

Combining the above relations, we get
1

Vzzm) <xﬁw>‘<< 7 mﬁwD = P’

This completes the proof. a

Pzt w) <

13.6 The damped primal Newton method

In this section we consider a damped primal Newton step to a target vector w > 0 at
an arbitrary positive primal feasible . The damping factor is again denoted by « and
we move from z to T = 2 + aAz. After Theorem II1.18 it will be no surprise that
we have the following result.

Theorem II1.24 Let § = 6?(z,w). If & = 1/(0.(w) + &) then the damped Newton
step of size av is feasible and

L) = o) > 8.0 (5057 )
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Proof: Defining A := ¢? (z) — ¢P (z), we have

1 T T4+ N )
A:min(w) <c oo +Zwi10g? ’

i=1 v

or equivalently,

1 = alAz;
A=——|—-ac’A log [ 1 ).
min (w) < ac $+sz 0g< + . ))

i=1 ¢
Using the definition of the function %, this can be rewritten as

1 - alz; alzx,
A= min (w) (—ochAx—&-Zwi ( Z; Y < T ))) .

i=1

Thus we obtain

1 Ar & oAz,
A= —ac’'A T ; ‘.
min (w) ( ac ATt ow x Z wiy < T ))

=1

We reduce the first two terms between the outer brackets to amin (w) §2:
A T
—TAz + 0T =2 = - (c — E) Az,
x x
and from (13.2),

- (cf E)TA:E

xT

a(c= %) Pan (4(c-3))

[Pan (2 (=) = ol
x

Since d = x/+/w this implies
T
— (c — g) Az = min (w) 62,
x

proving the claim. The sum between the brackets can be estimated in the same way
as for the dual method. Thus we obtain
1 )

min (w)

— ad 5wy (a

Az

A

(a min (w) 62 — max (w) ¢ (a

Bl

vielding exactly the same lower bound for A as in the dual case. Hence we can use
the same arguments as we did there to complete the proof. O
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13.7 Primal target-updating

We derive the primal analogue of Theorem II1.19 in this section. We assume that z is
primal feasible and § = §P(z, w) for some target vector w. For any other target vector
w* we need to derive an upper bound for §7(x,w*). The result is completely similar
to Theorem III1.19, but the proof must be adapted to the primal context.

Theorem II1.25

59 (i, w*) < Y n(W) /min(w) (

- mm

5px w) + 26 (w* w))

Proof: By Lemma III.21,

1 z s(z, w*) — w*
5p ? * = )
(@) min (w*) Vaw*

where s(x, w*) satisfies the affine dual constraint A7y +s = ¢ and minimizes the above
norm. Hence, since s(z,w) satisfies the affine dual constraint, replacing s{x,w*) by
s{x,w) we obtain

1 zs(z,w) —w*
0P (z, w* < !
( ) min (w*) Vw*
_ 1 zs{z,w) —w+w—w*
min (w*) v

Using the triangle inequality we derive from this

57 (") < 1 xs(m,w)w‘ 1 ‘w w*
z,w*) <
min (w*) v y/min (w

The second term can be reduced by using (12.7) and then the theorem follows if the
first term on the right satisfies

1

min (w*)

mS(m\’/Z—iw‘ < \/1221((;0*)) ‘ —=|| @), (13.5)

This inequality can be obtained by writing

min (w*) Vu* \/IT\/_ \/_

IA

xs m,w)w‘

/min (w*)

min ( ‘ ‘
mm w*

Hence the theorem follows. O

(5”xw)




14

Application to the Method of
Centers

14.1 Introduction

Shortly after Karmarkar published his projective algorithm for linear optimiz-
ation, some authors pointed out possible links with earlier literature. Gill et
al. [97] noticed the close similarity between the search directions in Karmarkar’s
algorithm and in the logarithmic barrier approach extensively studied by Fiacco
and McCormick [77]. At the same time, Renegar [237] proposed an algorithm with
O(y/nL) iterations, an improvement over Karmarkar’s algorithm. Renegar’s scheme
was a clever implementation of Huard’s method of centers [148]. Again, there were clear
similarities, but equivalence was not established. For a while, the literature seemed
to develop in three approximately independent directions. The first stream dealt with
extensions of Karmarkar’s algorithm and was identified with the notion of projective
transformation and projective space.! This is the topic of the next chapter. The second
stream of research was a revival and a new interpretation of the logarithmic approach.
We amply elaborated on that approach in Part II of this book. The third stream
prolonged Renegar’s contribution. Not so much has been done in this framework.?
After a decade of active research, it has become apparent that the links between
the three approaches are very tight. They only reflect different ways of looking at the
same thing. From one point of view, the similarity between the method of centers
and the logarithmic barrier approach is striking. In both cases, the progress towards
optimality is triggered by a parameter that is gradually shifted to its optimal value.
The iterations are performed in the primal, dual or primal-dual spaces; they are made
of Newton steps or damped Newton steps that aim to catch up with the parameter
variation. The parameter updates are either small enough to allow full Newton steps
and the method is of a path-following type with an O(y/nL) iteration bound; or, the
updates are large and the method performs line searches along Newton’s direction
with the aim of reducing a certain potential. The parameter in the logarithmic barrier
approach is the penalty coefficient attached to the logarithm; in the method of centers,
the parameter is a bound on the optimal objective function value. In the logarithmic
barrier approach, the parameter is gradually moved to zero. In the method of centers,

I For survey papers, we refer the reader to Anstreicher [17, 24], Goldfarb and Todd [109],
Gonzaga [123, 124], den Hertog and Roos [142] and Todd [265].

2 In this connection we cite den Hertog, Roos and Terlaky [143] and den Hertog [140].
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the parameter is monotonically shifted to the optimal value of the LO problem.

A similar link exists between Renegar’s method of centers and the variants
of Karmarkar’s method introduced by de Ghellinck and Vial [95] and Todd and
Burrell [266]. Those variants use a parameter — a lower bound in case of a
minimization problem — that is triggered to its optimal value. If this parameter
is kept fixed, the projective algorithm computes an analytic center® that is the dual
of the center used by Renegar. Consequently, there also exist path-following schemes
for the projective algorithm, see Shaw and Goldfarb [254], and Goffin and Vial [103];
these are very close to Renegar’s method.

In this chapter we concentrate on the method of centers. Our aim is to show that the
method can be described and analyzed quite well in the target-following framework.*

14.2 Description of Renegar’s method

The method of centers (or center method) can easily be described by considering the
barrier function used by Renegar.® Assuming the knowledge of a strict lower bound z
for the optimal value of the dual problem (D) he considers the function

SRy, 2) = —qlog(bTy — 2) = Y logs,,
i=1

where ¢ is some positive number and s = ¢ — ATy. His method consists of finding
(an approximation of) the minimizer y(z) of this barrier function by using Newton’s
method. Then the lower bound z is enlarged to

z=2+00"y(z) — 2) (14.1)

3 The computation of analytic centers can be performed via variants of the projective algorithm. In
this connection, we cite Atkinson [29] and Goffin and Vial [102].

The method of centers has an interest of its own. First, the approach formalizes Huard’s scheme
and supports Huard’s intuition of an efficient interior-point algorithm. There are also close links
with Karmarkar’s method that are made explicit in Vial [285]. Second, the method of centers
offers a natural framework for cutting plane methods. Cutting plane methods could be described
in short as a way to solve an LO problem with so many (possibly infinite) inequality constraints
that we cannot even enumerate them in a reasonable computational time. The only possibility is
to generate them one at a time, as they seem needed to insure feasibility eventually. Generating
cuts from a center, and in particular, from an analytic center, appears to be sound from both
the theoretical and the practical point of views. The idea of using analytic centers in this context
was alluded to by Sonnevend [257] and fully worked out by Goffin, Haurie and Vial [99]. See
du Merle [209] and Gondzio et al. [115] for a detailed description of the method, and e.g., Bahn et
al. [31] and Goffin et al. [98] for results on large scale programs. Let us mention that the complexity
analysis of a conceptual method of analytic centers was given first by Atkinson and Vaidya [30]
and Nesterov [225]. An implementable version of the method using approximate analytic centers
is analyzed by Goffin, Luo and Ye [100], Luo [186], Ye [312], Goffin and Sharifi-Mokhtarian [101],
Altman and Kiwiel [7], Kiwiel [168], and Goffin and Vial [104]. Besides, to highlight the similarity
between the method of centers and the logarithmic barrier approach it is worth noting that
logarithmic barrier methods also allow a natural cutting plane scheme based on adding and deleting
constraints. We refer the reader to den Hertog [140], den Hertog, Roos and Terlaky [145], den Hertog
et al. [141] and Kaliski et al. [164]. For a complexity analysis of a special variant of this method
we refer the reader to Luo, Roos and Terlaky [187].

4

The notation used here differs from the notation of Renegar. This is partly due to the fact that
Renegar dealt with a solution method for the primal problem whereas we apply his approach to
the dual problem.
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for some positive 8 such that Z is again a strict lower bound for the optimal value and
the process is repeated. Renegar showed that this scheme can be used to construct an
g-solution of (D) in at most

BTy0 — 20

o <\/ﬁlog f>

iterations, where the superscript © refers to initial values, as usual. In this way he was
the first to obtain this iteration bound.
The algorithm can be described as follows.

Renegar’s Method of Centers

Input:
A strict lower bound z° for the optimal value of (D);
a dual feasible y° such that y° is ‘close’ to y(z°);
a positive number ¢ > /n;
an update parameter 6, 0 < 8 < 1.

begin
=y 2= 2%
while bTy —z>edo
begin

z:z+9(bTyfz);
while y is not ‘close’ to y(z) do
begin
Apply Newton steps at y aiming at y(z)
end

end
end

14.3 Targets in Renegar’s method

Let us now look at how this approach fits into the target-following concept. First we
observe that ¢r can be considered as the barrier term in a weighted barrier function
for the dual problem when we add the constraint b7y > z to the dual constraints and
give the extra constraint the weight ¢. Giving the extra constraint the index 0, and
indexing the other constraints by 1 to n as usual, we have the vector of weights

w=1{(g,1,1,...,1).

The second observation is that Renegar’s barrier function is exactly the weighted dual
barrier function ¢¢, (cf. (12.1) on page 259) for the problem

(DR) max {OTy ATy s=c, bTy+s"=—25>0, 5" > 0} .
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The feasible region of this problem is just the feasible region of (D) cut by the objective
constraint b’y > z. Since the objective function is trivial, each feasible point is optimal.
As a consequence, the weighted central path of (DR) is a point and hence this point,
which is the minimizer of ¢g, is just the weighted-analytic center (according to w)
of the feasible region of (D) cut by the objective constraint (cf. Theorem III.5 on
page 229).

The dual problem of (DR) is the [ollowing homogeneous problem:

(PR) min {c"% — 7% : A% - 3% =0,%>0,5">0}.

Applying Theorem III.1 (page 222), we see that the optimality conditions for
or(y,2) = ¢2 (y) are given by

Az — 3% 0, 20 >0,
ATy + S == C, S Z 07
by — 0 = z, " >0, (14.2)
Is = e,
059 q.
The third and fifth equations imply
-0 q q
=L =_—= 14.3
* 9 by — 2 (14.3)
Hence, defining
T by —z _
Ti=— =
z0 q
we get
Ax = b, x>0,
ATy+s = ¢ s>0, (14.4)
€zs Hz €,
where .
b _
POty (14.5)
q

with y(z) denoting the minimizer of Renegar’s barrier function ¢g(y). We conclude
that y(z) can be characterized in two ways. First, it is the weighted-analytic center
of the feasible region of (D) cut by the objective constraint b”y > z and, second, it
is the point on the central path of (D) corresponding to the above barrier parameter
value p,. Figure 14.1 depicts the situation.

In the course of the center method the lower bound z is gradually updated to the
optimal value of (D) and after each update of the lower bound the corresponding
minimizer y(z) is (approximately) computed. Since y(z) represents the dual part of
the primal-dual pair belonging to the vector u,e in the w-space, we conclude that the
center method can be considered as a central-path-following method.
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Figure 14.1 The center method according to Renegar.

14.4 Analysis of the center method

It will be clear that in the analysis of his method Renegar had to deal with the question
of how far the value of the lower bound z can be enlarged — according to (14.1) —
so that the minimizer § of ¢r(y,Z) can be computed efficiently; hereby it may be
assumed that the minimizer y of ¢gr(y,z) is known.® The answer to this question
determines the speed of convergence of the method. As we know, the answer depends
on the proximity 6(u e, pze) of the present target vector p e to the new target vector
pze. Thus, we have to estimate the proximity d(u.e, uze), where Z is given by (14.1).
Further analysis below is a little complicated by the fact that the new target vector
pze is not known, since

vly(z) -z
q

Hz =

depends on the unknown minimizer y(Z) of ¢r(y, z). To cope with this complication
we need some further estimates.

Let (x(2),y(z),s(z)) denote the solution of (14.4), so it is the point on the central
path of (P) and (D) corresponding to the strict lower bound z for the optimal value.
Then the duality gap at this point is given by

n (bTy(z) — z) .

r(z) — bTy(2) = np, =
q

6 As far as the numerical procedure for the computation of the minimizer of Renegar’s barrier
function is concerned, it may be clear that there are a lot of possible choices. Renegar presented
a dual method in [237]. His search direction is the Newton direction for minimizing ¢p. In our
framework this amounts to applying the dual Newton method for the computation of the primal-
dual pair corresponding to the target vector w for the problems (PR) and (D R); this method has
been discussed in Section 12.2. Obviously, the same goal can be achieved by using any efficient
computational — primal, dual or primal-dual — method for the computation of the primal-dual
pair corresponding to the target vector p.e for (P) and (D).
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This identity can be written as

T —
c'x(2) Z_n+q:1+ﬁ_ (14.6)

bTy(z) — 2z ¢ q

Denoting the optimal value by z* we have ¢! z(z) > z*. Hence

2o n< <1+ g) (BTy(z) — 2).

Also observe that when we know z(z) and y(z) then the lower bound z can be
reconstructed: solving z from (14.6) and (14.5) respectively we get

. _(m+9 bTy(;) —ace ) e

For the updated lower bound Z we thus find the expression
Z2=b"y(2) = qu. + 60 (bTy(2) — 2) = bTy(2) — qu. + bqu. = b y(2) — (1 - 0) qpus.

Since b”y(z) is a lower bound for the optimal value, this relation makes clear that we
are able to guarantee that Z is a strict lower bound for the optimal value only if 8 < 1.

Lemma II1.26 The dual objective value bTy(z) is monotonically increasing, whereas
the primal objective value c'x(2) and bTy(z) — 2z are monotonically decreasing if =
increases.”

Proof: We first prove the second part of the lemma. To this end we use the weighted
primal barrier function for (PR),

T
fi,yz(i,fco) =Tz — 7% — qlogz° — g log #;.
i=1

The dependence of this function on the lower bound z is expressed by the correspond-
ing subindex. Now let z and Z be two strict lower bounds for the optimal value of
(P) and (D) and z > z. Since (Z(z),#%(z)) minimizes ¢%, (%, 2°) and (2(z),7°(z))
minimizes ¢}, (%, %) we have

bz (2(2),8°(2)) < ¢, . (2(2),2°(2)) , on,2 (8(2),2°(2)) < o0,z (8(2),5%(2)) -

Adding these inequalities, we get

oh, . (8(2),3%(2)) + ¢, - (#(2),3°(2)) < b, (8(2),3°(2)) + &b, - (8(2),3%(2)) .

Evaluating the expressions in these inequalities and omitting the common terms on
both sides — the terms in which the parameters z and Z do not occur — we find

—#%2)z — #(2)z < —1°(%)2 — #%(2)z,

7 This lemma is taken from den Hertog [140]. The proof below is a slight variation on his proof. The
proof technique is due to Fiacco and McCormick [77] and can be applied to obtain monotonicity
of the objective value along the central path in a much wider class of convex problems. We refer
the reader to den Hertog, Roos and Terlaky [144] and den Hertog [140].
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or equivalently,

This implies 2°(2) — #%(z) > 0, or

By (14.3) this is equivalent to
bly(z) — z <bly(z) — 2

Thus we have shown that bZy(z) — z is monotonically decreasing if z increases. This
implies that u, is also monotonically decreasing if z increases. The rest of the lemma
follows because along the central path the dual objective value is increasing and the
primal objective value is decreasing. The proof of this property of the central path
can be found in Remark IL.6 (page 95). O

Now let Z be given by (14.1). Then we may write

clx(z) -z _ Fz(z) —z— 0 (bTy(z) — 2)
clz(z) — 2 Ta(z)— =z '

By the above lemma we have ¢!z(2) < ¢!'z(z). Hence, using also (14.6) we get

clx(z) -z <1 0 (bTy(z) — z) B Oq

Tx(z)—z ~ Tx(z) -z n+gq

Using (14.6) once more we derive

bry(z) — Ax(z)— 2’
and so o
byE -z b4
bTy(z) — =z — n+gq
Therefore we obtain the following relation between pz and p,:
bq
s<1-— . 14.7
Mz > ( n+ q) Hz ( )

For the moment we deviate from Renegar’s approach by taking as a new target the
vector

W = (1 _ b )w (14.8)
n+q

where w = p.e. Instead of Renegar’s target vector uze we use w as a target vector.
Due to the inequality (14.7) this means that we slow down the progress to optimality
compared with Renegar’s approach. We show, however, that the modified strategy
still yields an O(y/nL) iteration bound, just as Renegar’s approach. Assuming n > 4,
the argument used in Section 11.2 implies that

fq 1

1
u,e,w) < — if = .
(20, 0) V2 n+q Jn
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Hence, when
n+q

N
the primal-dual pair belonging to the target w can be computed efficiently, to any
desired accuracy.

Since the barrier parameter, and hence the duality gap, at the new target is reduced
by the factor 1 — @q/ (n + ¢) we obtain an s-solution after at most

(14.9)

T,.,0 T,,0

n—i—qloge w :\/ﬁloge w
fq e

iterations. Here w® denotes the initial point in the w-space.

Note that the parameter ¢ disappeared in the iteration bound. In fact, the above
analysis, based on the updating scheme (14.8), works for every positive value of ¢ and
gives the same iteration bound for each value of q.

On the other hand, when using Renegar’s scheme, the update goes via the strict
lower bound z. As we established before, it is then necessary to keep # < 1. So
Renegar’s approach only works if ¢ satisfies n+¢ < gy/n. This amounts to the following
condition on ¢:

q_\/— > /n.

Renegar, in [237], recommended ¢ = n and 6 = 1/(13,/7). Den Hertog [140], who
simplified the analysis significantly, used ¢ > 2/n and 8 = 1/ (8ﬁ) In both cases
the iteration bound is of the same order of magnitude as the bound derived above.®

14.5 Adaptive- and large-update variants of the center method

In the logarithmic barrier approach, we used a penalty parameter to trigger the
algorithm. By letting the parameter go to zero in a controlled way, we could drive
the pairs of dual solutions to optimality. The crux of the analysis was the updating
scheme: small, adaptive or large updates, with results of variable complexity. Small or
adaptive updates allow relatively small reductions of the duality gap — by a factor
— O (1/y/n) — in O(1) Newton steps between two successive updates, and achieve
global convergence in O(y/nL) iterations. Large updates allow sharp decreases of the
duality gap — by a factor 1 — © (1) — but require more Newton steps (usually as
many as O(n)) between two successive updates and lead to global convergence in
O(nL) iterations. A similar situation occurs for target-following methods, where the
algorithm is triggered by the targets; the target sequence can be designed such that
similar convergence results arise for small, adaptive and large updates respectively.
The method of this chapter, the (dual) center method of Renegar, has a different
triggering mechanism: a lower bound on the optimal objective value. The idea is to

8 For ¢ = n we obtain from (14.9) § = 2//n and for ¢ > 2\/n we get 0§ < 1/2 + 1//n. These
values for 6 are larger than the respective values used by Renegar and Den Hertog. We should
note however that this is, at least partly, due to the fact that the analysis of both Renegar and
den Hertog is based on the use of approximate central solutions whereas we made the simplifying
assumption that exact central solutions are computed for each value of .
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move this bound up to the point where the objective is set near to its optimal value. For
any such lower bound z the dual polytope ATy < ¢ is cut by the objective constraint
bTy > 2 and the (ideal) new iterate is a weighted-analytic center of the cut polytope.
The weighting vector treats all the constraints in ATy < ¢ equally but it gives extra
emphasis to the objective constraint by the factor ¢. Enlarging ¢, pushes the new
iterate in the direction of the optimal set. This opens the way to adaptive- and large-
update versions of Renegar’s method. Appropriate values for ¢ can easily be found.
To see this it suffices to recall from (14.7) that the duality gap between two successive
updates of the lower bound reduces by at least the factor

0q

1-—- .
n+q

For example, ¢ = n and § = 1/2 give a reduction of the duality gap by at least 3/4.
It is clear that the reduction factor for the duality gap can be made arbitrarily small
by choosing appropriate values for ¢ and 6 (0 < 6 < 1). We then get out of the
domain of quadratic convergence, but by using damped Newton steps we can reach
the new weighted-analytic center in a controlled number of steps. From this it will
be clear that the updates of the lower bound can be designed in such a way that
adaptive- or large-update versions of the center method arise and that the complexity
results will be similar to those for the logarithmic barrier method. These ideas can
be worked out easily in the target-following framework. In fact, if Renegar’s method
is modified according to the updating scheme (14.8), the results immediately follow
from the corresponding results for the logarithmic barrier approach.?

9 Adaptive and large-update variants of the center method are analyzed by den Hertog [140].
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15
Karmarkar’s Projective Method

15.1 Introduction

It has been pointed out before that recent research in interior-point methods for LO
has been motivated by the appearance of the seminal paper [165] of Karmarkar in
1984. Despite its extraordinary power of stimulation of the scientific community, Kar-
markar’s so-called projective method seemed to remain a very particular method,
remotely related to the huge literature to which it gave rise. Significantly many papers
appeared on the projective algorithm itself,' but the link with other methods, in
particular Renegar’s, has not drawn much attention up to recently.? The decaying
interest for the primal projective method is also due to a poorer behavior on solving
practical optimization problems.® In this chapter we provide a simplified description
and analysis of the projective method and we also relate it to the other methods
described in this book.
Karmarkar considered the very special problem

(PK) min {cTas cAr=0,e"r=n, x> 0},

where, as before, A is an m x n matrix of rank m, and e denotes the all-one vector.
Karmarkar made two seemingly restrictive assumptions, namely that the optimal value
¢ x* of the problem is known and has value zero, and secondly, that the all-one vector
e is feasible for (PK). Note that the problem (PK) is trivial if ¢’e = 0. Then the
all-one vector e is an optimal solution. So we assume throughout that this case is
excluded. As a consequence we have

cle> 0. (15.1)

1 Papers in that stream were written by Anstreicher [14, 15, 16, 18, 19, 20, 21, 22, 23, 24], Freund [83,
85], de Ghellinck and Vial [95, 96], Goffin and Vial [102, 103], Goldfarb and Mehrotra [105, 106, 107],
Goldfarb and Xiao [110], Goldfarb and Shaw [108], Shaw and Goldfarb [254], Gonzaga [117, 119],
Roos [239], Vial [282, 283, 284], Xu, Yao and Chen [300], Yamashita [301], Ye [304, 305, 306, 307],
Ye and Todd [315] and Todd and Burrell [266]. We also refer the reader to the survey papers
Anstreicher [17, 24], Goldfarb and Todd [109], Gonzaga [123, 124], den Hertog and Roos [142] and
Todd [265).

2 See Vial [285, 286].

In their comparison between the primal projective method and a primal-dual method, Fraley and
Vial [80, 81] concluded to the superiority of the later for solving optimization problems. However,
it is worth mentioning that the projective algorithm has been used with success in the computation
of analytic centers in an interior-point cutting plane algorithm; in particular, Bahn et al. [31] and
Goffin et al. [98] could solve very large decomposition problems with this approach.
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Later on it is made clear that the model (PK) is general enough for our purpose.
If it can be solved in polynomial time then the same is true for every LO problem.

15.2 The unit simplex ¥, in R"

The feasible region of (PK) is contained in the unit simplex in R™. This simplex plays
a crucial role in the projective method. We denote it by X,;:

En:{xean : eTm:n,aJEO}.

Obviously* the all-one vector e belongs to ¥, and lies at the heart of it. The sphere
in R™ centered at e and with radius p is denoted by B(e, p). The analysis of the
projective method requires knowledge of the smallest sphere B(e, R) containing 3, as
well as the largest sphere B(e,r) whose intersection with the hyperplane e’
contained in X,,.

It can easily be understood that R is equal to the Euclidean distance from the center
e of ¥,, to the vertex (n,0,...,0). See Figure 15.1, which depicts 33. We have

T =nis

3

(0,0,0)

Figure 15.1 The simplex 3.

R=+(n—-1)2+n-112=/n(n—1).

Similarly, r is equal to the Euclidean distance from e to the center of one of the faces

4 Tt might be worthwhile to indicate that the dimension of the polytope %, is n — 1, since this is the
dimension of the hyperplane e’z = 7, which is the smallest affine space containing Zy,.
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of ¥,, such as (0, -25,..., =27), and therefore

r¢1+(n1)<nﬁ11>2 nﬁl'

Assuming n > 1, we thus have

15.3 The inner-outer sphere bound

As usual, let P denote the feasible region of the given problem (PK). Then we may
write P as
P=Qn{zeR" : z >0},

where  is the affine space determined by
Q:{xG]R” : Az =0, eTx:n}.
Now consider the minimization problem
min {c'z : € QN Ble,r)}.

This problem can be solved explicitly. Since €2 is an affine space containing the center
e of the sphere B(e,r), the intersection of the two sets is a sphere of radius r in a
lower-dimensional space. Hence the minimum value of ¢’z over 2 N B(e,r) occurs

uniquely at the point

2ti=e—rp,

where p is the vector of unit length whose direction is obtained by projecting the vector
¢ into the linear space parallel to Q. Similarly, when x runs through Q N B(e, R), the
minimal value will be attained uniquely at the point

22 :=e¢— Rp.

Since
QN Be,r) CP C QN Ble, R),

and the minimal value over P is given as zero, we must have
el 22 <0< et
This can be rewritten as
cle— Rch <0<cle— rch.
The left inequality and (15.1) imply

T
ch2—>O.
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Hence,

dat=cle—refp<cle— LT = <1 _ ) cle.
R n—1

Thus, starting at the feasible point e we may construct in this way the new feasible
point 2! whose objective value, compared with the value at e, is reduced by the factor
1-1/(n—1).

At this stage we note that we want the new point to be positive. The above procedure
may end at the boundary of the simplex. This can be prevented by introducing a step-
size o € (0,1) and using the point

z:i=e—arp

as the new iterate. Below o & 1/2 will turn out to be a good choice. The objective
value is then reduced by the factor

[0

n—1

It is clear that the above procedure can be used only once. The reduction factor for
the objective value is 1 —7/R, where r/R is the ratio between the radius of the largest
inscribed sphere and the radius of the smallest circumscribed sphere for the feasible
region. This ratio is maximal at the center e of the feasible region. If we approach the
boundary of the region the ratio goes to zero and the reduction factor goes to 1 and
we cannot make enough progress to get an efficient method.

Here Karmarkar made a brilliant contribution. His idea is to transform the problem
to an equivalent problem by using a projective transformation that maps the new
iterate back to the center e of the simplex X,,. We describe this transformation in the
next section. After the transformation the procedure can be repeated and the objective
value is reduced by the same factor. After sufficiently many iterations, a feasible point
can be obtained with objective value as close to zero as we wish.

15.4 Projective transformations of X,

Let d > 0 be any positive vector. With R’} denoting the set of nonnegative vectors in
IR™, the projective transformation 7y : RY \ {0} — X, is defined by

ndx ndx

T, L L
d - T Ty eT (dx)

Note that T can be decomposed into two transformations: a coordinate-wise scaling
x + dz and a global scaling x +— nx/e’z. The first transformation is defined for
each x, and is linear; the second transformation — which coincides with T, — is
only defined if e”x is nonzero, and is nonlinear. As a consequence, Ty is a nonlinear
transformation.

It may easily be verified that Ty maps the simplex 3, into itself and that it is
invertible on X,,; the inverse on ¥, is simply

nd— 'z

Td—l X m
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The projective transformation has some important properties.

Proposition IV.1 For each d > 0 the projective transformation Ty is a one-to-one
map of the simpler 3, onto itself. The intersection of 3, with the linear subspace
{z : Ax =0} is mapped lo the intersection of ¥, with another subspace of the
same dimension, namely {m : AD g = O}, Besides, the transformation is positively
homogeneous of degree zero; that is, for any A > 0,

Td()\x) = Td(l‘).

Proof: The first statement is immediate. To prove the second statement, let x € ¥,,.
Then Az = 0 if and only if Ad~'dx = 0, which is equivalent to AD~'Ty(z) = 0. This
implies the second statement. The last statement is immediate from the definition. O

Now let z be a feasible and positive point. For any nonzero x € P there exists a
unique & € ¥, such that z = T,(£). We have Az = 0 if and only if AZ¢ = 0 and

B B nz{ n(Zc)T£
¢l =T (&) = el'(z6)  el(z8)

Hence the problem (PK) can be reformulated as

min niee) o (ZC)T 3
el (€)

: AZ§:0,6T§:n,§20}.

Note that the objective of this problem is nonlinear. But we know that the optimal
value is zero and this can happen only if (Z c)T £ = 0. So we may replace the nonlinear

objective by the linear objective (Zc)Tf and, changing the variable £ back to x, we
are left with the linear problem

(PKS) min {(Zc)Tx c AZx =0, elz =n, sz}.

Note that the feasibility of z implies Az = 0, whence AZe = 0, showing that e is
feasible for the new problem. Thus we can use the procedure described in Section 15.3
to construct a new feasible point for the transformed problem so that the objective
value is reduced by a factor 1 — a/ (n — 1). The new point is obtained by minimizing
the objective over the inscribed sphere with radius ar:

min {(Zc)Tx cAZz=0,e"r=n, ||r—¢ < 047“} .

15.5 The projective algorithm

We can now describe the algorithm as follows.
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Projective Algorithm

Input:
An accuracy parameter € > 0.
begin
x=¢
while Tz > ¢ do
begin
z 1= argming {(Xc)Tf  AXE=0,eT¢=n, |6 —¢]| < On“};
z:=T,(z);
end
end

As long as the objective value at the current iterate x is larger than the threshold
value ¢, the problem is rescaled by the projective transformation 7,-1. This makes the
all-one vector feasible. Then the new iterate z for the transformed problem is obtained
by minimizing the objective value over the inscribed sphere with radius ar. After this
the inverse of the map 7,-1 — that is T, — is applied to z and we get a point that
is feasible for the original problem (PK’) again. This is repeated until the objective
value is small enough. Figure 15.2 depicts one iteration of the algorithm.

optimal solution

Ar =0 AXE=0

optimal solution

Figure 15.2 One iteration of the projective algorithm (z = z*).

In the next section we derive an iteration bound for the algorithm. Unfortunately, the
analysis of the algorithm cannot be based on the reduction of the objective value in
each iteration. This is because the objective value is not preserved under the projective
transformation. This is the price we pay for the linearization of the nonlinear problem



IV.15 Karmarkar’s Projective Method 295

after each projective transformation. Here, again, Karmarkar proposed an elegant
solution. The progress of the method can be measured by a suitable potential function.
We introduce this function in the next section.

15.6 The Karmarkar potential

Karmarkar used the following potential function in the analysis of his method.

T
b () =nlogez — Zlogmi.

i=1
The usefulness of this function depends on two lemmas.

Lemma IV.2 Ifx € ¥, then

n

'z < exp <¢K—m) )

T

Proof: Since e’ x = n, using the geometric-arithmetic-mean inequality we may write

" el
Zlogmi <nlog— =mnlogl =0.
i=1 "
Therefore

n
ox(x) =nlogclz — Zlogmi > nlogelz,
i=1

which implies the lemma. a

Lemma IV.3 Let z and z be positive vectors in 5y, and y = T,(z). Then
(Xeo)he &
b (7) — K (y) =nlog —— + » logz;.
(Xe) z ;

Proof: First we observe that ¢x(z) is homogeneous of degree zero in z. In other
words, for each positive A we have

b (Ar) = ¢ ().
As a consequence we have

ox(0) = o (T2(2) = on ( iy ) = o a2,
as follows by taking A = n/e” (xz). Therefore,

cTr - Z;
Orc(a) = o) = o) = o (02) = nlog s =3 Jlog o
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from which the lemma follows. O

Applying the above lemma with z = e — arp we can prove that each iteration of
the projective algorithm decreases the potential by at least 0.30685 when choosing
appropriately.

Lemma IV.4 Taking o = 1/(1 + r), each iteration of the projective algorithm
decreases the potential function value by at least 1 —log2 = 0.30685.

Proof: By Lemina IV.3, at any iteration the potential function value decreases by
the amount

(Xo)he &
A =nlog———+ log z;.
(Xe)' 2 ; ‘

Recall that Xc¢ is the objective vector in the transformed problem. Since the objective
value of the transformed problem is reduced by at least a factor 1 — ar/R and
z = e — arp, we obtain

n
A > —nlog (1 — %) + Zlog (1—arp;). (15.2)
i=1

For the first term we write

(1= ) = (G () = e () e ()

Here, and below we use the function ¥ as defined in (5.5), page 92. The second term
in (15.2) can be written as

n

Z log (1 — arp;) = —are’p — Z P (—arp;) = — Z W (—arp;).
i=1 i=1

= i=1

Here we have used the fact that e”p = 0. By the right-hand side inequality in (6.24),
on page 134, the above sum can be bounded above by ¢ (—ar [|p||). Since ||p|| = 1 we

obtain or
> ar? ) (=
A>ar +m/1( R) Y (—ar).

Omitting the second term, which is nonnegative, we arrive at
A>ar? ¢ (—ar)=ar? +ar +log(l—ar).

The right-hand side expression is maximal if &« =1/ (1 + 7). Substitution of this value
yields

Azr—&—log(l—lr?) =r—log(l+r)=1v(r).

Since r = /n/(n — 1) > 1 we have ¥ (r) > 9 (1) = 1—log 2, and the proot is complete.
O
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15.7 Iteration bound for the projective algorithm

The convergence result is as follows.

Theorem IV.5 After no more than

n CTG

Wl)logT

iterations the algorithm stops with a feasible point x such that ¢z < e.
Proof: After k iterations the iterate z satisfies

o (z) — dr(e) < —ky(1).
Since ¢k (e) = nlogcle,

br(x) < nlogcle — ky(1).
Using Lemma IV.2, we obtain

'z < exp ((ZSK—(x)) < exp (nlog cle - kl/)(l)) ’

n n

The stopping criterion is thus certainly met as soon as

exp (nlogcTe — k‘zﬁ(l)) <e

n
Taking logarithms of both sides we get
nlogcle — ky(1) < nloge,

or equivalently,

which yields the bound in the theorem. a

15.8 Discussion of the special format

The problem (PK) solved by the Projective Method of Karmarkar has a special format
that is called the Karmarkar format. Except for the so-called normalizing constraint
elr = n, the constraints in (PK) are homogeneous. Furthermore, it is assumed that

the optimal value is zero and that some positive feasible vector is given.> We may

5 In fact, Karmarkar assumed that the all-one vector e is feasible, but it is sufficient if some given
positive vector w is feasible. In that case we can use the projective transformation 7,1 as defined
in Section 15.4, to transform the problem to another problem in the Karmarkar format and for
which the all-one vector is feasible.
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wonder how the Projective Method could be used to solve an arbitrary LO problem
that is not given in the Karmarkar format.b

Clearly problem (PK) is in the standard format and, since its feasible region is
contained in the unit simplex ¥, in R"™, the feasible region is bounded. Finally, since
the all-one vector is feasible, (PK) satisfies the interior-point condition. In this section
we first show that a problem (P) in standard format can easily be reduced to the Kar-
markar format whenever the feasible region P of (P) is bounded and the interior-point
condition is satisfied. Secondly, we discuss how a general LO problem can be put in
the format of (PK).

Thus, let the feasible region P of the standard problem

(P) min {ch : Az =b, x>0}

be bounded and let it contain a positive vector. Now let the pair (g, §) be optimal for
the dual problem

(D) max {67y : ATy+s=c,s>0}.

Then we have, for any primal feasible x,

le=cz—bTyg.

So 57z and ¢”z differ by the constant 57§ and hence the problem
(P min {87z : Ax =b, x>0}

has the same optimal set as (P). Since 3 is dual optimal, the optimal value of (P’) is
zero. Since the feasible region P is bounded, we deduce from Corollary 11.14 that the
row space of the constraint matrix A contains a positive vector. That is, there exists
a A € R™ such that

vi=ATXA>0.

Now, defining
vi=bT,

we have for any feasible z,

vle = (AT)\)T z2=NAr=\Tb=v.

6 The first assumption on a known optimal value for a problem in the Karmarkar format was removed
by Todd and Burrell [266]. They used a simple observation that for any ¢, the objective cTe—¢
is equivalent to (c — ({/n)e)Tx. If ¢ = ¢*, the optimal value of problem (PK), the assumption
of a zero optimal value is verified for the problem with the new objective. If { < {*, Todd and
Burrell were able to show that the algorithm allows an update of the lower bound ¢ by a simple
linear ratio test after finitely many iterations; the overall procedure has the same complexity as the
original algorithm of Karmarkar. The second assumption of a known interior feasible solution was
removed by Ghellinck and Vial [95] by using a different projective embedding. They also used the
same parametrization as Todd and Burrell and thus produced the first combined phase I — phase
IT interior-point algorithm, simultanecusly resolving optimality and feasibility. They also pointed
out that the projective algorithm was truly a Newton method. The update of the bound in their
method is done by an awkward quadratic test. Fraley [79] was able to replace the quadratic test by
a simpler linear ratio test. To remain consistent with Part I of the book, we shall not dwell upon
those approaches, but rather use a homogeneous self-dual embedding, and analyze the behavior of
Karmarkar algorithm on the embedding problem.
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Since there exists a positive primal feasible x and v is positive, it follows that
v =Tz > 0. We may write

vAxr =vb = (va) b="b (vTx) = (va) x.

Hence,
(VA — va) z=0.

Defining .
A =vA -t

we conclude that
732{33 c ATz =0, vTac:V},

and hence (P’) can be reformulated as
(P min {87z : Az =0,v"z=v,2>0},
where v > 0. This problem can be rewritten as
(P min {(EU*I)TE AV Hz=0e'T=nz> 0} ,

where the new variable Z relates to the old variable & according to T = nvz/v. Since
(P) satisfies the interior-point condition, this condition is also satisfied by (P’). Hence,
the problem (P”) is not only equivalent to the given standard problem (P), but
it satisfies all the conditions of the Karmarkar format: except for the normalizing
constraint the constraints are homogeneous, the optimal value is zero, and some
positive feasible vector is given. Thus we have shown that any standard primal problem
for which the feasible set is bounded has a representation in the Karmarkar format.”

Our second goal in this section is to point out that any given LO problem can
be transformed to a problem in the Karmarkar format. Here we use some results
from Chapter 2. First, the given problemm can be put in the canonical format,
where all constraints are inequality constraints and the variables are nonnegative (see
Appendix D.1). Then we can embed the resulting canonical problem — and its dual
problem — in a homogeneous self-dual problem, as described in Section 2.5 (cf. (2.15)).
Thus we arrive at a problem of the form

min {OTx : ZszO,xZO},

where M is skew-symmetric (M = —M7) and we need to find a strictly complementary
solution for this problem. We proceed by reducing this problem to the Karmarkar
format.

First we use the procedure described in Section 2.5 to embed the above self-dual
problem in a self-dual problem that satisfies the interior-point condition. As before,
let the vector r be defined by

r:=e— Me.

7 Tt should be noted that this statement has only theoretical value; to reduce a given standard
problem with bounded feasible region to the Karmarkar format we need a dual feasible pair (7, )
with § > 0; in general such a pair will not be available beforehand.
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Now consider the self-dual model in R™*! given by

BN HR M HERAEHRH
min : + > , >0
n+1 ¢ —rT 0| |¢ n+l 0 3
Taking
(2,8) = (1),
we get
M r x n 0 B Me+r e
—rT 0 I3 n+1| | —=Tetn+1| |1’

as can easily be verified. By introducing the surplus vector (s,7n), we can write the
inequality constraints as equality constraints and get the equivalent problem

S EE R AN A

We replaced the objective (n + 1)£ by &; this is allowed since the optimal objective is
0. Note that the all-one vector ((z,&,s,n) = (e, 1,e,1)) is feasible for (15.3) and the
optimal value is zero. When summing up all the constraints we obtain

e’ Me+elre—els—rTo —np=—n—1
Since r = e — Me and eT Me = 0, this reduces to
lztelste+n=n+1)(1+8). (15.4)

We can replace the last equality constraint in (15.3) by (15.4). Thus we arrive at the
problem

x x
M -0 0
min ¢ & - " - $1 = ) ¢ >03. (15.5)
et 1 e 1 s (n+1)(1+¢) s
Ui 7
Instead of this problem we consider
x x
: M r -1 0 £ 0 £
: = , >0,. 15.6
min 4 ¢ [eT 1 el 1] s 2(n+1) s~ (15.6)

L] ]

We established above that the all-one vector is feasible for (15.5); obviously this implies
that the all-one vector is also feasible for (15.6). It follows that the problem (15.6)
is in the Karmarkar format and hence it can be solved by the projective method.
Any optimal solution (z*,&*,s*,7*) of (15.6) has £* = 0. It is easily verified that
(z*,&%, 8%, ") /2 is feasible for (15.5) and also optimal.
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Thus we have shown how any given LO problem can be embedded into a problem
that has the Karmarkar format and for which the all-one vector is feasible. We should
note however that solving the given problem by solving the embedding problem
requires a strictly complementary solution of the embedding problem. Thus we are
left with an important question, namely, does the Projective Method yield a strictly
complementary solution? A positive answer to this question has been given by
Muramatsu and Tsuchiya [223]. Their proof uses the fact that there is a close relation
between Karmarkar’s method and the primal affine-scaling method of Dikin®when
applied to the homogeneous problem obtained by omitting the normalizing constraint
in the Karmarkar format. The next two sections serve to highlight this relation. We
first derive an explicit expression for the search direction in the Projective Method. The
result is that this direction can be interpreted as a primal logarithmic barrier direction
for the homogeneous problem. Then we show that the homogeneous problem has
optimal value zero and that any strictly complementary solution of the homogeneous
problem yields a solution of the Karmarkar format.

15.9 Explicit expression for the Karmarkar search direction

It may be surprising that in the discussion of Karmarkar’s approach there is no mention
of some issues that were crucial in the methods discussed in the rest of this book. The
most striking example of this is the complete absence of the central path in Kar-
markar’s approach. Also, whereas the search direction in all the other methods is
obtained by applying Newton’s method — either to a logarithmic barrier function
or to the centering conditions — the search direction in the Projective Method is
obtained from a different perspective. The aim of this section is to derive an explicit
expression for the search direction in the Projective Method. In this way we establish
a surprising relation with the Newton direction in the primal logarithmic method for
the homogeneous problem arising when the normalizing constraint in the Karmarkar
format is neglected.

Let x be a positive vector that is feasible for (PK). Recall from Section 15.5 that
the new iterate z in the Projective Algorithm is obtained from x* = T,(z) where

z = argming {(Xc)Tf D AXE=0,eTe=n, ¢ e < On“}.

Here r denotes the radius of the maximal inscribed sphere in the simplex ¥, and «a is
the step-size. From this we can easily derive that®

z=¢e¢+ alz,
where

Az = argmin, {(XC)T A AXAE=0,eTAc =0, |Ag|| = T}_

For a brief description of the primal affine-scaling method of Dikin we refer to the footnote on
page 339.
We assume throughout that ¢’z is not constant on the feasible region of (PK). With this

assumption the vector z is uniquely defined.
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By writing down the first-order optimality conditions for this minimization problem
we obtain

AXAz = 0

el Az = 0
Xc = XAy +oe +nAz (15.7)

Azl =7

where o, € IR and y € R™. Multiplying the third equation from the left by AX and
using the first equation and
AXe=Ax =0, (15.8)

we get
AX?%c = AX? ATy,

whence .
Y= (AXQAT) AXZe.
Substituting this in the third equation of (15.7) gives

ge+nAz = Xe— XAT (AXQAT)AAXQC
= (1= (A" (Ax24T) " AX) Xe
= PAX (XC) (159)

Taking the inner product with e on both sides, while using eZ Az = 0 and eTe = n,
we get
no =el Pyx (Xc).

