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Preface 

On a sunny afternoon in 1984, one of my officemates told me that there 
would be a seminar given by N. Karmarkar, an AT&T scientist, on linear 
programming. At the time, my knowledge of linear programming was lim-
ited to one optimization course and one research project with Prof. David 
Luenberger in the Department of Engineering-Economic Systems, Stanford 
University. As a second-year Ph.D. student, I was familiar with economic 
terms like cost, supply, demand, and price, rather than mathematical terms 
like vertex, polyhedron, inequality, and duality. 

That afternoon the Terman auditorium was packed. I could not find 
a seat and had to sit on the floor for about one and a half hours, where 
I saw Prof. George Dantzig and many other faculty members. I was not 
particular enthusiastic about the statement from the speaker that a new 
interior-point method would be 40 times faster than the simplex method, 
but I was amazed by the richness and applicability of Unear programming 
as a whole. That was how and when I determined to devote my Ph.D. 
study to mathematical programming. 

I immediately took a series of courses from Prof. Dantzig. In those 
courses I was fortunate to learn from many distinguished researchers. I 
also went to Cornell to work under the guidance of Prof. Michael Todd. 
Since then, my interest in linear programming has become stronger and my 
knowledge of interior-point algorithms has grown broader. 

I decided to write a monograph about my understanding of interior-
point algorithms and their complexities. I chose to highlight the underly-
ing interior-point geometry, combinatorica, and potential theory for convex 
inequalities. I did not intend to cover the entire progress of linear program-
ming and interior-point algorithms during the last decade in this write-up. 
For a complete survey, I refer the reader to several excellent articles or 
books by Goldfarb and Todd [151], Gonzaga [163], den Hertog [182], Nes-
terov and Nemirovskii [327], Roos, Iferlaky and Vial [366], Terlaky [404], 
Todd [406, 412], Vanderbei [443], and Wright [45η. 

Information, supporting materials, and computer programs related to 

xiii 



xiv PREFACE 

this book may be found at the following address on the World-Wide Web: 
http://dollar.biz.uiowa.edu/col/ye/book.html 

Please report any question, comment and error to the address: 
yinyu-yeuuiowa.edu 
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sion of the manuscript, and to Nadine Castellano, for her proofreading of 
the manuscript. I wish to thank my colleagues Kurt Anstreicher, Dingzhu 
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Chapter 1 

Introduction and 
Preliminaries 

1.1 Introduction 

Complexity theory is the foundation of computer algorithms. The goal of 
the theory is to develop criteria for measuring the effectiveness of various 
algorithms and the difficulty of various problems. The term "complexity" 
refers to the amount of resources required by a computation. In this book, 
running time or number of arithmetic operations is the major resource of 
interest. 

Linear programming, hereafter LP, plays a very important role in com-
plexity analysis. In one sense it is a continuous optimization problem in 
minimizing a linear objective function over a convex polyhedron; but it is 
also a combinatorial problem involving selecting an extreme point among 
a finite set of possible vertices. Businesses, large and small, use linear pro-
gramming models to optimize communication systems, to schedule trans-
portation networks, to control inventories, to plan investments, and to max-
imize productivity. 

Linear inequalities define a polyhedron, properties of which have been 
studied by mathematicians for centuries. Ancient Chinese and Greeks stud-
ied calculating volumes of simple polyhedra in three-dimensional space. 
Fourier's fundamental research connecting optimization and inequalities 
dates back to the early 1800s. At the end of 19th century, Earkas and 
Minkowski began basic work on algebraic aspects of linear inequalities. In 
1910 De La Vallée Poussin developed an algebraic technique for minimizing 
the infinity-norm of b — Ax that can be viewed as a precursor of the sim-

1 

Interior Point Algorithms: Theory and Analysis 
by Yinyu Ye 

Copyright © 1997 John Wiley & Sons, Inc. 



2 CHAPTER I. INTRODUCTION AND PRELIMINARIES 

plex method. Beginning in the 1930s, such notable mathematicians as von 
Neumann, Kantorovich, and Koopmans studied mathematical economics 
based on linear inequalities. During World War II, it was observed that 
decisions involving the best movement of personnel and optimal allocation 
of resources could be posed and solved as linear programs. Linear program-
ming began to assume its current popularity. 

An optimal solution of a linear program always lies at a vertex of the 
feasible region, which itself is a polyhedron. Unfortunately, the number 
of vertices associated with a set of n inequalities in m variables can be 
exponential in the dimensions—in this case, up to n\/m\(n — m)!. Except 
for small values of m and n, this number is so large as to prevent examining 
all possible vertices for searching an optimal vertex. 

The simplex method, invented in the mid-1940s by George Dantzig, is a 
procedure for examining optimal candidate vertices in an intelligent fashion. 
It constructs a sequence of adjacent vertices with improving values of the 
objective function. Thus, the method travels along edges of the polyhedron 
until it hits an optimal vertex. Improved in various way in the intervening 
four decades, the simplex method continues to be the workhorse algorithm 
for solving linear programming problems. On average, the number of ver-
tices or iterations visited by the simplex method seems to be roughly linear 
in m and perhaps logarithmic n. 

Although it performs well on average, the simplex method will indeed 
examine every vertex when applied to certain linear programs. Klee and 
Minty in 1972 gave such an example. These examples confirm that, in 
the worst case, the simplex method needs an exponential number of itera-
tions to find the optimal solution. As interest in complexity theory grew, 
many researchers believed that a good algorithm should be polynomial— 
i.e., broadly speaking, the running time required to compute the solution 
should be bounded above by a polynomial in the "size," or the total data 
length, of the problem. Thus, the simplex method is not a polynomial 
algorithm. 

In 1979, a new approach to linear programming, Khachiyan's ellipsoid 
method, received dramatic and widespread coverage in the international 
press. Khachiyan proved that the ellipsoid method, developed during the 
1970s by. other mathematicians, is a polynomial algorithm for linear pro-
gramming under a certain computational model. It constructs a sequence 
of shrinking ellipsoids with two properties: the current ellipsoid always con-
tains the optimal solution set, and each member of the sequence undergoes 
a guaranteed reduction in volume, so that the solution set is squeezed more 
tightly at each iteration. 

The ellipsoid method was studied intensively by practitioners as well as 
theoreticians. Based on the expectation that a polynomial linear program-
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ming algorithm would be faster than the simplex method, it was a great 
disappointment that the best implementations of the ellipsoid method were 
not even close to being competitive. In contrast to the simplex method, 
the number of steps required for the ellipsoid method to terminate was al-
most always close to the worst case bound—whose value, although defined 
by a polynomial, is typically very large. Thus, after the dust eventually 
settled, the prevalent view among linear programming researchers was that 
Khachiyan had answered a major open question on the polynomiality of 
solving linear programs, but the simplex method remained the clear winner 
in practice. 

This contradiction, the fact that an algorithm with the desirable the-
oretical property of polynomiality might nonetheless compare unfavorably 
with the (worst-case exponential) simplex method, set the stage for excit-
ing new developments. It was no wonder, then, that the announcement 
by Karmarkar in 1984 of a new polynomial interior-point algorithm with 
the potential to dramatically improve the practical effectiveness of the sim-
plex method made front-page news in major newspapers and magazines 
throughout the world. 

Interior-point algorithms are continuous iterative algorithms. Compu-
tation experience with sophisticated procedures suggests that the num-
ber of iterations necessarily grows much more slowly than the dimension 
grows. Furthermore, they have an established worst-case polynomial iter-
ation bound, providing the potential for dramatic improvement in compu-
tation effectiveness. The success of interior-point algorithms also brought 
much attention to complexity theory itself. 

The goal of the book is to describe some of these recent developments 
and to suggest a few directions in which future progress might be made. The 
book is organized as follows. In Chapter 1, we discuss some necessary math-
ematical preliminaries. We also present several decision and optimization 
problems, models of computation, and several basic numerical procedures 
used throughout the text. 

Chapter 2 is devoted to studying the geometry of inequalities and interior-
point algorithms. At first glance, interior-point algorithms seem less geo-
metric than the simplex or the ellipsoid methods. Actually, they also pos-
sess many rich geometric concepts. These concepts, such as "center," "vol-
ume," and "potential" of a polytope, are generally "non-combinatorial." 
These geometries are always helpful for teaching, learning, and research. 

In Chapter 3 we present some basic algorithms to compute a so-called 
analytic center, or, equivalently, to maximize a potential or minimize a 
barrier function for a polytope. They are key elements underlying interior-
point algorithms. Then, we present several interior-point linear program-
ming algorithms in Chapter 4. It is impossible to list all the literature in 
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this field. Here, we select five algorithms: Karmarkar's projective algo-
rithm, the path-following algorithm, the potential reduction algorithm, the 
primal-dual algorithm including the predictor-corrector algorithm, and the 
affine scaling algorithm, 

We analyze the worst-case complexity bound for interior-point algo-
rithms in Chapter 5. The main issues are arithmetic operation, termina-
tion, and initialization techniques. We will use the real number computar 
tion model in our analysis because of the continuous nature of interior-point 
algorithms. We also compare the complexity theory with the convergence 
rate used in numerical analysis. 

The worst-case complexity bound alone hardly serves as a practical cri-
terion for judging the efficiency of algorithms. We will discuss a common 
phenomenon arising from using interior-point algorithms for solving opti-
mization problems. It is often observed that effectiveness of an algorithm 
is dependent on the dimension or size of a problem instance as well as a 
parameter, called the "condition number,11 inherited in the problem. This 
condition number represents the degree of difficulty of the problem instance. 
For two problems having the same dimension but different condition num-
bers, an algorithm may have drastically different performances. This clas-
sification will help us to understand algorithm efficiency and possibly im-
prove the condition and, therefore, improve the complexity of the problem. 
We present some condition-based complexity results for LP interior-point 
algorithms in Chapter 5. 

While most of research has been focused on the worst-case performance 
of interior-point algorithms, many other complexity results were quietly es-
tablished during the past several years. We try to cover these less-noticeable 
but significant results. In particular, we present some average and prob-
abilistic complexity results in Chapter 6 and some asymptotic complexity 
(local convergence) results in Chapter 7. Average complexity bounds have 
been successfully established for the simplex method, and asymptotic or 
local convergence rates have been widely accepted by the numerical and 
continuous optimization community as major criteria in judging efficiency 
of iterative procedures. 

Not only has the complexity of LP algorithms been significantly im-
proved during the last decade, but also the problem domain solvable by 
interior-point algorithms has dramatically widened. We present complexity 
results for multi-objective programming, non-smooth convex programming, 
positive semi-definite programming and non-polyhedron optimization, and 
monotone complementarity in Chapter 8. We also discuss some complexity 
results for fractional programming and non-monotone linear complementar-
ity, and approximation results for solving nonconvex optimization problems 
in Chapter 9. 
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Finally, we discuss major implementation issues in Chapter 10. It is 
common to have a gap between a theoretical algorithm and its practical 
implementation: theoretical algorithm makes sure that it works for all in-
stances and never fails, while practical implementation emphasizes aver-
age performance and uses many clever "tricks" and ingenious techniques. 
In this chapter we discuss several effective implementation techniques fre-
quently used in interior-point linear programming software, such as the pre-
server process, the sparse linear system, the high-order predictor-corrector, 
the homogeneous and self-dual formulation, and the optimal basis identifi-
cation. Our objective is to provide theoretical justification for these tech-
niques and to explain their practical pros and cons. 

1.2 Mathematical Preliminaries 
This section summarizes mathematical background material for linear al-
gebra, linear programming, and nonlinear optimization. 

1.2.1 Basic notations 
The notation described below will be followed in general. There may be 
some deviation where appropriate. 

By H we denote the set of real numbers. %+ denotes the set of non-
o 

negative real numbers, and 11+ denotes the set of positive numbers. For 
o 

a natural number n, the symbol 1Zn (ft£, 1V$) denotes the set of vectors 
o o 

with n components in H (72+, 11+). We call 11+ the interior of 11%. 
Addition of vectors and multiplication of vectors with scalars are stan-

dard. The vector inequality x > y means Xj > yj for j = 1,2, ...,n. Zero 
represents a vector whose entries are all zeros and e represents a vector 
whose entries are all ones, where their dimensions may vary according to 
other vectors in expressions. A vector is always considered as a column vec-
tor, unless otherwise stated. Upper-case letters will be used to represent 
matrices. Greek letters will typically be used to represent scalars. 

The superscript "T" denotes transpose operation. The inner product in 
1in is defined as follows: 

n 

(x, y) := xTy = ] T xáyó for x,yeKn. 

The ¡2 norm of a vector x is given by 

||χ||2 = \[T?X, 
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and the i«, norm is 

||«||οο = max{|si|,|«9|l...l|«n|}. 

In general, the p norm is 

i/p 

11*11. = (¿MP) . P=I.2,... 

The dual of the p norm, denoted by ||.||*, is the q norm, where 

i + i - L 
P Q 

In this book, ||.|| generally represents the h norm. 
For convenience, we sometime write a column vector x as 

x = ( χ ι ; 2 2 ; · · · ; & η ) 

and a row vector as 
x = (a?i,a?2,...,a:n). 

For natural numbers m and n, 7£mXn denotes the set of real matrices 
with m rows and n columns. FDr A € 7£mxn, we assume that the row index 
set of A is {l,2,...,m} and the column index set is {l,2,...,n}. The ith 
row of A is denoted by a*, and the jith column of A is denoted by a.¿; the 
i and jfth component of A is denoted by ai;. If J is a subset of the row 
index set and J is a subset of the column index set, then Aj denotes the 
submatrix of A whose rows belong to J, Aj denotes the submatrix of A 
whose columns belong to J, A/j denotes the submatrix of A induced by 
those components of A whose indices belong to I and J, respectively. 

The identity matrix is denoted by / . The null space of A is denoted 
λί(Α) and the range of A is 11(A). The determinant of an n x n-matrix A 
is denoted by det(-A). The trace of A% denoted by tr(-A), is the sum of the 
diagonal entries in A. The operator norm of A1 denoted by ||̂ 4||, is 

\\A\\2 := max " " . 

For a vector x € Kn, the upper-case X represents a diagonal matrix in 
ftnxn w h o s e diagonal entries are the entries of a?, i.e., 

X = diag(x). 
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A matrix Q E Tlnxn is said to be positive definite (PD), denoted by 
QyO, if 

xTQx > 0, for all x φ 0, 
and positive semi-definite (PSD), denoted by Q > 0, if 

xTQx > 0, for all x. 

K Q y 0, then - Q is called negative definite (ND), denoted by Q -< 0; if 
Q X 0, then -Q is called negative semi-definite (NSD), denoted by Q X 0. 
U Q is symmetric, then its eigenvalues are all real numbers; furthermore, 
Q is PSD if and only if all its eigenvalues are non-negative, and Q is PD 
if and only if all its eigenvalue are positive. Given a PD matrix Q we can 
define a Q-norm , ||.||Q, for vector x as 

1Mb = yffiQi. 

Mn denotes the space of symmetric matrices in TlnXn. The inner prod-
uct in Mn is defined as follows: 

(Χ,Υ):=ΧφΥ = ΙτΧτΥ = ΣΧ*>1Υν f o r X>Y*Mn. 

This is a generalization of the vector inner product to matrices. The matrix 
norm associated with the inner product is called Frobenius norm: 

11*11/ = y/toXTX . 
o 

M% denote the set of positive semi-definite matrices in Mn. M% denotes 
o 

the set of positive definite matrices in Mn. We call M+ the interior of 

{a?*}§° is an ordered sequence a:0, x1, x2
y..., a:*,.... A sequence {a:*}§° is 

convergent to x, denoted xk -* x, if 

Hrc* - 2|| -► 0. 

A point a: is a limit point of {a?*}g° if there is a subsequence of {xk} con-
vergent to x. 

If 9{χ) > 0 is a real valued function of a real nonnegative variable, 
the notation g(x) = 0(x) means that g(x) < ex for some constant 5; the 
notation g(x) = íi(x) means that g(x) > c& for some constant £; the 
notation g(x) = θ(χ) means that £x < g(x) < dx. Another notation is 
g(x) = o(x), which means that g(x) goes to zero faster than x does: 

X-*0 X 
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1.2,2 Convex sets 
If a: is a member of the set Ω, we write x € Ω; if y is not a member of 
Ω, we write y £ Ω. The union of two sets 5 and Γ is denoted S U T; the 
intersection of them is denoted S Π T. A set can be specified in the form 
Ω = {x : P(x)} as the set of all elements satisfying property P. 

For y e %n and e >0 , P(y, e) = {x : \\x - y|| < e} is the ball or sphere 
of radius c with center y. In addition, for a positive definite matrix Q of 
dimension n, J3(y, Q) = {x : (x - y)TQ(x - y) < 1} is called an ellipsoid. 
The vector y is the center of E(y, Q). When Q is diagonal, E(y, Q) is called 
a coordinate-aligned ellipsoid (Figure 1.1). 

Non-coordinate-aligned 

Figure 1.1. Coordinate-aligned and non-coordinate-aligned ellipsoids. 

A set Ω is closed if xk -> x, where xk € Ω, implies x € Ω. A set Ω is 
open if around every point y € Ω there is a ball that is contained in Ω, i.e., 
there is an c > 0 such that B(y, e) C Ω. A set is bounded if it is contained 
within a ball with finite radius. A set is compact if it is both closed and 

o 

bounded. The (topological) interior of any set Ω, denoted Ω, is the set of 
points in Ω which are the centers of some balls contained in Ω. The closure 
of Ω, denoted Ω, is the smallest closed set containing Ω. The boundary of 

A O 

Ω is the part of Ω that is not in Ω. 
A set C is said to be convex if for every xl

%x2 6 C and every real 
number a, 0 < a < 1, the point ax1 + (1 — a)x2 € C. The convex hull of 
a set Ω is the intersection of all convex sets containing Ω. 

A set C is a cone if x € C implies ax e C for all a > 0. A cone that is 
also convex is a convex cone. For a cone C C 5, the dual of C is the cone 

C* :={y : (x>y) > 0 for all x € C}, 
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where (·, ·) is an inner product operation for space £. 

Example 1.1 The n-dimensional non-negative oríhant, TV+ = {x e 1ln : 
¡ c>0} ,we convex cone. The dual of the cone is also TV+; it is self-dual. 