Since AXe = 0, according to (15.8), e belongs to the null space of AX and hence
Pax (e)=ce. (15.10)
Using this we write
T Pax (Xe) = (Xe)' Pax (e) = (Xo) e = cTa. (15.11)

Thus we obtain no = ¢’'z. Substituting this in (15.9) we get
T T
nAz = Pax (Xe) — 2e:PAX (Xc— 2e) .
n n

The second equality follows by using (15.10) once more. Up to its sign, the value of
the factor n now follows from ||Az|| = r. This implies

Psix (ch ClTx e)
[Pax (o= 5ze)|

Az =4r (15.12)

Here we assumed that the vector

T clx

X = Pax (Xcﬂe> =Pux (Xc)— —e (15.13)
n n
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is nonzero. This is indeed true. We leave this fact as an exercise to the reader.'The
sign in (15.12) follows by using that we are minimizing (X¢)” Az. So we must have
(Xc)T Az < 0. In this respect the following observation is crucial. By using the
Cauchy—Schwarz inequality we may write

e = (Xc)Te = (Xc)T Pax (e) = el Pax (X¢) < v |Pax (Xe)||.

Note that this inequality holds with equality only if P4x (X¢) is a scalar multiple of e.
This would imply that Az is a scalar multiple of e. Since e Az = 0 and |Az|| =7 >0
this case cannot occur. Thus we obtain
Tz
Pix (Xo)|| > —.
IPax (Xe)| > 2

As a consequence,

CTl‘ CTl‘
(Xc)" Pax (Xc - e) = (X0 Pax (Xc) — — (x0)" Pax ()
CT:L' z
= ||Pax (XO)|]* — ( n) > 0.

We conclude from this that (X¢)” Az < 0 holds only for the minus sign in (15.12).
Thus we find

Az=—X (15.14)

x|
We proceed by deriving an expression for 7. We have

o7 :%:nx(e—l—ozAz): ne(e+alz)
* =(2) Tz zT (e + alz) * T (e + aAz) ‘)

So the displacement in the z-space is given by the expression between the brackets.
This expression can be reduced as follows. We have

nz (e + alz) ne(e+alz) —al (e+alz)x  nx(Az) -zl (Az)z

zT (e + alz) v zT (e + alz) TOTT (e + alz)
Here we used that e’z = n. Hence we may write
T =z + alzx,
where

nz (Az) — 2t (Az)z

A =
v 2T (e + aAz)

(15.15)
Using (15.14) the enumerator in the last expression can be reduced as follows:

n’rmX T(JJTX)J) T T
- = —({z'x)e —nx).
T g @ e

nx (Az) — zt (Az)xz =

10 Exercise 79 Show that the assumption (15.1) implies that ¢Zz is positive on the (relative) interior
of the feasible region of (PK). Derive from this that the vector x is nonzero, for any feasible x
with z > 0.
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Using the definition (15.13) of x and e’z = n, we may write
(xTx) e —ny = (mTPAX (Xe) — ch) e—nPsx (Xec)+ (ch) e
= (xTPAX (Xc))e— nPax (Xc)

X
- e ()

TPax (X
p=1Ax0 Az( 9. (15.16)

where

So we have x
nx (Az) —z! (Az)x = wXPAX (e - —C> .
x| 1
Substituting this relation in the above expression (15.15) for Az gives

rnu

A =
T X 2T (e + alz)

X
XPax <e - 70) (15.17)

Thus we have found an explicit expression for the search direction Az used in the
Projective Method of Karmarkar.!! Note that this direction is a scalar multiple of

7XPAX (ﬁ — e)
7

and that this is precisely the primal logarithmic barrier direction'? at x for the barrier
parameter value p, given by (15.16), for the homogeneous problem

(PKH) min {ch : Az =0,2>0}.

Note also that problem (PKH) arises when the normalizing constraint in (PK) is
neglected. We consider the problem (PK H) in more detail in the next section.

15.10 The homogeneous Karmarkar format

In this section we want to point out a relation between the primal logarithmic barrier
method when applied to the homogeneous problem (PK H) and the Projective Method
of Karmarkar. It is assumed throughout that (PK) satisflies the assumptions of the
Karmarkar format. Recall that (PK H) is given by

(PKH) min {c"z : Az =10,z >0}.
We first show that the optimal value of (PKH) is zero. Otherwise there exists a
nonnegative vector x satisfying Az = 0 such that ¢’z < 0. But then
ne

L@ =g

11 Show that T Az, with Az given by (15.17), is negative if and only if

(") 2" Pax (Xc) > n || Pax (Xo)|*.
12 See Remark IT1.20 on page 271.


file:////Pax

IV.15 Karmarkar’s Projective Method 305

is feasible for (PK) and satisfies ¢! T, (z) < 0, contradicting the fact that the optimal
value of (PK) is zero. The claim follows.!?

Tt is clear that any optimal solution of (PK) is nonzero and optimal for (PK H). So
(PK) will have a nonzero optimal solution x. Now, if x is optimal then Ax is optimal
as well for any nonnegative A. Therefore, since (PK H) has a nonzero optimal solution,
the optimal set of (PK H) is unbounded. This implies, by Corollary I1.12 (page 102),
that the dual problem (DK H) of (PKH), given by

(DKH) max {OTy : ATy—l—s:c,szO},

does not contain a strictly feasible solution. Thus, (DK H) cannot satisfy the interior-
point condition. As a consequence, the central paths of (PKH) and (DKH) do not
exist.

Note that any nonzero feasible solution x of (PKH) can be rescaled to T.(z) so
that it becomes feasible for (PK). All scalar multiples Az, with A > 0, are feasible for
(PKH), so we have a one-to-one correspondence between feasible solutions of (PK)
and feasible rays in (PKH). Therefore, we can neglect the normalizing constraint
in (PK) and just look for a nonzero optimal solution of (PKH). The behavior of
the afline-scaling direction on (PK H) has been carefully analyzed by Tsuchiya and
Muramatsu [273]. The results of this paper form the basis of the paper [223] by
the same authors in which they prove that the Projective Method yields a strictly
complementary solution of (PK).*

13 A different proof of the claim can be obtained as follows. The dual problem of (PK) is
(DK) max {OTy-i-nC :ATy—i—Ce—i—s:c,sZO}.

This problem has an optimal solution and, due to Karmarkar’s assumption, its optimal value is
zero. Thus it follows that (y, ¢) is optimal for (DK) if and only if ¢ = 0 and y is an optimal solution
of

(DKH) max {OTy : ATy—i—s:c,szO}.

By dualizing ( DK H) we regain the problem (P K H), and hence, by the duality theorem the optimal
value of (PKH) must be zero.

14 Exercise 80 Let z be feasible for (PK H) and positive and let g > 0. Then, defining the number

§(z, 1) by
e

§(z, p) := min {
Y:8 12

: ATy—i—s:c},

we have é(x, u) > 1. Prove this.
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More Properties of the Central
Path

16.1 Introduction

In this chapter we reconsider the self-dual problem
(SP) min {¢'z : Mz > —q, z >0},

where the matrix M is of size n x n and skew-symmetric, and the vector ¢ is
nonnegative.

We assume that the central path of (SP) exists, and our aim is to further investigate
the behavior of the central path, especially as p tends to 0. As usual, we denote the
p-center by x(u) and its surplus vector by s(p) = s(x(u)). From Theorem 1.30 (on
page 45) we know that the central path converges to the analytic center of the optimal
set SP* of (SP). The limit point z* and s* := s(z*) form a strictly complementary
optimal solution pair, and hence determine the optimal partition of (SP), which is
denoted by 7 = (B, N).

We first deal with the derivatives of xz(u) and s(pu) with respect to p. In the next
section we prove their existence. In Section 16.2.2 we show that the derivatives are
bounded, and we also investigate the limits of the derivatives when p approaches zero.

In a final section we show that there exist two homothetic ellipsoids that are centered
at the p-center and which respectively contain, and are contained in, an appropriate
level set of the objective value ¢ .

16.2 Derivatives along the central path

16.2.1 Euxistence of the derivatives

A fundamental result in the theory of interior point methods is the existence and
uniqueness of the solution of the system

Fw,z,s) = s w

Mersq} _0
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for all positive w.! The solution is denoted by x(w) and s(w).

Remark IV.6 It is possible to give an elementary proof of the fact that the equation
F(w,x,s) = 0 cannot have more than one solution. This goes as follows. Let z!, st and 22, s
denote two solutions of the equation. Define Az := z? — !, and As := s? — s'. Then it
follows from Ma' + s' = Mz? + s® = ¢ that

MAz + As = 0.
Since M is skew symmetric it follows that AzTAs = —AzTMAz =0, so
e’ (AzAs) = 0. (16.1)
1 2

From z's! = 22$% = w we derive that if azjl = :EJZ holds for some j then also s; = 357 and vice
versa. In other words,

(Az); =0 (As); =0, j=1,---,n. (16.2)
Also, if a:jl < :Ejz for some j, then sjl- > s?-, and if azjl > :E? then sjl- < sf Thus we have

Using (16.1) we obtain
(Az),; (As); =0, j=1,---,n.
This, together with (16.2) yields that (Az); = 0 and (As); = 0, for each j. Hence we conclude

that Az = As = 0. Thus we have shown z° = z' and s* = s', proving the claim.? .

With z = (z, s), the gradient matrix (or Jacobian) of F(w, x, s) with respect to z is

M I

V.F(w,x,s) = s X

?

where S and X are the diagonal matrices corresponding to x and s, respectively. This
matrix is independent of w and depends continuously on x, s and is nonsingular. Hence
we may apply the implicit function theorem.?® Since F(w, x, s) is infinitely many times
differentiable the same is true for z(w) and s(w), and we have

HEENRH

On the central path we have w = pe, with u € (0,00). Let us consider the more
general situation where w is a function of a parameter ¢, such that w(¢) > 0 for all
t € T with T an open interval T' C R™. Moreover, we assume that w is in the class
C® of infinitely differentiable functions. Then the f{irst-order derivatives of z(t) and
s(t) with respect to t are given by

dwy] [ m 1 17 o
L/(t)]— s(t) X@] lw'(t)]' (163)

1 This result follows from Theorem 11.4 if w = pe. For arbitrary w > 0 a proof similar to that of
Theorem III.1 can be given.

M I
S X

2 A more general result, for the case where M is a so-called Py-matrix, is proven in Kojima et
al. [175].

3 Cf. Proposition A.2.
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Changing notation, and denoting x’(¢) by 2V, and similar for s and w, using induction
we can easily obtain the higher-order derivatives. Actually, we have

=] ]

k—1 k
b= w® (k1) g(0)

i=1

where

If w is analytic in ¢ then so are x and s.*

When applying the above results to the case where = z(u) and s = s(u), with
i € (0,00), it follows that all derivatives with respect to p exist and that x and s
depend analytically on pu.

16.2.2 Boundedness of the derivatives

Recall that the point x(p) and its surplus vector s(u) are uniquely determined by the
system of equations

Mx+q = s, x=>0,5>0,

zs = ue.

(16.4)

Taking derivatives with respect to p in (16.4) we find, as a special case of (16.3),

e _ .

JME= (16.5)
s+ sx = €.

The derivatives of x(u) and s(u) with respect to p are now denoted by @ and §

respectively. In this section we derive bounds for the derivatives.” These bounds are

used in the next section to study the asymptotic behavior of the derivatives when p

approaches zero. Since we are interested only in the asymptotic behavior, we assume

in this section that  is bounded above by some fixed positive number .

Table 16.1. (page 310) summarizes some facts concerning the order of magnitude of
the components of various vectors of interest. We are interested in the dependence on
. All other problem dependent data (like the condition number ogp, the dimension
n of the problem, etc.) are considered as constants in the analysis below.

From Table 16.1. we read that, e.g., xp(u) = ©(1) and x5 () = O(1). For the
meaning of the symbols © and O we refer to Section 1.7.4. See also page 190. It is
important to stress that the constants hidden in the order symbols are independent

4 This follows from an extension of the implicit function theorem. We refer the reader to, e.g.,
Fiacco [76], Theorem 2.4.2, page 36. See also Halicka [137], Wechs [290] and Zhao and Zhu [321].

We restrict ourselves to first-order derivatives. The asymptotic behavior of the derivatives has been
considered by Adler and Monteiro [3], Witzgall, Boggs and Domich [294] and Ye et al. [313]. We
also mention Giiler [131], who also considers the higher-order derivatives and their asymptotic
behavior, both when pu goes to zero and when p goes to infinity. A very interesting result in his
paper is that all the higher-order derivatives vanish if y approaches infinity, which indicates that
the central path is asymptotically linear at infinity.

5
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Vector B N
L x(u) | ©(1) O(n)
2| s | e | e
3] aw | o2 | e(m
1] #w | o) | ow
5| s | o) | o

Table 16.1. Asymptotic orders of magnitude of some relevant vectors.

of the vectors x,s and of the value p of the barrier parameter. They depend only on
the problem data M and ¢ and the upper bound f for u.

The statements in the first two lines of the table almost immediately follow from
Lemma 1.43 on page 57. For example, for i € B the lemma states nx; (1) > osp, where
osp is the condition number of (SP). This means that x;(u) is bounded below by a
constant. But, since x;(u) is bounded on the finite section 0 < p < f of the central
path, as a consequence of Lemma 1.9 (page 24), x;(u1) is also bounded above by a
constant. This justifies the statement x;(u) = ©(1). Since, z;(u)s; (1) = p, this also
implies s;(u) = ©(p). This explains the first two lines for the B-part. The estimates
for the N-parts of x;(u) and s;(u) are derived in the same way.

The third line shows order estimates for the vector d(u), given by

These estimates immediately follow from the first two lines of the table. It remains to
deal with the last two lines in the table, which concern the derivatives.

In the rest of this section we omit the argument p and write simply x instead of
2(u). This gives no rise to confusion. We start by writing the second equation in (16.5)
in a different way. Dividing both sides by /s, and using that xs = pe we get

e
d$+d e = —. (16.6)
NG
Note that the orthogonality of # and § — which is immediate from the first equation
in (16.5) since M is skew-symmetric — implies that the vectors d$ and d~'i are
orthogonal as well. Hence we have

2

e

N

IE

|ds|| + [|d ||

I
Consequently

@

3] < N a1 <

S
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This implies
dpsal < Y2, [dytan]| < Y2
Vi Vi
The third line in the table gives dp = ©(1/,/1t). This together with the left-hand side
inequality implies $5 = O(1). Similarly, the right-hand side inequality implies that
#n = O(1). Thus we have settled the derivatives of the small coordinates.
It remains to deal with the estimates for the derivatives of the large coordinates,
#p and $y. This is the harder part. We need to characterize the scaled derivatives ds
and d~ 1'% in a different way.

Lemma IV.7 Let & be any vector in R" and § = s(&). Then

dta 1, ds
ds | op WMPDTH goig

Here Pyp —p-1) denotes the orthogonal projection onto the null space of the matriz
(MD — D*I), where D is the diagonal matriz of d.5
Proof:  Letting I denote the identity matrix of size n x n, we multiply both sides
in (16.6) by DM D — I. This gives
(DMD = 1) (ds +d~"i) = (DMD - T) —.
m
By expanding the products we get
DM — d$ + DMD? —d ‘& = DMD-— — -
Vi VR

=

With Mi = § this simplifies to

DMD% —d ‘¢ = DMD-S - €

NN

and this can be rewritten as

[ [
— —d ' = DMD— — DMD?;=DMD <— - ds)
N/ N/

-DMTD <i —di) .
7%

6 Exercise 81 Using the notation of Lemma IV.7, let # run through all vectors in IR™. Then the

vector
ds
d 'z

runs through an affine space parallel to the row space of the matrix [ MD —-D7! } This space

intersects the null space of [ MD —D-1 } in a unique point. Using this, prove that there exists
a vector Z in IR™ such that

ps(p) = x()8
psz(p) = s(p)2,

where § = s(Z).



312 IV Miscellaneous Topics

Using this we write

e 4-15 _ T
Vi .x - Di‘{ D(i—ds')

~|[Mp D }TD<%—ds').

This shows that the vector on the left belongs to the row space of the matrix
(MD — D’l). Observing that, on the other hand,

o 1) [7] -0

which means that the vector of scaled derivatives

l d;j“ ] (16.7)

belongs to the null space of the matrix (]W D - D_l), we conclude that the vector
(16.7) can be characterized as the orthogonal projection of the vector

H

into the null space of (MD — Dil). In other words,

d_l.i? _€_
[ ] = Poup —p-1 [ vE

S Sk

ds

Vi

Since xs = pe, we may replace the vector e by /xs/u. Now using that /zs = ds =

d 1z, we get
d=1z 1 P ds
= — _p-1 .
ds pMP=DTO A gy

Finally, let # be any vector in R™ and § = s(#). Then we may write

ds ds _ d(5—3s) | DM (% —x)
| | d 'z N dl'@E-z) | | dM(@E-2)

_ l ~DMT (3 — z)

PR ]z—[MD fol} (@ —2).

The last vector is in the row space of [ MD —-D1 }, and hence we have

ds
= Pup —p-1) [ AR ] ;

ds

Pyp —p-1 [ dly
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proving the lemma. a

Using Lemma V.7 with £ = z* and § = s* we have

d—1& N ds* — h ) {MD Dil} h _o
T Y = argmin, ; ‘R~ glg g : — =

k
Hence, the unique solution of the above least squares problem is given by

2

h=pd ‘s, k= uds.
The left-hand side of the constraint in the problem can be split as follows:

hp

e 251

+[ MyDy —D5' ] HZ] —0.

Substituting the optimal values for hy and kp we find that hp and &y need to satisfy

[woms 0] (1] = oy op ] [0
_ —,u[MN —IB} [zg]

Since % = 0 and s = 0 we obtain the following characterization of the derivatives

for the large coordinates:
dg'ip |
: dnsn |

2: [ MsDs D] [hﬂ = | My I | lxw

) hp
argming, ;- f
N

kn SB
(16.8)
Now let z = (2, zn) be the least norm solution of the equation
z T
{MB —IN} l B]:_M[MN —IB} [ .N].
ZN 5B
Then we have
ZB + be
= —M[ Mp —In } { My —Ip } ) (16.9)
ZN SB

+
where [ Mg —1In } denotes the pseudo-inverse” of the matrix [ Mg —In } It is

obvious that
hg =dg'zp,  kn =dyzn

7 See Appendix B.



314 IV Miscellaneous Topics

< | d5'em .
B dNZN

From Table 16.1. we know that d" = ©(,/f) and dy = ©(\/R), so it follows that
,udlg,lx'B B
N '

Hdn SN
in = O), $5—0(1).

is feasible for (16.8). It follows that

pdy' i p
udnsn

< 6(y)

Moreover, we have already established that

Hence, using also (16.9),
z=u0(1),
where the constant in the order symbol now also contains the norm of the matrix
(Mg —In)" (My —Ig). Note that this matrix, and hence also its norm, depends
only on the data of the problem. Substitution yields, after dividing both sides by u,
dglng
— (/B O(1).

dns$n

Using once more dz' = O(,/f1) and dy = O(/g), we finally obtain

IR
5N

completing the proof of the estimates in the table.

o,

16.2.3 Convergence of the derivatives

Consider the second equation in (16.5):
TS+ st = e.

Recall that & and $ are orthogonal. Since xs = ue, the vectors z$ and si are orthogonal
as well, so this equation represents an orthogonal decomposition of the all-one vector
e. It is interesting to consider this decomposition as p goes to zero. This is done in the
next theorem. Its proof uses the results of the previous section, which are summarized
in Table 16.1..

Theorem IV.8 If u approaches zero, then x$ and si converge to complementary
{0, 1}-vectors. The supports of their limits are B and N, respectively.

Proof: For each index i we have
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Now let ¢+ € B and let u approach zero. Then s; — 0. Since #; is bounded, it follows
that s;z; — 0. Therefore, x;$; — 1. Similarly, if ¢ € N, then x; — 0. Since §; is
bounded, z;$; — 0 and hence s;4; — 1. This implies the theorem. a

The next theorem is an immediate consequence of Theorem IV.8 and requires no
further proof. It establishes that the derivatives of the small variables converge if u
approaches zero.®

Theorem IV.9 We have lim, o @n = (s) ! and lim, o $p = (z%) 1. O

16.3 Ellipsoidal approximations of level sets

In this section we discuss another property of p-centers. Namely, that there exist two
homothetic ellipsoids that are centered at the p-center and which respectively contain,
and are contained in, an appropriate level set of the objective function ¢Tz. In this
section we keep p > 0 fixed.

For any K > 0 we define the level set

Mg :={z :2>0,s(z)=Mz+¢>0,¢g'z<K}. (16.10)

Since ¢Tz(u) = nu, we have z(u) € Mg if and only if ny < K. Note that M
represents the set of optimal solutions of (SP), since ¢z < 0 if and only if ¢"z = 0.
Hence My = SP*.
2
< 7“2} .

For any number > 0 we also define the ellipsoid
Note that the norms in the defining inequality of this ellipsoid vanish if x = x(u), so
the analytic center x(u) is the center of the ellipsoid £(u, r).
Theorem IV.10 £(u,1) C ./\/l#(n+\/7—l> and My C E(p, n).

2
——e

s(w)

E(u,r) = {x :

Proof: Assume x € £(u,1). We denote s(x) simply by s. To prove the first inclusion
we need to show that x >0, s = s(z) > 0 and ¢"x < p(n + /n).

To simplify the notation we make use once more of the vectors h, and hg introduced
in Section 6.9.2, namely

he=———¢€, hy=———ce, (16.11)

or equivalently,

8 Theorem IV.9 gives only the limiting values of the derivatives of the small variables and says nothing
about convergence of the derivatives for the large coordinates. For this we refer to Giiler [131], who
shows that all derivatives converge when p approaches zero along a weighted path. In fact, he
extends this result to all higher-order derivatives and he gets similar results for the case where p
approaches infinity.
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Obviously, h, and h, are orthogonal. Hence, defining
h = hy + hs,
we find , , ,
1B = 1™ 4 [[s]|” < 1.
Hence |hy|| < 1. We easily see that this implies x > 0. Similarly, | hs|| < 1 implies
s > 0. Thus it remains to show that ¢’x < p (n + /n). Since
s xs
(he +€)(hs +€) = ———— = —,
et e) = e~ w
and on the other hand

(hy +e)(hs +e) =hyhs+ hy +hs+e=hyhs +h+e,

we get
h=——¢e—h;hs. (16.12)
I

Taking the inner product of both sides with the all-one vector, while using once more
that h, and hs are orthogonal, we arrive at

s 4 '

elh=""_¢ele=21"_n. (16.13)
H H
This gives
lz=p (n + eTh) .

Finally, applying the Cauchy-Schwarz inequality to e?'h, while using ||h| < 1, we get
¢'r < p(n+llel) =p(n+vn),

proving the first inclusion in the theorem.

To prove the second inclusion, let z be optimal for (SP). Then ¢”x = 0, and hence,
from (16.13), e’h = —n. Since x > 0 and s > 0, (16.11) gives h, > —e and h, > —e.
Thus we find h > —2e. Now consider the maximization problem

max {||hH2 celh=-n, h> 726}, (16.14)

and let Z% be a solution of this problem. Then, for arbitrary ¢ and 7, with 1 < i < j < n,
h; and h; solve the problem

ina}LX {h?—‘rh? : hz—f—h]:?ll—‘r?l], hiZ—Q, hjZ—Q},

dy/ly

We easily understand that this implies that either h; = —2 or h; = —2. Thus, h
must have n — 1 coordinates equal to —2 and the remaining coordinate equal to
—n—(n—1)(—2) =n — 2, and hence,

18" = (n = 1)d + (n — 2)> = n*.

Therefore, ||| < n. This means that = € £(p, n), and hence the theorem follows.? O

9 Exercise 82 Using the notation of this section, prove that



17

Partial Updating

17.1 Introduction

In this chapter we deal with a technique that can be applied to almost every
interior-point algorithm to enhance the theoretical efficiency by a factor /n. The
technique is called partial updating, and was introduced by Karmarkar in [165]. His
projective algorithm, as presented in Chapter 15, needs O(nL) iterations and O(n?)
arithmetic operations per iteration. Thus, in total the projective algorithm requires
O(n*L) arithmetic operations. Karmarkar showed that this complexity bound can
be reduced to O(n*°L) arithmetic operations by using partial updating. It has since
become apparent that the same technique can be applied to many other interior-point
algorithms with the same effect: a reduction of the complexity bound by a factor y/n.!

The partial updating technique can be described as follows. In an interior-point
method for solving the problems (P) and (D) — in the standard format of Part II
— each search direction is obtained by solving a linear system involving a matrix of
the form AD?A”T | where the scaling matrix D = diag (d) is a positive diagonal matrix
depending on the method. In a primal-dual method we have D? = X S~!, in a primal
method D = X, and in a dual method D = §~!. The matrix D varies from iteration
to iteration, due to the variations in z and/or s. We assume that A is m x n with
rank m. Without partial updating the computation of the search directions requires
at each iteration O(n?) arithmetic operations for factorization of the matrix AD?AT
and only O(n?) operations for all the other required arithmetic operations.

Although the matrix AD?A” varies from iteration to iteration, it seems reasonable
to expect that the variations are not too large, and that the matrix at the next iteration
is related in some sense to the current matrix. In other words, the calculation of the
search direction in the next iteration might benefit from earlier calculations. In some
way, that goal is achieved by the use of partial updating.

To simplify the discussion we assume for the moment that at some iteration the
scaling matrix is the identity matrix I and at the next iteration D. Then, if a; denotes
the i-th column of A, we may write

n n n
AD?AT = Z a;al’ = Z aal + Z (df -1) aal.
i=1 i=1 i=1

1 See for example Anstreicher [20], Anstreicher and Bosch [25, 26], Bosch [46], Bosch and Anstrei-
cher [47], den Hertog, Roos and Vial [146], Gonzaga [118], Kojima, Mizuno and Yoshise [177],
Mehrotra [204], Mizuno [213], Monteiro and Adler [219], Roos [240], Vaidya [276] and Ye [306].



318 IV Miscellaneous Topics

Hence
AD?AT = AAT + 3" (d? — 1) aia] |
i=1

showing that AD?A” arises by adding the n rank-one matrices (df — 1) a;al to AAT.
Now consider the hypothetical situation that d; = 1 for every i, except for ¢ = 1. Then
we have

AD?AT = AAT + (d} — 1) ara]

and AD?A7T is a so-called rank-one modification of AAT. By the well known Sherman-
Morrison formula? we then have

(AAT) " ayal (AAT) Y
1+ (d2 —1)al (AAT) "oy

(AD?AT) ' = (A7) (2 1)

This expression makes clear that the inverse of AD?A” is equal to the inverse of AA”
plus a scalar multiple of the rank-one matrix vo”, where

v = (AAT)_1 aj.

We say that (ADQAT)_1 is a rank-one update of (AAT)_l. The computation of a
rank-one update requires O(n?) arithmetic operations, as may easily be verified.

In the general situation, when all the entries of d differ from 1, the inverse of the
matrix AD?AT can be obtained by applying n rank-one updates to the inverse of
AAT. This still requires O(n?) arithmetic operations.

The underlying idea for the partial updating technique is to perform only those
rank-one updates that correspond to coordinates ¢ of d for which ‘df — 1| exceeds

some threshold value. A partial updating algorithm maintains an approximation d
of d and uses AD?A7 instead of AD?AT; the value of d; is updated to its correct
value if it deviates too much from d;. Each update of an entry in d necessitates
modification of the inverse (or factorization) of AD2AT. But each such modification
can be accomplished by a rank-one update, and this requires only O(n?) arithmetic
operations.? The success of the partial updating technique comes from the fact that
it can reduce the total number of rank-one updates in the course of an algorithmn by
a factor /m.

The analysis of an interior-point algorithm with partial updating consists of two
parts. First we need to show that the modified search directions, obtained by using
the scaling matrix d instead of d, are sufficiently accurate to maintain the polynomial
complexity of the original algorithm; this amounts to showing that the modified
algorithm has a worst-case iteration count of the same order of magnitude as the

2 Exercise 83 Let Q, R, S, T be matrices such that the matrices Q and @ + RST are nonsingular

and R and S are n X k matrices of rank k < n. Prove that

@+ RST) T =71 Q' RUI+STQTIR)TISTQTE

The Sherman-Morrison formula arises by taking R = S = a, where ¢ is a nonzero vector [136].

We refer the reader to Shanno [251] for more details of rank-one updates of a Cholesky factorization
of a matrix of the form AD?AT.
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original algorithm. Then, secondly, we have to count the total number of rank-one
updates in the modified algorithm.

As indicated above, the partial updating technique can be applied to a wide class of
interior-point algorithms. Below we demonstrate its use only for the dual logarithmic
barrier method with full Newton steps, which was analyzed in Chapter 6.

17.2 Modified search direction

Recall from Exercise 35 (page 111) that the search direction in the dual logarithmic
barrier method is given by

Ay = (AS—247) 7 (% - Asle> .

More precisely, this is the search direction at y, with s = ¢ — ATy > 0, and for the
barrier parameter value p. In the sequel we use instead

~ —1
Ay = (AS‘QAT) <9 - As—le) ,
I
where § is such that § = A\s with
\i € <l,a>, 1<i<n, (17.1)
o

for some fixed real constant ¢ > 1. The corresponding displacement in the s-space is
given by

~ -1
As= ATAy = AT (AS*2AT) (9 - Asle> . (17.2)
T

Letting Z be such that AZ = b we may write

s lAs — — (A§*1)T (A§*2AT)_1 AG 1A (‘Z—f _ e) ,

showing that —3~'As equals the orthogonal projection of the vector

(-9

into the row space of the matrix AS—1. Since the row space of the matrix AS!is
equal to the null space of HS, where H is the same matrix as used in Chapter 6 —
and defined in Section 5.8, page 111 — we have

§'As=—-P 5 <A (% — e)) : (17.3)

Note that if A = e then the above expression coincides with the expression for the
dual Newton step in (6.1). Defining

S

#(s, ) = argmin, {‘A (— - e> ‘ . Az = b} , (17.4)

x
I
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and using the same arguments as in Section 6.5 we can easily verify that

yielding the following expression for the modified Newton step:

5 1As=A <e — w> . (17.5)

17.3 Modified proximity measure

The proximity of s to s(u) is measured by the quantity
As

(17.6)

o= | 3

From (17.5) it follows that the modified Newton step As vanishes if and ounly if
s&(s, u) = pe, which holds if and ounly if #(s, u) = x(u) and s = s(p). As a consequence
we have

d(s,p) =0 <= s =s(u).

An immediate consequence of (17.4) and (17.5) is

o e Z) ol ).

The next lemma shows that the modified proximity 5 (s, 1) has a simple relation with
the standard proximity measure (s, u).

Lemma IV.11

3(s, p)

< S(Saﬂ) < 06(s, ).
g

Proof: Using (17.7) and max (A) < ¢ we may write

Sow) = ‘A (6 - M) ‘ < ‘A (e B M) ‘

I I

IA

sx(s, p
il e S| < (s,
I
On the other hand we have

s — ‘e M‘ <

s )
a1, (o= 20 | <o,

This implies the lemma. O

IA

The next lemma generalizes Lemma I1.26 in Section 6.7.
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Lemma IV.12 Assuming S(s,,u) <1, let sT be obtained from s by moving along the
modified Newton step As al s for the barrier parameter value p, and let um = (1—0)p.
Assuming that sT is feasible, we have

S(S+,M+) SU\/S(S,M)4+ f%n + (0271) 5(57M).

(1-6) 1-6
Proof: By definition,

stz
et

5(S+’M+):m:cin{ ut

:Aw:b}.

Substituting for x the vector Z(s,u) and replacing u™ by (1 — 8) we obtain the
following inequality:

Ti(s, p)
S(st,ut) < e— 2 HSH 17.8
R (7.
Simplifying the notation by using
As  As
=—=— 17.
h 5 As’ (17.9)
we may rewrite (17.5) as
si(s,u) =p(e—A"th). (17.10)
Using this and (17.9) we get
sTa(s,p) = (s +As)E(s, ) = (s + Ash) Z(s, p)
= (e + M) sz(s, 1) = (e + M) (e — A 'h).
Substituting this into (17.8) we obtain
(e+ Ah) (e — A71h) e—h+(A=x"Yn
T T < _ — _
5@’“)—‘6 1-0 € 1-0
This can be rewritten as
f(e—h%) (A=A"Hh
oy < [p2 _
The triangle inequality now yields
(e — h? A=A"Hh
S(sT,ut)y < ||n? — (16—9) + % (17.11)

The first norm resembles (6.12) and, since ||| < 1, can be estimated in the same way.
This gives
2

6°n
4
< [|n[]” +

(1-6)"

9(67 h2)

2_
h 1-6
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For the second norm in (17.11) we write

Substituting the last two bounds in (17.11), while using ||| = d(s, 1), we find

(A=A"h
1-0

Ik (o =) n]

62n (c—071) 5(s, 1)
o 1-06 ’

5(s™, 1) < \/S<s,u>4+

Finally, Lemma IV.11 gives (s*, u*) < ¢8(s™,uT) and the bound in the lemma
follows. =

Lemma IV.13 Let n > 3. Using the notation of Lemma IV.12 and taking o = 9/8
and 8 = 1/(6+/n), we have
3 L o=+ 1
5(5’M) <5;= 5(5 » H ) <5
2 2
and the new iterate st is feasible.

Proof: The implication in the lemma follows by substituting the given values in the
bound for 4(s™, x™) in Lemma IV.12. If n > 3 this gives

5(sT,put) <0.49644 < 0.5,

yielding the desired result. By Lemma IV.11 this implies §(s™,p7) < o/2 = 9/16.
From this the feasibility of sT follows. O

The above lemma shows that for the specified values of the parameters ¢ and 6
the modified Newton steps keep the iterates close to the central path. The value of
the barrier update parameter 6 in Lemma IV.13 is a factor of two smaller than in
the algorithm of Section 6.7. Hence we must expect that the iteration bound for an
algorithm based on these parameter values will be a factor of two worse. This is the
price we pay for using the modified Newton direction. On the other hand, in terms of
the number of arithmetic operations required to reach an z-solution, the gain is much
larger. This will become clear in the next section.

The modified algorithm is described on page 323.

Note that in this algorithm the vector A may be arbitrarily at each iteration, subject
to (17.1). The next theorem specifies values for the parameters 7, # and o for which
the algorithm is well defined and has a polynomial iteration bound.

Theorem IV.14 If 7 =1/2, § = 1/(6y/n) and 0 = 9/8, then the Dual Logarithmic
Barrier Algorithm with Modified Full Newton Steps requires at most

0
6+/1log e
£

iterations. The output is a primal-dual pair (z,s) such that x7s < 2e.
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Dual Log. Barrier Algorithm with Modified Full Newton Steps

Input:
A proximity parameter 7, 0 < 7 < 1;
an accuracy parameter € > 0;
(¥°,s%) € D and p° > 0 such that 6(s°, u°) < 7
a barrier update parameter 8, 0 < 8§ < 1;
a threshold value o, ¢ > 1.

begin
s = 5% p = p
while ny > (1 —0)e do
begin

Choose any A satisfying (17.1);
s:= 54 As, As from (17.2);
pi= (1= 0
en
end

Proof: According to Lemma IV.13 the algorithm is well defined. The iteration bound
is an immediate consequence of Lemma I.36. Finally, the duality gap of the final iterate
can be estimated as follows. For the final iterate s we have (s, 1) < 1/2, with nu < e.
Taking « = Z(s, i) it follows from (17.10) that

sTE(s, 1) = nu — phT AL
Since
R < N IR] < 08(s, v/ < 9n/16 < m,
we obtain
sTi(s,u) <2np <L e.
The proof is complete. a

17.4 Algorithm with rank-one updates

We now present a variant of the algorithm in the previous section in which the vector
A used in the computation of the modified Newton step is prescribed. See page 324.
Note that at each iteration the vector § is updated in such a way that the vector A
used in the computation of the modified Newton step satisfies (17.1). As a consequence,
the iteration bound for the algorithm is given by Theorem I'V.14. Hence, the algorithm
yields an exact solution of (D) in O (y/nL) iterations. Without using partial updates
— which corresponds to giving the threshold parameter ¢ the value 1 — the bound for
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Full Step Dual Log. Barrier Algorithm with Rank-One Updates

Input:
A proximity parameter 7, 7 = 1/2;
an accuracy parameter & > 0;
(y°,s%) € D and u > 0 such that §(s°, u0) < 7;
a barrier update parameter 8, 8 = 1/(6./n);
a threshold value o, o = 9/8.
begin
s:= 8% pi=pul 5= s
while ny > (1 —6)e do
begin
Ai=3s L
s:=s+ As, As from (17.2);
for i:=1ton do

begin
if ‘Sf— ¢ (%,O’) then 3;:=s;
end
p=(1—-0)u;
end

end

the total number of arithmetic operations becomes O (n3'5L). Recall that the extra
factor n® can be interpreted as being due to n rank-one updates per iteration, with
O (nQ) arithmetic operations per rank-one update.

The total number of rank-one updates in the above algorithm is equal to the number
of times that a coordinate of the vector s is updated. We estimate this number in the
next section, and we show that on the average it is not more than O (y/n) per iteration,
instead of n. Thus the overall bound for the total number of arithmetical operations
becomes O (n3L).

17.5 Count of the rank-one updates

We need to count (or estimate) the number of times that a coordinate of the vector
§ changes. Let s* and 5% denote the values assigned to s and to §, respectively, at
iteration k of the algorithm. We use also the superscript * to refer to values assigned
to other relevant entities during the k-th iteration. For example, the value assigned to
X at iteration k is denoted by A\* and satisfies

gk:fl

N==—x k>1
S
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Moreover, denoting the modified Newton step on iteration k& by As®, we have
Ast = sF — k1 = gh-1pk = \kgh=1pk >, (17.12)

Note that the algorithm is initialized so that s° = 3% and these are the values of s and
§ just before the first iteration.

Now consider the i-th coordinate of §. Suppose that §; is updated at iteration
k1 > 0 and next updated at iteration ks > k;. Then the updating rule implies that
the sequence

k1+1 k142 ka—1 ko
~ky 0 k10 T sko—20 ~ko—1

has the property that the last entry lies outside the interval (1/0, ) whereas all the
other entries lie inside this interval. Since

k1 _ ~k1 _ skit+1 _ ~ko—1

we can rewrite the above sequence as

ki+l k142 ko—1  _k
/A S S (17.13)
Sfl , Sfl ey Sfl ’sfl' .
Hence, with ‘
P =T 0< i< K i=ky— ki, (17.14)
the sequence
Po,P1,--- s PK (1715)
has the property
i 1
Pi ¢ (—,a>, 1<j<K (17.16)
Po o
and
1
br <—,a) . (17.17)
Do c

Our estimate of the number of rank-one updates in the algorithm depends on a
technical lemma on such sequences. The proof of this lemma (Lemma IV.15 below)
requires another technical lemma that can be found in Appendix C (Lemma C.3).

Lemma IV.15 Let ¢ > 1 and let po,p1,-.-,pPx be a finite sequence of positive
numbers salisfying (17.16) and (17.17). Then

=

— Pj+1 — Dy

1
>1- =, (17.18)
Dj o

<.
Il
=)

Proof: We start with K — 1. Then we need to show

— 1
pL—mo dsq 1
ag

Po

P
Po
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If p1/po < 1/0 then

1
A I N P
Do bo o
and if p1/pg > o then
-1 1
ﬂ—1‘zﬁ—1za—1za —1- .
Do DPo o g

We proceed with K > 2. It is convenient to denote the left-hand side expression
on (17.18) by g(po,p1,...,px). We start with an easy observation: if p;41 = p; for

some j (0 < j < K) then g(po,p1,...,px) does not change if we remove p;;1 from
the sequence. So without loss of generality we may assume that no two subsequent
elements in the given sequence pg, p1, ..., px are equal.

Now let the given sequence pg, p1,...,px be such that g(po,p1,...,px) is minimal.

For 0 < j < K we counsider the two terms in g(pg,p1,...,px) that contain p;. The
contribution of these two terms is given by

Pit1
Pj —Pj—1 i Pj+1 —Pj _ ‘1 Py +h= p;;1 (17.19)

Dj—1 Py Dj—1 Pt
Since po, p1,- .., px minimizes g(po,p1,...,px), when fixing p; 1 and p;y1, p; must

minimize (17.19). If p;11 < p;—1 then Lemma C.3 (page 437) implies that
Bi gy B Pitt
Dj—1 Dj—1 Pj-1
This means that
Pj =Dj—10r Pj =Pj+1.

Hence, in this case the sequence has two subsequent elements that are equal, which
has been excluded above. We conclude that p;41 > p;—1. Applying Lemma C.3 once

more, we obtain
P [Pitt
Pj—1 Di-1

Di-1 <Pj = /Pj-1Pj+1 < Pj+1

for each 7, 0 < j7 < K, showing that the sequence py, p1,-..,px is strictly increasing
and each entry p; in the sequence, with 0 < 7 < K, is the geometric mean of the
surrounding entries. This implies that the sequence p;/po,1 < j < K, is geometric
and we have

Thus it follows that

by
Do

=ao/, 1<j<K,

a:1/@>1.
Po

In that case we must have px > ¢ and hence « satisfies o > 0. Since

where

K-1

9(po,p1s - PK) =Y

K-1
Pl 1 =Y (a-1)=K(a—1),
=0 :

by =0




IV.17 Partial Updating 327

the inequality in the lemma follows if

1

This inequality holds for each natural number K and for each real number o > 1.
This can be seen by reducing the right-hand side as follows:

1 -1 (a-1D(f 4. ta+tl)
1= ak - ok~ ak
= (a—1) (a7 +a? . +a )< K(a-1).
This completes the proof. a

Now the next lemma follows easily.

Lemma IV.16 Suppose that the component §; of § is updated at iteration k1 and next
updated at iteration kg > k1. Then

ka—1

Asktt 1
% > 1- )
k=k1 @ 7
where Asf“ denotes the i-th coordinate of the modified Newton step at iteration k+1.

Proof: Applying Lemma IV.15 to the sequence pg,p1,...,px defined by (17.14) we
get

k=kq

k+1 _ gk — AsFt1 by definition, the lemma follows. O

1
>1——.
o

3k

&
2
Since s

Theorem IV.17 Let N denote the total number of iterations of the algorithm and n;
the total number of updates of 5;. Then

n
> ni < 6Nv/n.
=1

Proof: Recall from (17.12) that

A8k+1 _ )\k+1$khk+1.

Hence, for 1 <i < n,
k+1
As;™ ARkt
N i

&2

Now Lemma IV.16 implies

N N-1 1
SOINERE =Y AR = (1 — —> .
k=1 k=0 g
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Taking the sum over ¢ we obtain

S 303 ]

k=1 i=1

The inner sum can be bounded above by

n

n
DM <o |nf[ = o|[nt], <o ||h*] v
i=1 i=1
Since Hth s Y ) < 7 we obtain
zn: ~ No T\/_

i=1

Substituting the values of ¢ and 7 specified in the algorithm proves the theorem. O

Finally, using the iteration bound of Theorem IV.14 and that each rank-one update
requires O(n?) arithmetic operations, we may state our final result without further
proof.

Theorem IV.18 The Full Step Dual Logarithmic Barrier Algorithm with Rank-One

Updates requires at most
0

3613 log e
€

arithmetic operations. The output is a primal-dual pair (x,s) such that x7s < 2e.
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Higher-Order Methods

18.1 Introduction

In a target-following method the Newton directions Az and As to a given target
point w in the w-space,’ and at a given positive primal-dual pair (x, ), are obtained
by solving the system (10.2):

AAzx = 0,
ATAy+As = 0, (18.1)
sAx + xAs = Aw,

where Aw = w — xs. Recall that this system was obtained by neglecting the second-
order term AzAs in the third equation of the nonlinear system (10.1), given by

AAzx = 0,
ATAy+As = 0, (18.2)
sAz + xAs + AzAs = Aw.

An exact solution — (Acx, Ay, A¢s) say — of (18.2) would yield the primal-dual pair
corresponding to the target w, because

(x 4+ A%z) (s + A®s) = w,

as can easily be verified. Unfortunately, finding an exact solution of the nonlinear
system (18.2) is hard from a computational point of view. Therefore, following a
classical approach in mathematics when dealing with nonlinearity, we linearize the
system, and use the solutions of the linearized system (18.1). Denoting its solution
simply by (Az, Ay, As), the primal-dual pair (x + Az, s + As) satisfies

(x 4+ Az) (s + As) = w — AzAs,
and hence, the ‘error’ after the step is given by AxzAs. Thus, this error represents the

price we have to pay for using a solution of the linearized system (18.1). We refer to
it henceforth as the second-order effect.

1 We defined the w-space in Section 9.1, page 220; it is simply the interior of the nonnegative orthant
in R™.
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Clearly, the second-order effect strongly depends on the actual data of the problem
under consideration.?