Example 1.2 The set of ail positive semi-definite matrices in Mn, ΛΊ+, 
is a convex cone, called the positive semi-definite matrix cone. The dual of 
the cone is also M+; it is self-dual. 

Example 1.3 The set {(t; x) e ftn+1 : t > \\x\\} is a convex cone in nn+l, 
called the second-order cone. The dual of the cone is also the second-order 
cone in Tln+l; it is self-dual. 

A cone C is (convex) polyhedral if C can be represented by 

C = {x : Ax < 0} 

for some matrix A (Figure 1.2). 

Polyhedral Cone Nonpolyhedral Cone 

Figure 1.2. Polyhedral and nonpolyhedral cones. 

Example 1.4 The non-negative orthant is a polyhedral cone, and neither 
the positive semi-definite matrix cone nor the second-order cone is polyhe-
dral. 

It has been proved that for cones the concepts of "polyhedral" and 
"finitely generated" are equivalent according to the following theorem. 
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Theorem 1.1 A convex cone C is polyhedral if and only if it is finitely gen-
erated, that is, the cone is generated by a finite number of vectors b\,...,bm: 

C = cone(bu..., 6m) := I ]jjT biyi: yi > 0, t = 1,..., m \ . 

The following theorem states that a polyhedral cone can be generated 
by a set of basic directional vectors. 

Theorem 1.2 (Carathéodory's theorem) Let convex polyhedral cone C = 
cone(&i,...,6m) and x € C. Then, x € cone{pi1%..^bid) for some linearly 
independent vectors bilf...,bid chosen from bi,...,bm. 

Example 1.5 The following polyhedral cone of K2 in Figure 1.3 can be 
represented as either 

or 

C«{.€#: ("2 ΛΗ0}· 
The two vectors in the former representation are two basic directional vec-
tors. 

Figure 1.3. Representations of a polyhedral cone. 

The most important type of convex set is a hyperplane. Hyperplanes 
dominate the entire theory of optimization. Let a be a nonzero n-dimensional 
vector, and let b be a real number. The set 

H = {x € Tln : aTx = b} 



1.2. MATHEMATICAL PRELIMINARIES 11 

is a hyperplane in Tln (Figure 1.4). Relating to hyperplane, positive and 
negative closed half spaces are given by 

H+ = {x: aTx > b] 

H- = {x: aTx < b}. 

Figure 1.4. A hyperplane and half-spaces. 

A set which can be expressed as the intersection of a finite number of 
closed half spaces is said to be a convex polyhedron: 

P = {x:Ax< b}. 

A bounded polyhedron is called polytope. 
Let P be a polyhedron in Kn, F is a face of P if and only if there is 

a vector c for which F is the set of points attaining max {cTx : x € P) 
provided the this maximum is finite. A polyhedron has only finite many 
faces; each face is a nonempty polyhedron. 

The most important theorem about the convex set is the following sep-
arating theorem (Figure 1.5). 

Theorem 1*3 (Separating hyperplane theorem) Let C C €, where E is 
either 7ln or Mn, be a closed convex set and let y be a point exterior to C. 
Then there is a vectora€£ such that 

(a,y)< inf(a,x). 

The geometric interpretation of the theorem is that, given a convex 
set C and a point y outside of C, there is a hyperplane containing y that 
contains C in one of its open half spaces. 
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Figure 1.5. Illustration of the separating hyperplane theorem; an exterior 
point y is separated by a hyperplane from a convex set C. 

Example 1.6 Let C be a unit circle centered at the point (1;1). That is, 
C = {x6K2: (xi - l)2 + (x2 - l)2 < 1}. If y = (2;0), a = (-1;1) is 
a separating hyperplane vector. If y = (0;- l ) , a = (0;1) is a separating 
hyperplane vector. It is worth noting that these separating hyperplanes are 
not unique. 

We use the notation E to represent either Tln or ΛΊη, depending on the 
context, throughout this book, because all our decision and optimization 
problems take variables from one or both of these two vector spaces. 

1.2.3 Real functions 
The real function f(x) is said to be continuous at x if xk -4 a; implies 
f{xk) -► f(x). The real function f(x) is said to be continuous on set Ω C £, 
where recall that £ is either Tln or Mn

% if f{x) is continuous at x for every 
x € Ω. A continuous function / defined on a compact set (bounded and 
closed) í l C Í has a minimizer in fi; that is, there is an x* € Ω such that 
for all x € Ω, f(x) > /(a?*). This result is called the Weierstrass theorem. 

A function f(x) is called homogeneous of degree k if f{ax) = akf(x) 
for all a > 0. 

o 

Example 1.7 Let c € Ttn be given and x €7££. Then cTx is homogeneous 
of degree 1 and 

n 
V{x) = nlog(cTa;) - ^Ploga;,· 

¿«1 
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is homogeneous of degree 0, where log is the natural logarithmic function. 
o 

Let C € Mn be given and X €M+. Then xTCx is homogeneous of degree 
2, C · X and det(X) are homogeneous of degree 1, and 

P(X) = nlog(C · X) - logdet(X) 

is homogeneous of degree 0, 

A set of real-valued function / i , /2,..., / m defined on Tln can be written 
as a single vector function / = (/i, Λ,·.., fm)T € 7£m. If / has continuous 
partial derivatives of order p, we say / € Cp. The gradient vector of a 
real-valued function / € Cl is a row vector 

Vf{x) = {df/dxi}, for i = l,...,n. 

If / € C72, we define the Hessian of / to be the n-dimensional symmetric 
matrix 

v2f{x) = {^L·} for i = 1.~.n;> = 1 "· 
If / = (Λ, /2,..., /m)T € 7£m, the Jacobian matrix of / is 

v/, 
V/(ar) = 

V/, 'm(«) / ' 

/ is a (continuous) convex function if and only if for 0 < a < 1, 

/ (as 4- (1 - a)y) < a/(x) + (1 - a)f(y). 

f is a (continuous) quasi-convex function if and only if for 0 < a < 1, 

/ (a s + (1 - a)y) < max[/(a?), /(j/)]. 

Thus, a convex function is a quasi-convex function. The level set of / is 
given by 

L(z) = {x : f(x) < z). 

f is a quasi-convex function implies that the level set of / is convex for any 
given z (see Exercise 1.9). 

A group of results that are used frequently in analysis are under the 
heading of Taylor's theorem or the mean-value theorem. The theorem es-
tablishes the linear and quadratic approximations of a function. 
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Theorem 1.4 (Taylor expansion) Let / € C1 be in a region containing the 
line segment [x,j/]. Then there is a a, 0 < a < 1, such that 

f(v) = /(*) + V/(as + (1 - a)y)(y - x). 

Furthermore, if f € C2 then there is a a, 0 < a < 1, «tieft ¿fta¿ 

/(y) = f(x) + V/(*)(j, - *) + (l/2)(y - x)TV*f(ax + (1 - a)y)(y - *). 

We also have several propositions for real functions. The first indicates 
that the linear approximation of a convex function is a under-estimate. 

Proposition 1.6 Let f € Cl. Then f is convex over a convex set Ω if and 
only if 

/<y)>/(*) + v/(*)fo-*) 
for all x, y € Ω. 

The following proposition states that the Hessian of a convex function 
is positive semi-definite. 

Proposition 1.6 Let f € C2. Then f is convex over a convex set Ω if and 
only if the Hessian matrix off is positive semi-definite throughout Ω. 

1.2.4 Inequalit ies 

There are several important inequalities that are frequently used in algo-
rithm design and complexity analysis. 

Cauchy-Schwarz: given a;, y € fón, then 

*T¥<II»IIII»I|. 

Arithmetic-geometric mean: given x € Tl+, 

Ψ>-(ιι*<Γ-
o 

Harmonic: given x €fc+, 

(E*i)(EV*;)>«3· 

Hadamard: given A G 7¿mxn with columns 01,02» •••>ön, then 

)/det(ATjl)<nil<¥ll· 
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1.3 Decision and Optimization Problems 
A decision or optimization problem has a form that is usually characterized 
by the decision variables and the constraints. A problem, V, consists of two 
sets, data set Zp and solution set Sp. In general, Sp can be implicitly defined 
by the so-called optimality conditions. The solution set may be empty, i.e., 
problem V may have no solution. 

In what follows, we list several decision and optimization problems. 
More problems will be listed later when we address them. 

1.3.1 System of linear equations 
Given A € Kmxn and b € Tlm, the problem is to solve m linear equations 
for n unknowns: 

Ax = 6. 

The data and solution sets are 

2p = { i4€7 l m x n ,6€f t m } and Sp = {x € Un : Ax = b}. 

Sp in this case is an affine set. Given an #, one can easily check to see if z 
is in Sp by a matrix-vector multiplication and a vector-vector comparison. 
We say that a solution of this problem is easy to recognize. 

lb highlight the analogy with the theories of linear inequalities and lin-
ear programming, we list several well-known results of linear algebra. The 
first theorem provides two basic representations, the null and row spaces, 
of a linear subspaces. 

Theorem 1.7 Each linear subspace of Tln is generated by finitely many 
vectors, and is also the intersection of finitely many linear hyperplanes; 
that is, for each linear subspace of L of 7ln there are matrices A and C 
such that L = M{A) = n{C). 

The following theorem was observed by Gauss. It is sometimes called 
the fundamental theorem of linear algebra. It gives an example of a char-
acterization in terms of necessary and sufficient conditions, where necessity 
is straightforward, and sufficiency is the key of the characterization. 

Theorem 1.8 Let A € Kmxn and bell™. The system {x : Ax = b) has 
a solution if and only if that ATy = 0 implies bTy = 0. 

A vector y, with ATy = 0 and bTy = 1, is called an infeasibüity certificate 
for the system {x : Ax = 6}. 

Example 1.8 Let A = (1; -1) and b = (1; 1). Then, y = (1/2; 1/2) is an 
infeasibüity certificate for {x : Ax = b}. 
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1.3.2 System of nonlinear equations 
Given f(x) : Kn -* TV", the problem is to solve m equations for n un-
knowns: 

/(x) = 0. 
The "data" and solution sets are 

£ p = {/ ,V/, . . .} and Sp = {xenn:f(z)=0}. 

In contrast to that of a linear system, Zp is called an oracle or "black-box": 
for any given input z, it outputs the function values, the Jacobian matrix, 
and/or other finite numerical values about the function. In computer pro-
grams an oracle is a set of subroutines to perform function evaluation for a 
given input x. These subroutines might use a computer build-in function, a 
finite-element model, or a numerical partial-differential-equation procedure. 
In our computation models, we count one value evaluation one operation. 

1.3.3 Linear least-squares problem 
Given A € fcmxn and c € fcn, the system of equations ATy = c may be 
over-determined or have no solution. Such a case usually occurs when the 
number of equations is greater than the number of variables. Then, the 
problem is to find an y € 7lm or s € *R>(AT) such that ||-4Ty - c\\ or \\s — c\\ 
is minimized. We can write the problem in the following format: 

(LS) minimize \\ATy - c\\2 

subject to y € ftm, 

or 
(LS) minimize \\s - c||2 

subject to 8 e U(AT). 
In the former format, the term ||-AT2/~c||2 is called the objective function, 

y is called the decision variable. Since y can be any point in Km
} we say 

this (optimization) problem is unconstrained. The data and solution sets 
are 

zp = {Aenmxn,cenn} 
and 

Sp = {yenm:\\ATy-c\\2<\\ATx-c\\2 for every x € Um}. 

Given a y, to see if y € Sp is as the same as the original problem. How-
ever, from a projection theorem in linear algebra, the solution set can be 
characterized and represented as 

Sp = {y € Tlm : AATy = Ac}, 



1.3. DECISION AND OPTIMIZATION PROBLEMS 17 

which becomes a system of linear equations and always has a solution. The 
vector s = ATy = AT(AAT)+Ac is the projection of c onto the range 
of AT, where AAT is called normal matrix and (AAT)+ is called pseudo-
inverse. If A has full row rank then (AAT)+ = (AAT)~l, the standard 
inverse of full rank matrix AAT. If -A is not of full rank, neither is AAT 

and (AAT)+AATx = x only for x € Tl(AT). 
The vector c - ATy = (I - J4T(AAT)+J4)C is the projection of c onto the 

null space of A. It is the solution of the following least-squares problem: 

(LS) minimize \\x — c||2 

subject to x € «Λ/Χ-Α). 

In the full rank case, both matrices AT(AAT)~1A and I-AT(AAT)~1A are 
called projection matrices. These symmetric matrices have several desired 
properties (see Exercise 1.14). 

The linear least-squares problem is a basic problem solved on each iter-
ation of any interior-point algorithm. 

1.3.4 System of linear inequalities 

Given A € Tlmxn and ö € Km, the problem is to find a solution x € Un 

satisfying Ax < b or prove that the solution set is empty. The inequality 
problem includes other forms such as finding an x that satisfies the com-
bination of linear equations Ax — b and inequalities x > 0. The data and 
solution sets of the latter are 

Zp={AeKmxn,benm} and Sp = {x€Un:Ax = b} x>0}. 

Traditionally, a point in Sp is called a feasible solution, and a strictly pos-
itive point in Sp is called a strictly feasible or interior feasible solution. 

The following results are Farkas' lemma and its variants. 

Theorem 1.9 (Farkas' lemma) Let A € Kmxn and b eTlm. Then, the 
system {x : Ax == 6, x > 0} has a feasible solution x if and only if that 
ATy < 0 implies bTy < 0. 

A vector y, with ATy < 0 and bTy = 1, is called a (primal) infeasibility 
certificate for the system {x : Ax = 6, x > 0}. Geometrically, Parkas' 
lemma means that if a vector 6 6 1lm does not belong to the cone generated 
by o.i,..., a.n, then there is a hyperplane separating b from cone(a.i,..., a,n). 

Example 1.9 Let A = (1,1) and b = —1. Then, y = —1 is an infeasibility 
certificate for {x : Ax = 6, x > 0}. 
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Theorem 1.10 (Farkas' lemma variant) Let A € Tlmxn and c € Tln. 
Then, the system {y : ATy < c] has a solution y if and only if that Ax = 0 
and x>0 imply cTx > 0. 

Again, a vector x > 0, with Ax = 0 and cTx = —1, is called a (duat) 
infeasibUity certificate for the system {y : ATy < c}. 

Example 1.10 Let A = (1; —1) and c = ( l;-2). Then, x = (1;1) is an 
infeasibUity certificate for {y : ATy < c}. 

We say {x : Ax = 6, x > 0} or {y : ATy < c] is approximately feasible 
in the sense that we have an approximate solution to the equations and 
inequalities. In this case we can show that any certificate proving their 
infeasibUity must have large norm. Conversely, if {x : Ax = b, x > 0} or 
{y : ATy < c] is "approximately infeasible" in the sense that we have an 
approximate certificate in Farkas' lemma, then any feasible solution must 
have large norm. The details can be found in Exercise 5.12. 

Example 1.11 Given c > 0 but small Let A = (1,1) and b = - e . Then, 
x = (0;0) is approximately feasible for{x: Ax = 6, x > 0}, and the 
infeasibUity certificate y = — 1/e has a large norm. 

Let A = (1;-1) and c = (1; - 1 — e). Then, y = 1 is approximately 
feasible for {y : ATy < c}, and the infeasibUity certificate x = (1/e; 1/e) 
has a large norm. 

1.3.5 Linear programming (LP) 

Given A € 7lmxn, b € Tlm and c,/,« € ftn, the linear programming (LP) 
problem is the following optimization problem: 

minimize cTx 
subject to Ax = 6, I < x < u, 

where some elements in I may be -oo meaning that the associated variables 
are unbounded from below, and some elements in u may be oo meaning 
that the associated variables are unbounded from above. If a variable is 
unbounded either from below or above, then it is called a "free* variable 

The standard form linear programming problem is given below, which 
we will use throughout this book: 

(LP) minimize cTx 
subject to Ax = 6, x > 0. 

The linear function cTx is called the objective function, and x is called the 
decision variables. In this problem, Ax = 6 and x > 0 enforce constraints 
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on the selection of x. The set Tp = {x : Ax = ft, x > 0} is called feasible set 
or feasible region. A point x € «Fp is called a feasible point, and a feasible 
point x* is called an optimal solution if cTa:* < cTx for all feasible points 
x. If there is a sequence {xk} such that a:* is feasible and cTxk -> —oo, 
then (LP) is said to be unbounded. 

The data and solution sets for (LP), respectively, are 

zp = {Ae nmxn,b € nm,c e nn) 

and 
Sp = {x € Tp : cTx < cTy, for every y € J>}. 

Again, given an z, to see if z € 5P is as difficult as the original problem. 
However, due to the duality theorem, we can simplify the representation of 
the solution set significantly. 

With every (LP), another linear program, called the dual (LD), is the 
following problem: 

(LD) maximize bTy 
subject to ATy + s = c, s > 0, 

where y 6 Tlm and s € Tln. The components of s are called dual slacks. 
Denote by T¿ the sets of all (y, s) that are feasible for the dual. We see 
that (LD) is also a linear programming problem where y is a "free" vector. 

The following theorems give us an important relation between the two 
problems. 

Theorem 1.11 (Weak duality theorem) LetTv andT& be non-empty. Then, 

cTx > bTy where x € J>, (y, s) € Td-

This theorem shows that a feasible solution to either problem yields a 
bound on the value of the other problem. We call cTx - bTy the duality 
gap. From this we have important results. 

Theorem 1.12' (Strong duality theorem) Let Tp and T& be non-empty. 
Then, x* is optimal for (LP) if and only if the following conditions hold: 

i) «· € Tp; 

ii) there is (y*,s*) € J^; 

Hi) cTx* = bTy*. 
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Theorem 1.13 (LP duality theorem) If (LP) and (LD) both have feasible 
solutions then both problems have optimal solutions and the optimal objec-
tive values of the objective functions are equal. 

If one of (LP) or (LD) has no feasible solution, then the other is either 
unbounded or has no feasible solution. If one of (LP) or (LD) is unbounded 
then the other has no feasible solution. 

The above theorems show that if a pair of feasible solutions can be 
found to the primal and dual problems with equal objective values, then 
these are both optimal. The converse is also true; there is no "gap.9' From 
this condition, the solution set for (LP) and (LD) is 

f cTx-bTy = 0 ) 
sP = \(x,y,s)e(niyn

m,ni): Ax = b V, (i.i) 
[ -ATy-s = -c ) 

which is a system of linear inequalities and equations. Now it is easy to 
verify whether or not a pair (z, y, s) is optimal. 