It would be very significant if we could eliminate the above described second-order
effect, or at least minimize it in some way or another. One way to do this is to use
so-called higher-order methods.® The Newton method used so far is considered to be a
first-order method. In the next section the search directions for higher-order methods
are introduced. Then we devote a separate section (Section 18.3) to the estimate of the
(higher-order) error term E"(«), where r > 1 denotes the order of the search direction
and « the step-size. The results of Section 18.3 are applied in two subsequent sections.
In Section 18.4 we first discuss and extend the definition of the primal-dual Dikin
direction, as introduced in Appendix E for the self-dual problem, to a primal-dual
Dikin direction for the problems (P) and (D) in standard format. Then we consider
a higher-order version of this direction, and we show that the iteration bound can
be reduced by the factor v/n without increasing the complexity per iteration. Then,
in Section 18.5 we apply the results of Section 18.3 to the primal-dual logarithmic
barrier method, as considered in Chapter 7 of Part II. This section is based on a
paper of Zhao [320]. Here the use of higher-order search directions does not improve
the iteration bound when compared with the (first-order) full Newton step method.
Recall that in the full Newton step method the iterates stay very close to the central
path. This can be expressed by saying this method keeps the iterates in a ‘narrow
cone’ around the central path. We shall see that a higher-order method allows the
iterates to stay further away from the central path, which makes such a method a
‘wide cone’ method.

18.2 Higher-order search directions

Suppose that we are given a positive primal-dual pair (z,s) and we want to find the
primal-dual pair corresponding to @ := xs + Aw for some displacement Aw in the
w-space. OQur aim is to generate suitable search directions Az and As at (z,s). One
way to derive such directions is to consider the linear line segment in the w-space
connecting xs with w. A parametric representation of this segment is given by

s+ alAw, 0<a<l1.

2 In the w-space the ideal situation is that the curve (z + aAx) (s + aAs), 0 < a < 1, moves from
xs in a straight line to the target w. As a matter of fact, the second-order effect ‘blows’ the curve
away from this straight line segment. Considering « as a time parameter, we can think of the
iterate (x + aAx) (s + aAs) as the trajectory of a vessel sailing from xs to w and of the second-
order effect as a wind blowing it away from its trajectory. To reach the target w the bargeman
can put over the helm now and then, which in our context is accomplished by updating the search
direction. In practice, a bargeman will anticipate the fact that the wind is (locally) constant and he
can put the helm in a fixed position that prevents the vessel being driven from its correct course.
It may be interesting to mention a computer game called Schiet Op”™, designed by Brinkhuis
and Draisma, that is based on this phenomenon [51]. It requires the player to find an optimal path
in the w-space to the origin.

The idea of using higher-order search directions as presented in this chapter is due to Monteiro,
Adler and Resende [220], and was later investigated by Zhang and Zhang [318], Hung and Ye [150],
Jansen et al. [160] and Zhao [320]. The idea has been applied also in the context of a predictor-
corrector method by Mehrotra [202, 205].
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To any point of this segment belongs a primal-dual pair and we denote this pair by
(z(c), s(r)).* Since () and s(ar) depend analytically® on o there exist (¥ and s,
with ¢ = 0,1, ..., such that

oo oo
z(a) = Zx(i)o/, sla) = Zsmof, 0<a<l. (18.3)
=0 =0

Obviously, 2(0) = z = (9 and s(0) = s = 5(%. From Az(a) = b, for each « € [0,1],
we derive

Az =p,  AzD =0, i>1. (18.4)
Similarly, there exist unique y‘* and s, i = 0,1,..., such that
ATy O 4 O — ¢ ATy L O =0 §>1. (18.5)

Furthermore, from

z(a)s(a) = xs + alAw,

by expanding xz(«) and s(a) and then equating terms with equal powers of «, we get
the following relations:

(05 = s 18.6)
2@ (M) 1 (0) (1)

k
doallsn =0, k=23, (18.8)
=0

The first relation implies once more that #(®) = x and s\*) = s. Using this and (18.4),
(18.5) and (18.7) we obtain

Az =
ATy 40— g (18.9)
sz + s = Aw.

4 Tn other chapters of this book z(a) denotes the a-center on the primal central path. To avoid any
misunderstanding it might be appropriate to emphasize that in this chapter x{«) — as well as s(a)
— has a different meaning, as indicated.

Note that x{a) and s{a) are uniquely determined by the relations

Az(a) = b, z >0,
ATy(a) + s(a) = e, s>0,
z () s(a) = s + aAw.

Obviously, the right-hand sides in these relations depend linearly (and hence analytically) on a.
Since the Jacobian matrix with respect to « of the left-hand sides is nonsingular, the implicit
function theorem (cf. Proposition A.2 in Appendix A) implies that z{«),y(a) and s{a) depend
analytically on a. See also Section 16.2.1.
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This shows that 2(1) and s(!) are just the primal-dual Newton directions at (z, s) for
the target @ = xs+ Aw.% Using (18.4), (18.5) and (18.8) we find that the higher-order
coefficients z®) | y*) and )| with k > 2, satisfy the linear system
Az =
ATy L g0 = (18.10)

k-1
sz® 4 g5 - Zx<i)3<k_i), k=23,...,
i=1

thus finding a recursive expression for the higher-order coefficients. The remarkable
thing here is that the coefficient matrix in (18.10) is the same as in (18.9). This has the
important consequence that as soon as the standard (first-order) Newton directions
1) and s have been calculated from the linear system (18.9), the second-order
terms z(? and s can be computed from a linear system with the same coefficient
matrix. Having #(® and s(?), we can compute z®) and s*, and so on. Hence, from a
computational point of view the higher-order terms z*) and s*), with k > 2, can be
obtained relatively cheaply.

Assuming that the computation of the Newton directions requires O(n?) arithmetic
operations, the computation of each subsequent pair (m<k), 5<k)) of higher-order
coefficients requires O(n?) arithmetic operations. For example, if we compute the
pairs (x(k), s(k)) for k =1,2,...,n, this doubles the computational cost per iteration.
There is some reason to expect, however, that we will obtain a more accurate search
direction; this may result in a speedup that justifies the extra computational burden
in the computation.

By truncating the expansion (18.3), we define the primal-dual Newton directions of
order r at (x, s) with step-size o by

-
APy = Zm(i)ai, AN%g = Z sWal, (18.11)
i=1 =1
Moving along these directions we arrive at
(o) ;= + A",  §s(a) =5+ A",
Recall that we started this section by taking @ = zs + Aw as the target point in the
w-space. Now that we have introduced the step-size « it is more natural to consider
() i= zs + aAw

as the target. In the following lemma we calculate () s” (), which is the next iterate
in the w-space, and hence obtain an expression for the deviation from the target @(o)
after the step.

 Exercise 84 Verify that y(l) can be solved from (18.9) by the formula
yW = - (AXS™1AT) T AS™ Aw.

This generalizes the expression for the logarithmic barrier direction in Exercise 35, page 111. Given
y(1)7 s and #V follow from

s = ATy 1) = g1 (Aw — 1‘5(1)) .
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Lemma IV.19

2r r
" (a) s"(a) = zs + aAw + Z aF ( Z x(i)s(k—i)> .

k=r+1
Proof: We may write
T
' (a) =z + A" = Zm@)a’,
i=0

and we have a similar expression for s"(a). Therefore,

" (a) s (o) = (ZT: x(i)o/> (i s(i)o/) . (18.12)
=0

=0

The right-hand side can be considered as a polynomial in « of degree 2r. We consider
the coefficient of oF for 0 < k < 2r. If 0 < k < r then the coeflicient of o is given by

k

3 g0tk

=0

By (18.8), this expression vanishes if & > 2. Furthermore, if & = 1 the expression is
equal to Aw, by (18.7) and if k = 0 it is equal to zs, by (18.6). So it remains to
consider the coefficient of af on the right-hand side of (18.12) for r + 1 < k < 2r. For
these values of k the corresponding coeflicient in (18.12) is given by

T

3 g0,

i=k—7r
Hence, collecting the above results, we get
2r T . )
(o) s"(a) = zs + aAw + Z aF < Z m(z)s(k”) . (18.13)
k=r+1 i=k—r
This completes the proof. O
In the next section we further analyze the error term
27 T ) .
E"(a) = Z aF < Z m(l)s(k”) . (18.14)
k=r+1 i=k—r
We conclude this section with two observations. First, taking r = 1 we get
EYa) = o?2M sV = a?AzAs,

where Az and As are the standard primal-dual Newton directions at (z, s). This is in
accordance with earlier results (see, e.g., (10.12)). If we use a first-order Newton step
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then the error is of order two in a. In the general case, of a step of order r, the error
term E"(a) is of order r + 1 in a.

The second observation concerns the orthogonality of the search directions in the z-
and s-spaces. It is immediate from the first two equations in (18.9) and (18.10) that

(x@)Ts(j) —0, Vi>1,Vj>1

AS a Consequence,
2 I T I
( 7a$) A 7aS - 07

and also, from Lemma IV.19,
(2" ()" s"(a) = ” (zs + alw) = e w(a).

Thus, after the step with size a, the duality gap is equal to the gap at the target @w(«).
Figure 18.1 illustrates the use of higher-order search directions.

wy 41
T
3l
ol
1L
% 1' 2 3 4

Figure 18.1 Trajectories in the w-space for higher-order steps with »r = 1,2, 3,4, 5.
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18.3 Analysis of the error term

The main task in the analysis of the higher-order method is to estimate the error term
E™(a), given by (18.14). Our first estimation is very loose. We write

2r r 2r r
IE™ ()] < Z % Z 2D k=D < Z o” Z Hx@)s(k_i) (18.15)
k=r+1 i=k—r k=r+1 i=k—r

and we concentrate on estimating the norms in the last sum. We use the vectors d and
v introduced in Section 10.4:

d= \/g v = \/Ts. (18.16)

Then the third equation in (18.9) can be rewritten as

Aw

d~tzM 4 dst = = (18.17)
v
and the third equation in (18.10) as
k—1
dte® 4 ds® = 1Y "Wt k=23, (18.18)
i=1

Since z*) and s®) are orthogonal for k > 1, the vectors d 1z® and ds*) are
orthogonal as well. Therefore,

2

?

o =

k> 1.

Hence, defining
g®) = d e L ds® k>, (18.19)

we have for each £ > 1,
ot < Ja® ] as ] <[]
and as a consequence, for 1 < ¢ < k — 1 we may write

Hx<i>s<’f*i) . (18.20)

= Hdilx(i)ds(kfw

<Jora

Hds(kﬂ')

< Hqu)

=
Substitution of these inequalities in the bound (18.15) for E"(«) yields

2r T
IE (@) < > o > Hq“’ : (18.21)
k=r+1 i=k—r

Hq(kﬂ')

We proceed by deriving upper bounds for Hq(k) , k> 1.
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Lemma IV.20 For each k > 1,

k-1 k
[ [ o (0] (18.22)
where the integer sequence p1, ps, ... is defined recursively by ¢1 =1 and
k-1
Ok = Pitk—i- (18.23)
i=1

Proof: The proof is by induction on k. Note that (18.22) holds trivially if £ = 1.
Assume that (18.22) holds for Hq(@ H if 1 < ¢ < k. We complete the proof by deducing

from this assumption that the lemma is also true for Hq<k) H For k > 2 we obtain from
the definition (18.19) of ¢'¥) and (18.18) that

k—1
g™ = ! Z MONCEDN
i=1
Hence, using (18.20),

Hq(k—i)

k—1
[ < el X
i=1

At this stage we apply the induction hypothesis to the last two norms, yielding

R ol "Ll

k-1 .
@] < [0t Do el 1 o
i=1
which can be simplified to
- k=1
Hq(’”H <Y Hq(”H > pion—i
i=1

Finally, using (18.23) the lemma follows. O

The solution of the recursion (18.23) with ¢ = 1 is given by’

1 2k —2
@kE( Lo ) (18.24)

This enables us to prove our next result.

Lemma IV.21 For each k=7r-+1,...,2r,

i qu
i=k—r

22k—3 inE_2 k
<2 o]

=

7 Exercise 85 Prove that (18.24) is the solution of the recursion in (18.23) satisfying w1 = 1 (cf.,
e.g., Liu [184]).
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Proof: Using Lemma IV.20 we may write

r .
Je 2 < 32 et

7

I

e

.,
Z Hqu)

which is equivalent to

r ] _ k r
> Hq(“ i Hq(”H > pigr—i
i=k—7 i=k—r

For the last sum we use again a loose bound:

Z PiPh— z<z@l99k: i =

i=k—r

Hq(kﬂ)

Using (18.24 ) and k£ > 2 we can easily derive that

22]673
R < T k>2.

Substituting this we obtain

22k73 ke k
< o ||

)
Hq =Tk

Hq(kﬂ)

proving the lemma. a

Now we are ready for the main result of this section.

Theorem IV.22 We have
”Er(a)” < +1 Z af92k- 3Hv_1Hk 2H (1) H

Proof: From (18.21) we recall that

2r T
IE7 @l < > ok 3 [
k=r+1 i=k

-7

Hq(k—i)

Replacing the second sum by the upper bound in Lemma IV.21 and using that & > r41
in the first sum, we obtain the result. a

18.4 Application to the primal-dual Dikin direction

18.4.1 Introduction

The Dikin direction, described in Appendix E, is one of the directions that can be used
for solving the self-dual problem. In the next section we show that its definition can
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easily be adapted to problems (P) and (D) in standard format. It will become clear
that the analysis of the self-dual model also applies to the standard model and vice
versa. Although we don’t work it out here, we mention that use of the (first-order)
Dikin direction leads to an algorithm for solving the standard model that requires at
most

T 0
Tnlog(x) 5

iterations, where (z°,s°) denotes the initial primal-dual pair, € is an upper bound

for the duality gap upon termination of the algorithm and 7 an upper bound for the
distance of the iterates to the central path.® The complexity per iteration is O(n?), as
usual. This is in accordance with the bounds in Appendix E for the self-dual model. By
using hlgher or der versions of the Dikin direction the complexity can be improved by a

factor (rn) 2" e . Note that this factor goes to v/7n if 7 goes to infinity. The complexity
per iteration is O(n® + rn?). Hence, when taking r = n, the complexity per iteration
remains O(n?). In that case we show that the iteration bound is improved by the
factor v/Tn. When 7 = O(1), which can be assumed without loss of generality, we

obtain the iteration bound
20 T o
(\/_ log( ) ° )

which is the best iteration bound for interior point methods known until now.

18.4.2 The (first-order) primal-dual Dikin direction

Let (x, s) be a positive primal-dual pair for (P) and (D) and let Az and As denote
displacements in the z-space and the s-space. Moving along Az and As we arrive at

et =z 4+ Az, sT:i=s4+As.
The new iterates will be feasible if
ANz =0, ATAy+ As=0,

where Ay represents the displacement in the y-space corresponding to As, and both
zT and sT are nonnegative. Since Az and As are orthogonal, the new duality gap is
given by

(m*)T st=aTs+2TAs+ sT Ax.

8 Originally, the Dikin direction was introduced for the standard format. See Jansen, Roos and
Terlaky [156].
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Replicating Dikin’s idea, just as in Section E.2, we replace the nonnegativity conditions
by the condition®

This can be rewritten as

showing that the new iterates are sought within an ellipsoid, called the Dikin ellipsoid
at the given pair (x, s). Since our aim is to minimize the duality gap, we consider the
optimization problem

A A
min {eT (sAz +zAs) : AAz =0, ATAy+ As =0, Tx + ?8

< 1} . (18.25)

The crucial observation is that (18.25) determines the displacements Az and As
uniquely. The arguments are almost the same as in Section E.2. Using the vectors
d and v in (18.16), = and s can be rescaled to the same vector v:

As usual, we rescale Az and As accordingly to

dy = d ‘Az, d,:=dAs. (18.26)
Then
Az d, As  d,
= v s
and moreover,
AzAs = dd,.

Dikin introduced the so-called primal affine-scaling direction at a primal feasible z (x > 0) by
minimizing the primal objective ¢ (x + Ax) over the ellipsoid

Ax

x

<1

= 4

subject to AAxz = 0. So the primal affine-scaling direction is determined as the unique solution of

Sl}-

Dikin showed convergence of the primal affine-scaling method ([63, 64, 65]) under some non-
degeneracy assumptions. Later, without nondegeneracy assumptions, Tsuchiya [268, 270] proved
convergence of the method with damped steps. Dikin and Roos [66] proved convergence of a full-
step method for the special case that the given problem is homogeneous. Despite many attempts,
until now it has not been possible to show that the method is polynomial. For a recent survey
paper we refer the reader to Tsuchiya [272]. The approach in this section seems to be the natural
generalization to the primal-dual framework.

min {cTAx . AAz =0,

‘Am
x
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Also, the scaled displacements d, and dg are orthogonal. Now the vector occurring in
the ellipsoidal constraint in (18.25) can be reduced to

Az As  d,+d,
Ar A8 _ by ¥ ds
xZ 5 v

Moreover, the variable vector in the objective of problem (18.25) can be written as

A A
SAx + xAs = xs (Tx—l—f) =wv(d, +ds).
With
dy =dy +ds, (18.27)

the vectors d, and d; are uniquely determined as the orthogonal components of d,, in
the null space and row space of AD, so we have

dy =  Pap(dy) (18.28)
ds =  dy—dg. (18.29)

Thus we can solve the problem (18.25) by solving the much simpler problem

d
min{dew 22 < 1}. (18.30)
The solution of (18.30) is given by
L 0
Y ls]| -

It follows that d, and d; are uniquely determined by the system

ADd, = 0
(ADY"d, +d, = 0
dy + ds = Aoy
In terms of the unscaled displacements this can be rewritten as
AAx = 0
ATAy+As = 0 (18.31)
sAz + xAs = Aw,
where
Aw—vdy — @) (18.32)
02| [l s]|

We conclude that the solution of the minimization problem (18.25) is uniquely
determined by the linear system (18.31). Hence the (first-order) Dikin directions Ax
and As are the Newton directions at (x,s) corresponding to the displacement Aw
in the w-space, as given by (18.32). We therefore call Aw the Dikin direction in the
w-space.

In the next section we consider an algorithm using higher-order Dikin directions.
Using the estimates of the error term E"(«) in the previous section we analyze this
algorithm in subsequent sections.
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18.4.8 Algorithm using higher-order Dikin directions

For the rest of this section, Aw denotes the Dikin direction in the w-space as given
by (18.32). For r = 1,2,... and for some fixed step-size « that is specified later, the
corresponding higher-order Newton steps of order r at (z, s) are given by (18.11). The
iterates after the step depend on the step-size . To express this dependence we denote
them as z(«) and s(a) as in Section 18.2. We consider the following algorithm.

Higher-Order Dikin Step Algorithm for the Standard Model

Input:
An accuracy parameter € > 0;
a step-size parameter ¢, 0 < a <
a positive primal-dual pair (xo, s

L
0).
begin

x =12 5:= s
while z7s > ¢ do
begin
z:=z(a) =z + A" %x;
s:=s{a) =85+ A%
end
end

Below we analyze this algorithm. Our aim is to keep the iterates (z, s) within some

cone

max (zs)

dc(xs) = <r

min (xs)

around the central path, for some fixed 7 > 1; 7 is chosen such that

5e(x%s%) < 7.

18.4.4 Feasibility and duality gap reduction

As before, we use the superscript T to refer to entities after the higher-order Dikin
step of size « at (z, s). Thus,

at = z(a) =x + A",
st = s(a) = s+ A%,
and from Lemma IV.19,
st = 2(a)s(a) = 2s + aAw + E"(a), (18.33)

where the higher-order error term E”(«) is given by (18.14).

The step-size « is feasible if the new iterates are positive. Using the same (simple
continuity) argument as in the proof of Lemma E.2, page 455, we get the following
result.
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Lemma IV.23 If & is such that z(a)s(a) > 0 for all « salisfying 0 < o < &, then
the step-size & is feastble.

Lemma V.23 implies that the step-size & is feasible if
s+ aAw+ E(a) >0, 0<a<a.

At the end of Section 18.2 we established that after the step the duality gap attains
the value e (xs + aAw). This leads to the following lemma.

Lemma IV.24 If the step-size « is feasible then
T o+ ( o ) T
T sT<|(l——}|2x*s.
(@) v
Proof: We have
T T (133)2 T
(1) st =€’ |as—a— | =2's—azs|.

The Cauchy—Schwarz inequality implies

s = —= llell [lxs]] >

L
v

and the lemma follows. O

18.4.5 FEstimate of the error term
By Theorem IV.22 the error term E”(«) satisfies

2
" _qk=2 k
Fons sy 5 o)

In the present case we have, from (18.19), (18.17) and (18.32),

S BAw v
v [|v2]]
Hence 5 )
<1>Hv_‘ < K _
q < vl [v]lop = max (v).
H o] v i
Therefore,

o] 2

min (v) min (zs)

Substituting this we get

- 1 - 9 k  min (zs) 2 k
@) < sty 11 3 0t () B S

(18.34)
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18.4.6 Step size

Assuming d.(z,s) < 7, with 7 > 1, we establish a bound for the step-size « such that
this property is maintained after a higher-order Dikin step. The analysis follows the
same lines as the analysis in Section E.4 of the algorithm for the self-dual model with
first-order Dikin steps. As there, we derive from 6.(z, s) < 7 the existence of positive
numbers 7; and 7o such that

e < xs < me, with 7 = 771. (18.35)
Without loss of generality we take
71 = min (xs).
The following lemma generalizes Lemma E.4.

Lemma IV.25 Let 7 > 1. Suppose that 6.(xs) < 7 and let 71 and T2 be such that
(18.35) holds. If the step-size « satisfies

& < min HacsH’ 1’ 1, /2nT 7
21y AT AT\ s

then we have 8,(xtst) < 7.

Proof: Using (18.33) and the definition of Aw we obtain

2
rtst = z2(a)s(a) = zs + aAw + E"(a) = x5 — + E" ().

Using the first bound on « in the lemma, we can easily verify that the map

ot?

t—1t—
[|s]|

is an increasing function for ¢ € [0, 72]. Application of this map to each component of
the vector xs gives

2 2 2
S W ) M G 1
l|lzs|| |zs]| |lzs||

2 2
1 — AN et E(a)<z'st <|(m— 2 ) ey E(a).
s s

Hence, assuming for the moment that the Dikin step of size « is feasible, we certainly
have §(ztsT) < 7 if

(= H‘;C_H) O EICE H‘;—H) e 1 E"(a)

It follows that
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Since 75 = 77, this reduces to

o (M> e+ (r—1E"(a) > 0.

]|

Since 75 — 77 = (7 — 1) 7172 we can divide by 7 — 1, thus obtaining

QT T2

e+ E"(a) > 0.
|||

This inequality is certainly satisfied if
[zs|[ |1E"(a)]| < ariTa.

Using the upper bound (18.34) for E"(a) it follows that we have §(ztsT) < 7 if a is
such that

. 2r
||zs|| min (xs) k
—8(T+1) E (40[\/’7_') SaTlTQ.
k=r+1

Since min (xzs) = 71, this inequality simplifies to

los| < !
8(7"+ 1) k;q (404\/7_') < ar.

The second bound in the lemma implies that 4a/7 < 1. Therefore, the last sum is
bounded above by
2r

3 (davn)" <r (o)

k=r+1
Substituting this we arrive at the inequality

rlles|| (4o _
8(r+1) -

aTo.

Omitting the factor r/(r + 1), we can easily check that this inequality certainly holds
if

1 27’1\/_
=T Tl

which is the third bound on « in the lemma. Thus we have shown that for each step-
size o satisfying the bounds in the lemma, we have §(z7s™) < 7. But this implies that
the coordinates of x7st do not vanish for any of these step-sizes. By Lemma IV.23
this also implies that the given step-size « is feasible. Hence the lemma follows., O
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18.4.7 Convergence analysis

With the result of the previous section we can now derive an upper bound for the
number of iterations needed by the algorithm.

Lemma IV.26 Let 4/n < 1 < 4n. Then, with the step-size

1 7 2
ar 4T\ v’

the Higher-Order Dikin Step Algorithm for the Standard Model requires at most

T .0
4T/ \/;'_n log (z )5 5

iterations. 10 The output is a feasible primal-dual pair (z,s) such that §.(xs) < 7 and
T
s <e.

Proof: Initially we are given a feasible primal-dual pair (z°, s°) such that §,.(z%s%) <
7. The given step-size o guarantees that these properties are maintained after each
iteration. This can be deduced from Lemma IV.25, as we now show. It suffices to show
that the specified value of & meets the bound in Lemma IV.25. Since 7n > 4 we have

1 2 1
= T <
CTAA\ VT A

showing that o meets the second bound. Since ||zs|| < T2+/n we have

2T1\/’7_'>2T1\/’7_'7 2\/’7_'7 2
lzs| = my/m  Tm TR
which implies that « also meets the third bound in Lemma IV.25. Finally, for the first
bound in the lemma, we may write

losl  nvi Va1

o T 21y 27 4T

The last inequality follows because 7 < 4n. Thus we have shown that o meets the
bounds in Lemma IV.25. As a consequence, the property 6.(zs) < 7 is maintained
during the course of the algorithm. This also implies that the algorithm is well defined
and, hence, the only remaining task is to derive the iteration bound in the lemma. By
Lemma IV.24, each iteration reduces the duality gap by a factor 1 — 6, where

gfﬂf r /2
o 4Aym\ '

10 When r = 1 the step-size becomes

1
271’
which is a factor of 2 smaller than the step-size in Section E.5. As a consequence the iteration

bound is a factor of 2 worse than in Section E.5. This is due to a weaker estimate of the error
term.
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Hence, by Lemma 1.36, the duality gap satisfies z7s < ¢ after at most

—1 — —4\/Tn\/ log

iterations. This completes the proof. O

Recall that each iteration requires O (n3 + 'rn2) arithmetic operations. In the rest
of this section we take the order r of the search direction equal to r = n. Then the
complexity per iteration is still O (n3) just as in the case of a first-order method. The
iteration bound of Lemma IV.26 then becomes

— T o
VRVEERY! ;n log (x

Now, assuming 7 < 4n, we have
nf /TN
3 < ’\’/ﬁ

The last expression is maximal for n = 3 and is then equal to 1.44225. Thus we may
state without further proof the following theorem.

Theorem IV.27 Let 4/n < 7 < 4n and r = n. Then the Higher-Order Dikin Step
Algorithm for the Standard Model stops after at most

0T 0
Gﬁlogi(x)g °

iterations. Each iteration requires O(n®) arithmetic operations.

For 7 = 2, which can be taken without loss of generality, the iteration bound of

Theorem IV.27 becomes
(=) 8" O)T s
\/_ log )

which is the best obtainable bound.

18.5 Application to the primal-dual logarithmic barrier method

18.5.1 Introduction

In this section we apply the higher-order approach to the (primal-dual) logarithmic
barrier method. If the target value of the barrier parameter is p, then the search
direction in the w-space at a given primal-dual pair (z, s) is given by

Aw = pe — xs.
We measure the proximity from (z,s) to the target pe by the usual measure

5(zs, 1) ‘ xs  [pe
20|V pe xs

(18.36)

,ue — x8
2\/_
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In this chapter we also use an infinity-norm based proximity of the central path,

namely
He pe K
Soo(ws, ) := ‘VE \ 25 iy
o

Ui
Recall from Lemma I1.62 that we always have
oo (s, 1) < p(3(ws, 1)) - (18.38)

Just as in the previous section, where we used the Dikin direction, our aim is to consider
a higher-order logarithmic barrier method that keeps the iterates within some cone
around the central path. The cone is obtained by requiring that the primal-dual pairs
(z, s) generated by the method are such that there exists a ¢ > 0 such that

S(zs,p) <7, and deolxs,u) < (18.39)

— max
P

— max
P

(18.37)

where 7 and ( denote some fixed positive numbers that specify the ‘width’ of the cone
around the central path in which the iterates are allowed to move.
When ¢ = p(7) it follows from (18.38) that

drs,p) <1 = beolws,u) <.

Hence, the logarithmic barrier methods considered in Part II fall within the present
framework with ¢ = p(7). The full Newton step method considered in Part IT uses
T= 1/\/5 In the large-update methods of Part II the updates of the barrier parameter
p reduce p by a factor 1 —6, where § = O(1). As a consequence, after a barrier update
we have d(xs, u) = O(y/n). Hence, we may say that the full Newton step methods in
Part IT keep the iterates in a cone with 7 = O(1), and the large-update methods in
a wider cone with 7 = O(y/n). Recall that the method using the wider cone — the
large-update methods — are multistep methods. Each single step is a damped (first-
order) Newton step and the progress is measured by the decrease of the (primal-dual)
logarithmic barrier function.

In this section we consider a method that works within a ‘wide’ cone, with
7 = O(y/n) and ¢ = O(1), but we use higher-order Newton steps instead of damped
first-order steps. The surprising feature of the method is that progress can be controlled
by using the proximity measures §(zs, ) and o0 (s, pt). We show that after an update
of the barrier parameter a higher-order step reduces the proximity d(xs, 1) by a factor
smaller than one and keeps the proximity d.o(xs, ) under a fixed threshold value
¢ > 2. Then the barrier parameter value can be decreased to a smaller value while
respecting the cone condition (18.39). In this way we obtain a ‘wide-cone method’
whose iteration bound is O(y/nloglog (z°)7's%/<). Each iteration consists of a single
higher-order Newton step.

Below we need to analyze the effect of a higher-order Newton step on the proximity
measures. For that purpose the error term must be estimated.

18.5.2 FEstimate of the error term

Recall from Lemma IV.19 that the error term E7(«) is given by

2r

1 _ k
”ET(O‘)H < m Z Oék22k H’U_lHio 2 H(J(DH s (1840)
k=r+1
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where v = +/zs. In the present case, (18.19) and (18.17) give

gV AW pe—zs
v Vs

Hence, using (18.36) and denoting §(xs, i) by 9, we find

Hq<1)H =2/p0 <2/pT.

Furthermore by using (18.37) and putting deo := oo (s, 1t} we have
<

o™

Substituting these in (18.40) we get!!

K
v

2r
i
E(a —_— 18.41
1B (@ < 5o k;ﬂ@o«s& )" < (THCQ};H Bar()*. (18.41)

Below we always make the natural assumption that o < 1. Moreover, § and 0., always
denote §(xs, ) and 0. (xs, 1) respectively.

Lemma IV.28 Let the step-size be such that o < 1/ (800s). Then

e (8ad8,0)

E" <
I @) <

Proof: Since 8addo, < 1, we have

27
D7 (8ads)’ < 7 (8addg) !
k=r+1

Substitution in (18.41) gives the lemma. O

Corollary IV.29 Let § <7, §oo < ¢ and a < 1/ (87¢). Then

rp (8ar()"
+1 82

[E" ()] <

11 For » = 1 the derived bound for the error term gives HEl(l)H < 4ué?, as follows easily. It is
interesting to compare this bound with the error bound in Section 7.4 (cf. Lemma I1.49), which
amounts to HE’l(l) H < p182+/2. Although the present bound is weaker by a factor of 2v/2 for r = 1,

it is sharp enough for our present purpose. It is also sharp enough to derive an O(y/n) complexity
bound for » = 1 with some worse constant than before. Our main interest here is the case where
r > 1.
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18.5.3 Reduction of the proximity after a higher-order step
Recall from (18.13) that after a higher-order step of size o we have

2 (a)s" (o) = xs+ alAw + E"(a) = s + alue — xs) + E"(a).

We consider
() i= xs + alpe — xs)

as the (intermediate) target during the step. The new iterate in the w-space is denoted
by w(a), so

As a consequence,
w(a) =w(a) + B («). (18.42)

The proximities of the new iterate with respect to the u-center are given by

1
5( 7 *5

and

Ideally the proximities after the step would be 5( ( ) p) and S (w(a), u). We first
derive an upper bound for §(w(a), u) and ds(w(a), pt) respectively in terms of 7, ¢
and the step-size a.

Lemma IV.30 We have
(i) o(w(a),p) < V1-ad,
(ii) duo(@(a), ) < \/a T (1 — @)%,

Proof: 1t is easily verified that for any positive vector w, by their definitions (18.36)
and (18.37), both §(w, u)? and d(w, )2 are convex functions of w. Since

w(a) =xzs +ape —xs) =a(pe) + (1 —a)rs, 0<a<l,
w(a) is a convex combination of pe and xs. Hence, by the convexity of §(w, u)?,
§(@(ar), 1)® < a (ue, p)? + (1 — @) 8(xs, ).

Since §(pe, 1) = 0, the first statement of the lemma follows.
The proof of the second claim is analogous. The convexity of du (s, 1t)? gives

Soo(w(ar), n? <a 500(M67U)2 +(1-0) 500(xS7U)Q'
Since doo (pte, u) = 1, the lemma follows. O

It is very important for our purpose that when the pair (z,s) satisfies the cone
condition (18.39) for p > 0, then after a higher-order step at (z,s) to the p-center,
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the new iterates also satisfy the cone condition. The next corollary of Lemma IV.30
is a first step in this direction. It shows that @(«) satisfies the cone condition. Recall
that w(a) = w(«) if the higher-order step is exact. Later we deal with the case where
the higher-order step is not exact (cf. Theorem IV.35 below). This requires careful
estimation of the error term E7(a).

Corollary IV.31 Let § < 7 and 600 < ¢, with ¢ > 2. Then we have
(i) d(w(a),p) EV1I—aT<(1—§)7;
(i) dno(ib(). 1) < Va T (- ) < (1- %) <.

Proof: The first claim is immediate from the first part of Lemma IV.30, since 6 < 7
and v/1 —a < 1 — «a/2. For the proof of the second statement we write, using the
second part of Lemma IV.30 and ¢ > 2,

3o 3o
= (1—I>C2§<1—§>CSC-

Thus the corollary has been proved. O

a+ (1 —a)s? < a+(1—a)? < a%2+(1fa)c2

The next lemma provides an expression for the ‘error’ in the proximities after the
step. We use the following relation, which is an obvious consequence of (18.42):

wle) _ w{e) (e . E_@> . (18.43)
Iz I w(a)
Lemma IV.32 Let o be such that

<\/5_1.
2

‘ £ ()
()

o0

Then we have

(i) $(w(a), p) < 6(w(a), p) + /11 3(@(a), 1) H £ (o)

(i1) doo (), 1) < Soclire) ) (1+ |52 ).

!

Proof: Using (18.43) we may write

i = Wf) (o~ Fe3) - \/mﬁw ()

To simplify the notation we omit the argument « in the rest of the proof and we
introduce the notation

()
A= )
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o(w ‘\/ e+ ) — \/ (e+ )"

ffﬂw)m ).

application of the triangle inequality gives

§(w(a), 1) < 6(w(a ‘\/7 e+)\%e>\/7((e+>\)%e>

Denoting the i-th coordinate of the vector under the last norm by z;, we have

zl:\/%((1+Ai)%_1)_\/w@i(umi)—%q).
% (1+X) %fl‘ \/El

The hypothesis of the lemma implies |\;| < (v/5 — 1)/2. Now using some elementary
inequalities,'? we get

W, W,
zi<\/—l|xi|+,/ﬁxi|(\/—w,/ﬁ) Al
1 w; 1 w;
w; ? w; ? ]
<,/—l+,/4> 4+(,/ Z,/@) <di | /2
M wy H Wy H

= 48(w(a), 1),

so that

Since

. (18.44)

This implies

| 2] <

(1+Ai)*%—1\.

Since

and

we conclude that

o] < 2T+ 0(w(a), i N, 1<i<n,

Hence

2] < 23/ 1+ d(w(a), w)? | All -

12 Exercise 86 Prove the following inequalities:

‘(1+A)%f\ < L, —1<a<,

|
S
IA
>
IN
-

1—

osar

IA

Al

[\
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Substituting this in (18.44) proves the first statement of the lemma.
The proof of the second statement in the lemma is analogous. We write

0 7 Er(a)\ ™"
st = S| = (- 5
_ H -1
= o) (e+X)
= A / M + / (e+N) ~3 ) ‘
s v
Using again the results of Exercise 86 we can simplify this to
doo(w(), ) < boo(@(a), p) + doo(@W (), 1) [[All
_ _ E"(a)
- et (14| 5 )-
proving the lemma. O

The following corollary easily follows from Lemma V.32 and Corollary IV.31.
Corollary IV.33 Let § < 7 and 000 < (, with ¢ > 2. If «v is such that

‘gfa@)) <2

o0

then we have
(i) (wle),m) < (1- $)r+VT+7 | 2,
(ii) boo(w(a), ) < (1 — 2a) (1+ H’i(—(;;) Oo) .

We proceed by finding a step-size a that satisfies the hypothesis of Lemma 1V.32
and Corollary IV.33.

Lemma IV.34 With 6 and ¢ as in Corollary IV.33, let the step-size o be such that
a < 1/(87¢C). Then

(8ar¢) ™!

‘Er(a)

()

r
~8(r+1)
and o satisfies the hypothesis of Lemma IV.32 and Corollary IV.53.

Proof: We may write

o

w(a)

HET <& HET( )

€
<= E(a
‘w(a)‘oo“
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where the last inequality follows from Corollary IV.31. Now using Corollary IV.29 we
have

(8ar()"™ !,

EY
w(o)

T

proving the first part of the lemma. The second part follows from the first part by
using 8ar( < 1:

5—1
P 5

< <
- ~ 8(r+1) 2 7

o

o)
(o)

(a) Lo
completing the proof. a
Equipped with the above results we can prove the next theorem.
Theorem IV.35 Let § < 7, oo <, with { > 2, and a < 1/(87¢). Then
(i) 6(w(a), 1) < (1= ) T+ g2 VI+ 72 (8arg) ™

(1) doun(e). ) < (1= §0) (1+ iy (Bar€)"™)

Proof: For the given step-size the hypothesis of Corollary IV.33 is satisfied, by
Lemma IV.34. From Lemma IV.34 we also deduce the second inequality in

‘Ew) E"(a)

2l Eo

(8ar¢) .

8(r+1)

Substituting these inequalities in Corollary IV.33 yields the theorem. O

18.5.4 The step-size
In the sequel the step-size « is given the value

1
o= (18.45)

8¢/t + DCVIT 2

where § = 0(zs,p) < 7 and 000 = doo(ws, pt) < . It is assumed that ¢ > 2. The
next theorem makes clear that after a higher-order step with the given step-size « the

proximity ¢ is below a fixed fraction of 7 and the proximity J., below a fixed fraction
of ¢.

Theorem IV.36 If the step-size is given by (18.45) then

Moreover,
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Proof: The proof uses Theorem IV.35. This theorem applies because for the given
value of o we have

= < L,
sr¢i/(r+1yevit 2 0TS
whence 8a7( < 1. Hence, by the first statement in Theorem IV.35,

d(w(a), p) < (1 - %) T+ ﬁ\/ 1+72(8ar¢) ™. (18.46)

The second term on the right can be reduced by using the definition of «:

_a T Ai=. B¢
(1 2)T+8(T+1) 1+T(7‘+1)C\/1+72

o =

d(w(a), u)

IA

This proves the first statement. The second claim follows in a similar way from the
second statement in Theorem IV.35:

(

boo(w(a), 1)

IA

—
|
|
Q
SN
TN
—
+
X

T(SOWC)TH) ¢

14T 8ar( )C
8(r+1) (r+1)¢(v1+72

1+ r ot )C
(r+12V1+72

=
|

—
\

<

=
|

<

A
/‘\/D/\/‘\
|
0|2 wlw wlw wlw owlw wlw
o}
S L N
AC\AA
+
-
o]
e
[V}
~—
o~

TN
=
\

In the last but one inequality we used that 7/(r + 1)? is monotonically decreasing if r
increases (for r > 1). O

18.5.5 Reduction of the barrier parameter

In this section we assume that § = d(xs, u) < 7, where 7 is any positive number. After
a higher-order step with step-size «, given by (18.45), we have by Theorem IV.36,

S(w(a), p) < (1= p)9,

where 2
g = % (18.47)
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Below we investigate how far u can be decreased after the step while keeping the
proximity ¢ less than or equal to 7. Before doing this we observe that

| e
~las = |\

is monotonically decreasing as p decreases. Hence, we do not have to worry about .
when p is reduced. Defining

p=1=0)u,

we first deal with a lemma that later gives an upper bound for §(w(a), uT).13

Lemma IV.37 Let (x,s) be a positive primal-dual pair and suppose p > 0. If
8 = d(xs, u) and ut = (1 — O)p then

by < 240y
<S5

s //ﬁ‘e
;ﬁe s

To simplify the notation in the proof we use v = y/xs/u. Then we may write

o(ws, p
Proof: By the definition of §(zs, u™t),

S(zs,pu) =

1
2

S(zs,u™) = —V1—6ut

1 1 fu
o M R R )

1 ‘ u
2v1-6
Using the triangle inequality and™ also

lull < Jlu =™t + vn =25 + v/n,

we get

d(xs, 1) < 5\/—+ _”uH <6V1—6+ (225%:{0%) - 226\+/1_9:/_£ :

proving the lemma. a

13 A similar result was derived in Lemma IL.54, but under the assumption that z7s = nyu. This

assumption will in general not be satisfied in the present context, and hence we have a weaker
bound.

14 Exercise 87 For each positive number £ we have

\éli‘éfé 11

Prove this and derive that for each positive vector u the following inequality holds:

ull < [Ju—u?|| + v
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Theorem IV.38 Let § = 6(xs,u) < 7, 0o = doolxs,u) < ¢, with { > 2. Taking
first a higher-order step at (z,s), with « according to (18.45), and then updating the
barrier parameter to ut = (1 — )y, where

267 ar(r? +1)

o= 27’+\/ﬁ: (r+1)2(27 +/n)’

(18.48)

we have §(w(a),u™) <7 and doo(w(a), ut) < C.

Proof: The second part of Theorem IV.36 implies that after a step of the given
size doo(w(a), 1) < ¢. We established earlier that d, monotonically decreases when p
decreases. As a result we have ds (w(a), ™) < ¢. Now let us estimate d(w(c), u™).
After a higher-order step with step-size « as given by (18.45), we have by the first
part of Theorem V.36,

s(wla)) < (1 G ) das = (1 )

with 3 as defined in (18.47). Also using Lemma IV.37 we obtain

- 2(1—=3)6+6yn
- 2,/1-0 - 2,/1-0 '

Since § < 7, we certainly have §(w(a), ut) < 7 if

2(17ﬂ)7'+9\/ﬁ<7_
21 -6 -

This inequality can be rewritten as
2(1 = B)1 + 0v/n < 21V1 — 6.
Using v/1 — 6 > 1 — 6 the above inequality certainly holds if
2(1 — B)7 + 0/n < 27(1 —0).

It is easily verified that the value of € in (18.48) satisfies this inequality with equality.
Thus the proof is complete. O

18.5.6 A higher-order logarithmic barrier algorithm

Formally the logarithmic barrier algorithin using higher-order Newton steps can be
described as below.
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Higher-Order Logarithmic Barrier Algorithm

Input:
A natural number r, the order of the search directions;
a positive number 7, specifying the cone;

a primal-dual pair (330 s ) and u® > 0 such that §(2%s%, u%) <7

¢ —max(2 600 (20°, 10));

a step-size parameter «, from (18.45);
an update parameter 6, {rom (18.48);
an accuracy parameter € > 0;

begin
z =2z 3 TRE NI
while zTs > e do
begin

x —x(oa)—x—&—ATO‘
= s(a) = s+ A"%g;
= (1 =)
en
end

A direct consequence of the specified values of the step-size o and update parameter
g is that the properties 6(zs, ) < 7 and 8o (s, 1) < ¢ are maintained in the course of
the algorithm. This follows from Theorem IV.38 and makes the algorithm well-defined.

18.5.7 Iteration bound

In the further analysis of the algorithm we choose
r=vn and r=n.
At the end of each iteration of the algorithm we have
S(xs, p) <7 =+/n.

As a consequence (cf. Exercise 62),

ot < (14 220 Yo = (14 20 (V) s < 4 (14 V)

Hence x7s < ¢ holds if
4(14vn)nu <e,

or
9

HET Ry
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Recall that at each iteration the barrier parameter is reduced by a factor 1 — 0, with

B ar(r? +1) _an?+1) _«
i Ty CEay R R A (18.49)

The last inequality holds for all n > 1. Using Lemma 1.36 we find that the number of
iterations does not exceed
4 (14 /n)nu®

6
—log
a €

Substituting « in (18.45) and T = \/n, we get

g =48¢v/n i/ (n +1)¢VT + n.

t(n+1)v1+n<2v2 = 2.8284,

with equality only if n = 1. Thus we find

For n > 1 we have

Thus we may state the next theorem without further proof.

Theorem IV.39 The Higher-Order Logarithmic Barrier Algorithm needs at most

n 4 1 O
136 ¢ = Vv log (%\/ﬁ)nu

iterations. Each iteration requires O(n®) arithmetic operations. The output is a primal-
dual pair (z,s) such that x7s < e.

When starting the algorithm on the central path, with u® = (mO)T s /n, we have ¢ = 2.
In that case do(xs, ) < 2 at each iteration and the iteration bound of Theorem IV.39

becomes o o
41
544 /n log % —0 <\/ﬁ log @) . (18.50)

In fact, as long as ¢ = O(1) the iteration bound is given by the right-hand expression
in (18.50). Note that this bound has the same order of magnitude as the best known
iteration complexity bound.

When (20, s°) is far from the central path, the value of ¢ may be so large that the
iteration bound of Theorem IV.39 becomes very poor. Note that ¢ can be as large as

p(7), which would give an extra factor O (n%) in (18.50). However, a more careful

analysis yields a much better bound, as we show in the next section.