For feasible x and (y, s), xT8 = xT(c - ATy) = cTx — bTy is called the 
complementarity gap. If xTs = 0, then we say x and s are complementary 
to each other. Since both x and s are nonnegative, xTs = 0 implies that 
Xj8j = 0 for all i = 1,...,n. Thus, one equation plus nonnegativity are 
transformed into n equations. Equations in (1.1) become 

Xs = 0 
Ax = b (1.2) 

-ATy -s = -c . 

This system has total 2n + m unknowns and 2n + m equations including n 
nonlinear equations. 

The following theorem plays an important role in analyzing LP interior-
point algorithms. It give a unique partition of the LP variables in terms of 
complementarity. 

Theorem 1.14 (Strict complementarity theorem) If (LP) and (LD) both 
have feasible solutions then both problems have a pair of strictly comple-
mentary solutions x* > 0 and s* > 0 meaning 

X*s* = 0 and x* + s*> 0. 

Moreover, the supports 

P* = {j : x* > 0} and Z* = {j : s*5 > 0} 

are invariant for all pairs of strictly complementary solutions. 
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Given (LP) or (LD), the pair of P* and Z* is called the (strict) com-
plementarity partition, {x : Ap*xp* = 6, xp* > 0, xz* = 0} is called the 
primal optimal face, and {y : cz* - A^y > 0, cp· — Aj>*y = 0} is called 
the dual optimal face. 

Select m linearly independent columns, denoted by the index set B, 
from A. Then matrix AB is nonsingular and we may uniquely solve 

ABXB = b 

for the m-vector XB- By setting the variables, XN, of x corresponding to 
the remaining columns of A equal to zero, we obtain a solution x such that 

Ax = b. 

Then, x is said to be a {primal) basic solution to (LP) with respect to the 
basis AB- The components of XB are called basic variables. A dual vector 
y satisfying 

A^y = cB 

is said to be the corresponding dual basic solution. If a basic solution x > 0, 
then x is called a basic feasible solution. If the dual solution is also feasible, 
that is 

s = c - ATy > 0, 

then x is called an optimal basic solution and AB an optimal basis. A basic 
feasible solution is a vertex on the boundary of the feasible region. An 
optimal basic solution is an optimal vertex of the feasible region. 

If one or more components in XB has value zero, that basic solution 
x is said to be {primal) degenerate. Note that in a nondegenerate basic 
solution the basic variables and the basis can be immediately identified 
from the nonzero components of the basic solution. If all components, SN, 
in the corresponding dual slack vector s, except for S£, are non-zero, then y 
is said to be (dual) nondegenerate. If both primal and dual basic solutions 
are nondegenerate, AB is called a nondegenerate basis. 

Theorem 1.15 (LP fundamental theorem) Given (LP) and (LD) where A 
has full row rank m, 

i) if there is a feasible solution, there is a basic feasible solution; 

ii) if there is an optimal solution, there is an optimal basic solution. 

The above theorem reduces the task of solving a linear program to 
that searching over basic feasible solutions. By expanding upon this result, 
the simplex method, a finite search procedure, is derived. The simplex 
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method is to proceed from one basic feasible solution (an extreme point of 
the feasible region) to an adjacent one, in such a way as to continuously 
decrease the value of the objective function until a minimizer is reached. In 
contrast, interior-point algorithms will move in the interior of the feasible 
region and reduce the value of the objective function, hoping to by-pass 
many extreme points on the boundary of the region. 

1.3.6 Quadratic programming (QP) 

Given Q € ftnxn, A € Kmxn, b € Km and c 6 Kn , the quadratic pro-
gramming (QP) problem is the following optimization problem: 

(QP) minimize q(x) := (l/2)xTQx + cTx 
subject to Ax = 6, x > 0. 

We may denote the feasible set by Tp. The data and solution sets for (QP) 
are 

Zp = {Q 6 Unxn,A € ftmxn,6 € Km,ce Kn} 

and 
Sp = {x € Tv : q{x) < q{y) for every y 6 Tp}. 

A feasible point x* is called a KKT point, where KKT stands for 
Karush-Kuhn-Tucker, if the following KKT conditions hold: there exists 
(y* € Um,8* e 7ln) such that ( χ ' , ι Λ Ο is feasible for the following dual 
problem: 

(QD) maximize d{x} y) := bTy - (l/2)xTQx 
subject to ATy + s - Qx = c, #, 8 > 0, 

and satisfies the complementarity condition 

(x*)Ts* = (l/2){x*)TQx* + cTx* - (&V ~ (l/2){x*)TQx* = 0. 

Similar to LP, we can write the KKT condition as: 

(x,y,8)e(Ul,nm,Kl) 

and 
Xs = 0 
Az = b (1.3) 

--ATy -f Qx - s = —c. 

Again, this system has total 2n + m unknowns and 2n + m equations in-
cluding n nonlinear equations. 
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The above condition is also called the first-order necessary condition. If 
Q is positive semi-definite, then x* is an optimal solution for (QP) if and 
only if x* is a KKT point for (QP). In this case, the solution set for (QP) 
is characterized by a system of linear inequalities and equations. One can 
see (LP) is a special case of (QP). 

1.3.7 Linear complementarity problem (LCP) 

Given M € Tln*n and q € ftn, the linear complementarity problem (LCP) 
is to find a pair x,s E Tin such that 

8 = Mx + q> {x, s) > 0 and xTs = 0. 

A pair (s, s) > 0 satisfying s = Mx + q is called a feasible pair. The LCP 
problem can be written as an optimization problem: 

{LCP) minimize xTs 
subject to Mx — s = — ςι, £, s > 0. 

The LCP is a fundamental decision and optimization problem. It also 
arises from economic equilibrium problems, noncooperative games, traffic 
assignment problems, and optimization problems. 

The data and solution sets for LCP are 

zp = {Mennxn,qenn} 

and 

* = { < * , . ) € ( * $ , * * ) : Mx*
8

8 I °_g}. (1.4) 

(Again, xT8 = 0 plus nonnegativity on x and s imply n equations Xs = 0.) 
There are extensions from LCP. One extension is some variables can be 

"free" (unrestricted in sign) and their counter-parts are zeros: 

minimize xTs 

subject to M I ) "" ( n ) = ""̂ ' χ ' 8 ~ '̂ 

One can verify that the solution set of (LP) and the KKT set of (QP) can 
be formulated as this problem, where 

M=(«-f) - . - ( O (1.6) 
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Another extension is called the generalized linear complementarity prob-
lem: 

(GLCP) minimize xTs 
subject to Ax + Bs + Cz = q, (x €Tln,se lln,z e Tld) > 0, 

where matrices A,B € ftmxn, C 6 Kmxd and g € ftm. We will discuss on 
solving GLCP in Chapter 9. 

If M (may not be symmetric) is monotone or positive semi-definite, i.e., 

xTMx > 0, for all a?, 

then the LCP is called a monotone LCP. The following theorem character-
izes the solution set of a monotone linear complementarity problem. 

Theorem 1.16 (Monotone linear complementarity theorem) Consider the 
monotone linear complementarity problem. We have 

i) if the problem is feasible, then it has a solution with xTs = 0; 

ii) the solution set is convex; 

iii) it has a maximal complementary solution pair x* and s*, meaning that 
the number of the positive components in vector x* + s* is maximized. 
Moreover, the supports 

P* = {j : x) > 0} and Z* = {j : ej > 0} 

are invariant for all pairs of maximal complementary solutions. 

Note that, in general, a monotone complementarity problem, unlike linear 
programming, may not have a strictly complementary solution. 

1.3.8 Positive semi-definite programming (PSP) 
Given C € Mn

% Ai € Mn, i = l,2,...,m, and b 6 ftm, the positive 
semi-definite programming problem is to find a matrix X € Mn for the 
optimization problem: 

(PSP) inf C*X 

subject to Ai · X = 6», i = 1,2,..., m, X y 0. 

Recall that the · operation is the matrix inner product 

AmB — txATB. 
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The notation X y 0 means that X is a positive semi-definite matrix, and 
X y 0 means that X is a positive definite matrix. If a point X y 0 and 
satisfies all equations in (PSP), it is called a {primal) strictly or interior 
feasible solution. . 

The data set of (PSP) is 

Zp = {Ai€Mn, t = l,...,m, beUm,ceMn}. 

The dual problem to (PSP) can be written as: 

{PSD) sup bTy 
subject to Y£yiAi + S = Ci S b 0, 

which is analogous to the dual (LD) of LP. Here y € Km and S 6 Mn. If a 
point {y,S y 0) satisfies all equations in (PSD), it is called a dual interior 
feasible solution. 

Example 1.12 Let P{y € Tlm) = -C + T,?ViAi> where c and Au i = 
1, . . . , m, are given symmetric matrices. The problem of minimizing the 
max-eigenvalue of P{y) can be cast as a (PSD) problem. 

In positive semi-definite programming, we minimize a linear function 
of a matrix in the positive semi-definite matrix cone subject to affine con-
straints. In contrast to the positive orthant cone of linear programming, the 
positive semi-definite matrix cone is non-polyhedral (or "non-linear"), but 
convex. So positive semi-definite programs are convex optimization prob-
lems. Positive semi-definite programming unifies several standard prob-
lems, such as linear programming, quadratic programming, and convex 
quadratic minimization with convex quadratic constraints, and finds many 
applications in engineering, control, and combinatorial optimization. 

We have several theorems analogous to Farkas' lemma. 

Theorem 1.17 (Farkas9 lemma in PSP) Let Ai € Mn, i = 1, ...,m, have 
rank m (i.e., J2T ν*Α* ^ 0 implies y = 0) and b € 11™. Then, there exists 
a symmetric matrix X y 0 with 

Ai · X = 6<, i = 1,..., m, 

if and only if J2T ν*Α* ^ ° and Σ Γ ViA* Φ ° «"»p/iee bTy < 0. 

Note the diiference between the above theorem and Theorem 1.9. 

Theorem 1.18 (Weak duality theorem in PSP) Let Tv and T&, the feasible 
sets for the primal and dual, be non-empty. Then, 

C^X>bτy where X € Tp, {y,S) 6 Td. 
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The weak duality theorem is identical to that of (LP) and (LD). 

Corollary 1.19 (Strong duality theorem in PSP) Let Tv and T¿ be non-
empty and have an interior. Then, X is optimal for (PS) if and only if the 
following conditions hold: 

i) X e Tv; 

ii) there is (y, S) € TA; 

iii) C*X = bTy o r X # S = 0. 

Again note the difference between the above theorem and the strong duality 
theorem for LP. 

Two positive semi-definite matrices are complementary to each other, 
X · S = 0, if and only if XS = 0 (Exercise 1.24). Rrom the optimality 
conditions, the solution set for certain (PSP) and (PSD) is 

Sp = {X6fp, (y,S)efd:CX-bTy = 0}, 

or 
Sp = {X € Tv, (y,S) €Fd:XS = 0}, 

which is a system of linear matrix inequalities and equations. 
In general, we have 

Theorem 1.20 (PSP duality theorem) If one of (PSP) or (PSD) has a 
strictly or interior feasible solution and its optimal value is finite, then the 
other is feasible and has the same optimal value. If one of (PSP) or (PSD) 
is unbounded then the other has no feasible solution. 

Note that a duality gap may exists if neither (PSP) nor (PSD) has a strictly 
feasible point. This is in contrast to (LP) and (LD) where no duality gap 
exists if both are feasible. 

Although positive semi-definite programs are much more general than 
linear programs, they are not much harder to solve. It has turned out that 
most interior-point methods for LP have been generalized to positive semi-
definite programs. As in LP, these algorithms possess polynomial worst-case 
complexity under certain computation models. They also perform well in 
practice. We will describe such extensions later in this book. 
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1.3.9 Nonlinear programming (NP) 

Given / : Kn -> ft, h : Kn -► Km, g : %n -* Hd, the nonlinear program-
ming problem is the following optimization problem: 

(NP) minimize f(x) 
subject to h(x) = 6, g(x) > 0. 

We may denote the feasible set by T. The data and solution sets for (NP) 
are 

Zp = {f,h,g,Vf,Vh,Vg,...} 

and 
Sp = {x € T: /(x) < f(y) for every y € F}. 

A feasible point x* is called a KKT point if the following KKT conditions 
hold: there exists (y* € 7£m,s* € Tld) such that 0&*,2/*,**) are satisfying 

VT/(z*) - VTh(x*)y* - VTp(a:*)5* = 0, s* > 0, 

and 
* ( * * ) V = 0 . 

Here, y* and 5* are called the Lagrange or ¿ua/ multipliers. We have the 
following necessary condition for a point to be a local minimizer. 

Theorem 1.21 (Karush-Kuhn-Tucker theorem) Letx* be a relative (local) 
minimum solution for (NP) and suppose x* is a regular point for the con-
straints, meaning that the Jacobian matrix V/i(z*) and the gradient vectors 
V^(a?*) for all j with gj(x*) = 0 (they called active inequality constraints^ 
are linearly independent. Then, x* must be a KKT point. 

U f is convex, h is affine, and g is concave, then x* is optimal if and 
only if x* is a KKT point for (NP). Thus, the necessary condition becomes 
sufficient. 

1.3.10 Nonlinear complementarity problem (NCP) 

Let f(x) : 7J+ -+ Tln be a continuous real function. Then, the nonlinear 
complementarity problem (NCP) is to find a pair x, s € Tln such that 

s = /(a?), (x, s)>0 and Xs = 0. 

We say (NCP) is feasible if there exists an x > 0 and s = f(x) > 0. 
If f(x) is a monotone function over 7££, that is, 

(x1-^)T(f(xl)-f(^))>0 for all xl,x2 €U%, 
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then the problem is called the monotone complementarity problem. It can 
be written as an optimization problem: 

(MCP) minimize xTs 
subject to s = f(x), (x, s) > 0. 

The Jacobian matrix of / , V/, is positive semi-definite in 7£+. 
Denote the feasible set by T and the solution set by S. Note that 

(MCP) being feasible does not imply that (MCP) has a solution. The 
following theorem characterizes the solution set of a monotone complemen-
tarity problem. 

Theorem 1·22 (Monotone complementarity theorem) Consider the mono-
tone nonlinear complementarity problem. We have 

i) // (MCP) has an interior feasible point, i.e., x > 0 and s = f(x) > 0, 
then it has a solution with xTs = 0; 

ii) the solution set is convex; 

iii) it has a maximal complementary solution pair x* and s*, meaning that 
the number of the positive components in vector x* + s* is maximized. 
Moreover, the supports 

P* = {j : x* > 0} and Z* = {j : aj > 0} 

are invariant for all pairs of maximal complementary solutions. 

Note that, in general, a monotone complementarity problem, unlike linear 
programming, may not have a strictly complementary solution. 

Similar to our discussion on linear complementarity, finding a KKT 
point or proving infeasibility or unboundedness of a convex nonlinear pro-
gramming problem can be reduced to solving a monotone complementarity 
problem with possible "free" variables. 

1.4 Algorithms and Computation Models 

An algorithm is a list of instructions to solve a problem. For every instance 
of problem V% i.e., for every given data Z € ¿p, an algorithm for solving 
V either determines that Sp is empty or generates an output x such that 
x e Sp or x is close to Sp in certain measure. The latter x is called an 
approximate solution. 

Let us use Ap to denote the collection of all possible algorithm for solving 
every instance in V. Then, the (operation) complexity of an algorithm 
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A € Ap for solving an instance Z € Zpis defined as the total arithmetic 
operations: +, - , *, /, and comparison on real numbers. Denote it by 
c0(A,Z). Sometimes it is convenient to define the iteration complexity, 
denoted by c%(A% Z), where we assume that each iteration costs a polynomial 
number (in m and n) of arithmetic operations. In most iterative algorithms, 
each iteration can be performed efficiently both sequentially and in parallel, 
such as solving a system of linear equations, rank-one updating the inversion 
of a matrix, pivoting operation of a matrix, multiplying a matrix by a 
vector, etc. 

We present four algorithm efficiency or complexity measures frequently 
used in algorithm analysis and optimization theory. The first two are con-
cerned by the worst-case performance, the third one is on the "average" 
performance, and the fourth one is about the "local" performance. They 
will all be used in our analysis of interior-point algorithms. 

1.4.1 Worst-case complexity 
The worst-case complexity of algorithm A for problem V is defined as 

c(A) := sup c(A,Z). 
zeZp 

It is better to distinguish the worst-case complexity of an algorithm, A> 
from that of a problem V. The worst-case complexity of the problem is 

c*:= inf c(A). 
A€AP 

Analyzing the worst-case complexity of a problem is challenging since Ap is 
an unknown domain, and the analysis of the complexity of the algorithm is 
equally difficult since V is also immense. However, the complexity theory 
does not directly attack the algorithm complexity for every instance. In-
stead, it classifies V using its data bit-size L, where the data are assumed 
rational. This is the Turing Machine Model for computation. We may 
call this type of complexity size-based. Then, we express an upper bound 
/>i(m,n,£), in terms of the parameters m, n, and L, for the size-based 
complexity of algorithm A as 

c(A, L) := sup c(A, Z) < /¿(m, n, L). 
Z€Zpt size(Z)<£ 

(Recall that integer m and n represent the problem dimensions.) Then, the 
size-based complexity of problem V has a relation 

cP(L):= inf c(A,L)<fA{m,n,L). 
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We see that the complexity of algorithms is an upper bound for the com-
plexity of the problem. Another active pursuit in computer science is the 
analysis of a lower bound for the problem's complexity, which is outside of 
the scope of this monograph. 

If /¿(m, n, If) is a polynomial in m, n, and L, then we say algorithm A is 
a polynomial-time or polynomial algorithm and problem V is polynomially 
solvable. If />i(m,n, L) is independent of L and polynomial in m and n, 
then we say algorithm Ais & strongly polynomial algorithm. 

In the real number model, the use of L is not suitable. We may use c, 
the error for an approximate solution as a parameter. Let c(A, Z% t) be the 
total number of operations of algorithm A for generating an e-approximate 
solution, with a well-defined measure, to problem V. Then, 

c(A,t) := sup c(AfZ,e) < />i(m,n,c) for any e > 0. 
Z€ZP 

We call this complexity model error-based. One may also view an approxi-
mate solution an exact solution to a problem e-near to V with a well-defined 
measure in the data space. This is the so-called backward analysis model 
in numerical analysis. 