18.5.8 Improved iteration bound

In this section we consider the situation where the algorithin starts with a high value
of ¢. Recall from the previous section that if 7 = /n then ( is always bounded by
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¢ < p(y/n) = O(y/n). Now the second part of Theorem IV.36 implies that after a
higher-order step at (z,s) to the u-center we have

e
oo (wle). ) < (1= Z) ¢
Reducing g to ™ = (1 — 8)p we get
o
oo(wle) wt) < (1-6) (1- )¢
Now using the lower bound (18.49) for ¢ it follows that

oo (w(e) ) < (1= 2) (1= ) ¢

Since 0 < o < 1 we have (1 — %) (1 — %) < (1 — %) Hence

bocw(e), 1) < (1-F) ¢

Substituting the value of «, while using

83/ (n+1)¢V1+n <8¢/ (n+1)p(v/n) vV1+n <55,
we obtain
¢ ¢ 1
2207¢ 220/1’
showing that d. (s, ) decreases by at least 1/(2204/n) in one iteration. Obviously,
we can redefine ¢ according to

doo(w(a), n™) < ¢

¢ :=max (2, b (w(a), pu?)) < max <2, ¢~ ﬁ)

in the next iteration and continue the algorithm with this new value. In this way ¢
reaches the value 2 in no more than

2204/n (¢° = 2) = 0 (¢°v/n)

iterations, where (¥ = 8., (2%, u°). From then on ¢ keeps the value 2, and the number
of additional iterations is bounded by (18.50). Hence we may state the following
improvement of Theorem 1V.39 without further proof.

Theorem 1V.40 The Higher-Order Logarithmic Barrier Algorithm needs at most
4 1
o (go\/ﬁ+ Vi log @) .

iterations. Each iteration requires O(n®) arithmetic operations. The output is a primal-
dual pair (z,s) such that x7s < e.

In this theorem pu' denotes the value of the barrier parameter attained at the first
iteration for which ¢ = 2. Obviously, u* < u°.
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Parametric and Sensitivity
Analysis

19.1 Introduction

Many commercial optimization packages for solving LO problems not only solve the
problem at hand, but also provide additional information on the solution. This added
information concerns the sensitivity of the solution produced by the package to pert-
urbations in the data of the problem. In this chapter we deal with a problem (P) in
standard format:

(P) min{c’z : Az =b,z>0}.

The dual problem (D) is written as
(D) max{bTy : ATy+s:c,320}.

The input data for both problems consists of the matrix A, which is of size m x n,
and the vectors b € R™ and ¢ € R™. The optimal value of (P) and (D) is denoted by
za(b,c), with z4(b, ¢) = —o0o if (P) is unbounded and (D) infeasible, and z4(b,c) = 0o
it (D) is unbounded and (P) infeasible. If (P) and (D) are both infeasible then z4 (b, ¢)
is undefined. We call z4 the optimal-value function for the matrix A.

The extra information provided by solution packages concerns only changes in the
vectors b and ¢. We also restrict ourselves to such changes. It will follow from the
results below that z4(b, ¢) depends continuously on the vectors b and ¢. In contrast,
the effect of changes in the matrix A is not necessarily continuous. The next example
provides a simple illustration of this phenomenon.!

Example IV.41 Consider the problem
min{zs : az; +x2 =1, 21 >0, x5 > 0},

where o € R. In this example we have A = (o 1), b = (1) and ¢ = (0 1)7. We can
easily verify that z4(b,¢) = 0 if &« > 0 and z4(b,c) = 1 if @ < 0. Thus, if z4(b,c) is
considered a function of «, a discontinuity occurs at o = 0. O

Thus. the dependence of z4(b,¢) on the entries in b and ¢ is more simple than the
dependence of z,4(b, ¢) on the entries in A.

1 For some results on the effect of changes in A we refer the reader to Mills [210] and Gal [89].
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We develop some theory in this chapter for the analysis of one-dimensional
parametric perturbations of the vectors b and ¢. Given a pair of optimal solutions
for (P) and (D), we present an algorithm in Section 19.4.5 for the computation
of the optimal-value function under such a perturbation. Then, in Section 19.5 we
consider the special case of sensitivity analysis, also called postoptimal analysis. This
classical topic is treated in almost all (text-)books on LO and implemented in almost
all cominercial optimization packages for LO. We show in Section 19.5.1 that the so-
called ranges and shadow prices of the coefficients in b and ¢ can be obtained by solving
auxiliary LO problems. In Section 19.5.3 we briefly discuss the classical approach to
sensitivity analysis, which is based on the use of an optimal basic solution and the
corresponding optimal basis. Although the classical approach is much cheaper from a
computational point of view, it yields less information and can easily be misinterpreted.
This is demonstrated in Section 19.5.4, where we provide a striking example of the
inherent weaknesses of the classical approach.

19.2 Preliminaries

The feasible regions of (P) and (D) are denoted by

P = {x : Az =0b,2 >0},
D = {(y,s) :ATers:c,sZO}.

Assuming that (P) and (D) are both feasible, the optimal sets of (P) and (D) are
denoted by P* and D*. We define the index sets B and N by

B:={i : z; >0 for some x € P},

N :={i : s, >0 for some (y,s) € D*}.

The Duality Theorem (Theorem II.2) implies that B N N = {), and the Goldman—
Tucker Theorem (Theorem I1.3) that

BUN={1,2,...,n}.

Thus, B and N form a partition of the full index set. This (ordered) partition, denoted
by m = (B, N), is the optimal partition of problems (P) and (D). It is obvious that
the optimal partition depends on b and c.

19.3 Optimal sets and optimal partition

In the rest of this chapter we assume that b and ¢ are such that (P) and (D) have
optimal solutions, and = = (B, N) denotes the optimal partition of both problems. By
definition, the optimal partition is determined by the sets of optimal solutions for (P)
and (D). In this section it is made clear that, conversely, the optimal partition provides
essential information on the optimal solution sets P* and D*. The next lemma follows
immediately from the Duality Theorem and is stated without proof.
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Lemma IV.42 Let z* € P* and (y*,s*) € D*. Then
P* = {m:mGP,st*:O},
D = {(y,5) : (y,8) € D, sTz* =0}.

As before, we use the notation zp and zx to refer to the restriction of a vector
z € IR" to the coordinate sets B and N respectively. Similarly, Az denotes the
restriction of A to the columns in B and Ay the restriction of 4 to the columns
in N. Now the sets P* and D* can be described in terms of the optimal partition.

Lemma IV.43 Given the optimal partition (B,N) of (P) and (D), the optimal sets
of both problems are given by

P* = {r : z€P,zn =0},
Dr = A(ys) ¢ (y,8) €D, sp=0}.

Proof: Let 2*, s* be any strictly complementary pair of solutions of (P) and (D), and
(z,s) an arbitrary pair of feasible solutions. Then, from Lemma IV.42, z is optimal
for (P) if and only if z7s* = 0. Since s} = 0 and s% > 0, we have z7's* = 0 if and
only if xy = 0, thus proving that P* consists of all primal feasible x for which zx = 0.
Similarly, if (y,s) € D then this pair is optimal if and only if s72* = 0. Since z% > 0
and z3 = 0, this occurs if and only if sg = 0, thus proving that D* consists of all
dual feasible s for which sg = 0. O

To illustrate the meaning of Lemma V.43 we give an example.

Example IV.44 Figure 19.1 shows a network with given arc lengths, and we ask for
a shortest path from node s to node t.

Denoting the set of nodes in this network by V and the set of arcs by E, any path
from s to t can be represented by a 0-1 vector z of length |E|, whose coordinates are
indexed by the arcs, such that x, = 1 if and only if arc e belongs to the path. The
length of the path is then given by

> ceme, (19.1)

e€clE

Figure 19.1 A shortest path problem.
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where ¢, denote the length of arc e, for all e € E. Furthermore, denoting e = (v, w)
if arc e points from node v to node w (with v € V and w € V), and denoting z. by
Ty, © Will satisfy the following balance equations:

Z Loy = 1

veV

dwee =) ww uweV\{st} (19.2)
veEV veV

Saw =

veV

Now consider the LO problem consisting of minimizing the linear function (19.1)
subject to the linear equality constraints in (19.2), with all variables z.,e € E,
nonnegative. This problem has the standard format: it is a minimization problem
with equality constraints and nonnegative variables. Solving this problem with an
interior-point method we find a strictly complementary solution, and hence the optimal
partition of the problem. In this way we have computed the optimal partition (B, N)
of the problem. Since in this example there is a 1-to-1 correspondence between the
arcs and the variables, we may think of B and NV as a partition of the arcs in the
network.

Figure 19.2 The optimal partition of the shortest path problem in Figure 19.1.

In Figure 19.2 we have drawn the network once more, but now with the arcs in B
solid and the arcs in N dashed. The meaning of Lemma IV.43 is that any path from
s to t using only solid arcs is a shortest path, and all shortest paths use exclusively
solid arcs. In other words, the set B consists of all arcs in the network which occur in
some shortest path from s to ¢t and the set N contains arcs in the network which do
not belong to any shortest path from s to ¢.2 &

2 Exercise 88 Consider any network with node set V' and arc set F and let s and t be two distinct
nodes in this network. If all arcs in the network have positive length, then the set B, consisting of
all arcs in the network which occur in at least one shortest path from s to t, does not contain a
(directed) circuit. Prove this.
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The next result deals with the dimensions of the optimal sets P* and D*. Here, as
usual the (afline) dimension of a subset of R” is the dimension of the smallest affine
subspace in R* containing the subset.

Lemma IV.45 We have

dim P* |B| — rank (Ag)
dim D* = m — rank (Ap).

Proof: The optimal set of (P) is given by
Pr={x : Az =0b,25 >0, zy =0},
and hence the smallest affine subspace of R" containing P* is given by
{z : Apzp =0, zny =0}.

The dimension of this affine space is equal to the dimension of the null space of Ag.
Since this dimension is given by |B| — rank (Ag), the first statement follows.

For the proof of the second statement we use that the dual optimal set can be
described by

D = {(y,s) ATy 4+ s=c,s5=0, sy > 0}.
This is equivalent to
D* ={(y,5) : Ay =cp, ANy+syv=cn, sp =0, sy >0}.
The smallest affine subspace containing this set is
{(y,s) : Agy =cp, A%y—i—sN =cn, Sg = 0} .
Obviously sy is uniquely determined by y, and any y satisfying ALy = cp yields
a point in this affine space. Hence the dimension of the affine space is equal to the

dimension of the null space of AL. Since m is the number of columns of AL, the
dimension of the null space of Ag equals m —rank (4 ). This completes the proof. O

Lemma IV.45 immediately implies that (P) has a unique solution if and only if
rank (Ag) = |B|. Clearly this happens if and only if the columns in Ag are linearly
independent. Also, (D) has a unique solution if and only if rank (Ag) = m, which
happens if and only if the rows in Ag are linearly independent.?

3 Tt has become common practice in the literature to call the problem (P) degenerate if (P) or
(D) have multiple optimal solutions. Degeneracy is an important topic in LO. In the context
of the Simplex Method it is well known as a source of difficulties. This is especially true when
dealing with sensitivity analysis. See, e.g., Gal [90] and Greenberg [128]. But also in the context
of interior-point methods the occurrence of degeneracy may influence the behavior of the method.
We mention some references: Gonzaga [120], Giiler et al. [132], Todd [263], Tsuchiya [269, 271],
Hall and Vanderbei [138].
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19.4 Parametric analysis

In this section we start to investigate the effect of changes in b and ¢ on the optimal-
value function z4(b,¢). We consider one-dimensional parametric perturbations of b
and ¢. So we want to study

za(b+ BAb,c+ vAc)

as a function of the parameters 8 and -, where Ab and Ac are given perturbation
vectors. From now on the vectors b and ¢ are fixed, and the variations come from
the parameters § and ~. In fact, we restrict ourselves to the cases that the variations
occur only in one of the two vectors b and ¢. In other words, taking v = 0 we consider
variations in 3 and taking 8 = 0 we cousider variations in ~.

If v =0, then (P3) will denote the perturbed primal problem and (Dg) its dual.
The feasible regions of these problems are denoted by Pz and Dg. Similarly, if 5 = 0,
then (D.,) will denote the perturbed dual problem and (Py) its dual and the feasible
regions of these problems are D., and P.. Observe that the feasible region of (Dg) is
simply D and the feasible region of (P,) is simply P. We use the superscript * to refer
to the optimal set of each of these problems.

We assume that b and ¢ are such that (P) and (D) are both feasible. Then z4(b, ¢)
is well defined and finite. It is convenient to introduce the following notations:

b(B) :=b+ BAb, cfv):=c+~vAc,

f(B) = za(b(B), ), 9(7) := 2a(b,c(7)).

Here the domain of the parameters § and + is taken as large as possible. Let us consider
the domain of f. This function is defined as long as z4(b(3), ¢) is well defined. Since
the feasible region of (Dg) is constant when § varies, and since we assume that (Dg)
is feasible for 5 = 0, it follows that (Dg) is feasible for all values of 3. Therefore,
f(B) is well defined if the dual problem (Dg) has an optimal solution and f(/) is not
defined (or infinity) if the dual problem (Dg) is unbounded. By the Duality Theorem
it follows that f(3) is well defined if and only if the primal problem (Pg) is feasible.
In exactly the same way it can be understood that the domain of ¢ cousists of all ~
for which (D,) is feasible (and (P,) bounded).

Lemma IV.46 The domains of f and g are conver.

Proof: We give the proof for f. The proof for g is similar and therefore omitted.
Let 81, B2 € dom (f) and 81 < § < Bz2. Then f(51) and f(f32) are finite, which means
that both Pg, and Pg, are nonempty. Let x* € Pg, and 2% € Pgs,. Then z! and z?
are nonnegative and

Azl = b+ G1Ab, Ar? =b+ Ga Ab.

Now consider

o1, B-b5 2 1 7(52*5)11+(5*51)952
e +52—51 ("~ ) = B2 — B )
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Note that z is a convex combination of z! and 22 and hence x is nonnegative. We
proceed by showing that x € Pg. Using that A (m2 — ml) = (B2 — B1) Ab this goes as
follows:

_ 1 5_51 2 .1
Az = Ax +52*51A(x x)
= b mAb+ 2 (5, - ) Ab
B2 — b1
= b+ﬂ1Ab+(ﬁ*ﬂ1)Ab
= b+ BAD.

This proves that (Pg) is feasible and hence § € dom (f), completing the proof. a

The domains of f and g are in fact closed intervals on the real line. This follows
from the above lemma, and the fact that the complements of the domains of f and ¢
are open subsets of the real line. The last statement is the content of the next lemma.

Lemma IV.47 The complements of the domains of f and g are open subsets of the
real line.

Proof: As in the proof of the previous lemma we omit the proof for ¢ because it
is similar to the proof for f. We need to show that the complement of dom (f) is
open. Let 5 ¢ dom (f). This means that (Dg) is unbounded. This is equivalent to the
existence of a vector z such that

ATz <o, (b+ 8Ab)T 2> 0.

Fixing z and considering 3 as a variable, the set of all g satisfying the strict inequality
(b+ ﬁAb)Tz > 0 is an open interval. For all § in this interval (Dg) is unbounded.
Hence the domain of f is open. This proves the lemma. a

A consequence of the last two lemmas is the next theorem, which requires no further
proof.

Theorem IV.48 The domains of f and g are closed intervals on the real line.* O

Example IV.49 Let (D) be the problem

max {y2 : y2 <1}.
y=(y1,92)
In this case b = (0,1) and ¢ = (1). Note that (D) is feasible and bounded. The set
of all optimal solutions consists of all (y;,1) with y; € R. Now let Ab = (1,0), and
counsider the effect of replacing b by b+ SAb, and let f(5) be as defined above. Then

f(B)= max {ys+Py : y2 <1}.
y={(y1,y2)

4 To avoid misunderstanding we point out that a singleton {a} (a € R) is also considered as a closed
interval.
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We can easily verify that the perturbed problem is unbounded for all nonzero 5. Hence
the domain of f is the singleton {0}.° &

19.4.1 The optimal-value function is piecewise linear

In this section we show that the functions f(5) and g(vy) are piecewise linear on their
domains. We start with g(v).

Theorem IV.50 g(v) is conlinuous, concave and piecewise linear.

Proof: By definition,
g(v) =min{c(y)'z : z € P}.

For each v the minimum value is attained at the central solution of the perturbed
problem (P,). This solution is uniquely determined by the optimal partition of (P,).
Since the number of partitions of the full index set {1,2,...,n} is finite, we may write

g(7) = min {0(7)T£ tx e T} ,
where 7 is a finite subset of P. For each x € T we have
)T

ez =z + Az,

which is a linear function of 4. Thus, g(v) is the minimum of a finite set of linear
functions.® This implies that g(v) is continuous, concave and piecewise linear, proving
the theorem. O

Theorem IV.51 f(8) is continuous, conver and piecewise linear.

Proof: The proof goes in the same way as for Theorem IV.50. By definition,

f(B) =max {b(8)"y : y e D}.

For each 3 the maximum value is attained at a central solution (y*,s*) of (D). Now
s* is uniquely determined by the optimal partition of (D) and b(3)”y* is constant for
all optimal y*. Associating one particular y* with any possible slack s* arising in this
way, we obtain that

F(B) =max {b(B)"y : ye S},

where S is a finite subset of D. For each y € S, we have

b(3) Ty = by + BAbTy,

5 Exercise 89 With (D) and f(3) as defined in Example IV.49 we consider the effect on the domain
of f when some constraints are added. When the constraint y; > 0 is added to (D), the domain of
f becomes (—o0,0]. When the constraint y1 < 0 is added to (D), the domain of f becomes [0, co)
and when both constraints are added the domain of f becomes (—o0, >0). Prove this.

Exercise 90 Prove that the minimum of a finite family of linear functions, each defined on the
same closed interval, is continuous, concave and piecewise linear.
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which is a linear function of 5. This makes clear that f(3) is the maximum of a finite
set of linear functions. Therefore, f(3) is continuous, convex and piecewise linear, as
required. a

The values of 8 where the slope of the optimal-value function f(8) changes are
called break points of f, and any interval between two successive break points of f is
called a linearity interval of f. In a similar way we define break points and linearity
intervals for g.

Example IV.52 For any v € IR cousider the problem (P,) defined by
(Py) min -z + 3+ 7))z + (1 — )z

st. xi+ax2+xz3=4, 21,292,223 >0.

In this case b is constant and the perturbation vector for ¢ = (1,3,1) is
Ac=(0,1,-1).
The dual problem is
(Dy)  max{dy : y<1,y<3+7,y<1—7}.

From this it is obvious that the optimal value is given by

gv) =4min(1,3+~,1 —v).

The graph of the optimal-value function g(v) is depicted in Figure 19.3. Note that

Figure 19.3 The optimal-value function g(vy).

g(v) is piecewise linear and concave. The break points of g occur for v = —2 and
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19.4.2  Optimal sets on a linearity interval

For any @ in the domain of f we denote the optimal set of (P3) by Pj and the optimal
set of (Dg) by Dj.

Theorem IV.53 If f(3) is linear on the interval [51, B], where B < (a2, then the
dual optimal set D} is constant (i.e. invariant) for 3 € (61, B2).

Proof: Let 8 € (31, 02) be arbitrary and let § € DE be arbitrary as well. Since 7 is
optimal for (Dg) we have
F(B) = b(B)"g = "5+ BAbT,
and, since 7 is dual feasible for all 3,
b(B) g =b"g+ BAV g < f(B), b(B)" g =b"y+ A Y < f(B).
Hence we find
F(B) — f(B) > (81— B) AbTg,  f(B2) — f(B) > (B2 — B) AbT .
The linearity of f on [31, B2] implies

F(B) = f(B) _ f(B2) — 1(B)

g—5 B2 — B
Now using that 8 — 3 > 0 and 51 — 3 < 0 we obtain

apty < L) =FB) _FB) =I5 _ ppr,

Ba—p3 B =
Hence, the last two inequalities are equalities, and the slope of f on the closed interval

[B1,32] is just AbTF. This means that the derivative of f with respect to 3 on the
open interval (51, 32) satisfies

f/(B) - AbT_a vﬁ € (51762)7

or equivalently,

FB) =bTg+ A g =b(8)" 5, VB e (B, 5).

We conclude that § is optimal for any (Dg) with § € (61, 82). Since § was arbitrary
in DE, it follows that
D5 C D, VYBE (B, P2).

Since B was arbitrary in the open interval (3, 82), the above argument applies to any
G € (B1,02); so we also have

DE g DZJa Vﬁ S (ﬁlaﬁQ) .

We may conclude that DE C DE and DE C DE, which gives DE = DE. The theorem
follows. U

The above proof reveals that Ab”y must have the same value for all y € D} and for
all B € (B, B2). So we may state the following.
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Corollary IV.54 Under the hypothesis of Theorem IV.53,

F'(B) = AbTy, VB € (Bi,P2), Yy € D

By continuity we may write

F(B)=b"g+ BAVTG=b(8)" 5, VB € [Br, Fal-
This immediately implies another consequence.

Corollary IV.55 Under the hypothesis of Theorem IV.53 let Dzkfhﬁz) = Dj for
arbitrary B € (81, P2). Then

Dzﬁﬂlﬁz) < DEN ,Dzkﬂhﬁz) < Dzz'
In the next result we deal with the converse of the implication in Theorem IV.53.

Theorem IV.56 Let 51 and B2 > (1 be such that D = Dj,. Then Dj is constant
Jor all B € [31, 8] and f(5) is linear on the interval [51, Ba].

Proof: Let y € Dj = Dj,. Then

FB) =) 5, F(B)=b(B)" y.

Consider the linear function h:

hB) =b(B) 5= b+pAb) g, VB e b, 5.

Then h coincides with f at 51 and 2. Since f is convex this implies

f(B) < h(B), VB E|[Br B

Now ¢ is feasible for all 8 € 31, B2]. Since f(3) is the optimal value of (Dg), it follows
that

FB8) = b(8) Ty = (b+ pAb)" 5= h(d).

Therefore, f coincides with h on [31, 32]. As a consequence, f is linear on [3y, f2] and
y is optimal for (Dg) whenever 8 € [B1, 82]. Since § is arbitrary in Dy, = Dp, this
implies that Dj = Dj, is a subset of Dj for any 3 € (61, B=2). By Theorem IV.53, and
Corollary IV.55 we also have the converse inclusion. The dual optimal set on (51, 82)
is therefore constant, and the proof is complete. a

Each of the above results about f(/3) has its analogue for g(+). We state these results
without further proof.” The omitted proofs are straightforward modifications of the
above proofs.

Theorem IV.57 If g(v) is linear on the interval [y1,72], where y1 < 72, then the
primal optimal set P is constant for v € (71,72)-

7 Exercise 91 Prove Theorem IV.57, Corollary IV.58, Corollary 1V.59 and Theorem IV.60.
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Corollary IV.58 Under the hypothesis of Theorem IV.57,
gl(’y) - ACTI.) V’Y < (71772) P Vr € 7),::

Corollary IV.59 Under the hypothesis of Theorem IV.57 let 73(*71’72) = Pj for

arbitrary v € (v1,72). Then
PZ<71772) < P*

* *
- " m? P(’Yh’h) < P’m'

Theorem IV.60 Let y1 and v2 > v1 be such that P = P; . Then P is constant
for all v € [v1,72] and g(v) is linear on the interval [y1,72].

19.4.3 Optimal sets in a break point

Returning to the function f, we established in the previous section that if 5 € dom (f)
is not a break point of f then the quantity Ab”y is constant for all y € Dj;. In this
section we will see that this property is characteristic for ‘nonbreak’ points.

If the domain of f has a right extreme point then we may consider the right
derivative at this point to be oo, and if the domain of f has a left extreme point
the left derivative at this point may be taken as —oo. Then ( is a break point of f if
and only if the left and the right derivatives of f at 3 are different. This follows from
the definition of a break point. Denoting the left and the right derivatives by f’ ()
and f} (/) respectively, the convexity of f implies that at a break point 3 we have

JL(B) < J1(8).

If dom (f) has a right extreme point, it is convenient to consider the open interval
at the right of this point as a linearity interval where both f and its derivative are
0o. Similarly, if dom (f) has a left extreme point, we may consider the open interval
at the left of this point as a linearity interval where f is oo and its derivative —oo.
Obviously, these extreme linearity intervals are characterized by the fact that on the
intervals the primal problem is infeasible and the dual problem unbounded. The dual
problem is unbounded if and only if the set Dj of optimal solutions is empty.

Lemma IV.61°% Let 3,3~ and 3% belong to the interior of dom (f) such that 3+
belongs to the open linearity interval just to the right of 5 and G~ to the open linearity
interval just to the left of 8. Moreover, let yt € D[’§+ and y~ € DE,. Then

LB = myin{AbTy Ly eDy) = Ay
f—ls—(ﬁ) = HIZ?X {AbTy SETRS DE} = AbTyt.

Proof: We give the proof for f (3). The proof for f’ (/) goes in the same way and
is omitted. Since y* is optimal for DE+ we have

(b+ BTAB YT = F(8Y) > (b+ BTAb)Ty, ¥y € Dy,

8 This lemma can also be obtained as a special case of a result of Mills [210]. His more general result
gives the directional derivatives of the optimal-value function with respect to any ‘admissible’
perturbation of A, b and ¢; when only b is perturbed it gives the same result as the lemma.



IV.19 Parametric and Sensitivity Analysis 373

We also have y+ € Dj, from Theorem IV.53 and Corollary IV.55. Therefore,

(b+BAY)" y" = (b+ BAD)" y, Wy € D}

Subtracting both sides of this equality from the corresponding sides in the last
inequality gives

(67 = B) AbTy* = (67 - §) A"y, vy € D}
Dividing both sides by the positive number 8T — 3 we get
AbTyt > AbTy, vy € D,

thus proving that
max (AbTy Yy € DZ,) = AbTyT.
Yy

Since f (8) = AbTyt, from Corollary IV.54, the lemma, follows. O

The above lemma admits a nice generalization that is also valid if § is an extreme
point of the domain of f.

Theorem IV.62 Let 3 € dom (f) and let ™ be any optimal solution of (Pg). Then
the derivatives at 3 satisfy

) = Hyli;“{AbTy ATy +s=¢,5>0, ST.I,‘*:O}

T4 (8) = max {AbTy : ATy +s=c,s>0,sTz" =0}.
Y,

Proof: As in the previous lemma, we give the proof for f’ (3) and omit the proof for
f2(3). Counsider the optimization problem

max {AbTy ATy +s=¢,5>0,sTa" = 0}. (19.3)
Y,s

First we establish that if 3 belongs to the interior of dom (f) then this is exactly the
same problem as the maximization problem in Lemma IV.61. This follows because if
ATy + s =rc, s >0, then (y,s) is optimal for (Dg) if and only if sTz* = 0, since z*
is an optimal solution of the dual problem (Pg) of (Dg). If 3 belongs to the interior
of dom (f) then the theorem follows from Lemma IV.61. Hence it remains to deal
with the case where [ is an extreme point of dom (f). It is easily verified that if 3 is
the left extreme point of dom (f) then we can repeat the arguments in the proof of
Lemma IV.61. Thus it remains to prove the theorem if 3 is the right extreme point of
dom (f). Since f (3) = co in that case, we need to show that the above maximization
problem (19.3) is unbounded.

Let 3 be the right extreme point of dom (f) and suppose that the problem (19.3) is
not unbounded. Let us point out first that (19.3) is feasible. Its feasible region is just
the optimal set of the dual (Dg) of (Pg). Since (P3) has as an optimal solution, (Dg)
has an optimal solution as well. This implies that (Dg) is feasible. Therefore, (19.3)
is feasible as well. Hence, if (19.3) is not unbounded, the problem itself and its dual
have optimal solutions. The dual problem is given by

i Te . = *>04.
Hgl)\n{cg A& = Ab, £+ Xz* > 0}
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We conclude that there exists a vector & € IR™ and a scalar A such that A& =
Ab, £ + Az* > 0. This implies that we cannot have ¢ < 0 and z} = 0. In other
words,

x; =0=¢& >0.

Hence, there exists a positive € such that  := z* + £ > 0. Now we have
AT = A(x* +e€) = Ax™ + cAE = b+ (B + ) Ab.

Thus we find that (Pgsy.) admits Z as a feasible point. This contradicts the assumption
that 3 is the right extreme point of dom (f). We conclude that (19.3) is unbounded,
proving the theorem. O

The picture becomes more complete now. Note that Theorem IV.62 is valid for any
value of § in the domain of f. The theorem reestablishes that at a ‘nonbreak’ point,
where the left and right derivative of f are equal, the value of Ab”y is constant when y
runs through the dual optimal set Dj. But it also makes it clear that at a break point,
where the two derivatives are different, Ab”y is not constant when ¥ runs through the
dual optimal set Dj. Then the extreme values of AbTy vield the left and the right
derivatives of f at 3; the left derivative is the minimum and the right derivative the
maximal value of AbTy when y runs through the dual optimal set Dj.

It is worth pointing out another consequence of Lemma IV.61 and Theorem IV.62.
Using the notation of the lemma we have the inclusions

D, CDj Dj CDj

which follow from Corollary IV.55 if § is not an extreme point of dom (f). If 3 is the
right extreme point then Dj, is empty, and if it is the left extreme point then Dj_ is
empty as well; hence the above inclusions hold everywhere. Now suppose that § is a
nonextreme break point of f. Then letting ¥ run through the set DZ,, we know that

AbTy is constant and equal to the left derivative of f at 3, and if y runs through Dy

then AbTy is constant and equal to the right derivative of f at 8 and, finally, if v
runs through Dj then AbTy is not constant. Thus the three sets must be mutually
different. As a consequence, the above inclusions must be strict. Moreover, since the
left and the right derivatives at @ are different, the sets Dy and Dj. are disjoint.
Thus we may state the following.

Corollary IV.63 Let 3 be a nonextreme break point of f and let 8T and 5~ be as
defined in Lemma IV.61. Then we have

Dy CDj Dh CDj Dy ND5 =0,

where the inclusions are strict.’

9 Exercise 92 Using the notation of Lemma IV.61 and Corollary IV.63, we have
D;, U D;+ CDg.

Show that the inclusion is always strict. (Hint: use the central solution of (Dg).)
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Two other almost obvious consequences of the above results are the following
corollaries.'©

Corollary IV.64 Let 3 be a nonextreme break point of f and let 31 and 3~ be as
defined in Lemvma IV.61. Then

Dy ={yeDj: Aby=Ab"y"}, Dj, ={yeD;: Aby=Ap"y"}.

Corollary IV.65 Let 3 be a nonextreme break point of f and let 37 and B~ be as
defined in Lemma IV.61. Then

dim DE, <dimDj, dim DE+ < dimDp.

Remark IV.66 It is interesting to consider the dual optimal set Dj when 8 runs from
—00 to co. To the left of the smallest break point (the break point for which £ is minimal)
the set D} is constant. It may happen that D} is empty there, due to the absence of optimal
solutions for these small values of 3. This occurs if (Dg3) is unbounded (which means that
(Pg) is infeasible) for the values of 3 on the farthest left open linearity interval. Then, at the
first break point, the set D increases to a larger set, and as we pass to the next open linearity
interval the set D becomes equal to a proper subset of this enlarged set. This process repeats
itself at every new break point: at a break point of f the dual optimal set expands itself, and
as we pass to the next open linearity interval it shrinks to a proper subset of the enlarged
set. Since the derivative of f is monotonically increasing when 3 runs from —oo to oo, every
new dual optimal set arising in this way differs from all previous ones. In other words, every
break point of f and every linearity interval of f has its own dual optimal set.!! .

We state the dual analogues of Lemma IV.61 and Theorem IV.62 and their
corollaries without further proof.'?

Lemma IV.67 Let v,v~ and vV belong to the interior of dom(g), ¥+ to the open
linearity interval just to the right of v, and v~ to the open linearity interval just to
the left of v. Moreover, let x+ € Piv and x— € P_. Then

g/, (7) = max {Ach LT € Pi} =Acl ¢~
94 () =  min{Ac’z : z€P;} =AcTat.

Theorem IV.68 Let v € dom(g) and let (y*,s*) be any optimal solution of (D).
Then the derivatives at v satisfy

g (7) = max {Ac’z : Av=b, >0, 27" =0}
x

Q

N

=
|

min {Achc cAz=bz>0,zls" = 0}.
x

10 Exercise 93 Prove Corollary IV.64 and Corollary TV.65.
11 Exercise 94 The dual optimal sets belonging to two different open linearity intervals of f are
disjoint. Prove this. (Hint: use that the derivatives of f on the two intervals are different.)

12 Exercise 95 Prove Lemma IV.67, Theorem IV.68, Corollary V.69, Corollary IV.70 and Corolla-
ry IV.71.
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Corollary IV.69 Let v be a nonextreme break point of g and let v© and v~ be as
defined in Lemma IV.67. Then

P CPL PLCPL PLNPhL =0,

where the inclusions are strict.1?

Corollary IV.70 Let v be a nonextreme break point of g and let vT and v~ be as
defined in Lemma IV.67. Then

Pl = {z € Py Actz = AcTw_} ., Ple= {z € Py Atz = ACTJC+} .

Corollary IV.71 Let v be a nonextreme break point of g and let vT and v~ be as
defined in Lemma IV.67. Then

dim P} <dim?P), dimPJ; <dimP].
The next example illustrates the results of this section.
Example IV.72 We use the same problem as in Example IV.52. For any v € IR the
problem (P,) is defined by
(Py) min  z1 + (34 7)z2 + (1 —7)xs
st.  ® +xe oz =4, Z1,%2,23 > 0,
and the dual problem is
(Dy)  max{dy : y<1,y<3+v,y<l-7}.
The perturbation vector for ¢ = (1,3,1) is
Ac=(0,1,-1).
The graph of g is depicted in Figure 19.3 (page 369). The break points of g occur at
v=—2andv=0.

For v < —2 the optimal solution of (P,) is z = (0,4,0), and then Ac”z = 4. At the
break point ¥ = —2 the primal optimal solution set is given by

{r = (21,22,0) : ©1+x2=4, 21 >0, 29 > 0}.

The extreme values of Ac’x on this set are 4 and 0. The maximal value occurs for
z = (0,4, 0) and the minimal value for x = (4,0, 0). Hence, the left and right derivatives
of g at v = —2 are given by these values. If —2 < v < 0 then the optimal solution of
the primal problem is given by = = (4,0,0) and Ac’x = 0, so the derivative of g is 0
in this region. At the break point v = 0 the primal optimal solution set is given by

{z = (21,0,23) : 1+ 23 =4, 21 >0, x3 > 0}.

The extreme values of Ac?z on this set are 0 and —4. The left and right derivatives
of g at v = 0 are given by these values. The maximal value occurs for z = (4,0,0)
and the minimal value for x = (0,0,4). Observe that in this example the primal
optimal solution set at every break point has dimension 1, whereas in the open linearity
intervals the optimal solution is always unique. &

13 Exercise 96 Find an example where 79:7 =0 and P # 0.
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19.4.4 Extreme points of a linearity interval

In this section we assume that 3 belongs to the interior of a linearity interval [3;, 2.
Given an optimal solution of (Dj5) we show how the extreme points 3; and By of the
linearity interval containing 8 can be found by solving two auxiliary LO problems.

Theorem IV.73 Let (3 be arbitrary and let (y*, s*) be any optimal solution of (Dg).
Then the extreme points of the linearity interval [By, B2] containing 3 follow from

51 = rgin{ﬁ : Ax =b+ BAb, x>0, sz*zo}

5o = Héax{ﬁzAx:b—I—ﬁAb,sz,sz*:O}_

Proof: We ouly give the proof for 5;.1* Consider the minimization problem

rgin {ﬂ cAr=b+ BAb, x>0, 2T s* = 0} . (19.4)

We first show that this problem is feasible. Since (Dj) has an optimal solution, its
dual problem (Pg) has an optimal solution as well. Letting Z be optimal for (Pz), we
can easily verify that 3 = 3 and z = T are feasible for (19.4).

We proceed by considering the case where (19.4) is unbounded. For any 8 < 3
there exists a vector x that satisfies Az = b + BAb, x > 0, 27s* = 0. Now (y*,s%)
is feasible for (Dg) and z is feasible for (P3). Since z¥s* = 0, z is optimal for
(Ps) and (y*,s*) is optimal for (Dg). The optimal value of both problems is given
by b(3)Ty* = bTy* + BAb y*. This means that 3 belongs to the linearity interval
containing 3. Since this holds for any 5 < 3, the left boundary of this linearity
interval is —oc, as it should be.

It remains to deal with the case where (19.4) has an optimal solution, say (5%, z*).
We then have Az* = b+ §*Ab = b(5*), so z* is feasible for (Pg«). Since (y*,s*)
is feasible for (Dg-) and z*7s* = 0 it follows that z* is optimal for (Pg-) and
(y*,s*) is optimal for (Dg-). The optimal value of both problems is given by
b(B8) Ty = bTy* + B*AbTy*. This means that $* belongs to the linearity interval
containing (3, and it follows that 5* > /3.

On the other hand, from Corollary IV.55 the pair (y*, s*) is optimal for (Dg, ). Now
let Z be optimal for (Pg, ). Then we have

AT =b(B) =b+ p1Ab, x>0, zTs* =0,

which shows that the pair (51, Z) is feasible for the above minimization problem. This
implies that §* < 3;. Hence we obtain that §* = 31. This completes the proof. O

If 3 is not a break point then there is only one linearity interval containing /3, and
hence this must be the linearity interval [51, 32], as given by Theorem IV.73.

It is worth pointing out that if 3 is a break point there are three linearity intervals
containing 3, namely the singleton interval |3, 3] and the two surrounding linearity
intervals. In the singleton case, the linearity interval 81, 2] given by Theorem IV.73
may be any of these three intervals, and which one it is depends on the given optimal

14 Exercise 97 Prove the second part (on f2) of Theorem IV.73.
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solution (y*,s*) of (Dg). It can easily be understood that the linearity interval at
the right of 3 will be found if (y*,s*) happens to be optimal on the right linearity
interval. This occurs when ApTy* = fg_(B), due to Corollary IV.64. Similarly, the
linearity interval at the left of 3 will be found if (3*, s*) is optimal on the left linearity
interval and this occurs when AbTy* = 7 (3), also due to Corollary IV.64. Finally, if

FL(B) < ATy < f1L(B), (19.5)

then we have 31 = B = [ in Theorem IV.73. The last situation seems to be most
informative. It clearly indicates that 3 is a break point of f, which is not apparent
in the other two situations. Knowing that /3 is a break point of f we can find the
two one-sided derivatives of f at 3 as well as optimal solutions for the two intervals
surrounding 3 from Theorem IV.62. In the light of this discussion the following result
is of interest. It shows that the above ambiguity can be avoided by the use of strictly
complementary optimal solutions.

Theorem IV.74 Let 3 be a break point and let (y*,s*) be a strictly complementary
optimal solution of (Dg). Then the numbers 31 and B given by Theorem IV.73 satisfy

B1 == 5.

Proof: If (y*, s*) is a strictly complementary optimal solution of (D) then it uniquely
determines the optimal partition of (D) and this partition differs from the optimal
partitions corresponding to the optimal sets of the linearity intervals surrounding f3.
Hence (y*, s*) does not belong to the optimal sets of the linearity intervals surrounding
3. From Corollary IV.64 it follows that AbTy* satisfies (19.5), and the theorem follows.
O

It is not difficult to state the corresponding results for g. We do this below, omitting
the proofs, and then provide an example of their use.'®

Theorem IV.75 Let 7 be arbitrary and let o be any optimal solution of (Py). Then
the extreme points of the linearity interval [y1,v2| containing 5 follow from

1 = min {7 : ATers:ch'yAc,szO,sTm*:O}
AT

Yo = max {7 : ATy+s:c+7Ac,520,sTm*:0}.
VY8

Theorem IV.76 Let 5 be a break point and let x* be a strictly complementary
optimal solution of (Ps). Then the numbers v1 and v2 given by Theorem IV.75 satisfy

Nn=r=7
Example IV.77 We use the same problem as in Example IV.72. Using the notation
of Theoremn IV.75 we first determine the linearity interval for ¥ = —1. We can easily
verify that z = (4,0,0) is optimal for (P_1). Hence the extreme points v, and vy of
the linearity interval containing % follow by minimizing and maximizing + over the
region

v iy<Ly<3+7,y<1—7,41-y) =0}.

15 Exercise 98 Prove Theorem IV.75 and Theorem IV.76.
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The last counstraint implies y = 1, so the other constraints reduce to 1 < 3 + v and
1 <1 —+, which gives —2 <+ < 0. Hence the linearity interval containing ¥ = —1 is
[—2,0].

When ¥ =1, 2 = (0,0,4) is optimal for (P;), and the linearity interval containing
7 follows by minimizing and maximizing v over the region

{v:y<Ly<34+v,y<l—7v41—vy—y)=0}.

The last constraint implies y = 1 — «y. Now the other constraints reduce to 1 —~v <1
and 1 — v < 3 + v, which is equivalent to v > 0. So the linearity interval containing
7 =11is [0, 00).

When 7 = =3, 2 = (0,4, 0) is optimal for (P_3), and the linearity interval containing
7 follows by minimizing and maximizing v over the region

{v:y<Ly<3+7,y<1—7,4(34+~v—y)=0}.

The last constraint implies y = 34y, and the other constraints reduce to 3+~ < 1 and
34+~ < 1—~, which is equivalent to v < —2. Thus, the linearity interval containing
v =-31is (—o0,—2].

Observe that the linearity intervals just calculated agree with Figure 19.3.

Finally we demonstrate the use of Theorem IV.76 at a break point. Taking ¥ = 0,
we see that & = (4,0, 0) is optimal for (Fp), and we need to minimize and maximize
over the region

{7 iyu<l,y<3+~y<1l—n, 41—y =0}.

This gives —2 < v < 0 and we find the linearity interval [—2,0] left from 0. This is
because x = (4,0, 0) is also optimal on this interval. Recall from Example IV.72 that
the optimal set at v = 0 is given by

{z=(21,0,23) : z1+23=4,21 >0, 23 >0}.

Thus, instead of the optimal solution = (4,0,0) we may equally well use the strictly
complementary solution x = (2,0, 2). Then we need to minimize and maximize -y over
the region

{vry<lLy<3+vy,y<l-wv2(l-y)+2(1 —~v—y)=0}.

The last constraint amounts to v = 2 — 2y. Substitution in the third constraint yields
y < =142y or y > 1. Because of the first constraint we get y = 1, from which it
follows that v = 0. Thus, 71 = 72 = 0 in accordance with Theorem IV.76. O

19.4.5 Running through all break points and linearity intervals

Using the results of the previous sections, we present in this section an algorithm that
yields the optimal-value function for a one-dimensional perturbation of the vector b
or the vector ¢. We first deal with a one-dimensional perturbation of b by a scalar
multiple of the vector Ab; we state the algorithin for the calculation of the optimal-
value function and then prove that the algorithm finds all break points and linearity
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intervals. It will then be clear how to treat a one-dimensional perturbation of ¢; we
state the corresponding algorithm and its convergence result without further proof.
We provide examples for both cases.

Assume that we are given optimal solutions x* of (P) and (y*,s*) of (D). In the
notation of the previous sections, the problem (P3) and its dual (D) arise by replacing
the vector b by b(3) = b+ BAb; the optimal value of these problems is denoted by f(3).
So we have f(0) = ¢’'z* = bTy*. The domain of the optimal-value function is (—oo, 00)
and f(8) = oo if and only if (Dg) is unbounded. Recall from Theorem IV.51 that f(3)
is convex and piecewise linear. Below we present an algorithm that determines f on the
nonnegative part of the real line. We leave it to the reader to find some straightforward
modifications of the algorithm, yielding an algorithim that generates f on the other
part of the real line.'® The algorithm is as follows.!”

The Optimal Value Function f(3), 8 >0

Input:
An optimal solution (y*, s*) of (D);
a perturbation vector Ab.
begin
k:=1;y° := y*; s° = s*; ready:=false;
while not ready do
begin
Solve maxg ;. {ﬁ cAr=b+BAb, >0, 271 = 0};
if this problem is unbounded: ready:=true
else let (B, ") be an optimal solution;
begin
Solve max,, o {AbTy ATy +s=c¢,5>0, sTaF = 0};
if this problem is unbounded: ready := true
else let (¥, s*) be an optimal solution;
k=k+1,
end

end
end

The next theorem states that the above algorithm finds the successive break points
of f on the nonnegative part of the real line, as well as the slopes of f on the successive
linearity intervals.

Theorem IV.78 The algorithm terminates after a finite number of iterations. If K
is the number of iterations upon termination then (1, 0s2,...,0Bk are the successive

16 Exercise 99 When the two maximization problems in the algorithm are changed into minimiza-
tion problems, the algorithm yields the break points and linearity intervals for negative values of
(3. Prove this.

17 After the completion of this section the same algorithm appeared in a recent paper of Monteiro

and Mehrotra [221] and the authors became aware of the fact that these authors already published
the algorithm in 1992 [207].
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break points of [ on the nonnegative real line. The optimal value at O (1 < k < K)
is given by ¢Tx* and the slope of f on the interval (Bg, Ber1) (1 <k < K) by AbTy".