If /¿(m,n,e) is a polynomial in m, n, and log(l/e), then algorithm A 
is a polynomial algorithm and problem V is polynomially solvable. Again, 
if /¿(ro, n, e) is independent of e and polynomial in m and n, then we say 
algorithm A is a strongly polynomial algorithm. If /Α(™,n, c) is a polyno-
mial in m, n, and (1/e), then algorithm A is a polynomial approximation 
scheme or pseudo-polynomial algorithm . For some optimization problems, 
the complexity theory can be applied to prove not only that they cannot 
be solved in polynomial-time, but also that they do not have polynomial 
approximation schemes. In practice, approximation algorithms are widely 
used and accepted in practice. 

Example 1.13 There is a strongly polynomial algorithm for sorting a vec-
tor in descending or ascending order, for matrix-vector multiplication, and 
for computing the norm of a vector. 

Example 1.14 Consider the bisection method to locate a root of a con-
tinuous function f(x) : K -* K within interval [0,1], where /(0) > 0 and 
/ ( l ) < 0. The method calls the oracle to evaluate f(l/2) (counted as one 
operation). If f (1/2) > 0, we throw away [0,1/2); if f (1/2) < 0, we throw 
away (1/2,1]. Then we repeat this process on the remaining half interval. 
Each step of the method halves the interval that contains the root. Thus, in 
log(l/e) steps, we must have an approximate root whose distance to the root 
is less than e. Therefore, the bisection method is a polynomial algorithm. 
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We have to admit that the criterion of polynomiality is somewhat con-
troversial. Many algorithms may not be polynomial but work fine in prac-
tice. This is because polynomiality is built upon the worst-case analysis. 
However, this criterion generally provides a qualitative statement: if a prob-
lem is polynomial solvable, then the problem is indeed relatively easy to 
solve regardless of the algorithm used. Furthermore, it is ideal to develop 
an algorithm with both polynomiality and practical efficiency. 

1.4.2 Condition-based complexity 
As we discussed before, in the Turing Machine Model the parameters are 
selected as the number of variables, the number of constraints, and the bit-
size of the data of an instance. In fact, expressing the algorithm complexity 
in terms of the size of the problem does not really measure the difficulty of 
an instance of the problem. Two instances with the same size may result 
in drastically different performances by the same algorithm. 

Example 1.15 Consider the steepest descent algorithm for solving 

minimize q(x) = (l/2)xTQx + cTx, (1.7) 

where Q € ΊΖηχη is positive definite. Denote by x* = —Q~*c € Hn the 
minimizer of the problem. Starting from an x° € 1ln, the method uses 
iterative formula 

s*+1 = xk - a*d*, where dk = Qxk + c 

and 

a* = l|d*ll2 

||d*H2 

which minimizes q(xk - ad*). (Recall that the norm \\d\\Q = y/dFQd for 
positive definite Q.) It is well known that the algorithm generates a sequence 
of {xk} such that 

II**-»lie -λη + V 
where Ai < λ2,... < λΛ are n eigenvalues of Q with ascending order. Let 

Then, to reach ^\eu^jíl¡^ <e we need no more than log(l/e)/log(l/£(Q)) 
iterations; the smaller Í(Q), the faster of the algorithm. 
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In this example two Q matrices with the same size but different eigen-
value structure will possess quite different convergence speed. This phe-
nomenon is surprisingly common in optimization, due to mathematical 
bases upon which algorithms are designed. Thus, the upper bound for 
the complexity of an algorithm may be expressed as /x(m,n,r/(Z)) or 
/¿("ΐ,η, €,!}(£)) in both the rational-number and the real number mod-
els, where η(Ζ) can be viewed as a condition number for the instance Z. 
(η{Ζ) = [0g(i}e(Q)\ *n this example.) The better the condition number, 
the less difficult the instance. It is our goal to study this phenomenon 
and to improve the condition number and, thereby, the performance of an 
algorithm. 

1.4.3 Average complexity 

Let Zp be a random sample space, then one can define the average or 
expected complexity of the algorithm for the problem as 

ca(A) = EZ€zMA>z))· 

If we know the condition-based complexity of an algorithm for P, then the 
average complexity of the algorithm is 

*(A)<Bg€M(fA{m,n,fi(Z)))-

In many cases, /¿(m,n,i;(Z)) can be expressed as 

fA{m,nMZ)) = f1(m,n)f3(n(Z)). 

Thus, 

f(A)<fl(m,n)Egez(f*{n(Z))), 
which will simplify analysis a great deal. 

Example 1.16 Let us randomly generate positive definite matrix Q in Ex-
ample 1.15. Then, £(Q) is a random number, and the expected number of 
iterations to reach ' Hg*ig»||e < e ts bounded by 

Another probabilistic model is called high-probability analysis. We say 
that a problem V can be solved by algorithm A in /¿(m9 n) time with high 
probability if 

Pr{c(¿,Z)<¿4(m,n)}-+l 
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as m,n -4 oo. Again, if we have a condition-based complexity and if we 
have 

Pr{/ 2 fa( i?) )</ 3 (m,n)}-H 
as m,n -» oo, then the algorithm solves P in 

operations with high probability. 

1.4.4 Asymptotic complexity 
Most algorithms are iterative in nature. They generate a sequence of ever-
improving points x°,a;1,...,«*,... approaching the solution set. For many 
optimization problems and/or algorithms, the sequence will never exactly 
reach the solution set. One theory of iterative algorithms, referred to as 
local or asymptotic convergence analysis, is concerned with the rate at 
which the optimality error of the generated sequence converges to zero. 

Obviously, if each iteration of competing algorithms requires the same 
amount of work, the speed of the convergence of the error reflects the speed 
of the algorithm. This convergence rate, although it holds locally or asymp-
totically, provides evaluation and comparison of different algorithms. It has 
been widely used by the nonlinear optimization and numerical analysis com-
munity as an efficiency criterion. In many cases, this criterion does explain 
practical behavior of iterative algorithms. 

Consider a sequence of real numbers {rk} converging to zero. One can 
define several notions related to the speed of convergence of such a sequence. 

Definition 1.1 . Let the sequence {r*} converge to zero. The order of 
convergence of {r*} is defined as the supermum of the nonnegative numbers 
p satisfying 

| r * + l | 
0 < lim sup '. ' < oo. 

*-+oo \rk\p 

Definition 1.2 . Let the sequence {rk} converge to zero such that 

kf c + 1 | 

Then, the sequence is said to converge quadratically to zero. 

It should be noted that the order of convergence is determined only by 
the properties of the sequence that holds as k -> oo. In this sense we might 
say that the order of convergence is a measure of how good the tail of {r*} 
is. Large values of p imply the faster convergence of the tail. 
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Definition 1.3 . Let the sequence {rk} converge to zero such that 

limsup-iT-Eri==/9<l. 

Then, the sequence is said to converge linearly to zero with convergence 
ratio ß. 

Linear convergence is the most important type of convergence behavior. 
A linearly convergence sequence, with convergence ratio /?, can be said to 
have a tail that converges to zero at least as fast as the geometric sequence 
cßk for a fixed number c. Thus, we also call linear convergence geometric 
convergence. 

As a rule, when comparing the relative effectiveness of two competing 
algorithms both of which produce linearly convergent sequences, the com-
parison is based on their corresponding convergence ratio—the smaller the 
ratio, the faster the algorithm. The ultimate case where ß = 0 is referred 
to as superlinear convergence. 

Example 1.17 The steepest descent algorithm for solving problem (1.7) in 
Example 1.15 has a linear convergence with convergence ratio £(Q). If Q 
has equal eigenvalues, then the algorithm is superlinearly convergent. 

Example 1.18 Consider the conjugate gradient algorithm for solving prob-
lern (1*7). Starting from an x° € Hn and d° = Qx° + c, the method uses 
iterative formula 

xk+1=xk-akdk 

where 

~ ¥% ' 
and 

dk+l = QxM - ekdk 

where m 

nk (dk)TQ(Qx^+c) 
mi 

This algorithm is superlinearly convergent (in fact, it converges in finite 
number of steps). 

1.5 Basic Computational Procedures 

There are several basic numerical problems frequently solved by interior-
point algorithms. 
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1.5.1 Gaussian elimination method 

Probably the best-known algorithm for solving a system of Unear equations 
is the Gaussian elimination method. Suppose we want to solve 

Ax = b. 

We may assume an φ 0 after some row switching, where a+j is the com-
ponent of A in row i and column j . Then we can subtract appropriate 
multiples of the first equation from the other equations so as to have an 
equivalent system: 

(7 * ) (3 ) - ( * ) · 
This is a pivot step, where on is called a pivot, and A1 is called a Schur 
complement. Now, recursively, we solve the system of the last m — 1 
equations for x'. Substituting the solution x' found into the first equation 
yields a value for x\. The last process is called back-substitution, 

In matrix form, the Gaussian elimination method transforms A into the 
form 

where U is a nonsingular, upper-triangular matrix, 

and L is a nonsingular, lower-triangular matrix. This is called the LU-
decomposition. 