Proof: In the first iteration the algorithm starts by solving
max{ﬁ : Ar =b+ BAb, x>0, 270 :0}’
8%

where s” is the slack vector in the given optimal solution (y°,s%) = (y*,s*) of

(D) = (Dyp). This problem is feasible, because (P) has an optimal solution z* and
(B,x) = (0,x*) satisfies the constraints. Hence the first auxiliary problem is either
unbounded or it has an optimal solution (3, x!). By Theorem IV.73 3 is equal to
the extreme point at the right of the linearity interval containing 0. If the problem
is unbounded (when f; = oo) then f is linear on (0,00) and the algorithm stops;
otherwise /3 is the first break point to the right of 0. (Note that it may happen that
B1 = 0. This certainly occurs if 0 is a break point of f and the starting solution (y*, s*)
is strictly complementary.) Clearly z' is primal feasible at 3 = 3;. Since (y',s') is
dual feasible at 8 = 3; and (z!)Ts! = 0 we see that z' is optimal for (Ps,). Hence
F(B1) = cT'xl. Also observe that (y', s!) is dual optimal at 3;. (This also follows from
Corollary IV.55.)

Assuming that the second half of the algorithm occurs, when the above problem has
an optimal solution, the algorithim proceeds by solving a second auxiliary problem,
namely

rr;a;x {AbTy ATy s=¢,5>0, sTal = 0}.

By Theorem 1V.62 the maximal value is equal to the right derivative of f at 3;. If the
problem is unbounded then f3; is the largest break point of f on (0, 0) and f(3) = o
for 8 > (1. In that case we are done and the algorithin stops. Otherwise, when the
problem is bounded, the optimal solution (y!,s') is such that AbTy! is equal to the
slope on the linearity interval to the right of 31, by Lemma IV.61. Moreover, from
Corollary 1V.64, (y!,s') is dual optimal on the open linearity interval to the right of
B1. Hence, at the start of the second iteration (y!,s!) is an optimal solution at the
open interval to the right of the first break point on [0, 00). Thus we can start the
second iteration and proceed as in the first iteration. Since each iteration produces a
linearity interval, and f has only finitely many such intervals, the algorithin terminates
after a finite number of iterations. a

Example IV.79 Consider the primal problem

(P) min{zy +x2+ 23 : 21 —22=0,x3 =1, z = (x1,22,23) > 0}

and its dual
(D) max{y; : =1 <y <1,y <1}.

Hence, in this case we have
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We perturb the vector b by a scalar multiple of

[

+6

to

b(B) = b+ pAb=|

Ly | g
1] |1=8|"
and use the algorithm to find the break points and linearity intervals of f(5) =
z (b(9), ¢).
Optimal solutions of (P) and (D) are given by
z* =1(0,0,1), y*=1(0,1), s =(1,1,0).
Thus, entering the first iteration of the algorithm we consider

Héax{ﬂ cxy—xe=0,x3=1-0,2>0, 21 +x9 =0}.

From z > 0, 1 + 22 = 0 we deduce that x1 = 22 = 0 and hence 5 = 0. Thus we find
the first break point and the optimal value at this break point:

Br=0, =z'=(0,0,1), f(B1)=cla'=1.
We proceed with the second auxiliary problem:

man{y1—y2 c—1<y1 <1, y2<1,1 -y, =0}.

It follows that yo = 1 and y; — y2 = y1 — 1 is maximal if y; = 1. Thus we find an
optimal solution (y!,s') for the linearity interval just to the right of 31 and the slope
of f on this interval:

y'=(1,1), s'=(0,2,0), fi(B1)=Ab"y =0.
In the second iteration the first auxiliary problem is
I%ax{ﬁ rxy—z2=0,23=1-0,22>0, 21 =0},
T
which is equivalent to
r%ax{ﬁ f=x1, =1—x3, >0, 25 =0}.
, T

Clearly the maximum value of J is attained at 1 = 1 and x3 = 0. Thus we find the
second break point and the optimal value at this break point:

52 - ]-7 Il - (17070)7 f(ﬂ?) - CT‘T2 =1L

The second auxiliary problem becomes
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18

Figure 19.4 The optimal-value function f(3).

mgx{%*%?*1§y1§1792§1»1*9110}>
which is equivalent to
mgx{l—yg Yy <1,y =1}

Clearly this problem is unbounded. Hence f} (82) = oo and we are done. For larger
values of § the primal problem (Pg) becomes infeasible and the dual problem (Dg)
unbounded.

We proceed by calculating f(3) for negative values of 3. Using Exercise 99 (page 380,
the first auxiliary problem, in the first iteration, becomes simply

rgin{ﬁ cxy—22 =0, 13=1-03,2>0, 21 +x2=0}.

We can easily verify that this problemn has the same solution as its counterpart, when
we maximize (. This is due to the fact that G = 0 is a break point of f. We find, as
before,

Br=0, z'=1(0,0,1), f(B)=clz!=1

We proceed with the second auxiliary problem:
m?}n{y1—y2 P =1<y1 <Ly <1, 1—y2=0}.
Since yo = 1 we have y; — yo = y1 — 1 and this is minimal if y; = —1. Thus we find

an optimal solution (y!, s') for the linearity interval just to the left of 3; = 0 and the
slope of f on this interval:

yl = (_L 1)a Sl = (270a0)7 fi(ﬁl) = AbT?h = -2
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In the second iteration the first auxiliary problem becomes

rgin{ﬁ cxp—xo=f,x3=1—0,2>0, 2z =0},
T

which is equivalent to
rgin{ﬂ : 5:71.27 5:171.37 mZO, 1 :0}
T

Obviously this problem is unbounded. This means that f(3) is linear on the negative
real line, and we are done. Figure 19.4 (page 383) depicts the optimal-value function
f(B) as just calculated. &

When the vector ¢ is perturbed by a scalar multiple of Ac to ¢(y) = ¢ + vAc,
the algorithm for the calculation of the optimal value function g(-y) can be stated as
follows. Recall that g is concave. That is why the second auxiliary problem in the
algorithm is a minimization problem.'®

The Optimal Value Function g(vy), v >0

Input:
An optimal solution z* of (P);
a perturbation vector Ac.
begin
ready:=false;
k=120 =z
while not ready do
begin
Solve max. {’y ATy +s=c+yAc, s> 0, sTaF 1 = O};
if this problem is unbounded: ready:=true
else let (v, y*,s*) be an optimal solution;
begin
Solve min, {Ach s Ar=b,z>0, 27 sk = O};
if this problem is unbounded: ready:=true
else let z* be an optimal solution;
k=Fk+1;
end

end
end

The above algorithm finds the successive break points of g on the nonnegative real
line as well as the slopes of ¢ on the successive linearity intervals. The proof uses

18 Exercise 100 When the maximization problem in the algorithm is changed into a minimization
problem and the minimization into a maximization problem, the algorithm yields the break points
and linearity intervals for negative values of . Prove this.
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arguments similar to the arguments in the proof of Theorem IV.78 and is therefore
omitted.

Theorem IV.80 The algorithm terminates after a finite number of iterations. If K
is the number of iterations upon termination then 1,72, ...,VKx are the successive
break points of g on the nonnegative real line. The optimal value at v, (1 < k < K)
is given by bTy* and the slope of g on the interval (vi, ve—1) (1 <k < K) by AclzF.
O

The next example illustrates the use of the above algorithm.

Example IV.81 In Example IV.72 we considered the primal problem
(P) min{z; +3x2+23 : 1+ 32+ 23 =4, 21,292,723 > 0}
and its dual problem
(D) max{4y : y<1,y<3,y<l},

with the perturbation vector

Ac=(0,1,-1)

and we calculated the linearity intervals from Lemma IV.67. This required the

knowledge of an optimal primal solution for each interval. Theorem IV.80 enables

us to find these intervals from the knowledge of an optimal solution z* of (P) only.
Entering the first iteration of the above algorithm with z* = (4,0, 0) we consider

max{y : y <L y<3+7v,y<1-7 41l —-y)=0}.
VY

We can easily see that y = 1 is optimal with v = 0. Thus we find the first break point
and the optimal value at this break point:

=0, y'=1s'=(0,20), ghn)=>by =4
The second auxiliary problem is now given by:
mmin{acg —x3 : r1+ 22+ x3 =4, 1,22,23 >0, 229 =0}.
It follows that x5 — 0 and xo — z3 — —x3 is minimal if 3 = 4 and 1 = 0. Thus we

find an optimal solution z! for the linearity interval just to the right of v; and the
slope of g on this interval:

1.1 = (0707 4)7 gf{— (’71) - ACTml =—4.
In the second iteration the first auxiliary problem is

max{y : y<1,y<3+7,y<1-741-7-y) =0}
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It follows that y = 1 — «v and the problem becomes equivalent to

max{y : 1 —v<1,1—~v<3+4+~v,y=1-—~}.
vy

Clearly this problem is unbounded. Hence g is linear for values of ~y larger than v, = 0.
We proceed by calculating g(vy) for negative values of ~y. Using Exercise 100
(page 384), the first auxiliary problem, in the f{irst iteration, becomes simply

min{y : y<1Ly<3+7,y<1-741-y)=0}.
vy

Since y = 1 this is equivalent to
min{y : —2<4y<0,y=1},
7.y
so the first break point and the optimal value at this break point are given by
= -2, yl - 17 51 - (07072)7 9(71) - bTyl =4.
The second auxiliary problem is now given by:
max {xeo — 3 : 1 + X2+ x3 =4, T1, 22,23 > 0, 223 = 0},
x
which is equivalent to

max{ry : ¥1 +x2 =4, ¥1,22 >0, 13 =0}.
T

Since z» is maximal if 1 = 0 and z» = 4 we find an optimal solution 2! for the
linearity interval just to the left of v; and the slope of g on this interval:

' =1(0,4,0), ¢ (m)=Acz' =4.
In the second iteration the first auxiliary problem is
min{y : y<Ly<3+7y<l-%4@+7-y =0}.
It follows that y = 3 4+ v and the problem becomes equivalent to

min{y : 3+v<1,3+v<1—~v,y=3+~}.
vy

Clearly this problem is unbounded. Hence g is linear for values of -y smaller than

v1 = —2. This completes the calculation of the optimal-value function g(v) for the
present, example. We can easily check that the above results are in accordance with
the graph of g(v) in Figure 19.3 (page 369).%° &

19 Exercise 101 In Example TV.81 the algorithm for the computation of the optimal-value function
g(y) was initialized by the optimal solution =* = (4,0,0) of (P). Execute the algorithm once more
now using the optimal solution z* = (2,0, 2) of (P).
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19.5 Sensitivity analysis

Sensitivity analysis is the special case of parametric analysis where only one coefficient
of b, or ¢, is perturbed. This means that the perturbation vector is a unit vector. The
derivative of the optimal-value function to a coefficient is called the shadow price and
the corresponding linearity interval the range of the coefficient. When dealing with
sensitivity analysis the aim is to find the shadow prices and ranges of all coefficients
in b and c¢. Of course, the current value of a coefficient may or may not be a break
point. In the latter case, when the current coefficient is not a break point, it belongs
to an open linearity interval and the range of the coefficient is just this closed linearity
interval and its shadow price the slope of the optimal-value function on this interval.
If the coefficient is a break point, then we have two shadow prices, the left-shadow
price, which is the left derivative of the optimal-value function at the current value,
and the right-shadow price, the right derivative of the optimal-value function at the
current value.2°

19.5.1 Ranges and shadow prices

Let z* be an optimal solution of (P) and (y*,s*) an optimal solution of (D). With
e; denoting the i-th unit vector (1 < i < m), the range of the i-th coefficient b;
of b is simply the linearity interval of the optimal-value function za(b + fe;, c) that
contains zero. From Theorem IV.73, the extreme points of this linearity interval follow
by minimizing and maximizing 3 over the set

B Ax=b+ Be;, x>0, 27 s =0},
{

With b; considered as a variable, its range of b; follows by minimizing and maximizing
b; over the set
{b; : Az =b, x>0, zls* = 0}. (19.6)

The variables in this problem are x and b;. For the shadow prices of b, we use
Theorem IV.62. The left- and right-shadow prices of b; follow by minimizing and
maximizing el'y = y; over the set

{y: Aly+s=¢,5>0 sTa* = 0}. (19.7)

Similarly, the range of the j-th coefficient ¢; of ¢ is equal to the linearity interval of the
optimal-value function z4(b, ¢ + ve;) that contains zero. Changing ¢; into a variable
and using Theorem IV.75, we obtain the extreme points of this linearity interval by
minimizing and maximizing ¢; over the set

{cj ATy +s=¢c, >0, sT2* = 0} . (19.8)

20 Sensitivity analysis is an important topic in the application oriented literature on LO. Some relevant
references, in chronological order, are Gal [89], Gauvin [93]|, Evans and Baker [72, 73], Akgiil [6],
Knolmayer [173], Gal [90], Greenberg [128], Rubin and Wagner [247], Ward and Wendell [288],
Adler and Monteiro [4], Mehrotra and Monteiro [207], Jansen, Roos and Terlaky [153], Jansen,
de Jong, Roos and Terlaky [152] and Greenberg [129]. It is surprising that in the literature on
sensitivity analysis it is far from common to distinguish between left- and right-shadow prices. One
of the early exceptions was Gauvin [93]; this paper, however, is not mentioned in the historical
survey on sensitivity analysis of Gal [90].
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In this problem the variables are the vectors y and s and also ¢;. For the shadow
prices of ¢; we use Theorem IV.68. The left- and right-shadow prices of ¢; follow by
minimizing and maximizing e;fac = x; over the set

{xj cAr=b,2>0,27s = 0} . (19.9)

Some remarks are in order. If b; is not a break point, which becomes evident if the
extreme values in (19.6) both differ from b;, then we know that the left- and right-
shadow prices of b; are the same and these are given by y;. In that case there is no
need to solve (19.7). On the other hand, when b; is a break point, it is clear from
the discussion following the proof of Theorem IV.73 that there are three possibilities.
When the range of b; is determined by solving (19.6) the result may be one of the
two linearity intervals surrounding b&;; in that case y; is the shadow price of b; on
this interval. This happens if and only if the given optimal solution y* is such that
yr is an extreme value in the set (19.7). The third possibility is that the extreme
values in the set (19.6) are both equal to b;. This certainly occurs if y* is a strictly
complementary solution of (D). In each of the three cases it becomes clear after (19.6)
is solved, that b; is a break point, and the left- and right-shadow prices at b; can be
found by determining the extreme values of (19.7). Clearly similar remarks apply to
the ranges and shadow prices of the coefficients of the vector c.

19.5.2  Using strictly complementary solutions

The formulas for the ranges and shadow prices of the coefficients of b and ¢ can be
simplified when the given optimal solutions z* of (P) and (y*, s*) of (D) are strictly
complementary. Let (B, N) denote the optimal partition of (P) and (D). Then we
have x%; > 0, x% = 0 and s = 0, s% > 0. As a consequence, we have z%'s* = 0 in
(19.6) and (19.9) if and only if 2 = 0. Similarly, s”2* = 0 holds in (19.7) and (19.8)
if and only if sp = 0.

Using this we can reformulate (19.6) as

{b; + Az =b, 25 >0, 2y =0}, (19.10)

and (19.7) as

{yi : ATy+s=c, sg=0, sNZO}. (19.11)
Similarly, (19.8) can be rewritten as
{cj : ATy+s:c, sg =0, SNZO}, (19.12)

and (19.9) as

{z; : Aa=0b,25 >0, zy =0}. (19.13)
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We proceed with an example.?!
Example IV.82 Consider the (primal) problem (P) defined by

min 1 4+ 4z + x3 4+ 24 + 215
st. -2z + To + 3 -+ Iy —Ig =0

r1  + re — I3 + Tq —x7r =1

L1, X2, T3, T4, T5, T, L7 > 0.

The dual problem (D) is

max Yo
st 2y + oy < 1 (1)
v+ oy <4 (2)
vn o — oy < 1 3
v < 2 (4
Y1 < 2 (5
—U1 < 0 (6)
-y < 0 (7)

Problem (D) can be solved graphically. Its feasible region is shown in Figure 19.5
(page 390).

Since we are maximizing ys in (D), the figure makes clear that the set of optimal
solutions is given by

D* = {(ylayQ) : 0.5 S Y1 S 2a Ya = Q}a

and hence the optimal value is 2. Note that all slack values can be positive at an
optimal solution except the slack value of the constraint y, < 2. This means that the
set N in the optimal partition (B, N) equals N = {1,2,3,5,6,7}. Hence, B = {4}.
Therefore, at optimality only the variable x4 can be positive. It follows that

Pr={zxeP  :ax1=m=a3=u5=x¢=27,=0}=1{(0,0,0,1,0,0,0)},

and (P) has a unique solution: z = (0, 0, 0, 1, 0, 0, 0).

2l Exercise 102 The ranges and shadow prices can also be found by solving the corresponding dual
problems. For example, the maximal value of b, in (19.10) can be found by solving

min {bTy : Agy >0,y = 71}
and the minimal value by solving
max {bTy : Agy <0, y; = 71}.

Formulate the dual problems for the other six cases.
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®)
4)

— U1

Figure 19.5 The feasible region of (D).

The next table shows the result of a complete sensitivity analysis. It shows the
ranges and shadow prices for all coefficients of b and ¢, where these vectors have their
usual meaning. For each coefficient that is a break point we give the shadow price as a
closed interval; the extreme values of this interval are the left- and right-shadow prices
of the coefficient. In this example this happens only for b;. The range of a break point
consists of the point itself; the table gives this point. On the other hand, for ‘nonbreak
points’ the range is a proper interval and the shadow price is a number.

Coefficient | Range | Shadow prices
by =0 0 (3,2]
by =1 [0, c0) 2
=1 [—2, 00) 0
=4 (2, 00) 0
c3=1 [ %, 00) 0
ca=2 0,3] 1
cy =2 [1,00) 0
ce =0 [—2, 00) 0
cr=0 [—2, 00) 0

We perform the sensitivity analysis here for b; and c4.

Range and shadow prices for b;

Using (19.10) the range of by follows by minimizing and maximizing b; over the system

Ty

0

b1
1.
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The solution of this system is unique: x4 = 1 and b; = 0, so the range of b; is the
interval [0, 0]. This means that by = 0 is a break point.

The left- and right-shadow prices of b; follow by minimizing and maximizing 1,
over y € D*. The minimal value is 0.5 and the maximal value 2, so the left- and
right-shadow prices 0.5 and 2.

Range and shadow price for ¢4

The range of ¢4 is found by using (19.12). This amounts to minimizing and maximizing
¢4 over the system

-2y + ¥y <
Y1 + 1y < 4
”n - Y2 <
Y2 =
”n <
Y1 z
Y2 =

This optimization problem can easily be solved by using Figure 19.5. It amounts to
the question of which values of ¥ are feasible when the fourth constraint is removed
in Figure 19.5. We can easily verify that all values of y» in the closed interval [0, 3]
(and no other values) satisly. Therefore, the range of ¢, is this interval. The shadow
price of ¢, is given by elx = 24 = 1. &

19.5.3 Classical approach to sensitivity analysis

Commercial optimization packages for the solution of LO problems usually offer the
possibility of doing sensitivity analysis. The sensitivity analysis in many existing
commercial optimization packages is based on the naive approach presented in first
year textbooks. As a result, the outcome of the sensitivity analysis is often confusing.
We explain this below.

The ‘classical’ approach to sensitivity analysis is based on the Simplex Method for
solving LO problems.?? The Simplex Method produces a so-called basic solution of

22 With the word ‘classical’ we want to refer to the approach which dominates the literature, especially
well known textbooks dealing with parametric and/or sensitivity analysis. This approach has led
to the existing misuse of parametric optimization in commercial packages. This misuse is however
a shortcoming of the packages and by no means a shortcoming in the whole existing theoretical
literature. In this respect we want to refer the reader to Nozicka, Guddat, Hollatz and Bank [228].
In this book the parametric issue is correctly handled in terms of the Simplex Method, polyhedrons,
faces of polyhedra etc. Besides parameterizing either the objective vector or the right-hand side
vector, much more general parametric issues are also discussed. The following citation is taken
from this book: Den qualitativen Untersuchungen in den meisten erschienenen Aufsdtzen und
Biichern liegt das Simplexverfahren zugrunde. Zwangslaufig unterliegen alle derartig gewonnenen
Aussagen den Schwierigkeiren, die bei Beweisfithrungen mit Hilfe der Simplexmethode im Falle der
Entartung auftreten. In einigen Arbeiten wurde ein rein algebraischer Weg verfolgt, der in gewisse
Spezialfallen zu Resultaten fiihrte, im allgemeinen aber bisher keine qualitative Analyse erlieferte.
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the problem. It suffices for our purpose to know that such a solution is determined
by an optimal basis. Assuming that A is of size m x n and rank (A) = m, a basis is
a nonsingular m X m submatrix Ag: of A and the corresponding basic solution x is
determined by

AB/JJB/ = b, TN = 0,

where N’ consists of the indices not in B’. Defining a vector y by
Ag/y = Cp,

and denoting the slack vector of y by s, we have sg- = 0. Since z+ = 0, it follows
that s = 0, proving that = and s are complementary vectors. Hence, if x5 and sy
are nonnegative then x is optimal for (P) and (y, s) is optimal for (D). In that case
Ap is called an optimal basis for (P) and (D). A main result in the Simplex based
approach to LO is that such an optimal basis always exists — provided the assumption
that rank (A) = m is satisfied — and the Simplex Method generates such a basis. For
a detailed description of the Simplex Method and its underlying theory we refer the
reader to any (text-)book on LO.%3

Any optimal basis leads to a natural division of the indices into m basic indices and
n —m nonbasic indices, thus yielding a partition (B’, N”) of the index set. We call this
the optimal basis partition induced by the optimal basis B’. Obviously, an optimal
basis partition need not be an optimal partition. In fact, this observation is crucial as
we show below.

The classical approach to sensitivity analysis amounts to applying the ‘formulas’
(19.10) — (19.13) for the ranges and shadow prices, but with the optimal basis partition
(B’, N') instead of the optimal partition (B, N). It is clear that in general (B’, N')
is not necessarily the optimal partition because (P) and (D) may have more than
one optimal basis. The outcome of the classical analysis will therefore depend on
the optimal basis Ap.. Hence, correct implementations of the classical approach may
give rise to different ‘ranges’ and ‘shadow prices’.?* The next example illustrates this
phenomenon. In a subsequent section a further example is given, where we apply
several commercial optimization packages to a small transportation problem.

Example IV.83 For problems (P) and (D) in Example IV.82 we have three optimal
bases. These are given in the table below. The column at the right gives the ‘ranges’
for ¢4 for each of these bases.

Basis B’ ‘Range’ for cy
1 {1,4} [1,3]
2 {2,4} [2,3]
3 {4,5} [1,2]

We get three different ‘ranges’, depending on the optimal basis. Let us do the
calculations for the first optimal basis in the table. The ‘range’ of ¢4 is found by

23 See, e.g., Dantzig [59], Papadimitriou and Steiglitz [231], Chvéatal [55], Schrijver [250], Fang and
Puthenpura [74] and Sierksma [256].

24 We put the words range and shadow price between quotes if they refer to ranges and shadow prices
obtained from an optimal basis partition (which may differ from the unique optimal partition).
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using (19.12) with (B, N) such that B = B’ = {1,4}. This amounts to minimizing
and maximizing c4 over the system

25 + Y2 =
1 o+ oy < 4
Yy — Y2 <
Y2 =
Y1 < 2
Y1 2 0
y2 =2 0.

Using Figure 19.5 we can easily solve this problem. The question now is which values
of yo are feasible when the fourth constraint is removed in Figure 19.5 and the first
constraint is active. We can easily verify that this leads to 1 < yo < 3, thus yielding
the closed interval [1, 3] as the ‘range’ for c4. The other two ‘ranges’ can be found in
the same way by keeping the second and the fifth constraints active, respectively.

A commercial optimization package provides the user with one of the three ranges
in the table, depending on the optimal basis found by the package. Observe that each
of the three ranges is a subrange of the correct range, which is [0, 3]. Note that the
current value 2 of ¢4 lies in the open interval, whereas for two of the ‘ranges’ in the
table, 2 is an extreme point. This might lead to the wrong conclusion that 2 is a break
point of the optimal-value function. &

It can easily be understood that the ‘range’ obtained from an optimal basis partition
is always a subinterval of the whole linearity interval. Of course, sometimes the
subinterval may coincide with the whole interval. For the shadow prices a similar
statement holds. At a ‘nonbreak point’ an optimal basis partition yields the correct
shadow price. At a break point, however, an optimal basis partition yields one ‘shadow
price’, which may be any number between the left- and the right-shadow price. The
example in the next section demonstrates this behavior very clearly.

Before proceeding with the next section we must note that from a computational
point of view, the approach using an optimal basis partition is much cheaper than using
the optimal partition. In the latter case we need to solve some auxiliary LO problems
— in the worst case four for each coeflicient. When the optimal partition (B, N) is
replaced by an optimal basis partition (B’, N'), however, it becomes computationally
very simple to determine the ‘ranges’ and ‘shadow prices’.

For example, consider the ‘range’ problem for b;. This amounts to minimizing and
maximizing b; over the set

{b; : Ax =0b,xp >0, zn = 0}.
Since Ap/ is nonsingular, it follows that
Tp = A]g,,lb,
and hence the condition xg > 0 reduces to

Ag'b>0.
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This is a system of m linear inequalities in the coefficient b;, with ¢ fixed, and hence its
solution can be determined straightforwardly. Note that the system is feasible, because
the current value of b; is such that the system is satisfied. Hence, the solution is a
closed interval containing the current value of b;.

19.5.4 Comparison of the classical and the new approach

For the comparison we use a simple problem, arising when transporting commodities
(of one type) from three distribution centers to three warehouses. The supply values at
the three distribution centers are 2, 6 and 5 units respectively, and the demand value
at each of the three warehouses is just 3. We assume that the costs for transportation
of one unit of commodity from a distribution center to a warehouse is independent
of the distribution center and the warehouse, and this cost is equal to one (unit of
currency). The aim is to meet the demand at the warehouses at minimal cost. This
problem is depicted in Figure 19.6 by means of a network. The left three nodes in
this network represent the distribution centers and the right three nodes the three
warehouses. The arcs represent the transportation routes from the distribution centers
to the warehouses. The supply and demand values are indicated at the respective
nodes. The transportation problem consists of assigning ‘low’ values to the arcs in

a1—2 3:b1
a2—6 3:[)2
ag=>5 > 3263

Figure 19.6 A transportation problem.

the network so that the demand is met and the supply values are respected; this must
be done in such a way that the cost of the transportation to the demand nodes is
minimized. Because of the choice of cost coefficients, the total cost is simply the sum
of all arc flow values. Since the total demand is 9, this is also the optimal value for
the total cost value. Note that there are many optimal flows; this is due to the fact
that all arcs are equally expensive. So far, everything is trivial.

Sensitivity to demand and supply values

Now we want to determine the sensitivity of the optimal value to perturbations of
the supply and demand values. Denoting the supply values by a = (a1, a2,a3) and
the demand values by b = (by, bo, b3), we can determine the ranges of these values by
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hand.

For example, when b; is changed, the total demand becomes 6 + b; and this is the
optimal value as long as such a demand can be met by the present supply. This leads
to the condition

64by <246+5=13,

which yields by < 7. For larger values of by the problem becomes infeasible. When
b1 = 0, the arcs leading to the first demand node have zero flow value in any optimal
solution. This means that 0 is a break point, and the range of by is [0, 7]. Because of
the symmetry in the network for the demand nodes, the range for b2 and b3 will be
the same interval.

When a; is changed, the total supply becomes 11 + a1 and this will be sufficient as
long as

11+a; > 9,

which yields a1 > —2. The directed arcs can only handle nonnegative supply values,
and hence the range of a4 is [0, 00). Similarly, the range for as follows from

7 + as Z 9a
which yields the range [2,00) for as, and the range for ag follows from
8 + as 2 97

yielding the range [1, c0) for as.

To compare these ranges with the ‘ranges’ provided by the classical approach, we
made a linear model of the above problem, solved it using five well-known commercial
optimization packages, and performed a sensitivity analysis with these packages. We
used the following linear standard model:

. 3 3
min >, Zj:l Tij

st. 1 4+ x12 + x13 + s = 2
31 + T2 + T2z + s2 = 6
r31 + X2 + T3z + s3 = 5
rTn + ®a + w; — di = 3
T2 + x2 + x32 — dy = 3
T3 + @we3 + w3z — dz = 3
Tij, Si, dj > 0,4,5 =1,2,3.
The meaning of the variables is as follows:
2;; : the amount of transport from supply node ¢ to demand node 7,
s; . excess supply at supply node i,
d; : shortage of demand at node j,

where ¢ and j run from 1 to 3.
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The result of the experiment is shown in the table below.?> The columns correspond
to the supply and the demand coefficients. Their current values are put between
brackets. The rows in the table corresponding to the five packages®® CPLEX, LINDO,
PC-PROG, XMP and OSL show the ‘ranges’ produced by these packages. The last
row contains the ranges calculated before by hand.?7

‘Ranges’ of supply and demand values
LO package a1(2) | ax(6) as(5) bi(3) | b2(3) | b3(3)
CPLEX 03 | 47 | [eo) | [27 | [25] | [2.5]
LINDO [1,3] | [2,00) [4,7] [2,4] | [1,4] | [1,7]
PC-PROG [0,00) | [4,00) [3,6] 2,5] | [0,5] | [2,5]
XMP [0,3] [6,7] [1,00) 2,3] | [2,3] | [2,7]
OSL [0,3] [4,7] | (—oo,00) | [2,7] | [2,5] | [2,5]
Correct range | [0,00) | [2,00) [1,00) [0,7] | [0,7] | [0,7]

The table clearly demonstrates the weaknesses of the classical approach. Sensitivity
analysis is considered to be a tool for obtaining information about the bottlenecks
and degrees of freedom in the problem. The information provided by the commercial
optimization packages is confusing and hardly allows a solid interpretation. For
example, in our example problem there is obvious symmetry between the demand
nodes. None of the five packages gives evidence of this symmetry.

Remark TV.84 As stated before, the ‘ranges’ and ‘shadow prices’ provided by the classical
approach arise by applying the formulas (19.10) — (19.13) for the ranges and shadow prices,
but replacing the optimal partition (B, N) by the optimal basis partition (B, N'). Indeed,
the ‘ranges’ in the table can be reconstructed in this way. We will not do this here, but to
enable the interested reader to perform the relevant calculations we give the optimal basis
partitions used by the packages. If the optimal basis partition is (B’, N'), it suffices to know
the variables in B’ for each of the five packages. These ‘basic variables’ are given in the next
table.

LO package Basic variables

CPLEX Ti2 | X21 | @22 | T23 | T31 | S3
LINDO T11 | @23 | T31 | T32 | @33 | s2
PC-PROG 22 23 31 33 81 82
XMP T13 | 21 | T22 | @23 | X33 | S3
OSL Ti2 | @21 | T22 | w23 | @31 | S3

25 The dual problem has a unique solution in this example. These are the shadow prices for the
demand and supply values. All packages return this unique solution, namely 0 for the supply
values — due to the excess of supply — and 1 for the demand values.

26 For more information on these packages we refer the reader to Sharda [253].

27 The ‘range’ provided by the IBM package OSL (Optimization Subroutine Library) for as is not
a subrange of the correct range; this must be due to a bug in OSL. The correct ‘range’ for the
optimal basis partition used by OSL is [1, co).
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Note that CPLEX and OSL use the same optimal basis. The output of their sensitivity
analysis differs, however. As noted before, the explanation of this phenomenon is that the
OSL implementation of the classical approach must contain a bug. .

The sensitivity analysis for the cost coefficients ¢;; is considered next. The results
are similar, as we shall see.

Sensitivity to cost coefficients

The current values of the cost coefficients ¢;; are all 1. As a consequence each feasible
flow on the network is optimal if the sum of the flow values z;; equals 9. When one
of the arcs becomes more expensive, then the flow on this arc can be rerouted over
the other arcs and the optimal value remains 9. Hence the right-shadow price of each
cost coefficient equals 0. On the other hand, if one of the arc becomes cheaper, then
it becomes attractive to let this arc carry as much flow as possible. The maximal flow
values for the arcs are 2 for the arcs emanating from the first supply node and 3 for
the other arcs. Since for each arc there exists an optimal solution of the problem in
which the flow value on that arc is zero, a decrease of 1 in the cost coefficient for the
arcs emanating from the first supply node leads to a decrease of 2 in the total cost,
and for the other arcs the decrease in the total cost is 3. Thus we have found the
left- and right-shadow prices of the cost coefficients. Since the left- and right-shadow
prices are all different, the current value of each of the cost coefficients is a break
point. Obviously, the linearity interval to the left of this break point is (—o0, 1] and
the linearity interval to the right of it is [1, c0).

In the next table the ‘shadow prices’ provided by the five commercial optimization
packages are given. The last row in the table contains the correct values of the left-
and right-shadow prices, as just calculated.

‘Shadow prices’ of cost coefficients

LO package C11 C12 C13 C21 C22 C23 €31 C32 €33
CPLEX 0 2 0 2 1 3 1 0 0
LINDO 2 0 0 0 0 2 1 3 1
PC-PROG 0 0 0 0 3 1 3 0 2
XMP 0 0 2 3 3 0 0 0 1
OSL 0 2 0 2 1 3 1 0 0

Correct values | [2,0] | [2,0] | [2,0] | [3,0] | [3,0] | [3,0] | [3,0] | [3,0] | [3,0]

Note that in all cases the ‘shadow price’ of a package lies in the interval between
the left- and right-shadow prices.

The last table shows the ‘ranges’ of the packages and the correct left- and right-hand
side ranges for the cost coefficients.?® It is easy to understand the correct ranges. For
example, if ¢11 increases then the corresponding arc becomes more expensive than the
other arcs, and hence will not be used in an optimal solution. On the other hand, if

28 In this table we use shorthand notation for the infinite intervals [1,00) and (-00,1]. The interval
[1,00) is denoted by [1, ) and the interval (-oc0,1] by ( ,1].
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c11 decreases than it becomes attractive to use this arc as much as possible; due to
the limited supply value (i.e., 2) in the first supply node a flow of value 2 will be sent
along this arc whatever the value of ¢17 is. Considering c21, we see the same behavior if
¢o1 increases: the arc will not be used. But if ¢p; € [0,1], then the arc will be preferred
above the other arcs, and its flow value will be 3. If ¢3; would become negative, then
it becomes attractive to send even a flow of value 6 along this arc, despite the fact
that than the first demand node receives oversupply. So co; = 0 is a break point.

Note that if a ‘shadow price’ of a package is equal to the left or right-shadow price
then the ‘range’ provided by the package must be a subinterval of the correct range.
Moreover, if the ‘shadow price’ of a package is not equal to the left or right-shadow
price then the ‘range’ provided by the package must be the singleton [1, 1]. The results
of the packages are consistent in this respect, as follows easily by inspection.

‘Ranges’ of the cost coeflicients
LO package C11 C12 C13 C21 C22 C23 €31 C32 €33
CPLEX [,y | ¢, { [, | [1,1] | L1 | o1 | [1,1] | [1,) | [1,)
LINDO GU L) L) | ) | L) | [ [ o1 | [
PC-PROG | [1,) | [1) | [L) | [L) | 01 | (L1 | [01] | [1,) | [1.1]
XMP?9 - - (1] | [0,1] | [0,1] | [1,1] - - [1,1]
OSL* L) g ) A g ) )
Left range (1) ¢,17 | (1] | [0.2] | [0,1) | [0,] | [0,1] | [0,1] | [0,1]
Right range | [1,) | [1,) | [L,) | [L,) | [1,) [ [L) | L) | [1,) | L)

19.6 Concluding remarks

In this chapter we developed the theory necessary for the analysis of one-dimensional
parametric perturbations of the vectors b and ¢ in the standard formulation of the
primal problem (P) and its dual problem (D). Given a pair of optimal solutions for
these problems, we presented algorithms in Section 19.4.5 for the computation of the
optimal-value function under such a perturbation. In Section 19.5 we concentrated on
the special case of sensitivity analysis. In Section 19.5.1 we showed that the ranges and
shadow prices of the coefficients of b and ¢ can be obtained by solving auxiliary LO
problems. We also discussed how the ranges obtained in this way can be ambiguous,
but that the ambiguity can be avoided by using strictly complementary solutions.
We proceeded in Section 19.5.3 by discussing the classical approach to sensitivity
analysis, based on the use of an optimal basic solution and the corresponding optimal
basis. We showed that this approach is much cheaper from a computational point of

29 For some unclear reason XMP did not provide all ranges. The missing entries in its row are all
equal to [1,00).

30 In Remark IV.84 it was established that OSL and CPLEX use the same optimal basis; nevertheless
their ‘ranges’ for ¢12 and co3 are different. One may easily verify that these ‘ranges’ are (—oo, 1]
and [0, 1] respectively. Thus, the CPLEX ‘ranges’ are consistent with this optimal basis and the
OSL ‘ranges’ are not.
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view. On the other hand, much less information is usually obtained and the information
is often confusing. In the previous section we provided a striking example by presenting
the sensitivity information provided by five commercial optimization packages for a
simple transportation problem.

The shortcomings of the classical approach are well known among experts in the
field. At several places in the literature these experts raised their voices to warn of the
possible implications of using the classical approach. By way of example we include a
citation of Rubin and Wagner [247]:

Managers who build their own microcomputer linear programming models
are apt to misuse the resulting shadow prices and shadow costs. Fallacious
interpretations of these values can lead to expensive mistakes, especially
unwarranted capital investments.

As a result of the unreliability of the sensitivity information provided by computer
packages, the reputation of sensitivity analysis as a tool for obtaining information
about the bottlenecks and degrees of freedom has suffered a lot. Many potential users
of such information do not use it, because they want to avoid the pitfalls that are
inherent in the classical approach.

The theory developed in this chapter provides a solid base for reliable sensitivity
modules in future generations of computer packages for LO.



20

Implementing Interior Point

Methods

20.1 Introduction

Several polynomial interior-point algorithms were discussed in the previous chapters.
Interior point algorithms not only provide the best theoretical complexity for LO
problems but allow highly efficient implementations as well. Obviously not all
polynomial algorithms are practically efficient. In particular, all full Newton step
methods (see, e.g., Section 6.7) are inefficient in practice. However variants like
the predictor-corrector method (see Section 7.7) and large-update methods (see
Section 6.9) allow eflicient implementations. The aim of this chapter is to give some
hints on how some of these interior point algorithms can be converted into efficient
implementations. To reach this goal several problems have to be dealt with. Some
of these problems have been at least partially discussed earlier (e.g., the embedding
problem in Chapter 2) but need further elaboration. Some other topics (e.g., methods
of sparse numerical linear algebra, preprocessing) have not yet been touched.

By reviewing the various interior-point methods we observe that they are all based
on similar assumptions and are built up from similar ingredients. We can extract the
following essential elements of interior-point methods (IPMs).

Appropriate problem form. All algorithms assume that the LO problem satisfies
certain assumptions. The problem must be in an appropriate form (e.g., the
canonical form or the standard form). In the standard form the coefficient matrix
A must have full row rank. Techniques to bring a given LO problem to the desired
form, and at the same time to eliminate redundant constraints and variables,
are called preprocessing and are discussed in Section 20.3.

Search direction. The search direction in interior-point methods is always a Newton
direction. To calculate this direction we have to solve a system of linear
equations. Except for the right-hand side and the scaling, this system is the
same for all the methods. Computationally the solution of the system amounts
to factorizing a square matrix and then solving the triangular systems by
forward or backward substitution. The factorization is the most expensive part
of an iteration. Without efficient sparse linear algebra routines, interior-point
methods would not be practical. Various elements of sparse matrix techniques are
discussed in Section 20.4. A straightforward idea for reducing the computational
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cost is to reuse the same factorization. This leads to the idea of second- and
higher-order methods discussed in Section 20.4.3.

Interior point. The interior-point assumption is presupposed, i.e. that both the
primal and the dual problem have a strictly positive (preferably centered) initial
solution. Most LLO problems do not have such a solution, but still have to be
solved. A theoretically appealing and at the same time practical method is
to embed the problem in a self-dual model, as discussed in Chapter 2. The
embedding model is revisited and elaborated on in Section 20.5.

Reoptimization. In practice it often happens that several variants of the same LO
problem need to be solved successively. One might expect that the solution of an
earlier version would be a good starting point for a slightly modified problem.
For this so-called warm start problem the embedding model also provides a good
solution as discussed in Section 20.5.2.

Parameters: Step size, stopping criteria. The iterates in IPMs should stay in
some neighborhood of the central path. Theoretically good step-sizes can result
in hopelessly slow convergence in practice. A practical step-size selection rule
is discussed. At some point, when the duality gap is small, the calculation is
terminated. The theoretical criteria are typically far beyond today’s machine
precision. A practical criterion is presented in Section 20.6.

Optimal basis identification. It is not an essential element of interior-point meth-
ods, but sometimes it still might be important! to find an optimal basis. Then
we need to provide the ability to ‘cross over’ from an interior solution to a basic
solution. An elegant strongly polynomial algorithm is presented in Section 20.7.

20.2 Prototype algorithm

In most practical LO problems, in addition to the equality and inequality constraints,
the variables have lower and upper bounds. Thus we deal with the primal problem in
the following form:

rnzin {cTac A >b, 2 < by, x> 0} , (20.1)

where ¢, z,b, € R", b € R™, and the matrix A is of size m x n. Now its dual is

max {b7y —bly, : ATy —y, <, y>0,y, >0}, (20.2)
YsYu

where y € R"™ and y, € R™. Let us denote the slack variables in the primal problem
(20.1) by
z=Azx—b, z,=b,—z

and in the dual problem (20.2) by

s=c+y, — Ay,

1 Here we might think about linear integer optimization when cutting planes are to be generated to
cut off the current nonintegral optimal solution.
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respectively. Here we assume not only that the problem pair satisfies the interior-point
assumption, but also that a strictly positive solution (z, z,, z, 8, yu, y) > 0 is given,
satisfying all the constraints in (20.1) and (20.2) respectively. How to solve these
problems without the explicit knowledge of an interior point is discussed in Section
20.5.

The central path of the pair of problems given in (20.1) and (20.2) is defined as
the set of solutions (x(u), zu (1), 2(p)) > 0 and (s(p), ¥ (1), y(u)) > 0 for p > 0 of the
system

Ar — 2z = b,
T+ 2y = by,
Aty —y, +s = e, (20.3)
xs = e,
ZuYu = ne,
y = e,

where e is the vector of all ones with appropriate dimension.

Observe that the first three of the above equations are linear and force primal and
dual feasibility of the solution. The last three equations are nonlinear. They become the
complementarity conditions when g = 0, which together with the feasibility constraints
provides optimality of the solutions. The actual duality (or complementarity) gap g
can easily be computed:

g=a"s+ 2z yu + 2"y,
which equals (2n + m)p on the central path .

One iteration of a primal-dual algorithm makes one step of Newton’s method applied
to system (20.3) with a given u; then p is reduced and the procedure is repeated as
long as the duality gap is larger than a predetermined tolerance.

Given a solution (z,z,,z) > 0 of (20.1) and (s,4.,,y) > 0 of (20.2) the Newton
direction for (20.3) is obtained by solving a system of linear equations. This system
can be written as follows, where the ordering of the variables is chosen so that the
structure of the coefficient matrix becomes apparent.

0 A-I 0 0 0 Ay 0
AT 0 0 -1 0 I ﬁx 0

0 I 0 0 I 0 z | 0

0O § 0 0 0 X Ay, | — e — s : (20.4)
0o 0 0 Z,Y, 0 Az, He — Z, Yy

Z 0Y 0 0 0 As e — zy

In making a step, in order to preserve the positivity of (z, z,, z) and (s, y.,y), a step-
size « usually smaller than one (a damped Newton step) is chosen.

Let us have a closer look at the Newton system. From the last four equations in
(20.4) we can easily derive

Az, = —Ar,

As = e — xs — sAx),

Ay, = Zy, 1(/“i ZuYu — YuDzy) = ZJl(ue — ZuYu + YuAz),  (20.5)
Az = y (e —yz — zAy).
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With these relations, (20.4) reduces to
D? A A
i Yoot (20.6)
AT —D2 Az h
where
p* = zy!
b2 = Ssx'+v,z;!
o=y (pe—y2)
h = z (e — zuyy) — 7 (pe — xs).

The solution of the reduced Newton system (20.6) is the computationally most involved
step of any interior point method. The system (20.6) in this form is a symmetric
indefinite system and is referred to as the augmented system. If the second equation
in the augmented system is multiplied by —1 a system with a positive definite (but
unsymmetric) matrix is obtained.

The augmented system (20.6) is equivalent to

Az = D*(ATAy — h)

and
(AD?AT + D*) Ay = r + ADh. (20.7)

The last equation is referred to as the normal equation.? The way to solve the systems
(20.6) and (20.7) efficiently is discussed in detail in Section 20.4.

After system (20.6) or (20.7) is solved, using formulas (20.5) we obtain the solution
of (20.4). Now the maximal feasible step lengths ap for the primal (z, z, z,) and ap for
the dual (s,y,y,) variables are calculated. Then these step-sizes are slightly reduced
by a factor ap < 1 to avoid reaching the boundary. The new iterate is computed as

gkl = z* + apapAz,
Zk+1 = 2k + apapAz,,
2kl = 2F 4+ agapAz, (20.9)
ghtl = s + apapAs,
1 —
y5+ = 95 + O4004DA?Jua
Tan = y* 4+ apapAy.

After the step, the parameter i is updated and the process is repeated. A prototype
algorithm can be summarized as follows.

2 Exercise 108 Show that if first Ay is calculated from the system (20.6) as a function of Az the
following formulas arise: )
Ay=—D"2(AAx —r)
and B
(ATD2A+ D7?) Az = ATD'r — . (20.8)

Observe that this symmetric formulation allows for further utilization of the structure of the normal
equation. We are free to choose between (20.7) and (20.8) depending on which has a nicer sparsity
structure.
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Prototype Primal-Dual Algorithm

Input:
An accuracy parameter £ > 0;
(20,22, 29) and (s°,42,4°); interior solutions for (20.1) and (20.2);
parameter ¥ < 1; u% > 0.
begin
Ty Zuy % 85 Yuy Y) = (.IIO, 28’ ZO? SO’ yga yO); M= /’LO;
while (2n+m)u > ¢ do
begin
reduce p
solve (20.4) to obtain (Azx, Az,, Az, As, Ay, Ay);
determine ap and ap;
update (z, zy, 2, Yu, ¥, $) by (20.9)
end
end

Before discussing all the ingredients in more detail we make an important observation.
Solving a problem with individual upper bounds on the variables does not require
significantly more computational effort than solving the same problem without such
upper bounds. In both cases the augmented system (20.6) and the normal equation
(20.7) have the same size. The extra costs per iteration arising from the upper bounds
are just O(n), namely some extra ratio tests to determine the maximal possible steps
sizes and some extra vector manipulations (see equations (20.5)).2

20.3 Preprocessing

An important issue for all implementations is to transform the problem into an
appropriate form, e.g., to the canonical form with upper bounded variables (20.1), and
to reduce the problem size in order to reach a minimal representation of the problem.
This aim is quite plausible. A smaller problem needs less memory to store, usually fewer
iterations of the algorithin, and if the transformation reduces the number of nonzero
coefficients or improves the sparsity structure then fewer drithmetic operations per
iteration are needed. A minimal representation should be free of redundancies, implied
variables and inequalities. In general it is not realistic to strive to find the minimal
representation of a given problem. But by analysing the structure of the problem it is
often possible to reduce the problem size significantly. In fact, almost all large-scale LO
problems contain redundancies in practice. The use of modeling languages and matrix
generators easily allows the generation of huge models. Modelers choose to formulate
models that are easy to understand and modify; this often leads to the introduction

3 Exercise 104 Check that the computational cost per iteration increases just by @(n) if individual
upper bounds are imposed on the variables.
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of superfluous variables and redundant constraints. To remove at least most of these
redundancies is, however, a nontrivial task; this is the aim of preprocessing.

As we have already indicated, computationally the most expensive part of an
interior-point iteration is calculating the search direction, to solve the normal equation
(20.7) or the augmented system (20.6). With a compact formulation the speedup can
be significant.*

20.3.1 Detecting redundancy and making the constraint matriz sparser

By analysing the sparsity pattern of the matrix A, one can frequently reduce the
problem size. The aim of the sparsity analysis is to reduce the number of nonzero
elements in the constraint matrix A; this is done by elementary matrix operations.
In fact, as a consequence, the sparsity analysis mainly depends on just the nonzero
structure of the matrix A and it is largely independent of the magnitude of the
coefficients.

1. First we look for pairs of constraints with the same nonzero pattern. If we have two
(in-)equality constraints which are identical — up to a scalar multiplier — then
one of these constraints is removed from the problem. If one of them is an equality
constraint and the other an inequality constraint then the inequality constraint is
dropped. If they are opposite inequalities then they are replaced by one equality
constraint.

2. Linearly dependent constraints are removed. (Dependency can easily be detected

by using elimination.)

Duplicate columus are removed.

4. To improve the sparsity pattern of the constraint matrix A further we first put
the constraints into equality form. Then by adding and subtracting constraints
with appropriate multipliers, we can eliminate several nonzero entries.” During
this process we have to make sure that the resulting sparser system is equivalent
to the original one. Mathematically this means that we look for a nonsingular
matrix Q € R™*™ such that the matrix QA is as sparse as possible. Such sparser
constraints in the resulting equivalent formulation

QAr = Qb

might be much more suitable for a direct application of the interior-point solver.®

w

Preprocessing is not a new idea, but has enjoyed much attention since the introduction of interior-
point methods. This is due to the fact that the realized speedup is often larger than for the Simplex
Method. For further reading we refer the reader to, e.g., Brearley, Mitra and Williams [49], Adler et
al. [1], Lustig, Marsten and Shanno [191], Andersen and Andersen [9], Gondzio [113], Andersen (8],
Bixby [42], Lustig, Marsten and Shanno [193] and Andersen et al. [10].

As an illustration let us consider two constraints a} © = by, and aJTm = b; where o(ax) € o(ay).
(Recall that o(x) = { i | #; # 0 }.) Now if we define @; = a; + Aay, and b; = b; + Aby, where A
is chosen so that ¢(a@;) C o(aj), then the constraint aij = b; can be replaced by E?m = b; while
the number of nonzero coefficients is reduced by at least one.

Exact solution of this Sparsity Problem is an NP-complete problem (Chang and McCormick [54])
but efficient heuristics (Adler et al. [1], Chang and McCormick [54] and Gondzio [113]) usually
produce satisfactory nonzero reductions in A. The algorithm of Gondzio [113], for example, looks

for a row of A that has a sparsity pattern that is a subset of the sparsity pattern of other rows and
uses it to eliminate nonzero elements from these rows.
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20.8.2 Reducing the size of the problem

In general, finding all redundancies in an LO problem is a more difficult problem than
solving the problem; hence, preprocessing procedures use a great variety of simple
inspection techniques to detect obvious redundancies. These techniques are very cheap
and fast, and are applied repeatedly until the problem cannot be reduced by these
techniques any more. Here we discuss a small collection of commonly used reduction
procedures.

1.
2.
3.

Empty rows and columns are removed.

A fixed variable (z; = u;) can be substituted out of the problem.

A row with a single variable defines a simple bound; after an appropriate bound
update the row can be removed.

We call variable x; a free column singleton if it contains a single nonzero coefficient
and there are neither lower nor upper bounds imposed on it. In this case the variable
x; can be substituted out of the problem. As a result both the variable x; and the
constraint in which it occurs are eliminated. The same holds for so-called implied
Jree variables, i.e., for variables for which implied bounds (discussed later on) are
at least as tight as the original bounds.

. All the free variables can be eliminated by making them a free singleton column by

eliminating all but one coefficient in their columns. Here we recall the techniques
that were discussed in Theorem D.1 in which the LO problem was reduced to
canonical form. In the elimination steps we have to pay special attention to the
sparsity, by choosing elements in the elimination steps that reduce the number of
nonzero coordinates in A or, at least, produce the smallest amount of new nonzero
elements.

Trivial lower and upper bounds for each constraint ¢ are determined. If

bi= 3 agbyy, and b= > aibug, (20.10)

{s:ai;j<0} {j:ai; >0}

then clearly
b <> ay; < b (20.11)
j

Observe that due to the nonnegativity of x, for the bounds we have b; < 0 < b;.
If the inequalities (20.11) are at least as tight as the original constraint, then the
constraint i is redundant. If one of them contradicts the original i-th constraint, then
the problem is infeasible. In some special cases (e.g.: ‘less than or equal to’ row with
b; = b;, ‘greater than or equal to’ row with b, = b;, or equality row for which b;
is equal to one of the limits b; or b;) the constraint in the optimization problem
becomes a forcing one. This means that the only way to satisfy the constraint is
to fix all variables that appear in it on their appropriate bounds. Then all of these
variables can be substituted out of the problem.

From the constraint limits (20.10), implied variable bounds can be derived
(remember, we have 0 < z < b,). Assume that for an inequality constraint the
bounds (20.11) are derived. Then for each &k such that a; > 0 we have

by + agpay < Zazjﬂﬁj <b;
J
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and for each k such that a;; < 0 we have

bi + ar (v — ur) < Zaijmj < b;.
J

Now the new implied bounds from row i are easily derived as
T < u; = (by —bsi)/ak forall k: a; >0,
Ty > l;€ = up + (bi — by)/as, forall  k: ay <O.

If these bounds are tighter than the original ones, then the variable bounds are
improved.
8. Apply the same techniques to the dual problem.

The application of all presolve techniques described so far often results in impressive
reductions of the initial problem formulation. Once the solution for the reduced
problem is found, we have to recover the complete primal and dual solutions for the
original problem. This phase is called postprocessing.

20.4 Sparse linear algebra

As became clear in Section 20.2, the computationally most intensive part of an interior-
point algorithm is to solve either the augmented system (20.6):

oo R (2012

or the normal equation (20.7):
(AD?AT + D*) Ay = q, (20.13)

where ¢ = r + AD?h. At each iteration one of the systems (20.12) or (20.13) has to
be solved. In the subsequent iterations only the diagonal scaling matrices D and D
and the right-hand sides are changing. The nonzero structure of the augmented and
normal matrices remains the same in all the iterations. For an efficient implementation
it is absolutely necessary to design numerical routines that make use of this constant
sparsity structure.

20.4.1 Solving the augmented system

To solve the augmented system (20.12) a well-established technique, the Bunch—
Parlett factorization” may be used. Observe that the coefficient matrix of (20.12)
is nonsingular, symmetric and indefinite. The Bunch—Parlett factorization of the
symimetric indefinite matrix has the form

D? A

Plogr pe

PT — LALT, (20.14)

7 For the original description of the algorithm we refer to Bunch and Parlett [63]. For further
application to solving least squares problems we refer the reader to Arioli, Duff and de Rijk [27],
Bjork [44] and Duff [68].
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for some permutation matrix P, where A is an indefinite block diagonal matrix with
1x1 and 2 x 2 blocks and L is a lower triangular matrix. The factorization is basically
an elimination (Gaussian) algorithm, in which we have to specify at each stage which
row and which column is used for the purpose of elimination.

In the Bunch—Parlett factorization, to produce a sparse and numerically stable L
and A at each iteration the system is dynamically analyzed. Thus it may well happen
that at each iteration structurally different factors are generated. This means that
in the choice of the element that is used for the elimination, both the sparsity and
stability of the triangular factor are considered. Within these stability and sparsity
considerations we have a great deal of freedom in this selection; we are not restricted
to the diagonal elements (one possible trivial choice) of the coeflicient matrix. The
efficiency depends strongly on the heuristics used in the selection strategy.

The relatively expensive so-called analyze phase is frequently skipped and the same
structure is reused in subsequent iterations and updated only occasionally when the
numerical properties make it necessary. A popular selection rule is detecting ‘dense’
columns and rows (with many nonzero coefficients) and eliminating first in the
diagonal positions of D? and D~? in the augmented matrix (20.12) corresponding
to sparse rows and columns. The dense structure is pushed to the last stage of
factorization as a dense window. In general it is unclear what threshold density should
be used to separate dense and sparse structures. When the number of nonzeros in dense
columns is significantly larger than the average number of entries in sparse columns
then it is easy to determine a fixed threshold value. Whenever more complicated
sparsity structures appear, more sophisticated heuristics are needed.?

20.4.2 Solving the normal equation

The other popular method for calculating the search direction is to solve the normal
equation (20.13). The method of choice in this case is the sparse Cholesky factorization:

P(AD?A" + D*) P = LAL", (20.15)

for some permutation matrix P, where L is a lower triangular matrix and A is a
positive definite diagonal matrix. It is should be clear from the derivation of the
normal equation that the normal equation approach can be considered as a special
implementation of the augmented system approach. More concretely this means that
we first eliminate either Az or Ay by using all the diagonal entries of either D=2 or
D2. Thus the normal equation approach is less flexible but, on the other hand, the
coefficient matrix to be factorized is symmetric positive definite, and both the matrix
and its factors have a constant sparsity structure.

The Cholesky factorization of (20.15) exists for any positive D? and D?. The sparsity
structure of L is independent of these diagonal matrices and hence is constant in all
iterations if the same elimination steps are performed. Consequently it is sufficient
to analyze the structure just once and determine a good ordering of the rows and

8 To discuss these heuristics is beyond the scope of this chapter. The reader can find detailed
discussion of the advantages and disadvantages of the normal equation approach in the next
section and in the papers Andersen et al. [10], Duff et al. [69], Fourer and Mehrotra [78], Gondzio
and Terlaky [116], Maros and Mészdros [195], Turner [275], Vanderbei [277] and Vanderbei and
Carpenter [278].
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columns in order to obtain sparse factors. To determine such an ordering involves
considerable computational effort, but it is the basis of a successful implementation
of the Cholesky factorization in interior-point methods. This is the analyze phase.
More formally, we have to find a permutation matrix P such that the Cholesky
factor of P(AD?*AT + D?)P" is the sparsest possible. Due to the difficulty of this
problem, heuristics are used in practice to find such a good permutation.’ Two efficient
heuristics, namely the minimum degree and the minimum local fill-in orderings, are
particularly useful in interior-point method implementations. These heuristics are
described briefly below.

Minimum degree ordering

Since the matrix to be factorized is positive definite and symmetric the elimination
can be restricted to the diagonal elements. This limitation preserves the symmetry
and positive definiteness of the Schur complement. Let us assume that in the k-th
step of the Gaussian elimination the i-th row of the Schur complement contains n;
nonzero entries. If this row is used for the elimination, then the elimination requires

fi= %(m— —1)%, (20.16)

floating point operations (flops). The number f; estimates the computational effort
and gives an overestimate of the fill-in that can result from the elimination. The best
choice of row 4 at step k is the one that minimizes f;.'°

Minimum local fill-in ordering

Let us observe that, in general, f; in (20.16) considerably overestimates the number
of fill-ins at a given iteration of the elimination process because it does not take into
account the fact that in many positions of the predicted fill-in, nonzero entries already
exist. It is possible that another candidate that seems to be worse in terms of (20.16)
would produce less fill-in because in the elimination, mainly existing nonzero entries
would be updated. The minimum local fill-in ordering takes locally the real fill-in into
account. As a consequence, each step is more expensive but the resulting factors are
sparser. This higher cost has to be paid once in the analyze phase.

Disadvantages of the normal equations approach

The normal equations approach shows uniformly good performance when applied to
the solution of the majority of linear programs. Unfortunately, it suffers from a serious
drawback. The presence of dense columns in A might be catastrophic if they are not
treated with extra care. A dense column of A with k nonzero elements creates a k x k
dense submatrix (dense window) of the normal matrix (20.13). Such dense columns
do not seriously influence the efficiency of the augmented system approach.

9 Yannakakis [302] proved that finding the optimal permutation is an NP-complete problem.

10 The function f; is Markowitz’s merit function [194]. Interpreting this process in terms of the
elimination graph (cf. George and Liu [94]), we can see that it is equivalent to the choice of the
node in the graph that has the minimum degree (this gave the name to this heuristic).
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In order to handle dense columus efficiently the first step is to identify them. This
typically means to chose a threshold value. If the number of nonzeros in a column
is larger than this threshold, the column is considered to be dense, the remaining
columns as sparse. Denoting the matrix of the sparse columns in A by A, and the
matrix of the dense columns by Ag, the equation (20.12) can be written as follows.

D? Ay A, Ay T
AT -D7% 0 Azg | = | hg |- (20.17)
AT 0 -D7?| | Az hs

8

After eliminating Az, = —D;2(hs — ATd,) we get the equation

2 N—2 AT D2
D? + A, D247 Aqg } { Ay }:{ r+ A;D%h, (20.18)

AT —-D;? Axg h

Here the left-upper block of the coefficient matrix is positive definite symmetric and
sparse, thus it is easy to factorize efficiently. As the reader can easily see, this approach
tries to combine the advantages of the normal equation approach and the augmented
system approach.!'!:!2

20.4.8 Second-order methods

An attempt to reduce the computational cost of interior-point methods is based on
trying to reuse the same factorization of either the normal matrix or the augmented
system. Both in theory and in practice, factorization is much more expensive than
backsolve of triangular systems; so we can do additional backsolves in each iteration
with different right-hand sides if these reduce the total number of interior-point
iterations. This is the essential idea of higher-order methods. Our discussion here
follows the present computational practice; so we consider only the second-order

11 An appealing advantage of the symmetric formulation of the LO problem is that in (20.18) the
matrix D? +ASD;2AST is nonsingular. If one would use the standard Ax = b, x > 0 form, then we

would have just ASDS_QAE which might be singular. To handle this unpleasant situation an extra
trick is needed. For this we refer the reader to Andersen et al. [13] and also to Exercise 105.

12 Exercise 105 Verify that (Ay, Az,) is the solution of
Ay
Axg

{ASD;2A3+QQT Ag Q-I [ Ay -I [T+A$D;2hs]

AT -D;% 0 Azxg | = | by

A R ]

with any matrix @ having appropriate dimension. Observe that by choosing @ properly (e.g.
diagonal) the matrix ASDQZA? + QQT is nonsingular.

AsD72AT Ay

T n—2
AT D

ha

r+AsD;2hs}

if and only if (Ay, Azg,u) solves
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predictor-corrector method that is implemented in several codes with great success.!

Predictor-corrector technique

This predictor-corrector method has two components. The first is an adaptive choice
of the barrier parameter p; the other is a second-order approximation of the central
path .

The first step in the predictor-corrector algorithm is to compute the primal-dual
affine-scaling (predictor) direction. This is the solution of the Newton system (20.4)
with i = 0 and is indicated by A®. It is easy to see that if a step of size « is taken
in the affine-scaling direction, then the duality gap is reduced by «; i.e. if a large step
can be made in this direction then significant progress is made in the optimization. If
the feasible step-size in the affine-scaling direction is small, we expect that the current
point is close to the boundary; thus centering is needed and u should not be reduced
too much.

In the predictor-corrector algorithm, first the predicted duality gap is calculated
that results from a step along the primal-dual affine-scaling direction. To this end,
when the affine-scaling direction is computed, the maximum primal (a%) and dual
(a}) feasible step sizes are determined that preserve nonnegativity of (z, z,, z) and
(8, Yu,y). Then the predicted duality gap

Ja = (z+ o/};Aam)T(s +ahA%S) + (2 + aapAazu)T(yu + abA%y)
+(z+ apA%2) (y + ahA%)

is computed and is used to determine a target point

2
= (g—”) Ja (20.19)
g n

on the central path . Here g, /n relates to the central point with the same duality gap
that the predictor afline step would produce, and the factor (g,/ g)2 pushes the target
further towards optimality in a way that depends on the achieved reduction of the
predictor step. Now the second-order component of the predictor-corrector direction
is computed. Ideally we would like to compute a step such that the next iterate is
perfectly centered, i.e.,

(x 4+ Az)(s + As) = pe,
(zu + Azu)(Yu + Ayu) = pe,
(z+Az)(y+Ay) = pe,

13 The second-order predictor-corrector technique presented here is due to Mehrotra [205]; from a
computational point of view the method is very successful. The higher than order 2 methods —
discussed in Chapter 18 — are implementable too, but to date computational results with methods
of order higher than 2 are quite disappointing. See Andersen et al. [10]. Mehrotra was motivated
by the paper of Monteiro, Adler and Resende [220], who were the first to introduce the primal-dual
affine-scaling direction and higher-order versions of the primal-dual affine-scaling direction; they
elaborated on a computational paper of Adler, Karmarkar, Resende and Veiga [2] that uses the
dual affine-scaling direction and higher-order versions of it.
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or equivalently

zAs + sAx = —xs + pe — AxAs,
ZuAyu + yuAZu - —ZyYu T pe — AZuAyuv
z2Ay + yAz = —zy + pe — AzAy.

Usually, in the computation of the Newton direction the second-order terms
AxAs, Az, Ay, AzAy

are neglected (recall (20.4)). Instead of neglecting the second-order term, the afline
directions

A%z, A%, A%z, A%y, A%zA%

are used as the predictions of the second-order effect. One step of the algorithm can
be summarized as follows.

Solve (20.4) with u = 0, resulting in the affine step (A%z,A%z,,A%) and
(A%s, A%y, A%y).

Calculate the maximal feasible step lengths a% and af.

Calculate the predicted duality gap g, and u by (20.19).

Solve the corrected Newton system

AAx — Az = 0
Az + Az, = 0
AT Ay — Ay, + As = 0
zAs + sAx = —zs+ pe — A%xA%s, (20.20)
ZuDYy + YuAzy = —Zulu + pe — A%z, A%y,
Ay +yAz = —zy + pe — A%zA%.

e Calculate the maximal feasible step lengths ap and ap and make a damped step
by using (20.9).14

Finally, observe that a single iteration of this second-order predictor-corrector primal-
dual method needs two solves of the same large, sparse linear system (20.4) and (20.20)
for two different right-hand sides. Thus the same factorization can be used twice.

20.5 Starting point

The self-dual embedding problem is an elegant theoretical construction for handling
the starting point problem. At the same time it can also be the basis of an eflicient
implementation. In this section we show that solving the slightly larger embedding

™ This presentation of the algorithm follows the paper of Mehrotra [205]. Tt differs from the 2-order
method of Chapter 18.
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problem does not increase the computational cost significantly.!® Before presenting
the embedding problem, we summarize some of its surprisingly nice properties.

1. The embedding problem is self-dual: the dual problem is identical to the primal
one.

2. It is always feasible. Furthermore, the interior of the feasible set of the embedding
problem is also nonempty; hence the optimal faces are bounded (from Theorem
I1.10). So interior-point methods always converge to an optimal solution.

3. Optimality of the original problem is detected by convergence, independently of
the boundedness or unboundedness of the optimal faces of the original problem.

4. Infeasibility of the original problem is detected by convergence as well.!® Primal,
dual or primal and dual rays for the original problems are identified to prove dual,
primal or dual and primal infeasibility (cf. Theorem 1.26).

5. For the embedding problem a perfectly centered initial pair can always be
constructed.

6. It allows an elegant handling of the warm start problem.

7. The embedding problem can be solved with any method that generates a strictly
complementary solution; if the chosen method is polynomial, it solves the original
problem with essentially the same complexity bound. Thus we can achieve the best
possible complexity bounds for solving an arbitrary problem.

Self-dual embedding

We consider problems (20.1) and (20.2). To formulate the embedding problem we
need to introduce some further vectors in a way similar to that of Chapter 2. We start
with

2°>0,22>0,2>052>0,92>0,4°>0,x°>0,9°>0, p" >0,° >0,
where @0, 22, 50,_y2 c R™, 9%, 20 ¢ R™ and &%, 9%, p°,1° € R are arbitrary. Then we
define b € R™, b,,¢ € IR", the scaled error at the arbitrary initial interior solutions
(recall the construction in Section 4.3), and parameters 5,7 € R as follows:

by, = 50 (b — 20— 20)
b = %(b/@'o — Az® + 29
¢ = %(cno + oyl — ATY0 5%
B = %( T2 — 0Ty + by + %)

15 Such embedding was first introduced by Ye, Todd and Mizuno [316] using the standard form
problems (20.29) and (20.30). They discussed most of the advantages of this embedding and showed
that Mizuno, Todd and Ye’s [217] predictor-corrector algorithms solve the LO problem in O(y/nL)
iterations, yielding the first infeasible [IPM with this complexity. Somewhat later Jansen, Roos and
Terlaky [155] presented the self-dual problem for the symmetric form primal-dual pair in a concise
introduction to the theory of LO based on IPMs.

16 The popular so-called infeasible-start methods detect unboundedness or infeasibility of the original
problem by divergence of the iterates.
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y _ BRO £ BTy — Buy® — &0 4 10
1
= @[(IFO)TSO + WO+ @970 + k% + 0 > 0.

It is worth noting that if 20 is strictly feasible for (20.1), k° = 1, 2° = Az" — b and

20 = b, — 2P then b = 0 and b, = 0. Also if (y°,42) is strictly feasible for (20.2),

kK =1 and s = ¢ — ATy + 9%, then ¢ = 0. In some sense the vectors b, b, and ¢

measure the amount of scaled infeasibility of the given vectors 0, 29, 22, % 40, 0.
Now consider the following self-dual LO problem:

e o

(SP) min ~d
s.t. —x by —bd >0
Ar  —br +bY9 >0
Yy, —ATy +ck —c¥ >0
Ly, 40Ty —cTw +8Y >0
by, by 4z Br > —y

Yu >0, y>0, >0, kx>0, ¥v>0.

Let us denote the slack variables for the problem (SP) by z,,z,s,v and p
respectively. By construction the positive solution x = z°, 2 = 20, 2, = 20, 5 =
sy =19 =92 k =k, ¥ =9 v =19 p=p"is interior feasible for problem
(SP). Also note that if, e.g., we choose x =2 = ¢, 2=20=¢, 2, =20 = ¢, s =
S =e,y=1" =€, yu=10 =€, k=r"=1,09=9"=1,v=00=1 p=p"=1,
then this solution with p = 1 is a perfectly centered initial solution for problem (SP).
The following theorem follows easily in the same way as Theorem 1.26.17

Theorem IV.85 The embedding (SP) of the given problems (20.1) and (20.2) has
the following properties:

(i) The self-dual problem (SP) is feasible and hence both primal and dual feasible.
Thus it has an optimal solution.
(i) For any optimal solution of (SP), 9* = 0.
(#i) (SP) always has a strictly complementary optimal solution (yk,y*,x*, k*,9%).
(iv) If &* > 0, then x*/5* and (y*,y:)/r* are strictly complementary optimal
solutions of (20.1) and (20.2) respectively.
(v) If k* =0, then either (20.1) or (20.2) or both are infeasible.

Solving the embedding model needs just slightly more computation per iteration
than solving problem (20.1). This small extra effort is the cost of having several
important advantages: having a centered initial starting point, detecting infeasibility
by convergence, applicability of any IPM without degrading theoretical complexity.
The rest of this section is devoted to showing that the computation of the Newton
direction for the embedding problem (S P) reduces to almost the same sized augmented
(20.6) or normal equation (20.7) systems as in the case of (20.1).

17 Exercise 106 Prove this theorem.
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In Chapter 3 the self-dual problem
(SP) min {§"F : M& > —q, >0},
was solved, where M is of size n x n and skew-symmetric and ¢ € R;. Given an initial

positive solution (%, §) > 0, where § = M + ¢, a Newton step for problem (SP) with
a value p > 0 was given as

As = MAz,
where Az is the solution of the system
(M + X ')Az = pz ' — 5. (20.21)
Now we have to analyze how the positive definite system (20.21) can be efliciently

solved in the case of problem (SP). For this problem we have ¥ = (yu,y,x,k,9),
§=(zu,2,8,v,p) and

[0 0 —I b, —b, | [0 ]
0 0 A b b 0
M = I AT o c —c and ¢§=| 0
- BT -0 0
b T e 3 0 v
Hence the Newton equation (20.21) can be written as
R I b b | [ Aw ] [t e
0 Y-z A b b Ay py -z
I ~AT X-'s ¢ & Az |]=| po=t —s |. (2022)
—br b —cr - I} AR u% —v
I bl bt & B 5 || Av | I 1 —p

From the first and the second equation it easily follows that
Ay, =Y, Z7 Az — by Ak + b, AV + py, ' — 2,,)

and
Ay =Y Z H—AAz + bAK — DAY + py~* — 2).

We simplify the notation by introducing

W, = Z;'Y,.
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Then, by substituting the value of Ay, in (20.22) we find!'®

Y-tz A —b b Ay r1
—AT X ls+wW, c— Wyuby —C+ Wb, Az | . (2023)

vI' el bl z+ bVIW,b, B bIW,b, Ar T3

—b" W, B b Wuby 5+ b Wb, AY 4
where for simplicity the right-hand side elements are denoted by r1,...,r4. Now if we

multiply the second block of equations (corresponding to the right-hand side r3) in
(20.23) by —1, a system analogous to the augmented system (20.6) of problem (20.1) is
obtained. The difference is that here we have two additional constraints and variables.
For the solution of this system, the factorization of the matrix may happen in the
same way, but the last two rows and columns (these are typically dense) should be
left to the last two steps of the factorization. A 2 x 2 dense window for (Ax, Ad) then
remains.

If we further simplify (20.23) by substituting the value of Ay, the analogue to the
normal equation system of the problem (SP) is produced. For simplicity the scalars

here are denoted by 7y, ...,ns and rs, rg, e 19,20
ATZ7 WA+ X 1S+ Z,YY, m n Az T
73 M N5 Ax | = | 16 |- (20.24)
N6 nr 18 AY 7

18 Exercise 107 Verify that

T py Tt —z
ro || meml—s— (pagt = yu)
rs || pt-v+bl(pzgt —va)
T4 pg —p—bL(nze ! —yu)
19 Exercise 108 Verify that
m = c— Wyby — ATZ7YD
N2 = —+4 Wyby + ATZ71YD
3 = T —bvIw, -z vA
in = veTt 4+ b I Wy b, + 6T 27 YD
ns = B—bTW,b, — 0T Z7vb
6 = e 4 bITw, +oTZz7 v A
07 = —B—=bTWyb, —bT 271y
N8 = p07t + I Wby, + 0T 271D
and
rs = prl—s—(uz, ) F AT (uz T —y)
re = pel—vby (uagt —yu) =0T (uzT —y)
rr o= T —p bl (et —yu) 0 (2 ).

20 Exercise 109 Develop similar formulas for the normal equation if Az is eliminated instead of
Ay. Compare the results with (20.7) and (20.8).
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20.5.1 Simplifying the Newton system of the embedding model

As mentioned with respect to the augmented system, we easily verify that the
difference between the normal equations of problem (20.1) and the embedding problem
(SP) is that here two additional constraints and variables are present. Note that the
last two rows and columns in (20.23) and (20.24) are neither symmetric nor skew-
symmetric. The reader might think that these two extra columns deteriorate the
efficiency of the algorithm (it requires two additional back-solves for the computation
of the Newton direction) and hence make the embedding approach less attractive
in practice. However, the computational cost can easily be reduced by a simple
observation. First, note that for any interior solution (y,,¥,,z, &, ¥) the duality gap
(see also Exercise 10 on page 35) is equal to

2y,

Second, remember that in Lemma I1.47 we have proved that in a primal-dual method
the target duality gap is always reached after a full Newton step. Since the duality
gap on the central path with the value u equals to

2m+2n+2)u
and thus, the target duality gap is determined by the target value u* = (1 — #)u, the
step A can directly be calculated.

Ag =gt _ g KM

(m+2n+2):97u(m+2n+2)

As a result we conclude that the value of A¢ in (20.24) is known, thus it can simply
be substituted in the Newton system and the system (20.23) reduces to almost the
original size. This simplification allows to implement IPMs based on the self-dual
embedding model efficiently, the cost per iteration is only one extra back-solve.

20.5.2 Notes on warm start

Many practical problems need the solution of a sequence of similar linear programs
where small perturbations are made to b and/or ¢ (possibly also in A). As long as these
perturbations are small, we naturally expect that the optimal solutions are not far from
each other and restarting the optimization from the solution of the old problem (warm
start) should be more efficient than solving the problem from scratch.?!

The difficulty in the IPM warm start comes from the fact that the old optimal
solution is very close to the boundary (this is a necessity since all optimal solutions in
an LO problem are on the boundary of the feasible set) and well centered. This point,
in the perturbed problem, still remains close to the boundary or becomes infeasible,
but even if it remains feasible it is very poorly centered. Consequently, the IPM
makes a long sequence of short steps because the iterates cannot get away from the
boundary. Therefore for an efficient warm start we need a well-centered point close to

21 Some early attempts to solve such problems are due to Freund [84] who uses shifted barriers, and
Polyak [234] who applies modified barrier functions. For further elaboration of the literature see,
e.g., Lustig, Marsten and Shanno [193]|, Gondzio and Terlaky [116] and Andersen et al. [10].
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the old optimal one or an efficient centering method (to get far from the boundary)
to overcome these difficulties. These two possibilities are discussed briefly below.

Independent of the approach chosen it would be wise to save a well-centered almost
optimal solution (say, with 1072 relative duality gap) that is still sufficiently far away
from the boundary.

e Centered solutions for warm start in (SP) embedding. Among the specta-
cular properties of the (SP) embedding listed in the previous section, the ability to
construct always perfectly centered initial interior points was mentioned. The old
well-centered almost optimal solution z*, z*, 2, s*, y*, ., &%, %, p*, V* can
be used as the initial point for embedding the perturbed problem. As we have seen
in Section 20.5, b,,3 and + can always be redefined so that the above solution
stays well centered. The construction allows simultaneous perturbations of b, b,,
¢ and even the matrix A. Additionally, it extends to handling new constraints or
variables added to the problem (e.g., in buildup or cutting plane schemes). In these
cases, we can keep the solution for the old coordinates (let u be the actual barrier
parameter) and set the initial value of the new complementary variables equal to
/i This results in a perfectly centered initial solution.

e Efficient centering. If the old solution remains feasible, but is badly centered, we
might proceed with this solution without making a new embedding. The common
approach is to use a path-following method for the recentering process; it uses
targets on the central path . Because of the weak performance of Newton’s method
far off the central path, this approach is too optimistic for a warm start. The target-
following method discussed in Part III (Section 11.4) offers much more flexibility
in choosing achievable targets, thus leading to efficient ways of centering. A target
sequence that improves centrality allows larger steps and therefore speeds up the
centering and, as a counsequence, the optimization process.??

20.6 Parameters: step-size, stopping criteria

20.6.1 Target-update

The easiest way to ensure that all iterates remain close to the central path is to
decrease p by a very small amount at each iteration. This provides the best theoretical
worst-case complexity, as we have seen in discussing full Newton step methods. These
methods demonstrate hopelessly slow convergence in practice and their theoretical
worst-case complexity is identical to their practical performance.

In large-update methods the barrier parameter is reduced much faster than the theory
suggests. To preserve polynomial convergence of these methods in theory, several
Newton steps are computed between two reductions of u (update of the target) until
the iterate is in a sufficiently small neighborhood of the central path . In practice this
multistep strategy is ignored and at each reduction of u, at each target-update, only
one Newton step is made. A drawback of this strategy is that the iterates might get

22 Computational results based on centering target sequences are presented in Gondzio [114] and
Andersen et al. [10].
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far away from the central path or fromn the target point, and the efficiency of the
Newton method might deteriorate. A careful strategy for updating p and for step-
length selection reduces the danger of this negative scenario.

At an interior iterate the current duality gap is given by

g=x"s+ 2y + 2"y,
which is equal to (2n + m)u il the iterate is on the central path . The central point
with the same duality gap as the current iterate belongs to the value
. zTs + zgyu -+ zTy
2n+m '

The target p value is chosen so that the target duality gap is significantly smaller, but
does not put the target too far away. Thus we take

zTs + zgyu + zTy

new — 1-0
I (1-0) T m

, (20.25)

where 6 € [0, 1]. The value 8 = 0 corresponds to pure centering, while § < 1 aims to
reduce the duality gap. A solid but still optimistic update is 8 = %.23

20.6.2 Step size

Although there is not much supporting theory, current implementations use very large
and different step-sizes in the primal and dual spaces.?* All implementations use a
variant of the following strategy. First the maximum possible step-sizes are computed:

ap = max {a>0: (z,2,2,) +a(Azr, Az, Az,) > 0},

and ap = max {a>0: (5,9,yu) + a(As, Ay, Ay,) > 0},
and these step-sizes are slightly reduced by a factor ag = 0.99995 to ensure that the
new point is strictly positive. Although this aggressive, i.e. very large, choice of ag

is frequently reported to be the best, we must be careful and include a safeguard to
handle the case when «g = 0.99995 turns out to be too aggressive.

20.6.8 Stopping criteria

Interior point algorithms terminate when the duality gap is small enough and the
current solution is feasible for the original problems (20.1) and (20.2), or when the

22 In the published literature, iteration counts larger than 50 almost never occur and most frequently
iteration numbers around 20 are reported. Taking this number as a target iteration count and
assuming that (in contrast to the theoretical worst-case analysis) Newton’s method provides iterates
always close to the target point, we can calculate how large the target-update (how small (1 — 6))
should be to reach the desired accuracy within the required number of iterations. Thus, for a
problem with 10% variables and a centered initial solution with ¢ = 1 and aiming for a solution
with 8 digits of accuracy, we have to reduce the duality gap by a factor of 1012 in 20 iterations.
By straightforward calculation we can easily verify that the value 8 = % is an appropriate choice
for this purpose.

24 Kojima, Megiddo and Mizuno [174] proved global convergence of a primal-dual method that allows
such large step-sizes in most iterations.



IV.20 Implementing Interior Point Methods 421

infeasibility is small enough. The practical tolerances are larger than the theoretical
bounds that guarantee identification of an exact solution; this is a common drawback
of all numerical algorithms for solving LLO problems. To obtain a sensible solution the
duality gap and the measure of infeasibility should be related to the problem data.
Relative primal infeasibility is related to the length of the vectors b and b,, dual
infeasibility is related to the length of the vector ¢, and the duality gap is related to
the actual objective value. A solution with p digits relative accuracy is guaranteed by
the stopping criteria presented here:

|Az — z —b)| _ |7 + 2 — bu| -
s M <107?  and 22—l <077, (20.26)
1+ ]9]] L+ [[bu]|
AT Y —
le= A%y vu=sll g, (20.27)
1+ ||el]
[T — (0"y = by )| _
wJull <107, 20.28
1+ [Tz - ( )

An 8-digit solution (p = 8) is typically required in the literature. Let us observe
that conditions (20.26-20.28) still depend on the scaling of the problem and somehow
use the assumption that the coefficients of the vectors b, b,, ¢ are about the same
magnitude as those of the matrix A — preferably near 1.

An important note is needed here. The theoretical worst-case bound O(y/nlog %)
is still far from computational practice. It is still extremely pessimistic; in practice
the number of iterations is something like O(logn). It is rare that the current
implementations of interior-point methods use more than 50 iterations to reach an
8-digit optimal solution.

20.7 Optimal basis identification

20.7.1 Preliminaries

An optimal basis identification procedure is an algorithm that generates an optimal
basis and the related optimal basic solutions from an arbitrary primal-dual optimal
solution pair. In this section we briefly recall the notion of an optimal basis. In order
to ease the discussion we use the standard format:

min {c'z : Az =b, 2 >0}, (20.29)
where ¢, z,€ R™, b € IR"™, and the matrix A is of size m x n. The dual problem is
max {bTy ATy +s=¢,5> 0}, (20.30)

where y € IR and s € R". We assume that A has rank m. A basis Ap is a nonsingular
rank m submatrix of A, where the set of column indices of Ay is denoted by B. A
basic solution of the primal problem (20.29) is a vector z where all the coordinates in
N ={1,...,n} — B are set to zero and the basis coordinates form the unique solution
of the equation Agxp = b. The corresponding dual basic solution is defined as the
unique solution of ALy = cp, along with sg = 0 and sy = c — ALyy. It is clear from
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this definition that a primal-dual pair (z, s) of basic solutions is always complementary,
and hence, if both x and s are feasible, they are primal and dual optimal, respectively.
A basic solution is called primal (dual) degenerate if at least one component of xp
(sn) is zero.

There might be two reasons in practice to require an optimal basic solution for an
LO problem.

1. If the given problem is a mixed integer LO problem then some or all of the variables
must be integer. After solving the continuous relaxation we have to generate cuts
to cut off the nonintegral optimal solution. To date, such cuts can be generated
only if an optimal basic solution is available.?’ Up till now there has been only one
attempt to design a cut generation procedure within the interior-point setting (see
Mitchell [211]).

2. In practical applications of LO, a sequence of slightly perturbed problems often
has to be solved. This is the case in combinatorial optimization when new cuts
are added to the problem or if a branch and bound algorithm is applied. Also if,
e.g., in production planning models the optimal solutions for different scenarios
are calculated and compared, we need to solve a sequence of slightly perturbed
problems. When such closely related problems are solved, we expect that the
previous optimal solution can help to solve the new problem faster. Although some
methods for potentially efficient warm start were discussed in Section 20.5.2, in
some cases it might be advantageous in practice to use Simplex type solvers initiated
with an old optimal basis.

In this section we describe how an optimal basis solution can be obtained from any
optimal solution pair of the problem.

20.7.2 Basts tableau and orthogonality

We introduce briefly the notions of basis tableau and pivot transformation and we
show how orthogonal vectors can be obtained from a basis tableau. Let A be the
constraint matrix, with columns a; for 1 < j <, and let Ag be a basis chosen from
the columus of A. The basis tableau QF corresponding to B is defined by the equation

ApQP = A. (20.31)
Because this gives no rise to confusion we write below @ instead of Q®. The rows of
@ are naturally indexed by the indices in B and the columns by 1, 2, ..., n. If 1 € B
and j =1, 2, ..., n the corresponding element of ¢} is denoted by ¢;;. See Figure 20.1

(page 423). It is clear that ¢;; is the coefficient of a; in the unique basis representation

of the vector a;:
aj = Z qijai.
i€B

1 if 4 =7,
Qi =
“ 0 otherwise,

For j € B this implies

25 The reader may consult the books of Schrijver [250] and Nemhauser and Wolsey [224] to learn
about combinatorial optimization.
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i€ B 1 qij

Figure 20.1 Basis tableau.

Thus, if j € B, the corresponding column in ¢} is a unit vector with its 1 in the row
corresponding to j. Hence, by a suitable reordering of columns @5 — the submatrix
of @@ consisting of the columns indexed by B — becomes an identity matrix. It is
convenient for the reasoning if this identity matrix occupies the first m columns.
Therefore, by permuting the columns of Q by a permutation matrix P we write

QP = [ I Qu } , (20.32)

where Qs denotes the submatrix of @ arising when the columns of Qg are deleted.

In the next section, where we present the optimal basis identification procedure,
we will need a well-known orthogonality property of basis tableaus.2 This property
follows from the obvious matrix identity

Qn
(1 Qu] =0
Because of (20.32) this can be written as
or | | 2o (20.33)
—I
Defining
R=P Q’; : (20.34)

we have rank ) = m, rank R = n — m and QR = 0. We associate with each index a
vector in R™ as follows. If i € B, ¢'” will denote the corresponding row of Q and if
j € N then q(jy is the corresponding column of R.

Clearly, the vectors ¢(¥), i € B, span the row space of Q = QF and the vectors aG)>
j € N, span the column space of R. Since these spaces are orthogonal, they are each

26 See, e.g., Rockafellar [238] or Klafszky and Terlaky [171].
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others orthogonal complement. Note that the row space of () is the same as the row
space of A. We thus see that the above spaces are independent of the basis B.
Now let Ap' be another basis for A and let qéﬂ denote the vector associated with

an index j € B’. Then the aforementioned orthogonality property states that
¢ L iy,

for all ¢ € B and j ¢ B’. This is an obvious consequence of the observation in the
previous paragraph.

It is well known that the basis tableau for B’ can be obtained from the tableau for
B by performing a sequence of pivot operations. A pivot operation replaces a basis
vector a;, i € B by a nonbasic vector a;, j ¢ B.*

Example IV.86 For better understanding let us consider a simple numerical exam-
ple. The following two basic tableaus can be transformed into each other by a single
pivot.

ar G2 a3 Q4 Qas a a2 a3 a4 as
as 2 1 3 0 1 as | 2 1 3 0 1
as | -1 -1 4 1 0 ag | 1 0 7 1 1

It is easy to check that for the first tableau g(s) = (0,0, —1,4,3) and for the second
tableau ¢ = (1,0,7,1,1), and that these vectors are orthogonal.?®29 O &

20.7.8 The optimal basis identification procedure

Given any complementary solution, the algorithm presented below constructs an
optimal basis in at most n iterations.? Since the iteration count and thus the number
of necessary arithmetic operations depends only on the dimension of the problem and
is independent of the actual problem data, the algorithm is called strongly polynomial.

The algorithm can be initialized with any optimal (and thus complementary)
solution pair (x, ). This pair defines a partition of the index set as follows:

B={i|z;>0}, N={i: >0}, T={i:z;=s =0}

27 Exercise 110 Let i € B, where Ag is a basis. For any j ¢ B show that B/ = (B\ {i}) U {5}
also defines a basis, and the tableau for B’ can be obtained from the tableau for B by one pivot
operation.

28 Exercise 111 For each of the tableaus in Example IV.86, give the permutation matrix P and the
matrix R according to (20.33) and (20.34).

29 Exercise 112 For each of the tableaus in Example IV.86, give a full bases of the row space of the
tableau and of its orthogonal complement.

30 The algorithm discussed here was proposed by Megiddo [201]. He has also proved that an optimal
basis cannot be constructed only from a primal or dual optimal solution in strongly polynomial
time unless there exists a strongly polynomial algorithm for solving the LO problem. The problem
of constructing a vertex solution from an interior-point solution has also been considered by
Mehrotra [203].
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As we have seen in Section 3.3.6, interior-point methods produce a strictly comple-
mentary optimal solution and hence such a solution gives a partition with T' = (). But
below we deal with the general case and we allow T to be nonempty.

The optimal basis identification procedure consists of three phases. In the first phase
a so-called maximal basis is constructed. A basis of A is called maximal with respect
to (z,s) if

e it has the maximum possible number of columns from Ag,
e it has the maximum possible number of columns from (Ag, Ar).

Then, in the second and third phases, independently of each other, primal and dual
elinination procedures are applied to produce primal and dual feasible basic solutions
respectively.

Note that a maximal basis is not unique and not necessarily primal and/or dual
feasible. A maximal basis can be found by the following simple pivot algorithm.
Because of the assumption rank (A) = m, all the artificial basis vectors {e1, -, e}

Initial basis

Input:
Optimal solution pair (x, s) and the related partition (B, N, T);
artificial basis ap411 =€1, *, Gntm = €m;
B={n-+1,---,n+m}.

Output:
A maximal basis B C {1,---,n}.

begin
while qij 7é 0, i>n, j€ Ap do
begin

pivot on position (i, j) (a; leaves and a; enters the basis);
B:=(B\{i}) U{j}-

end

while qi; 7& 0, i>n, j€& Ar do

begin
pivot on position (4, j) (a; leaves and a; enters the basis);
B:=(B\{i}) U{j}-

end

while ¢;; #0, i>n, j€ Ay do

begin
pivot on position (4, j) (a; leaves and a; enters the basis);
B:= (B\{i}) U{j;-

end

end

are eliminated from the basis at termination. Since the Ap part is investigated first,
the number of basis vectors from Ag is maximal; similarly the number of basis vectors
from [Ap, Ar] is also maximal. In a practical implementation, special attention must



426 IV Miscellaneous Topics

be given to the selection of the pivot elements in the above algorith. Typically there
is lot of freedom in the pivot selection, since a large number of leaving and/or entering
variables could be selected at each iteration.?' The structure of the basis tableau
resulting from the algorithm is visualized in Figure 20.2. Note that the tableau is
never computed in practice; just the basis, in a factorized form. The tableau form is
used just to ease the explanation and understanding.

Ap Ap Apn
1

ieBNB

1

1
1e BNT 0 .
1
1
1eBNN 0 0
1

Figure 20.2 Tableau for a maximal basis.

We proceed by a primal and a dual phase, performed independently of each other.
They make the basis primal and dual feasible, respectively.

Observe that in the elimination step of the first while-loop of the primal phase the
columns of Ag are dependent. Hence there exists a nonzero solution of Agf 5=03%2In
the elimination step the ‘maximal’ property of the basis is lost, but it is restored in the

second while-loop. As we can see, the Primal phase works only on the Ag, A%> part

of the matrix A. In fact it reduces the AE part to an independent set of column vectors.
At termination the maximal basis is primal feasible and Z is the corresponding primal
feasible basic solution, i.e., g = Aglb > 0 and Zn = 0. The number of eliminations in
the first while-loop is at most |B| — rank (B) and the number of pivots in the second
while-loop is also at most |B| — rank (B).

The Dual phase presented below works on the (Ar, An) part. It reduces Ay and
extends A7 so that no vector from Ay remains in the basis.

Note that in the elimination step of the first while-loop the rank of [AB,A%]

is less than m.?® In the elimination step the ‘maximal’ property of the basis is

31 We would like to choose always the pivot element that produces the least fill-in in the inverse basis.
For this pivot selection problem many heuristics are possible. It can at least locally be optimized by,
e.g., the heuristic Markowitz rule (recall Section 20.4). Implementation issues related to optimal
basis identification procedures are discussed in Andersen and Ye [11], Andersen et al. [10] and
Bixby and Saltzman [43].

32 In fact, an appropriate T can be read from the tableau. Because of the orthogonality property any
vector g;y for j € B — B can be used. In a practical implementation the tableau is not available;

only the (factorized) basis matrix Qg is available. But then a vector q(;) can be obtained by
computing a single nonbasic column of the tableau.

33 For an appropriate 5 we can choose any vector ¢(¥ for i € NN B; so only one row of the tableau
has to be computed at each execution of the first while-loop.
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Primal phase

Input: _ B
Optimal solution pair (%, s) and the related partition (B, N,T);
maximal basis B.

Output:

A maximal basis BC {1,---,n};
optimal solution (%, s), partition (B, N,T) with B C B.

begin N
while B ¢ B do
begin
begin

let T be such that AzZT5 =0, Iz v =0,7 £ 0;
eliminate a(t least one) coordinate of #, let & := & — 9% > 0;
Bi=o(@), T:=1{1,...,n}\ (EUN);

end

while ¢;; #0, i€¢TnNB, j€Bdo

begin
pivot on position (%, j) (a; leaves, a; enters the basis);
B:=(B\{i}) Uu{j}.

end

end
end

lost but is restored in the second while-loop. At termination the maximal basis
is dual feasible and § is the corresponding dual feasible basic solution, i.e., Sy =
CN — A}C/(AEI)TCB and 5z = 0. The number of eliminations in the first while-loop is
at most m — rank (Ap, Ar) and the number of pivots in the second while-loop is also
at most m — rank (Ap, Ar).

To summarize, by first constructing a maximal basis and then performing the primal
and dual phases, the above algorithm generates an optimal basis after at most n
iterations. First we need at most m pivots to construct the maximal basis, then in the
primal phase |B| — rank (B) and in the dual phase m — rank (Ap, Ap) pivots follow.
Finally, to verify the n-step bound, observe that after the initial maximal basis is
constructed, each variable might enter the basis at most once.

20.7.4 Implementation issues of basis identification

In the above basis identification algorithm it is assumed that a pair of exact
primal/dual optimal solutions is known. This is never the case in practice. Interior
point algorithms generate only a sequence converging to optimal solutions and because
of the finite precision of computations the solutions are neither exactly feasible nor
complementary. Somehow we have to make a decision about which variables are
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Dual phase

Input: o
Optimal solutions (z, §), partition (B, N,T);
maximal basis B.
Output:
A maximal basis B C {1,---,n};
optimal solution (z, 3), partition (B, N,T) with N N B = 0.

begin _
while NNB+#£0 do
begin
begin

let 5 be such that 3= ATy, Spu7=0,8 £ 0;

eliminate a(t least one) coordinate of s, let § := § — Js > 0;
Ni=g@), T:=1{1, -, n}\ (BUN);
end
while ¢;; #0, ic¢ NNB, j€T do
begin
pivot on position (4, 5) (a; leaves, a; enters the basis);
B:= (B\{i})U{j}.
end

end
end

positive and which are zero at the optimum.

Let (%, 7, 5) be feasible and (Z)75 < . Let us make a guess for the optimal partition

of the problem as
B={i|lz;>5} and N={i|z;<5}.
Now we can define the following perturbed problem3*
minimize {éTm : Ax = l_), T > 0} ,

where -
bZABi”B, EB:Agg and 5N=A7]\}§+SN.

Now the vectors (z,y, s), where y = § and
z i € B, 0 i€ B,

T = and s; =
0 1e€N 5; 1e€N

(20.35)

(20.36)

34 This approach was proposed by Andersen and Ye [11].
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are strictly complementary optimal solutions of (20.35).° If & is small enough,
then the partition (B, N) is the optimal partition of (20.29) (recall the results of
Theorem 1.47 and observe that the proof does not depend on the specific algorithm,
just on the centrality condition and the stopping precision). Thus problems (20.29)
and (20.35) share the same partition and the same set of optimal bases. As an
optimal complementary solution for (20.35) is available, the above basis identification
algorithm can be applied to this perturbed problem. The resulting optimal basis,
within a small margin of error (depending on ¢), is an optimal basis for (20.29).

20.8 Available software

After twenty years of intensive research, IPMs are now well understood both in theory
and practice. As a result a number of sophisticated implementations exist of IPMs for
LO. Below we give a list of some of these codes; some of them contain both a Simplex
and an IPM solver. They are capable to solve linear problems on a PC in some minutes
that were hardly solvable on a super computer fifteen years ago.

CPLEX (CPLEX,/ BARRIER) (CPLEX Optimization, Inc.). For information
contact http://www.cplex.com.

CPLEX is leading the market at this moment. It is a most complete and robust
package. It contains a primal and a dual Simplex solver, an efficient interior-point
implementation with cross-over,® a good mixed-integer code, a network and a qua-
dratic programming solver. It is supported by most modelling languages and available
for most platforms.

XPRESS-MP (DASH Optimization). For information contact the vendor’s WEB
page: http://www.dashoptimization.com.

An excellent package including Simplex and IPM solvers. It is almost as complete
as CPLEX.

CLP (The LO solver on COIN-OR). For more information contact
http://www.coin-or.org/cgi-bin/cvsweb.cgi/COIN/Clp/.

COIN-OR’s LO package is written by the IBM Lo team. Like CPLEX, CLP contains
both Simplex and IPM solvers. It is capable to solve linear and quadratic optimization
problems.

LOQO. Available from http://www.princeton.edu/ rvdb/.

LOQO is developed by Vanderbei (Department of Operations Research and
Financial Engineering, Princeton University, Princeton, NJ 08544, USA). It is a
robust implementation of a primal-dual infeasible-start IPM for convex quadratic
optimization. LOQO is a commercial package, like CPLEX and OSL, but it is available
for academic purposes for a modest license fee.

35 Producing a reliable guess for the optimal partition is a nontrivial task. The simple method
presented by (20.36) seems to work reasonably well in practice. See El-Bakry, Tapia and
Zhang [71, 70]. However, Andersen and Ye [11] report good results by using a more sophisticated
indicator to predict the optimal partition (B, N) based on the primal-dual search direction.

36 Close to optimality the solver rounds the TPM solution to a (not necessarily optimal) basic solution
and switches to the Simplex solver, that generates an optimal basic solution.
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HOPDM. Available from
http://www.maths.ed.ac.uk/ gondzio/software/hopdm.html.

HOPDM is developed by Gondzio (School of Mathematics, The University of
Edinburgh, Edinburgh, Scotland). It implements a higher order primal-dual method.
It is in the public domain — in a form of FORTRAN source files — for academic
purposes.

BPMPD. Available from http://www.sztaki.hu/ meszaros/bpmpd/.

Mésziros” BPMPD, is an implementation of a primal-dual predictor-corrector IPM
including both the normal and augmented system approach. The code is available as
an executable file for academic purposes.

LIPSOL. Available from http://www.caam.rice.edu/ yzhang/.

Zhang’s LIPSOL is written in MATLAB and FORTRAN. It is an implementation
of the primal-dual predictor-corrector method. One of its features is the use of the
MATLAB programming language, which makes its use relatively easy.

PCx. Available from http://www-fp.mcs.anl.gov/otc/Tools/PCx/.

This code was developed by Czyzyk, Mehrotra and Wrightat the Argonne National
Lac, Chicago.. It is a stand alone C implementation of an infeasible primal-dual
predictor corrector IPM. PCx is freely available, but is not public domain software

McIPM. Available from http://www.cas.mcmaster.ca/~oplab/index.html.

This code was developed at the Advanced Optimization Lab, McMaster University
by Zhu, Peng and Terlaky. McIPM is written in MATLAB and C. It is a unique
implementation of a Self-Regular primal-dual predictor-corrector IPM and it is based
on the self-dual embedding model. The use of the MATLAB makes its use relatively
easy. It is freely available under an open source license.

More information about codes for linear optimization, either for commercial or research
purposes, are available at the World Wide Web site of LP FAQ (LP Frequently Asked
Questions) at

e http://www-unix.mcs.anl.gov/otc/Guide/faqg/linear-programming-faq.html

e ftp://rtfm.mit.edu/pub/usenet/sci.answers/linear-programming-faq
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Appendix A

Some Results from Analysis

In Part II we need a result from convex analysis. We include its elementary proof in
this appendix for the sake of completeness. A closely related result can be found in
Bazaraa et al. [37] (Theorem 3.4.3 and Corollary 1, pp. 101-102). Recall that a subset
C of R” is called relatively open if C is open in the smallest affine subspace of R*
containing C.

Proposition A.1 Let f: D — R be a differentiable function, where D C R* is an
open set, and let C be a relatively open convex subset of D such that f is convex on
C. Moreover, let L denote the subspace parallel to the smallest affine space containing
C. Then, x* € C minimizes f over C iff

Vf(z®) L L. (A1)
Proof: Since f is convex on C, we have for any x,xz* € C|
f@) = f@)+ V) (@ -2").

Since z — x* € L, the sufficiency of condition (A.1) follows immediately. To prove the
necessity of (A.1), consider x; = x* +¢(x —*), with ¢ € R. The convexity of C implies
that if 0 < ¢t <1, then x; € C. Moreover, since C is open, we also have z; € C when
t > —a for some positive a. Since f is differentiable, we have

Ty e F@ = F@) L f) = fla)
D R

Now let 2* € C minimize f. Since f(z;) > f(z*), letting t — 0 we have that the first
limit must be nonnegative, and the second nonpositive. Hence both limits are zero. So
we have Vf(z*)" (z — z*) = 0, Vz € C. Thus (A.1) follows. O

At several places in the book we mention the implicit function theorem. There
exists many forms of this theorem. See, e.g., Franklin [82], Buck [52], Fiacco [76] or
Rudin [248]. We cite here a version of Bertsekas [40] (Proposition A.25, pp. 554).1

Proposition A.2 (Implicit Function Theorem) Let f : R"'™ — R™ be a
Junction of w € R™ and z € R™ such that:

I In fact, Proposition A.25 in Bertsekas [40] contains a typo. It says that f: R™T™ — IR™ instead
of f:R*™ - R™.
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(i) There exist w € R™ and Z € R™ such that f (@, %) = 0.
(i) [ is continuous and has a conlinuous and nonsingular gradient matriz (or
Jacobian) V, f (w, z) in an open set containing (0, Z).

Then there exists open sets Sz C IR™ and S; CIR™ containing @ and Z, respectively,
and a continuous function ¢ : Sy — Sz such that Z = ¢(w) and f(w,d(w)) =0 for
all w € Sg. The function ¢ is unique in the sense that if w € Sz, z € S5, and

fw,z) =0, then z = ¢(w). Furthermore, if for some p > 0, f is p times continuously
differentiable the same is true for ¢, and we have

Vo(w) = — (V. f (w, o(w)) ™" Vo f (w, d(w)).
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Pseudo-inverse of a Matrix

We are interested in the least norm solution of the linear system of equations
Axr =b,

where A is an m X n matrix of rank r, and b € R™. We assume that a solution exists,
i.e., b belongs to the column space of A.

First we consider the case where r = n. Then the columns of A are linearly
independent and hence the solution is unique. It is obtained by premultiplication
of the system by AT: AT Az = ATb. Since AT A is nonsingular we find

z=(ATA1ATH (r=n).

We proceed with the case where r = m < n. Then Az = b has multiple solutions.
The least norm solution is characterized by the fact that it is orthogonal to the null
space of A. So in this case the solution belongs to the row space of A and hence can
be written as z = ATA, A € R™. This implies that AA”X = b. This time AAT is
nonsingular, and we obtain that A = (AA7)~1b, whence

r=AT(AATY " (r =m).

Finally we consider the general case, without making any assumption on the rank of
A. We start by decomposing A as follows:

A= A4,

where A; is an m X r matrix of rank r, and A, is an r x n matrix of rank 7.
There are many ways to realize such a decomposition. One way is the well-known
LU decomposition of A.1

Now Ax — b can be rewritten as A;Asx — b. Since A; has full column rank we are
in the first situation, and hence it follows that

AQ(E = (A,{Al)ilA,{b

Thus our problem is reduced to finding a least norm solution of the last system. Since
As has full row rank we are now in the second situation, and hence it follows that

w = AT (A3 AT) (AT Ay) 1 ATD.

1 See, e.g., the book of Strang [259].



434 Pseudo-inverse of a Matrix

Thus we have found the least norm solution of Az = b. Defining the matrix At
according to
AT = AT(A,A47) (AT A AT, (B.1)

we conclude that the least norm solution of Az = b is given by z = ATh.
The matrix AT is called the pseudo-inverse of A. We can easily verify that At
satisfies the following relations:

AATA = A, (B.2)
AtYAAT = AT, (B.3)
(AATYT = AAT, (B.4)
(ATAT = ATA (B.5)

Theorem B.1 The equations (B.2) to (B.5) determine AT uniquely.

Proof: We already have seen that a solution exists. Suppose that we have two
solutions, X; and X3 say. From (B.2) and (B.5) we derive that X; AAT = AT and
XQAAT = AT. So (X1 — XQ)AAT — 0. This implies (X1 — XQ)AAT(Xl — XQ)T = O,
and hence we must have (X7 — X5)A = 0. This means that the columns of X; — Xo
belong to the left null space of A. On the other hand (B.3) and (B.4) imply that
AX XT = XTI, and AXoXT = XT. Hence A(X 1 X{ — XoXT) = XTI — XT. This
means that the columns of X; — X5 belong to the column space of A. Since the
column space and the left null space of A are orthogonal this implies that X; = X5.

[

There is another interesting way to describe the pseudo-inverse AT of A, which
uses the so-called singular value decomposition (SV D) of A. Let r denote the rank
of A, and let Ay, Xg,- -+, A\, denote the nonzero (hence positive) eigenvalues of AAT.
Furthermore, let @)1 and ()5 denote orthogonal matrices such that the first r columns
of ()1 constitute a basis of the column space of A, and the first r columns of Qs
constitute a basis of the row space of A. Then, if 3 denotes the m x n matrix whose
only nonzero elements are 11,99, -+, Y, with

Y =oii= /A, 1< <,

then we have
A=Q307.

This is the SV D of A, and the numbers ;, 1 < i < r are called the singular values
of A.

Using Theorem B.1 we can easily verify that X1 is the n x m matrix whose only
nonzero elements are the first r diagonal elements, and these are the inverses of the
singular values of A. Then, using Theorem B.1 once more, we can easily check that
AT is given by

AT =Q.xtQT.
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Some Technical Lemmas

Lemma C.1 Let A be an m x n matriz with columns A; and b a vector of dimension
m such that the set
S:={zx : Az =0b, x>0}

1s bounded and contains a positive vector. Moreover, let all the entries in A and b be
wmtegral. Then for each i, with 1 <1 <n,

1
max{z; : r €S} > =——.
= L= 1441

Proof: Observe that each column A; of A must be nonzero, due to the boundedness
of S. Fixing the index ¢, let x € S be such that x; is maximal. Note that such an z
exists since S is bounded. Moreover, since S contains a positive vector, we must have
xz; > 0. Let J be the support of x:

J:{j : ij>O}.

We assume that x is such that the cardinality of its support is minimal. Then the
columns of the submatrix Ay of A are linearly independent. This can be shown as
follows. Let there exist a nonzero vector A € IR such that

> NA; =0,

jed

and Ay = 0 for each & ¢ J. Then A\ = 0. Hence, if ¢ is small enough, = & £\ has
the same support as = and is positive on J. Moreover, z =X € §. Since the i-th
coordinate cannot exceed x; it follows that A\; = 0. Since S is bounded, at least one
of the coordinates of A must be negative, because otherwise & would contain the ray
x + €)X, e > 0. By increasing the value of ¢ until one of its coordinates reaches zero
we get a vector in S with less than |J| nonzero coordinates and for which the i-th
coordinate still has value x;. This contradicts the assumption that x has minimal
support among such vectors, thus proving that the columns of the submatrix 4; of A
are linearly independent.

Now let A s be any nonsingular submatrix of A ;. Here K denotes a suitable subset
of the row indices 1,2, --,m of A. Then we have

Agrry =bg,
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since the coordinates x; of « with j ¢ J are zero. We can solve x; from this equation
by using Cramer’s rule. ! This yields

~det A,

i = ) C.1
v detAKJ ( )

where A% ; denotes the matrix arising from Ag; by replacing the i-th column by bg.
We know that x; > 0. This implies |det A% ;| > 0. Since all the entries in the matrix
A’ ; are integral the absolute value of its determinant is at least 1. Thus we find

1

I L —
T= (det Agy]

Now using that |det Ax ;| is bounded above by the product of the norms of its columns,
due to the well-known Hadamard inequality? for determinants, we find®

1
x; 2 z z .
" es 1Al T Tlies 1451~ 1120 145]
The second inequality is obvious and the last inequality follows since A has no zero

columns and hence the norm of each column of A is at least 1. This proves the lemma.
O

We proceed with a proof of the two basic inequalities in (6.24) on page 134. The
proof uses standard techniques for proving elementary inequalities.*

Lemma C.2 Let z € R”, and o > 0. Then each of the two inequalities
Plalzl) < ¥(az) < ¢ (—alz])

holds whenever the involved expressions are well defined. The left (right) inequality
holds with equality if and only if one of the coordinates of z equals ||z|| ( — |z,
respectively) and the remaining coordinates are zero.

Proof: Fixing z we introduce

and

Gla) =T (az) = Y ¥ (az),
i=1

where « is such that @z > —e and «/||z|| > —1. Both functions are twice differentiable
with respect to «. Using that ¢/(t) = 1 — 1/t we obtain

2 n 2

! O‘HZH 4 az;
a)=———, G'(a)=

g 1+ oz (@) Zl—i—azi

i=1

The idea of using Cramer’s rule in this way was applied first by Khachiyan [167].
2 cf. Section 1.7.3.

The idea of using Hadamard’s inequality for deriving bounds on the coordinates of z; from (C.1)
was applied earlier by Klafszky and Terlaky [170] in a similar context.

The proof is due to Jiming Peng [232].
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and

n

1" a) = ||Z||2 G// a) = Z’LQ
g'(@) (Italz)? (@) §2a+a%f’

K3

Now consider the case where o« > 0. Then using z; < ||z|| we may write

n n 2
G/I(Oé) — Z 23 : Z Z 23 _ HZH - :g”(Oé).

A+al)®  A+allz])

So G(a) — g{a) is convex for a > 0. Since
9(0) =G(0) =0, ¢'(0)=G'(0) =0 (C.2)

it follows that G(a) > g(«) if @ > 0. This proves the left hand side inequality in the
lemma.

The right inequality follows in the same way. Let @ > 0 be such that e + az > 0
and 1 —alz|| > 0. Using 1 + az; > 1 — a|z]| > 0 we may write

2
- : - : |z]]

G// o) — % < % _ M —a).
=2 72(1*04”2”)2 a—af=?® * t

= +O‘Zi)2 i=1

This implies that G(«) — g(—a) is concave for & > 0. Using (C.2) once more we obtain
G(a) < g(—a) if @ >0, which is the right hand side inequality in the lemma.

Note that in both cases equality occurs only if 22 = |z||> for some i. Since the
remaining coordinates are zero in that case, the lemma follows. a

We proceed with another technical lemma that is used in the proof of Lemma IV.15
in Chapter 17 (page 325).

Lemma C.3 Let p be a positive number and let f : Ry — IRy be defined by

f(x)::\l—m\Jr‘lf%‘.

If p > 1 then f atlains its minimal value al x = \/p, and if 0 < p <1 then [ atlains
its minimal value at x = 1 and at x = p.

Proof: First consider the case p > 1. If z < 1 then we have
f(x):lforgfl:gfm.
T T

Hence, if z < 1 the derivative of f is given by

f’(:p):fﬁq <0.

Thus, f is monotonically decreasing if x < 1. If z > p then we have

f(m):mflJrlfB:xf2
x x
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and the derivative of f is given by
p
f/(.f)zl—f—p >07
proving that f is monotonically increasing if x > p. For 1 < x < p we have
f(x):xfl+£flzx+272.
x x

Now the derivative of f is given by

and the second derivative by
2p
" _

Hence f is convex if & € [1, p]. Putting f'(x) = 0 we get x = \/p, proving the first part
of the lemma.
The case p <1 is treated as follows. If z < p then

f(x)zl—ac—l—g—l:——w,

and, as before, f is monotonically decreasing. If x > 1 then

f(m):m,1+1,£:m,£
x x

and f is monotonically increasing. Now let p < x < 1. Then

f(m):17m+172:27mf£.
x x
Hence f is concave if x € [p, 1], and f has local minima at z = p and = = 1. Since

f(1) = f(p) =1 — p the second part of the lemma follows. O

The rest of this appendix is devoted to some properties of the componentwise
product uv of two orthogonal vectors v and v in IR™. The first two lemmas give
some upper bounds for the 2-norm and the infinity norm of uv.

Lemma C.4 (First yv-lemma) If v and v are orthogonal in R™, then

1 2 V2 2
luvllog < 3w +oll™, fluvll < == llu+ol”

Proof: We may write

uy = % (u+v)*> = (u—v)?). (C.3)

From this we derive the componentwise inequality

1
f—(ufv)Q < v <

) (u +v)2.

=] =
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This implies
1
4
Since u and v are orthogonal, the vectors u — v and w + v have the same norm, and
hence the first inequality in the lemma follows. For the second inequality we derive
from (C.3) that

1
lu—v|? e <uw < 1 llw + v|* e.

Juv|? = e (w)? = ieT (u+v)* = (u— 0)2)2 < 1—16€T (w+v)* + (u—v)?).

T 16

Since e7z% < ||z||* for any z € R, we obtain
2 _ 1 4 4
ol < 75 (lu+ vl + =] *). (C.4)
Using again that [ju —v| = |lu + v[/, we confirm the second inequality. |

The next lemma provides a second upper bound for |uv||.

Lemma C.5 (Second uv-lemma)® Ifu and v are orthogonal in R™, then |luv| <
75 lul 1ol
Proof: Recall from (C.4) that

2 1 4 4
ol < 2 (Ju+ol' + Ju—v]*).

Now first assume that « and v are unit vectors, i.e., |lul| = ||v]|]| = 1. Then the
orthogonality of u and v implies that ||u + v||* = |lu — v||* = 4, whence |Juv|® < 1/2.
In the general case, if u or v is not a unit vector, then if one of the two vectors is the
zero vector, the lemma is obvious. Else we may write

u v

ol = bl ol | 5255 .

Now applying the above result for the case of unit vectors to u/||u|| and v/ ||v] we
obtain the lemma. O

The bound for ||uv|| in Lemma C.5 is stronger than the corresponding bound in
Lemma C.4. This easily follows by using ab < % (a? + b?) with a = ||u/| and b = ||v].
It may be noted that the last inequality provides also an alternative proof for the
bound for |Juv],, in Lemma C.5.

For the proof of the third uv-lemma we need the next lemma.

Lemma C.6% Let«y be a vector in R? such that v > —e and e~y = o. Then if either

v 20 orvy<0,
P

PR
) ]. + ’)/Z ]. + o
equality holds if and only if at most one of the coordinates of v is nonzero.

5 For the case in which u and v are unit vectors, this lemma has been found by several authors.

See, e.g., Mizuno [214], Jansen et al. [154], Gonzaga [125]. The extension to the general case in
Lemma C.5 is due to Gonzaga (private communication). We will refer to this lemma as the second
uv-lemma.

This lemma and the next lemma are due to Ling [182, 183].
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Proof: The lemma is trivial if ¥ = 0, so we may assume that - is nonzero. For the
proof of the lemma we use the function f : (—1,00)? — R defined by

f)=>" 117;;

i=1

We can easily verify that f is convex (its Hessian is positive definite). Observe that
> 7i/o =1 and, since either v > 0 or v <0, v; /o > 0. Therefore we may write

=1 (Sem) < S0 =2 (55) =

i=1 i=1

where e; denotes the i-th unit vector in IR?. This proves the inequality in the lemma.

Note that the inequality holds with equality if v = oe;, for some i, and that in all

other cases the inequality is strict since the Hessian of f is positive definite. Thus the

lemma has been proved. O
Using the above lemimas we prove the next lemma.

Lemma C.7 (Third uv-lemma) Let u and v be orthogonal in R"™, and suppose
llu+v|| = 2r withr < 1. Then

4

T € 2r
— < .
N (e+uv e>_11"4

Proof: The first uv-lemma implies that ||uv||, < r? < 1. Hence, putting 8 := uv we
have e’ 3 =0 and —e < 3 < e. Now let

I+ = {Z : ﬁi > 0},
I_:= {’L : ﬁl < 0}

Then

S Bi=-) 8

iely iel_

Let o denote this common value. Using Lemma C.6 twice, with respectively v; = b;
fori € I, and v, = b; for ¢ € I_, we obtain

€ € . —Bi
€T<e+uv_e) - 6T<e+ﬁ_e):;1+@-
- 214_51 Z

iely iel_

1 +—ﬁz

—0 n o 202
1+ 1—¢ 1-—¢2

The last expression is monotonically increasing in ¢. Hence we may replace it by an
upper bound, which can be obtained as follows:

1< 18 1 i 1
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Substitution of this bound for ¢ yields the lemma. a

Lemma C.8 (Fourth wv-lemma) Let u and v be orthogonal in R"™ and suppose
lu+v|| <V2 and § = ||u +v +wv| <1/v2. Then

Jul] < /1—+/1—262.

Proof: It is convenient for the proof to introduce the vector

Z2=u+v,
and to denote r := ||z||. Since v and v are orthogonal there exists a ¢,0 < o < /2,
such that
llu]| =rcosp, |lv|| =rsineg. (C.5)

Note that if the angle o equals 7/4 then r = |z|| < /2 implies that [|u|| = |Jv|| < 1.
But for the general case we only know that 0 < ¢ < 7/2 and hence at first sight we
should expect that the norms of ||u|| and ||v| may well exceed 1. However, it will turn
out below that the second condition in the lemma, namely § = |[u +v +uv|| < 1/v/2,
restricts the values of ¢ to a small neighborhood of 7 /4, depending on 4, thus yielding
the tighter upper bound for ||u|| in the lemma. Of course, the symmetry with respect
to w and v implies the same upper bound for ||v]|.
We have

6= |lu+v+ul = [lutof| — fuv]| = ||z]] = fJuv]l. (C.6)

Applying the second uv-lemma (Lemma C.5) we find

1
[uv]| < —=lul lv] =

V2

Substituting this in (C.6) we obtain

r2sin 2

2v/2

2 cos psinp =

1
V2
2 sin 2¢

2v2

The lemma is trivial if either ¢ = 0 or ¢ = 7/2, because then either u =0 or u = z.
In the latter case, v = 0, whence |lu| = §. Since (cf. Figure 6.12, page 138)

§<1—+v1-282,

the claim follows. Therefore, from now on it is assumed that

d>r (C.7)

v
0<p<—.
v=3

Thus, sin 2¢ > 0 and (C.7) is equivalent to

(sin 2p) 72 — 2rv/2 4+ 20v2 > 0.



442 Some Technical Lemmas

The left-hand side expression is quadratic in r and vanishes if

.\/5 (1 +4/1— 5\/§sin2<,p> .
sin 2¢

The plus sign gives a value larger than /2. Thus we obtain

r < \/5 (1—\/1—5\/§sin2@>: 20 .
sin 2¢ 1++1—48v2sin2p

Counsequently, using 0 < ¢ < 7/2,

Y

26 cos

14+/1 75\/§sin2<,p.

[uf = rcosp <

We proceed by considering the function

26 cos
1-— 5\/§sin2g0,

flp) = ; 0<p<m/2,

with 6v/2 < 1. Clearly this function is nonnegative and differentiable on the interval
[0,7/2]. Moreover, f(0) = 6 and f(x/2) = 0. On the open interval (0,7/2) the
derivative of f with respect to ¢ is zero if and only if

62 2
_sing (1 +y/1— 5\/§sin2<,o> + V2cospeosdp _
V11— 8v2sin2¢p
This reduces to

—sin /1 — §v/2sin 2¢ — sin @ (1 —5\/§sin2@) + 6v/2 cos @ cos 2 = 0,

which can be rewritten as

6vV2cosp —sin =sin /1 — §+v/2sin 2.

Taking squares we obtain

262 cos? o + sin? ¢ — §v/2sin 2p = sin® ¢ — /2 sin? ¢ sin 2¢p,
which simplifies to
262 cos? p = §v/2sin 2 (1 — gin? ga) = §+/2 sin 2 cos? .
Dividing by §v/2 cos? ¢ we find the surprisingly simple expression
sin 2¢ = /2.

We assume that 4 is positive, because if § = 0 the lemma is trivial. Then sin 2¢ = §v/2
admits two values for ¢ on the interval [0, 7/2], one at each side of 7 /4. Since we are
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maximizing f we have to take the value to the left of w/4. For this value, cos2yp is
positive. Therefore we may write

o) = 2§ cos _ 2dcosp  20cosp 0
¥ = 1+,/1_Sin22@_1+COSQ(,D_QCOSQ(,D_COS§0.

Now cos ¢ can be solved from the equation 2cos ¢sing = §v/2. Taking the larger of

the two roots we obtain
1
cosgo:E V14+4/1—262

For this value of ¢ we have

5v2 \/1
JitVio? m

Clearly this value is larger than the values at the boundary points ¢ = 0 and ¢ = 7/2.
Hence it gives the maximum value of r cos ¢ on the whole interval [0, 7/2]. Thus the
lemma follows. O

flp) = V1262 = \/1f\/1f252



Appendix D

Transformation to canonical form

D.1 Introduction

It is almost obvious that every LO problem can be rewritten in the canonical form given
by (P). To see this, some simple observations are sufficient. First, any maximization
problem can be turned into a minimization problem by multiplying the objective
function by —1. Second, any equality constraint a”’« = b can be replaced by the
two inequality constraints ¢’z < b, a”x > b, and any inequality constraint o’z < b
is equivalent to —a”a > —b. Third, any free variable z, with no sign requirements,
can be written as ¥ = 7 — x—, with 7 and »~ nonnegative. By applying these
transformations to any given LO problem, we get an equivalent problem that has the
canonical form of (P). The new problem is equivalent to the given problem in the
sense that the new problem is feasible if and only if the given problem is feasible, and
unbounded if and only if the given problem is unbounded, and, moreover, if the given
problem has (one or more) optimal solutions then these can be found from the optimal
solution(s) of the new problem.

The approach just sketched is quite popular in textbooks,! despite the fact
that in practice, when dealing with solution methods, it has a number of obvious
shortcomings. First, it increases the number of constraints and/or variables in the
problem description. Each equality constraint is removed at the cost of an extra
constraint, and each free variable is removed at the cost of an extra variable. Especially
when the given problem is a large-scale problem it may be desirable to keep the
dimensions of the problem as small as possible. Apart from this shortcoming the
approach is even more inappropriate when dealing with an interior-point solution
method. It will become clear later on that it is then essential to have a feasible region
with a nonempty interior so that the level sets for the duality gap are bounded.
However, when an equality constraint is replaced by two inequality constraints, these
two inequalities cannot have positive slack values for any feasible point. This means
that the interior of the feasible region is empty after the transformation. Moreover,
the nonnegative variables introduced by eliminating a free variable are unbounded:
when the same constant is added to the two new variables their difference remains the
same. Hence, if in the original problem the level sets of the duality gap were bounded,
we would lose this property in the new formulation of the problem.

For deriving theoretical results, the above properties of the described transforma-
tions may give no problems at all. In fact, an example of an application of this type is

I See, e.g., Schrijver [250], page 91, and Padberg [230], page 23.
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given in Section 2.10. However, when it is our aim to solve a given LO problein, the ap-
proach cannot be recommended, especially if the solution method is an interior-point
method.

The purpose of this section is to show that there exists an alternative approach
that has an opposite effect on the problem size: it reduces the size of the problem.
Moreover, if the original problem has a nonempty interior feasible region then so has
the transformed problem, and if the level sets in the original problem are bounded
then they are bounded after the transformation as well. In this approach, outlined
below, each equality constraint and each free variable in the original problem reduces
the number of variables or the number of constraints by one. Stated more precisely,
we have the following result.

Theorem D.1 Let (P) be an LO problem with m constraints and n wvariables.
Moreover let (P) have mg equality constraints and ng free variables. Then there exists
an equivalent canonical problem for which the sum of the number of constraints and
the number of variables is not more than n+m — ng — my.

Proof: In an arbitrary LO problem we distinguish between the following types of
variable: nonnegative variables, free variables and nonpositive variables.? Similarly,
three types of constraints can occur: equality constraints, inequality constraints of the
less-than-or-equal-to (<) type and inequality constraints of the greater-than-or-equal-
to (>) type. It is clear that nonpositive variables can be replaced by nonnegative
variables at no cost by taking the opposites as new variables. Also, inequality
constraints of the less-than-or-equal-to type can be turned into inequality constraints
of the greater-than-or-equal-to type through multiplication by —1. In this way we can
transform the problem to the following form at no cost:

cO}T {xo} o Aga® + Apa?

(P) T {cl x! Boz® + Bia!

(VA
<

where, for ¢ = 0,1, A; and B; are matrices and b%, ¢’ and z? are vectors. The vector
z° contains the ng free variables, and there are mq equality constraints. The variables
in ' are nonnegative, and their number is n — ng, whereas the number of inequality
constraints is m — mg. The sizes of the matrices and the vectors in (P) are such that

all expressions in the problem are well defined and need no further specification.

D.2 Elimination of free variables

In this section we discuss the elimination of free variables, thus showing how to obtain
a problem in which all variables are nonnegative. We may assume that the matrix

2 A variable x; in (P) is called a nonnegative variable if (P) contains an explicit constraint z; > 0
and a nonpositive variable if there is a constraint z; < 0 in (P); all remaining variables are called
free variables. For the moment this classification of the variables is sufficient for our goal. But it
may be useful to discuss the role of bounds on the variables. In this proof we consider any constraint
of the form xz; > £ or x; < u, with £ and w nonzero, as an inequality constraint. If the problem
requires a variable x; to satisfy £ < z; < u then we can save one constraint by a simple shift of x;:
defining :1:; := x; — £, the new variable is nonnegative and is bounded above by :1:; <u—~



Transformation to canonical form 447

[Ag A1] has full row rank. Otherwise the set of equality constraints is redundant
or inconsistent. If the system is not inconsistent, we can eliminate some of these
constraints until the above condition on the rank is satisfied, i.e., rank (4 41) = mg.
Introducing a surplus vector 22, we can write the inequality constraints as

Boz® + Byzt — 22 =", 2% >0.

The constraints in the problem are then represented by the equality system

{gg gi Iw?mo} EZ}POL zt >0, 22 >0,

where I,,_.,, denotes the identity matrix of size (m — mg) X (m — mgp). We now have
m equality constraints and n + m — mg variables. Grouping together the nonnegative
variables, we may write the last system as

e alf]-[7]. =[]

where z" contains the free variables, as before, and the variables in z are nonnegative.
Note that, as a consequence of the above rank condition, the matrix [F' G] has full
row rank. The size of F is m X ng and the size of G is m X (n — ng + m — my).

Let us denote the rank of F' by r. The we obviously have r < ng. Then, using
Gaussian elimination, we can express r free variables in the remaining variables. We
simply have to pivot on free variables as long as possible. So, as long as free variables
occur in the problem formulation we choose a free variable and a constraint in which
it occurs. Then, using this (equality) constraint, we express the free variable in the
other variables and by substitution eliminate it from the other constraints and from
the objective function. Since F' has rank r, we can do this r times, and after reordering
variables and equations if necessary, the constraints get the form

0

=0
z

I. H D,| | dr z0

{0 0 D} z0 {d}’ xl{jo}, z >0, (D.1)
z

where I, is the r x r identity matrix, which is multiplied with z°, the vector of the
eliminated free variables, and H is an r x (ng — ) matrix, which is multiplied with
#9, the vector of free variables that are not eliminated; the columns of D, and D
correspond to the nonnegative variables in z. Moreover, since the variables 2° have
been eliminated from the objective function, there exist vectors ¢z and c¢p such that
the objective function has the form

i’ + chz. (D.2)
We are left with m equalities. The first r equalities express the free variables in z° in
the remaining variables, while the remaining m — r equalities contain no free variables.
Observe that the first r equalities do not impose a condition on the feasibility of the
vector z; they simply tell us how the values of the free variables in Z° can be calculated
from the remaining variables.
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We conclude that the problem is feasible if and only if the system
Dz=d, 2>0 (D.3)

is feasible. Assuming this, for an any z satisfying (D.3) we can choose the vector i°
arbitrarily and then compute Z° such that the resulting vector satisfies (D.1). So fixing
z, and hence also fixing its contribution ¢k 2 to the objective function (D.2), we can
make the objective value arbitrary small if the vector ¢y is nonzero. Since the variables
in Z° do not occur in the objective function, it follows from this that the problem is
unbounded if ¢y is nonzero.

So, if the problem is not unbounded then ¢z = 0. In that case it remains to solve
the problem

(P min {chz : Dz=d, z >0},

where D is an (m —r) X (n — ng + m — mgp) matrix and this matrix has rank m — r.
Note that (P’) is in standard format.

D.3 Removal of equality constraints

We now show how problem (P’) can be reduced to canonical form. This goes by using
the same pivoting procedure as above. Choose a variable and an equality constraint in
which it occurs. Use the constraint to express the chosen variable in the other variables
and then eliminate this variable from the other constraints and the objective function.
Since A has rank m — r we can repeat this process m — r times and then we are left
with expressions for the m — r eliminated variables in the remaining (nonnegative)
variables. The number of the remaining variables is

n—no+m—mo—(m—r)=n—ng+7r—me.

Now the nonnegativity conditions on the m — r eliminated variables result in m — r
inequality constraints for the remaining n — ng +r — myq variables. So we are left with
m — r inequality constraints that contain n — ng +r — myg variables. The sum of these
numbers being n + m — ng — myg, the theorem has been proved. O

Before giving an example of the above reduction we make some observations.

Remark D.2 When dealing with an LO problem, it is most often desirable to have
an economical representation of the problem. Theorem D.1 implies that whenever the
model contains equality constraints or free variables, then the size of the constraint
matrix can be reduced by transforming the problem to a canomnical form. As a
consequence, when we consider the dimension of the constraint matrix as a measure of
the size of the model, then any minimal representation of the problem has a canonical
form. Of course, here it is assumed that in any such representation, nonpositive
variables are replaced by nonnegative variables and < inequalities by > inequalities;
these transformations do not change the dimension of the constraint matrix. In this
connection it may be useful to point out that the representation obtained by the
transformation in the proof of Theorem D.1 may be far from a minimal representation.
Any claim of this type is poorly founded. For example, if the given problem is infeasible
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then a representation with one constraint and one variable exists. But to find out
whether the problem is infeasible one really has to solve it.

Remark D.3 It may happen that after the above transformations we are left with a
canonical problem
(P) min {ch cAx > b, x> 0},

for which the matrix A has a zero row. In that case we can reduce the problem further.
If the i-th row of A is zero and b; < 0 then the i-th row of A and the i-th entry of b
can be removed. If b; > 0 then we may decide that the problem is infeasible.

Remark D.4 Also if A has a zero column further reduction is possible. If the j-th
column of A is zero and ¢; > 0 then we have z; = 0 in any optimal solution and this
column and the corresponding entry of ¢ can be deleted. If ¢; < 0 then the problem is
unbounded. Finally, if ¢; = 0 then 2; may be given any (nonnegative) value. For the
further analysis of the problem we may delete the j-th column of A and the entry ¢;
in c.

Example D.5 By way of example we consider the problem
(EP) max{y1 +y2 : —1<y; <1,y <1}. (D.4)

This problem has two variables and three constraints, so the constraint matrix has size
3 x 2. Since the two variables are free (cf. Footnote 2}, Theorem D.1 guarantees the
existence of a canonical description of the problem for which the sum of the numbers
of rows and columns in the constraint matrix is at most 3 (= 5 — 2). Following the
scheme of the proof of Theorem D.1 we construct such a canonical formulation. First,
by introducing nonnegative slack variables for the three inequality constraints, we
change all constraints into equality constraints:

—Y1 + 51 =1
n + S =1
Y2 + s3 = L

The free variables 1 and y» can be eliminated by using
Y1 = s1—1
Y2 = 1—s3,
and since y; + y2 = s1 — s3 we obtain the equivalent problem
max{s; — 83 : $1+ 82 =2, 81,89,83 > 0}.
By elimination of s this reduces to
max {81 — 83 : 81 <2, 81,83 > 0}. (D.5)

The problem is now reduced to the dual canonical form, as given by (2.2), with the
following constraint matrix A, right-hand side vector ¢ and objective vector b:

SRS OIS

A:
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Note that the constraint matrix in this problem has size 2 x 1, and the sum of the
dimensions is 3, as expected. &

In the above example the optimal solution y = (1,1) is unique. We cousider below
two modifications of the sample problem (EP) by changing the objective function. In
the first modification we use the objective function y;; then the optimal set consists
of all y = (1, y2) with yo < 1. The optimal solution is no longer unique. The second
modification has objective function y; — y2; then the problem is unbounded, as can
easily be seen.

Example D.6 In this example we consider the problem
max{y; : —1 <y <1, 92 <1}. (D.6)

As in the previous example we can introduce nonnegative slack variables s1, so and s3
and then eliminate the variables y1, 42 and s, arriving at the canonical problem

max{s; : $1 <2, 51,83 > 0}. (D.7)

Here we have replaced the objective y; = s1 — 1 simply by s, thereby omitting the
constant —1, which is irrelevant for the optimization. The dependence of the eliminated
variables on the variables in this problem is the same as in the previous example:

Y1 = 51 —1
Yo = 1 —s3
So = 2—81.

The constraint matrix A and the right-hand side vector ¢ in the dual canonical
formulation are the same as before; only the objective vector b has changed:

oo le) e [h) o

Example D.7 Finally we consider the unbounded problem

A—

max{y; —y2 : 1<y <1, ys <1}. (D.8)

In this case the optimal set is empty. To avoid repetition we immediately state the
canonical model:
max {s; +s3 : s1 <2, s3>0}. (D.9)

The dependence of the eliminated variables on the variables in this problem is
the same as in the previous example. The matrix A and vectors ¢ and b are now




Appendix E

The Dikin step algorithm

E.1 Introduction

In this appendix we reconsider the self-dual problem
(SP) min {qu : Mz>—q, z>0}. (E.1)

as given by (2.16) and we present a simple algorithm for solving (SP) different from
the full-Newton step algorithin of Section 3. Recall that we may assume without loss
of generality that x = e is feasible and s(e) = Me + ¢ = e, so e is the point on the
central path of (SP) corresponding to the value 1 of the barrier parameter. Moreover,
at this point the objective value equals n, the order of the skew-symmetric matrix M.

The algorithm can be described roughly as follows. Starting at z° = e the algorithm
approximately follows the central path until the objective value reaches some (small)
target value . This is achieved by moving from z% along a direction — more or less
tangent to the central path — to the next iterate z', in such a way that z! is close to
the central path again, but with a smaller objective value. Then we repeat the same
procedure until the objective has become small enough.

In the next section we define the search direction used in the algorithm.! Then,
in Section E.3 the algorithin is defined and in subsequent sections the algorithmn is
analyzed. This results in an iteration bound, in Section E.5.

E.2 Search direction

Let = be a positive solution of (SP) such that its surplus vector s = s(z) is positive,
and let Az denote a displacement in the z-space. For the moment we neglect the
nonnegativity conditions in (SP). Then, the new iterate 2T is given by

T =z 4 Az,
and the new surplus vector st follows from

sT=s(x%) = M(x+ Az) +q¢= s+ MAxz.

1 After the appearance of Karmarkar’s paper in 1984, Barnes [34] and Vanderbei, Meketon and
Freedman [279] proposed a simplified version of Karmarkar’s algorithm. Later, their algorithm
appeared to be just a rediscovery of the primal affine-scaling method proposed by Dikin [63] in
1967. See also Barnes [35]. The search direction used in this chapter can be considered as a primal-
dual variant of the affine-scaling direction of Dikin (cf. the footnote on page 339) and is therefore
named the Dikin direction. It was first proposed by Jansen, Roos and Terlaky [156].
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The displacement As in the s-space is simply given by
As=st —s=MAz,
and, hence, the two displacements are related by
MAz — As=0. (E.2)

This implies, by the orthogonality property (2.22), that Az and As are orthogonal:

(Az)" As = (Az)T MAz =0. (E.3)
The inequality constraints in (SP) require that

r+Ar>0, s+As>0.

In fact, we want to stay in the interior of the feasible region, so we need to find
displacements Ax and As such that

z+Ax >0, s+ As>0.

Following an idea of Dikin [63, 65], we replace the nonnegativity conditions by requiring
that the next iterates (z + Ax, s + As) belong to a suitable ellipsoid. We define this
ellipsoid by requiring that

and call this ellipsoid in R*" the Dikin ellipsoid.

Az As
- + -
x s

<1

— )

(E.4)

Remark E.1 It may be noted that when there are no additional conditions on the
displacements Ax and As, then the Dikin ellipsoid is highly degenerate in the sense that
it contains a linear space. For then the equation sAx +xAs = 0 determines an n-dimensional
linear space that is contained in it. However, when intersecting the Dikin ellipsoid with the
linear space (E.2), we get a bounded set. This can be seen as follows. The pair (Az, As)
belongs to the Dikin ellipsoid if and only if (E.4) holds. Now (E.4) can be rewritten as

sAx + xAs <1.
s
By substitution of As = M Ax this becomes
sAx 4+ xMAzx <1,
s

which is equivalent to
|(x8)7" (5 +xM) Az < 1.

The matrix (XS) ' (S 4+ X M) is nonsingular, and hence Az is bounded. See also Exercise 9
(page 29) and Exercise 113 (page 453). .

Our aim is to minimize the objective value ¢z = 2”'s. The new objective value is

(x 4+ Azx) (s + As) = 2Ts + 2T As + s Az,
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Here we have used that Az and As are orthogonal, {rom (E.3). Now minimizing
the new objective value over the Dikin ellipsoid amounts to solving the following
optimization problem:

Az As
- Jr -
x

min {STAm +aTAs : MAz — As =0,
s

< 1} . (E.5)

We proceed by showing that this problem uniquely determines the search direction
vectors. For this purpose we rewrite (E.5) as follows.

Axr  As Axr  As
min {(ws)T <—+— t MAz —As=0, || —+ —|| <1;. (E.6)
T s T s
The vector
Ax  As
T
T s

must belong to the unit ball. When we neglect the affine constraint As = MAz in
(E.6) we get the relaxation

min {(ms)Tf sl < 1}.

This problem has a trivial (and unique) solution, namely

xs
&= — .
s||
Thus, if we can find Az and As such that
A A
ar ., a8 T8 (E.7)
As = MAzx (E.8)

then Az and As will solve (E.5). Multiplying both sides of (E.7) with zs yields

2.2
sAz +zAs = -2 (E.9)
|zs||
Now substituting (E.8) we get??
2.2
(S+XM)Azx = =2,
s
Thus we have found the solution of (E.5), namely
A §xat T E
_ _ - .10
T (S +XM) s (E.10)
As = MAz. (E.11)

2 As usual, X = diag (z) and S = diag (s).
3
Exercise 113 If we define d := 4/ /s then show that the Dikin step Az can be rewritten as

Az = —D({I+ DMD)™? el
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We call Az the Dikin direction or Dikin step at x for the self-dual model (SP). In the
next section we present an algorithm that is based on the use of this direction, and in
subsequent sections we prove that this algorithm solves (SP) in polynomial time.

E.3 Algorithm using the Dikin direction

The reader should be aware that we have so far not discussed whether the Dikin step
yields a feasible point. Before stating our algorithm we need to deal with this. For the
moment it suffices to point out that in the algorithm we use a step-size parameter «.
Starting at  we move in the direction along the Dikin step Az to x +aAx. The value
of « is specified later on. The algorithm can now be described as follows.

Dikin Step Algorithm for the Self-dual Model

Input:
An accuracy parameter £ > 0;
a step-size paramneter o, 0 < o < 1;
z% > 0 such that s(z%) > 0.
begin
x = 2% s := s(z);
while zTs>¢ do

begin
=z + aAz (with Az from (E.10));
s:=s(x);
end
end

Below we analyze this algorithm and provide a default value for the step-size
parameter « for which the Dikin step is always feasible. This makes the algorithm
well defined. In the analysis of the algorithm we need a measure for the ‘distance’ of
an iterate x to the central path . To this end, for each positive feasible vector x with
s(z) > 0, we use the number §.(x) as introduced in (3.20):

max (xs(x))

de(x) := min (25(2)) (E.12)

Below, in Theorem E.5 we show that the algorithm needs no more than
s
™n log
€

iterations to produce a solution x with x7s(z) < ¢, where 7 depends on z
to

0 according

T = max (2, 5C(x0)) .
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Recall that it may be assumed without loss of generality that z° lies on the central
path , in which case 6.(2°) =1 and 7 = 2.

E.4 Feasibility, proximity and step-size

We proceed by a condition on the step-size that guarantees the feasibility of the new
iterates. Let us say that the step-size « is feasible if the new iterate and its surplus
vector are positive. Then we may state the following result.

Lemma E.2 Let o > 0, 2% = z + aAx and s* = s+ aAs. If a is such that x%s* > 0
for all o satisfying 0 < a0 < &, then the step-size & is feasible.

Proof: If & satisfies the hypothesis of the lemina then the coordinates of x® and s®
cannot vanish for any a € [0,a]. Hence, since 2°s° > 0, by continuity, 2* and s* must
be positive for any such a. a

We use the superscript t to refer to entities after the Dikin step of size «v at
zT = T+ oAz,
st = s+ aAs.
Consequently,

rTs(zT) = (x + aAx)(s + aAs) = x5 + a (xAx + sAs) + a?AzAs.
Since, by (E.9,

2.2
sAx +xAs = —Q,
]|
we obtain
252 9
rTs(xt) = x5 — am + a®AzAs. (E.13)
s

Observe that Lemma E.2 implies that the step-size & is feasible if

2.2

Ts — aﬂ +a?AzAs >0
|||

for all a satisfying 0 < o < @&. Recall that the objective value is given by ¢7x = 27 s(x).
In the next lemma we investigate the reduction of the objective value during a Dikin
step with size a.

Lemma E.3 If the step-size « is feasible then

()7 s+ < (1 _ %) 2T,

Proof: Using (E.13) and the fact that Az and As are orthogonal, the objective value
(m+)T sT after the step can be expressed as follows.

2
(x+)T st=2Ts—aeT~ " =3Ts—a ||lzs]| .

[lzs]
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The Cauchy—Schwarz inequality implies
ols = el (as) < |lef| |lzs]| = v [ls] -

Substitution gives
T+ o T
x st<|{l——)z"s.
@)= (1- )

Hence the lemma follows. O

Now let 7 > 1 be some constant. We assume that we are given a feasible x such
that d.(z) < 7, and we establish a bound for the step-size a such that this property is
maintained after the Dikin step. Note that d.(x) < 7 implies the existence of positive
numbers 7; and ™ such that

T1e < xs < e, with 70 = 77.
The numbers 71 and 75 are used in the next lemma.

Lemma E.4 Let 7 > 1. Suppose that x > 0 is feasible so that s := s(zx) > 0 and
0c(x) < 7. Then, any step-size o satisfying
|lzs]| 47

and o< ——
279 [lzs]]

a<

is feasible, and after a step of this size we have d.(z %) < 7.

Proof: Recall from (E.13) that

2.2

Y =xs — a2 | a2AzAs. (E.14)
[[s]]

Using the first bound on « in the lemma, we can easily verify that the map

t2
t—t—a——-'
s]|
is an increasing function for ¢ € [0, 72]. Application of this map to each component of
the vector xs gives

72 2252 72
H—a——)e<zrs—a—— < |1 —a——}e.
s]| [Js]] [|s]|

Substitution in (E.14) gives

2 2
(71 - a”T—1> e+ alAzAs < zts(zt) < (72 - a”7—2”> e+ a’AzAs,  (E.15)
xs xs

thus yielding lower and upper bounds for the entries of 27 s(z™). It follows that if the
Dikin step with size a is feasible, then we certainly have 6.(z™) < 7 if
=

2
T ((’7'1 — a—) e+ a2AmAs> > (TQ - aT—2> e+ a?AzAs. (E.16)

]| ]|
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Oun the other hand, if (E.16) holds, then this implies feasibility of the step-size a.. This
follows by substituting (E.15) into (E.16), which gives

2 2
T{lmn Ti e+ c?AzAs| > (1 — Ti e+ o?AzAs.
|z [zl

Since 7 > 1 this implies

(71 — ” |> e+ a?AzxAs > 0.

By (E.15), this makes clear that the coordinates of z7s™ do not vanish for any step-
size satisfying the bound in the lemma. By Lemma E.2 this implies that any such
step-size o is feasible. It remains to show that o satisfies (E.16).

The inequality (E.16) can be simplified by using 72 = 771, and then dividing by «.
Thus we find that (E.16) is equivalent to

2 2
<u> e+a(r —1)AzAs > 0.
5]

This can be further simplified by using

7'22 — 7'7'12 =(r — 1)m17e.

Thus the condition that guarantees 5C(x+) < 7 reduces to

H H ——e+ aAzAs > 0. (E.17)
Note that the orthogonality of Az and As implies that not all coordinates of the
vector AxzAs can be positive. The most negative element of AxzAs gives the strongest
bound on « in the above inequality. We can find a lower bound for this element by
using Lemma C.4 in Appendix C. The first statement in this lemma (with « = d~ 1Az
and v = dAs, where d = /x/s) gives

sAz + zAs

e L A A

Using (E.9) once more we get

2 2

s

1
Vs 2| < L ol
‘ o | T

Thus it follows by substitution that (E.17) is certainly satisfied if

[|AzAs||

00_4

T1T2 Ty

— = — > 0.
es| 4

This is equivalent to
47 1

s|”

which is the second bound on « in the lemmma. This completes the proof. a
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E.5 Convergence analysis

The previous section contains the ingredients necessary for deriving an upper bound
for the number of iterations needed by the algorithm.

Theorem E.5 Let 7 :=max (2,6.(z°)) and o = 1/ (7/n). Then, if n > 2, the Dikin
Step Algorithm for the self-dual Model requires at most

s
™n log
€

iterations. The output is a feasible solution x such that §.(z) <7 and ¢"x <e.

Proof: Initially we are given a feasible 2 = 2% > 0 such that §.(z) < 7. The choice of
the step-size o guarantees that after each iteration these properties are maintained.
This can be deduced from Lemma E.4, as we now show. It suffices to show that the
specified value of o meets the bound in Lemma E.4. Since n > 2 we have

_ 1 _nvn el _ sl
- - — - — )
TV Ten 279 279 279

«

where we have also used that 0 < 7e < zs. Furthermore, using ||zs|| < 724/, we may
write

4’7’1 - 47’1 4

lzs|| = mo/mn TR
Thus, Lemma E.4 implies that after each iteration the iterate x satisfies d.(x) < 7.

Initially the objective value equals g7z, Each iteration reduces the objective by a
factor 1 — 1/(n1), from Lemma E.3. Hence, after k iterations the objective value is

smaller than ¢ if 3
1
(1 — —) qTxO <e.
nr

Taking logarithms, this becomes

> o

1
klog (1 — —) + log(qTJ:O) <loge.
nr

1 1
—log(1-—)>—,
nTt nT

Since

this is certainly satisfied if

T.I,‘O

k
— > log(q"z") —loge = log e
nr €

This implies the theorem. O

Example E.6 In this example we demonstrate the behavior of the Dikin Step
Algorithm by applying it to the problem (SP) in Example 1.7, as given in (2.19)
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(page 23). The same problem was solved earlier by the Full-Newton Step Algorithm
in Example 1.38.

We initialize the algorithm with z = e. Then Theorem E.5, with 7 =2 and n = 5,
yields that the algorithm requires at most

[10 log g—‘

iterations. For ¢ = 10~2 we have log (5/¢) = log 500 = 6.2146, and we get 63 as an
upper bound for the number of iterations. When running the algorithm with this ¢
the actual number of iterations is 58. The output of the algorithm is

z = (1.5985,0.0025,0.7998, 0.8005, 0.0020)

and
s(z) = (0.0012, 0.8005, 0.0025, 0.0025, 1.0000).

The left plot in Figure E.1 shows how the coordinates of the vector z develop in the
course of the algorithm. The right plot does the same for the coordinates of the surplus
vector s = s(z). Observe that z and s(z) converge to the same solution as found in

1.6 1.6
1.4r 14r
1.2r 1.2r

0.8 0.8
59
0.61 0.6 .
$3
0.4r1 04
$4
0.2 " 0.2
§1
0 y 0 .
0 20 40 60 0 20 40 60
— iteration number — iteration number

Figure E.1 Output of the Dikin Step Algorithm for the problem in Example 1.7.

Example 1.38 by the Full-Newton Step Algorithm, but the number of iterations is
higher. ¢
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Dual Logarithmic Barrier Algorithm,
107-149
with adaptive updates, 123-129
with full Newton steps, 120, 120-
123
with large updates, 131, 130-149
Dual Logarithmic Barrier Algorithm
with Modified Full Newton Steps,
323
Full Step Dual Logarithmic Barrier
Algorithm with Rank-One Up-
dates, 324, 317-328
Full-Newton Step Algorithm for Self-
dual Model, 50, 47-70

Generic Dual Target-following Algo-
rithm, 260
Generic Primal Target-following Al-
gorithm, 269
Generic Target-following Algorithm,
233
Higher-Order Dikin Step Algorithm
for the Standard Model, 341,
337-346
Higher-Order Logarithmic Barrier
Algorithm, 357, 346-359
Karmarkar’s Projective Method, 294,
289-305
Method of Centers, 277285
Predictor-Corrector Algorithm, 182,
177-194
Primal-Dual Logarithmic Barrier Al-
gorithm, 149-209
with adaptive updates, 168177
with full Newton steps, 160, 150—
168
with large updates, 195, 194-209
Renegar’s Method of Centers, 277—
285
Target-following Methods, 235-275
all-one vector, see e
analytic center, 43
definition, 44
dual feasible region, 128
level set, 46
limit of central path, 45
analyticity of the central path, see central
path
analyze phase, see implementation aspects
arithmetic-geometric-mean inequality, 133
asymptotic behavior, 2
asymptotic behavior of central path, 4, see
central path
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backward dual Newton step, 113
barrier parameter, 132
standard problem, 90

barrier term, 221

basic indices, 392

basic solution, 2, 391, see implementation
aspects

basis for (P), 213

basis identification procedure, see imple-
mentation aspects

basis tableau, see implementation aspects

binary encoding, 48, see complexity the-
ory

bounded dual feasible region, 103

bounded level set, 100, 103, 222, 445

bounded primal feasible region, 103

bounded problem, 15

BPMPD, 430

break points, see Parametric Analysis

Bunch—Parlett factorization, see imple-
mentation aspects

canonical form
see canonical problem, 16
canonical model
see canonical problem, 16
canonical problem, 17, 18
approximate solutions, 76, 83
central path, 75
definition, 16, 18
dual problem, 18, 71
duality gap, 19
duality theorem, 39
embedding
if interior solutions are known, 72
in general, 78
homogenizing variable, see Symbol
Index, &
KKT conditions, 74
normalizing variable, see Symbol
Index, ¥
primal problem, 18, 71
strictly complementary solution, 17,
37, 38
strong duality property, 19, 39
strong duality theorem, 39
transformation into, 445
weak duality property, 18
Cauchy—-Schwarz inequality, 9, 120, 136,
205, 303, 316, 342, 456

centering component, 171, see centering
direction
centering condition, 91
centering direction
dual, 127
primal-dual, 171, 179
centering method, 4, see Target-following
Methods
centering problem, 250
central path, 1, 16, 27, 28
algorithmic proof, 29
analyticity, 309
asymptotic behavior, 4, 309
canonical model, 73-76, 79-82
derivatives, 226, 307, 309, 315
differentiability, 4, 307
existence, 29-35, 90-99
general, xxi, 1-5, 7
implementation aspects, 403, 412,
418-420, 451, 454, 455
Karmarkar format, 301, 305
self-dual problem, 16, 17, 23, 27, 28,
31, 35, 36, 43-46, 52, 57-60, 70,
307-310, 322
standard model, 87, 95-99, 107, 117,
123, 128, 129, 149, 158, 159, 164,
171, 180, 181, 190, 194, 213-
215, 219-222, 225, 227, 228, 233,
235, 236, 239241, 245, 249-252,
254-257, 261, 262, 271, 280-283,
330, 331, 338, 341, 347, 358
straight, 97, 128
uniqueness, 28
central-path-following methods, 219
Cholesky factorization, see implementa-
tion aspects
CLP, 429
column sum norm, 10
Combinatorial Optimization, xix
complementary vectors, 35
complete separation, 58
complexity, 2, 5, 70, 234, 284, 298, 318,
401, 415, 419
complexity analysis, 250, 278
complexity bounds, see iteration bounds,
xx, xxi, b, 257, 317, 338, 348,
358, 414
complexity theory, xix
binary encoding, 48
polynomial time, 47
size of a problem instance, 47
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solvable in polynomial time, 48
Conceptual Logarithmic Barrier Algo-
rithm, 108, 107-109
iteration bound, 108
condition for adaptive updating, 172
condition number, 48, 54
cone neighborhood, 227
cone-affine-scaling, 258
constraint matrix, 18
corrector step, 181, see predictor-corrector
method
CPLEX, xix, xx, 4, 87, 396-398, 429
cutting plane methods, 278

damped Newton step, 131
damped-step methods, 4
damping parameter, 181
degenerate problem, 365
dense columns and rows, see implementa-
tion aspects
derivatives of z(p) and s(u), see central
path
differentiability of central path, 4, see
central path
Dikin direction, 451, 454
Dikin ellipsoid, 339, 452
Dikin step, 454
Dikin Step Algorithm for Self-dual Model,
454
duality gap reduction, 455
feasible step-size, 455
high-order variant, 337
iteration bound for e-solution, 458
proximity measure, 454
search direction, 453
Dikin-path, 254
Dikin-path-following method, 4, see Target-
following Methods
dimension optimal sets, 365, see standard
problem
directional derivatives, see Parametric
Analysis
Discrete Optimization, xix
distance to the central path, see proximity
measure
domain, 15
dual canonical problem, 18, see canonical
problem
definition, 18
dual level set, 102

Dual Logarithmic Barrier Algorithm, 107—
149
with adaptive updates, 123-129
affine-scaling direction, 127
centering direction, 127
illustration, 129
with full Newton steps, 120, 120-123
convergence analysis, 121-122
illustration, 122-123
iteration bound, 120
Newton step As, 111
proximity measure, 114
quadratic convergence, 114-119
scaled Newton step, 112
with large updates, 131, 130-149
illustrations, 144—-149
iteration bound, 143
step-size, 140, 143
Dual Logarithmic Barrier Algorithm with
Modified Full Newton Steps, 323
iteration bound, 322
dual methods, 219
dual of general L.LO problem, 40
dual problem, 15
dual standard problem, see standard
problem
Dual Target-following Method, see Target-
following Methods
duality gap, 19
duality in LO, 15
Duality Theorem, 89, 362, 366
dualizing scheme, 43

elimination of free variables, 446
ellipsoid method, xix
equality constraints, 15
examples
calculation of central path, 97
classical sensitivity analysis, 392
condition number, 54
Dikin Step Algorithm, 458, 459
Dual Logarithmic Barrier Algorithm
with adaptive updates, 129
with full Newton steps, 122
with large update, 144
dual Newton process, 116
initialization, 215
Newton step Algorithm, 52
optimal partition, 62, 363
optimal set, 363
optimal-value function, 361, 369
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at a break point, 378
computation, 381, 385
domain, 367
Predictor-Corrector Algorithm, 188
Primal-Dual Logarithmic Barrier Al-
gorithm
with adaptive updates, 176
with full Newton steps, 162
with large updates, 209
primal-dual Newton process, 157
quadratic convergence Newton pro-
cess, 116
quadratic convergence primal-dual
Newton process, 157
reduction to canonical format, 449,
450
rounding procedure, 63
self-dual embedding, 23, 26, 27, 30,
32, 46, 55, 449, 450
sensitivity analysis, 389
shadow prices, 376
shortest path problem, 363

Farkas’ lemma, 15, 40, 89
feasible problem, 15
feasible set, 15
feasible solution, 15
feasible step-size
Dikin Step Algorithm, 455
finite termination, 15, 16, 62
first-order method, 330
floating point operations, see implementa-
tion aspects
flops, see floating point operations
free variables, 446
Frobenius norm, 10
full index set, 27
Full Step Dual Logarithmic Barrier Algo-
rithm with Rank-One Updates,
324, 317-328
modified proximity measure, 320-323
modified search direction, 319-320
required number of arithmetic oper-
ations, 328
Full-Newton Step Algorithm for Self-dual
Model, 50, 47-70
iteration bound for e-solution, 52
iteration bound for exact solution, 68
iteration bound for optimal partition,
61
polynomiality, 69

proximity measure, 49, 59
rounding procedure, 62—65
search direction, 49
full-step methods, 4, see Target-following
Methods

Gaussian elimination, see implementation
aspects

generalized inverse, 65, 264, see pseudo-
inverse

geometric inequality, 230

Goldman—Tucker Theorem, 2, 89, 190,
362

gradient matrix, 308, see Jacobian

Hadamard inequality, 11, 436
Hadamard product, 11
Hessian norm, 261
Higher-Order Dikin Step Algorithm for
the Standard Model, 341, 337—
346
bound for the error term, 342
convergence analysis, 345-346
duality gap reduction, 342
feasible step-sizes, 342, 343
first-order direction, 340, 338-340
iteration bound, 338, 346
Higher-Order Logarithmic Barrier Algo-
rithm, 357, 346-359
barrier parameter update, 356
bound for the error term, 348
convergence analysis, 357-359
improved iteration bound, 359
iteration bound, 358
proximity after a step, 353, 349-354
step-size, 353
higher-order methods, 5, 329-359
Schiet Op™?, 330
search directions, 330-334
analysis of error term, 335-337
error term, 333
illustration, 334
second-order effect, 329
upper bound for error term, 337
homogeneous, 22
homogenizing variable, 19
HOPDM, 430

implementation aspects, 401-430
analyze phase, 410
augmented system
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definition, 404

solution of, 408
basic solution

dual degeneracy, 422

primal degeneracy, 422
basis tableau, 422
Bunch—Parlett factorization, 408
Cholesky factorization, 409
dense columns and rows, 409
floating point operations, 410
Gaussian elimination, 410
Markowitz’s merit function, 410
maximal basis, 425
normal equation

advantages and disadvantages, 409

definition, 404

solution of, 409

structure, 404
optimal basis, 421
optimal basis identification, 421-430
ordering

minimum degree, 410

minimum local fill-in, 410
pivot transformation, 422
preprocessing, 405—408

detecting redundancy, 406

reduction of the problem size, 407
Schur complement, 410

second-order predictor-corrector method,

411
simplify the Newton system, 418
sparse linear algebra, 408-413
starting point, 413-419
self-dual embedding, 414
step-size, 420
stopping criteria, 420-421
warm start, 418-419
implicit function theorem, 226, 308, 309,
331, 431
inequality constraints, 15
infeasible problem, 15, 38
infinity norm, 9
inner iteration, 132, 195
inner loop, 131, 195
input size of an LO problem, see L
interior-point condition, 16, 20
standard problem, 94
interior-point method, 20
interior-point methods, xix, 16
1PC, 20
IPM, 20

iteration bounds, 3, 5, 48, 122, 125, 144,
145, 150, 162, 167, 168, 247,
250-252, 254, 257, 258, 277, 284,
294, 318, 322, 330, 338, 345, 347

Conceptual Logarithmic Barrier Al-
gorithm, 108
Dikin Step Algorithm, 70, 458
Dual Logarithmic Barrier Algorithm
with full Newton steps, 120, 125
with large updates, 143
Dual Logarithmic Barrier Algorithm
with Modified Full Newton Steps,
322
Full-Newton Step Algorithm, 52, 68
Higher-Order Dikin Step Algorithm
for the Standard Model, 346
Higher-Order Logarithmic Barrier
Algorithm, 358, 359
Karmarkar’s Projective Method, 297
Newton Step Algorithm, 69, 70
Primal-Dual Logarithmic Barrier Al-
gorithm
with full Newton steps, 161, 168
with large updates, 208
Renegar’s Method of Centers, 279

Jacobian, 226, 308, 331, 432

Karmarkar format, see Symbol Index,
(PK), 297
definition, 289
discussion, 297-301
dual homogeneous version, 305
dual version, 305
homogeneous version, see Symbol
Index, (PK H), 304-305
Karmarkar’s Projective Method, 294,
289-305
decrease potential function, 296
iteration bound, 297
potential function, 295
search direction, 304, 301-304
step-size, 296
unit simplex in R™, see Symbol
Index, %,
illustration for n = 3, 290
inner-outer sphere bound, 292
inverse of the transformation T,
293
projective transformation, see Sym-
bol Index, Ty
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properties of Ty, 293
radius largest inner sphere, see
Symbol Index, r
radius smallest outer sphere, see
Symbol Index, R
Karush—Kuhn—Tucker conditions, 91, see
KKT conditions
KKT conditions
canonical problem, 74
standard problem, 91
uniqueness of solution, 92, 222

large coordinates, 54, 57
large updates, 144
large-step methods, 4, see Target-following
Methods
large-update algorithm, 208
large-update strategy, 125
left-shadow price, see Sensitivity Analysis
level set
ellipsoidal approximation, 315
of ¢w(z,s), 222
of gu(z), 92
of duality gap, 100, 103, 445
of primal objective, 102
LINDO, 396-398
linear constraints, 1, 15
linear function, 1
linear optimization, see LO
linear optimization problem, 15
Linear Programming, xix
linearity interval, see Parametric Analysis
LIPSOL, 430
LO, xix
logarithmic barrier function, 87
standard dual problem, 105
standard primal problem, 90
logarithmic barrier method, xx, 3, 219
dual method, 107
Newton step, 111
primal method, 271
Newton step, 271
primal-dual method, 149, 150
Newton step, 150
see also Target-following Methods,
219
long-step methods, 4
LOQO, 429
lower bound for ogp, 56

Markowitz’s merit function, see imple-
mentation aspects

Mathematical Programming, xix

matrix norm, 10

maximal basis, see implementation as-
pects

maximal step, see adaptive-step methods

McIPM, 430

medium updates, 144

medium-step methods, see Target-following
Methods

medium-update algorithm, 209

Method of Centers, 277-285

minimum degree, see implementation as-
pects

minimum local fill-in, see implementation
aspects

u-center

{P) and (D), 95

multipliers, 16

multistep-step methods, see Target-following
Methods

Newton direction, 29-31, 49
self-dual problem, 29
definition, 29
feasibility, 32
quadratic convergence, 31, 32
Newton step
to u-center
dual case, 110
primal-dual case, 161
to target w
dual case, 261
primal case, 271
primal-dual case, 236
nonbasic indices, 392
nonnegative variables, 446
nonpositive variables, 446
normal equation, see implementation as-
pects
normalizing constraint, 297
normalizing variable, 24

objective function, 15

objective vector, 18

optimal basic solution, 362

optimal basis, 362, 392, see implementa-
tion aspects

optimal basis identification, see imple-
mentation aspects

optimal basis partition, see Sensitivity
Analysis
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optimal partition, 2, 27, 36, see standard

problem
standard problem, 190

optimal set, 15

optimal-value function, see Parametric
Analysis

optimizing, 15

orthogonality property, 24

OSL, xx, 4, 87, 396-398

outer iteration, 132, 195

outer iteration bound, 108

outer loop, 131, 195

Parametric Analysis, 361-386
optimal-value function, see Symbol
Index, za(b,c), f(B) and c(v)
algorithm for f(53), 380
algorithm for g(v), 384
break points, 369
directional derivatives, 372

domain, 367

examples, 361, 367, 369, 376, 378,
381, 385

extreme points of linearity inter-
val, 377, 378

linearity interval, 369
one-sided derivatives, 372, 373, 375
piecewise linearity, 368
perturbation vectors, see Symbol
Index, Ab and Ac
perturbed problems, see Symbol In-
dex, (Pg) and (D)
dual problem of (D.), see Symbol
Index, (Py)
dual problem of (Pg), see Symbol
Index, (Dg)
feasible region (D.), see Symbol
Index, Dy
feasible region (Pg), see Symbol
Index, Pg
partial updating, 5, 317-328
Dual Logarithmic Barrier Algorithm
with Modified Full Newton Steps,
323
Full Step Dual Logarithmic Barrier
Algorithm with Rank-One Up-
dates, 324
rank-one modification, 318
rank-one update, 318
Sherman-Morrison formula, 318
path-following method, 4

central path, 248
Dikin-path, 254
primal or dual, see logarithmic bar-
rier method and center method
weighted path, 249
PC-PROG, 396-398

PCx, 430

perturbed problems, see Parametric Anal-
ysis

pivot transformation, see implementation
aspects

polynomial time, see complexity theory,
48, see complexity theory
polynomially solvable problems, xix
positive definite matrix, 8
positive semi-definite matrix, 8
postoptimal analysis, see Sensitivity Anal-
ysis
potential reduction methods, 4
predictor step, 181, see predictor-corrector
method
Predictor-Corrector Algorithm, 182, 177—
194
adaptive version, 186-194
convergence analysis, 185-194
illustration, 188
iteration bound, 181
second-order version, see implemen-
tation aspects
predictor-corrector method, 150, see Predictor-
Corrector Algorithm
preprocessing, see implementation aspects
primal affine-scaling, 339
primal affine-scaling method, 339, 451
primal canonical problem, 18, see canoni-
cal problem
definition, 18
primal level set, 102
primal logarithmic barrier method, 304
primal methods, 219
primal standard problem, see standard
problem, see standard problem
Primal Target-following Method, see Target-
following Methods
primal-dual affine-scaling, 169
primal-dual algorithms, 150
primal-dual centering, 169
Primal-Dual Logarithmic Barrier Algo-
rithm, 149-209
duality gap after Newton step, 153
example Newton process, 159



490

Subject Index

feasibility of Newton step, 152, 154
initialization, 213-216
local quadratic convergence, 156, 159
Newton step, 150, 150-154
proximity measure, 156
with adaptive updates, 168-177
affine-scaling direction, 171, 179
centering direction, 171, 179
cheap adaptive update, 176
condition for adaptive updating,
172, 173
illustration, 176177
with full Newton steps, 160, 150-168
classical analysis, 165-168
convergence analysis, 161-162
illustration, 162—164
iteration bound, 161
with large updates, 195, 194-209
illustrations, 209
iteration bound, 208
step-size, 201
primal-dual logarithmic barrier function,
132
primal-dual method, 219
primal-dual pair, 99
Primal-Dual Target-following Method, see
Target-following Methods
Projective Method, 277, see Karmarkar’s
Projective Method
proximity measures, 31, 59

6( v), 222, 227
5e(x), 454

de (z)

5 (y,w) 261

87 (2, w), 271, 272

5w ,w) 266

5(z, )

8(z, 5 1), 156 237

5(xs, w), 237

5(s, ), 114

a(a:,s,u), 165

pseudo-inverse, 194, 313, 433-434

quadratic convergence
dual case, 114
primal-dual case, 156

ranges, see Sensitivity and/or Parametric
Analysis

rank-one modification, see partial updat-
ing

rank-one update, see partial updating
reliable sensitivity modules, 399
removal of equality constraints, 448
Renegar’s method, see Renegar’s Method
of Centers
Renegar’s Method of Centers, 279
adaptive and large-update variants,
284-285
analysis, 281-284
as target-following method, 279280
barrier function, see Symbol Index,
¢R(y7 < )
description, 278
iteration bound, 279
lower bound update, 278
right-hand side vector, 18
right-shadow price, see Sensitivity Analy-
sis
rounding procedure, 3, 54
row sum norm, 10

scaled Newton step, 114
scaling matrix, 151, 317
scheme for dualizing, 43
Schiet OpT™, see higher-order methods
Schur complement, see implementation
aspects
search direction, 451
second-order effect
higher-order methods, 329
self-dual embedding, 22
self-dual model, see self-dual problem
self-dual problem, 13, 16, 24
central path
convergence, 43, 45
derivatives, 309-315
condition number, see Symbol Index,
osp
definition, 22, 71, 72, 451
ellipsoidal approximations of level
sets, 315-316
limit central path, 36
objective value, 24, 25, 48, 50, 61, 66,
454, 455
optimal partition, 36
polynomial algorithm, 50, 47-70,
454
proximity measure, 31
strictly complementary solution, 35—
37
strong duality theorem, 38
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Semidefinite Optimization, xix
Sensitivity Analysis, 387-399
classical approach, 391-399
computationally cheap, 393
optimal basis partition, 392
pitfalls, 399
ranges depend on optimal basis,
392
results of 5 commercial packages,
394-398
definition, 387
example, 389
left- and right-shadow prices of b;,
387, 388
left- and right-shadow prices of c;,
388
left-shadow price, 387
range of b;, 387, 388
range of ¢;, 387, 388
range of a coeflicient, 387
right-shadow price, 387
shadow price of a coefficient, 387
shadow prices, see Sensitivity and/or
Parametric Analysis
Sherman-Morrison formula, 318, see par-
tial updating
shifted barrier method, 258
short-step methods, 4, see Target-following
Methods
Simplex Method, xix, xx, 1-3, 6, 7, 15, 16,
87, 365, 391, 392, 406
singular value decomposition, 434
size of a problem instance, see complexity
theory
skew-symmetric matrix, 18, 20-22, 24, 28,
29, 47, 214, 299, 307, 310, 416
slack vector, 22, 47
small coordinates, 54, 57
solvable in polynomial time, see complex-
ity theory
solvable problem, 38
sparse linear algebra, see implementation
aspects
spectral matrix norm, 10
standard dual problem
logarithmic barrier function, 105
standard format, 87, see standard prob-
lem, 448
standard primal problem
logarithmic barrier function, 90
standard problem

barrier parameter, 90
barrier term, 90
central path
definition, 95
duality gap, 107
examples, 96-99
monotonicity, 95
classical duality results
complementarity, 89
strong duality, 89
weak duality, 88, 89
coordinatewise duality, 103
dual adaptive-update algorithm, 123—
129
illustration, 129
dual algorithms, 107-149
dual barrier function, see Symbol
Index, k. (y, s)
decrease after step, 140, 140-142
effect of an update, 140, 138-140
dual full-step algorithm, 120, 120-
123
dual large-update algorithm, 131,
130-149
dual problem, 88, 103, 107
duality gap
close to central path, 119
on central path, 89, 99
estimates of dual objective values,
138, 135-138
interior-point condition, 94
equivalent conditions, 100
KKT conditions, 91
optimal partition, see Symbol Index,
7= (B,N)
optimal sets, 100, see Symbol Index,
P* and D*
determined by dual optimal solu-
tion, 363
determined by optimal partition,
363
dimensions, 365
example, 363
orthogonality property, 99
predictor-corrector algorithm, 182,
177-194
primal barrier function, 90, see Sym-
bol Index, §.(x)
primal problem, 87, 103
primal-dual adaptive-update algo-
rithm, 168-177
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primal-dual algorithms, 149-209

primal-dual barrier function, see Sym-

bol Index, ¢u(z,s)
decrease after step, 201, 199-204
effect of an update, 205
primal-dual full-step algorithm, 160,
150-168
primal-dual large-update algorithm,
195, 194-209
strictly complementary solution, 89
symmetric formulation, 103-105
starting point, see implementation aspects
step of size o
damped Newton step, 140, 154, 199,
202, 232, 240, 241, 258, 403
decrease barrier function, 140, 199,
201, 202, 241, 296, 347
Dikin step, 455
feasibility, 152, 154, 236, 239, 262,
272, 342, 343, 455
higher-order Dikin step, 341, 349
step-size, see implementation aspects
stopping criteria, see implementation as-
pects
strict complementarity
standard format, 89
strictly complementary solution, 2
strictly complementary vectors, 35
strictly feasible, 4
strong duality property, 19
strong duality theorem, 39
support of a vector, 36

target map, see Symbol Index, $pp, see
Target-following Methods
target pair, see Target-following Methods
target sequence, 4, see Target-following
Methods
target vector, see Target-following Meth-
ods
Target-following Method, 4
Target-following Methods, 235-275
adaptive and large target-update,
257258
adaptive-step methods, 232
dual method, 260, 259-268
barrier function, 259
effect of target update, 266
feasibility of Newton step, 262
linear convergence for damped
step, 264

local quadratic convergence, 263
Newton step, 261
proximity measure, 261
examples, 247-285
centering method, 250-252
central-path-following, 248—-249
Dikin-path-following method, 254—
257
method of centers, 277-285
Renegar’s method of centers, 277—
285
weighted-centering method, 252—
253
weighted-path-following, 249-250
full-step methods, 232
large-step methods, 232
medium-step methods, 232
multistep-step methods, 232
primal method, 269, 269-275
barrier function, 270
effect of target update, 275
feasibility of Newton step, 272
linear convergence for damped
step, 273
local quadratic convergence, 273
Newton step, 271
proximity measure, 271, 272
primal-dual method, 233, 235-245
barrier function, 221
duality gap after Newton step, 237
feasibility of Newton step, 236, 239
linear convergence for damped
steps, 241
local quadratic convergence, 240
Newton step, 235, 236
proximity measure, 237, 266
proximity measure, 222
short-step methods, 232
target map, 220
target pair, 235
target sequence, 220
properties, 226-231
target vector, 235
traceable target sequence, 231
theorems of the alternatives, 40
traceable target sequence, see Target-
following Methods
types of constraint
equality, 446
inequality
greater-than-or-equal-to, 446
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less-than-or-equal-to, 446
types of variable
free, 446
nonnegative, 446
nonpositive, 446

unbounded problem, 15, 38
unit ball in R"™, 10
unsolvable problem, 38

vanishing duality gap, 19, 37
variance vector, 31, 49, 59

warm start, see implementation aspects

weak duality, 18

weak duality property, 18

weighted dual logarithmic barrier func-
tion, 259, see Symbol Index,
$u(y)

weighted path, 249

weighted primal barrier function, 270

weighted primal logarithmic barrier func-
tion, see Symbol Index, ¢F,(x)

weighted primal-dual logarithmic barrier
function, 221, see Symbol Index,
Pw (T, 5)

weighted-analytic center, 4, 220, 229

definition, 229
limit of target sequence, 229

weighted-centering problem, 252

weighted-path-following method, 4, see
Target-following Methods

weighting coefficients, 221

w-space, 220

XMP, 396-398
XPRESS-MP, 429
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(D", 82
(D)
canonical form, 18, 71
standard form, 88, 103, 107, 219, 298,
361

canonical form, 18, 71, 449

standard form, 87, 103, 213, 219, 298,
361

(PK), 289

(PKH), 304

(PKS), 293

(P, 104

(P), 214

(Pg), 366

(P°), 213, 214

(Py), 366

(P.), 91

(SP), 22, 47, 72, 88, 307, 416, 451

(SFy), 71

(SP1), 73

(SP»), 78

(SPh), 22

(SSP), 88

(S5P°), 214

(85P°), 214

A

canonical form, 18

Karmarkar form, 289
standard form, 87, 298, 361
[, 9
[ 9
I, 9
1. 9
B, 24, 190
b
canonical form, 18
standard form, 87, 298, 361
b(B), 366
B*, 65

canonical form, 18

Karmarkar form, 289

standard form, 87, 298, 361
c(7), 366

d, 170, 238

ds, 170, 238

e, 171

e, 171

dy, 170, 238

e, 171

e, 171

D, 88

Dg, 366

D, 366

DT, 88

D™, 89, 190, 362
dimension, 365
from optimal solution of (P), 363

Ab, 366

Ac, 366

As, 49, 150, 452

A%s, 171
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Als, 171 N, 24, 190

Az, 150, 451 N(4), 91

Az, 49 7, 21

A%z, 171

Az, 171 o, 11

Ay, 150 Q,11

de(w), 222, 227 w, 65

de(x), 454

50(2), 59 P, 88

54y, w), 261 Pg, 366

54y, w), 261 Py, 366
P, 88

8P (z,w), 271, 272
As, 29

do(w*,w), 266

d(z, 1), 49
5(z, s; 1), 156, 237
d(xs, w), 237

Az, 29

3(s, ), 114

d(z, p), 305

e, 9
E(u, ), 315

f(B), 366

g(v), 366
Gu(x), 90

scaled, see g, ()
gu(z), 132

H, 111
hiu(s), 105, 110
scaled, see h,(s)

hu(s), 132

K, 19
ku(y,s), 105, 110

see also hy(s), 105

L, 48, 70
£, 104
£, 104

M, 21

M, 20, 23, 71
Msgg, 55
Mgy, 55
My, 55
Mk, 315
My, 55
My, 55

P, 89, 190, 362
dimension, 365
from optimal solution of (D), 363
B (s), 132
ok (x), 132
i (s)
properties, 133, 134
pi(s)
properties, 132
P ()
properties, 132
ou(z,s), 132
properties, 132-134
Ppp, 220
existence, 222, 221-226
o ()
properties, 133
or(y, 2), 278
9% (y), 260
¢%.(x), 270
du(z, s), 221
g, 65
x = (B,N), 362
Po, 111
P
graph, 93
graphs of ¢(d) and ¢(—¢), 135
properties, 93, 133, 137, 197, 198

properties, 134

q, 21
qB, 55
gn, 55

R, 290, see Y,
r, 21, 291, see 3,
p(5), 182

s(p), 95



Symbol Index 497

s®, 158, 455

SB, 55

sg(Z), 53

sg(z), 53

osp, 54
lower bound, 56

o(x,s; ), 165

o4, 192

op, 192

Yin, 290
illustration for n = 3, 290

olp, 54

o(z), 36

oép, 54

sn, Bb

sn(2), 53

SP, 54

sT, 455

SP*, 44, 54

s(%), 53

s(z), 53

s(z), 22

Ty, 292
properties, 293

o, 11

¥, 21

g, 53

Zn, B3

u, 170, 238
v, 238
w-space, 220

z(p), 95
x%, 158, 455
xT, 455

y(p), 95

z, 21
z(p), 28
za(b,c), 361
ZB, 55

z, 20,23, 71
zr, 53

ZN, B3, 55