Sometimes, the matrix is transformed further to a form 

where D is a nonsingular, diagonal matrix. This whole procedure uses 
about nm2 arithmetic operations. Thus, it is a strong polynomial-time 
algorithm. 

1.5.2 Choleski decomposition method 

Another useful method is to solve the least squares problem: 

(LS) minimize \\ATy - c||. 
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The theory says that y* minimizes \\ATy - c\\ if and only if 

AATy* = Ac. 

So the problem is reduced to solving a system of linear equations with a 
symmetric semi-positive definite matrix. 

One method is Choleski's decomposition. In matrix form, the method 
transforms AAT into the form 

AAT = LALT, 

where £ is a lower-triangular matrix and Λ is a diagonal matrix. (Such a 
transformation can be done in about nm2 arithmetic operations as indicated 
in the preceding section.) L is called the Choleski factor of AAT. Thus, 
the above linear system becomes 

LALTy* = Ac, 

and y* can be obtained by solving two triangle systems of linear equations. 

1.5.3 The Newton method 

The Newton method is used to solve a system of nonlinear equations: given 
f(x) : Tln -> 7Jn, the problem is to solve n equations for n unknowns such 
that 

/(s) = 0. 

The idea behind Newton's method is to use the Taylor linear approximation 
at the current iterate xk and let the approximation be zero: 

f(x) ~ f(xk) + Vf{xk)(x - xk) = 0. 

The Newton method is thus defined by the following iterative formula: 

x**1 = x
k - a(Vf(xk))-lf(xk), 

where scalar a > 0 is called step-size. Rarely, however, is the Jacobian 
matrix Vf inverted. Generally the system of linear equations 

V/(**)4. = -/(**) 

is solved and xk+1 = xk 4- adx is used. The direction vector <4 is called a 
Newton step, which can be carried out in strongly polynomial time. 

A modified or quasi Newton method is defined by 

xk+x =xk_ a A f * / ( * * ) , 
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where Mk is an n x n symmetric matrix. In particular, if Mk = / , the 
method is called the gradient method, where / is viewed as the gradient 
vector of a real function. 

The Newton method has a superior asymptotic convergence order equal 
2 for ||/(a:*)||. It is frequently used in interior-point algorithms, and believed 
to be the key to their effectiveness. 

1.5.4 Solving ball-constrained linear problem 

The ball-constrained linear problem has the following form: 

(BP) minimize cTx 
subject to Ax = 0, ||a:||3 < 1, 

or 
(BD) minimize bTy 

subject to \\ATy\\2<l. 
x* minimizes (BP) if and only if there always exists a y such that they 
satisfy 

AATy = Ac, 

and if c — ATy φ 0 then 

x* = -{c-ATy)/\\c-ATy\\; 

otherwise any feasible a; is a solution. The solution y* for (BD) is given as 
follows: Solve 

AATy = 6, 

and if y ψ 0 then set 
y* = -ϋ/\\Ατϋ\\; 

otherwise any feasible y is a solution. So these two problems can be reduced 
to solving a system of linear equations. 

1.5.5 Solving ball-constrained quadratic problem 
The ball-constrained quadratic problem has the following form: 

(BP) minimize (l/2)xTQx + cTx 
subject to Ax = 0, ||a:||2 < 1, 

or simply 
(BD) minimize (l/2)yTQy + bTy 

subject to ||y||2 < 1. 
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This problem is used by the classical trust region method for nonlinear 
optimization. The optimality conditions for the minimizer y* of (BD) are 

(0.+μ*Ι)ν* = -^ μ*>0, ||ιΛ||2<1, μ·(1 - \\y*\?) = 0, 

and 
(Q + /i*J)>:0. 

These conditions are necessary and sufficient. This problem can be solved 
in polynomial time log(l/c) and log(log(l/c)) by the bisection method or 
a hybrid of the bisection and Newton methods, respectively. In practice, 
several trust region procedures have been very effective in solving this prob-
lem. 

The ball-constrained quadratic problem will be used an a sub-problem 
by several interior-point algorithms in solving complex optimization prob-
lems. We will discuss them later in the book. 

1.6 Notes 

The term "complexity" was introduced by Hartmanis and Steams [180]. 
Also see Garey and Johnson [131] and Papadimitriou and Steiglitz [337]. 
The NP theory was due to Cook [88] and Karp [219]. The importance of 
P was observed by Edmonds [106]. 

Linear programming and the simplex method were introduced by Dantzig 
[93]. Other inequality problems and convexity theories can be seen in Gritz-
mann and Klee [169], Grotschel, Lovász and Schrijver [170], Grünbaum 
[171], Rockafellar [364], and Schrijver [373]. Various complementarity prob-
lems can be found found in Gottle, Pang and Stone [91]. The positive semi-
definite programming, an optimization problem in nonpolyhedral cones, 
and its applications can be seen in Nesterov and Nemirovskii [327], Al-
izadeh [9], and Boyd, Ghaoui, Peron and Balakrishnan [72]. Recently, 
Goemans and Williamson [141] obtained several breakthrough results on 
approximation algorithms using positive semi-definite programming. The 
KKT condition for nonlinear programming was given by Karush, Kuhn and 
Tucker [240]. 

It was shown by Klee and Minty [223] that the simplex method is not 
a polynomial-time algorithm. The ellipsoid method, the first polynomial-
time algorithm for linear programming with rational data, was proven by 
Khachiyan [221]; also see Bland, Goldfarb and Tbdd [63]. The method was 
devised independently by Shor [380] and by Nemirovskii and Yudin [321]. 
The interior-point method, another polynomial-time algorithm for linear 
programming, was developed by Karmarkar. It is related to the classical 
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barrier-function method studied by FYisch [126] and Fiacco and McCormick 
[116]; see Gill, Murray, Saunders, Tomlin and Wright [139], and Anstreicher 
[23]. Fbr a brief LP history, see the excellent article by Wright [457]. 

The real computation model was developed by Blum, Shub and Smale 
[66] and Nemirovskii and Yudin [321]. The average setting can be seen in 
Traub, Wasilkowski and Wozniakowski [420]. The asymptotic convergence 
rate and ratio can be seen in Luenberger [248], Ortega and Rheinboldt 
[334], and Traub [419]. Other complexity issues in numerical optimization 
were discussed in Vavasis [450]. 

Many basic numerical procedures listed in this chapter can be found in 
Golub and Van Loan [154]. The ball-constrained quadratic problem and 
its solution methods can be seen in Moré [308], Sorenson [387], and Dennis 
and Schnäble [96]. The complexity result of the ball-constrained quadratic 
problem was proved by Vavasis [450] and Ye [469, 473]. 

1.7 Exercises 
1.1 Let Q € Tlnxn be a given nonsingular matrix, and a and b be given 

Hn vectors. Show 

^+""Tr,'Q-'-TTwö^"°bTQ"-
This formula is called the Sherman-Morrison-Woodbury formula. 

1.2 Prove that the eigenvalues of all matrices Q € Mnxn are real. Fur-
thermore, show that Q is PSD if and only if all its eigenvalues are non-
negative, and Q is PD if and only if all its eigenvalues are positive. 

1*3 Using the ellipsoid representation in Section 1.2.2, find the matrix Q 
and vector y that describes the following ellipsoids: 

1. The i-dimensional sphere of radius 2 centered at the origin; 

2. The 2-dimensional ellipsoid centered at (1; 2) that passes the points 
(0;2),(1;0), (2;2), and (1;4); 

3. The 2-dimensional ellipsoid centered at (1; 2) with axes parallel to the 
line y = x and y = -x, and passing through (-1;0), (3; 4), (0;3), 
and(2;l). 

1.4 Show that the biggest coordinate-aligned ellipsoid that is entirely con-
o 

tained in 11% and has its center at xa €ft£ can be written as: 

E(xa) = {x€Kn : I K * " ) - ^ - xa)\\ < 1}. 
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1.5 Show that the non-negative orthant, the positive semi-definite cone, 
and the second-order cone are all self-dual. 

1.6 Consider the convex set C = {x € Tl2 : (χχ - l ) 2 + (x2 - l)2 < 1} 
and let y € Tl2. Assuming y &C, 

1. Find the point in C that is closest to y; 

2. Find a separating hyperplane vector as a function ofy. 

1.7 Using the idea of Exercise 1.6, prove the separating hyperplane theo-
rem 1.3. 

1.8 Given anmxn matrix A and a vector c 6 Hn, consider the function 
B(y) = EJLj logs,· where s = c - ATy > 0. Find VB(y) and V2B(y) in 
terms of s. 

1.9 Prove that the level set of a quasi-convex function is convex. 

1.10 Prove Propositions 1.5 and 1.6 for convex functions in Section 1.2.3. 

1.11 Prove the Harmonic inequality described in Section 1.2.4» 

1.12 Prove Farkas' lemma 1.8 for linear equations. 

1.13 Prove the linear least-squares problem always has a solution. 

1.14 Let P = Ατ(ΑΑτ)~ιΑ or P = I - AT{AAT)~1A. Then prove 

1. P = P2. 

2. P is positive semi-definite. 

3. The eigenvalues of P are either 0 or 1. 

1.15 Using the separating theorem, prove Farkas9 lemmas 1.9 and 1.10. 

1.16 / / a system ATy < c of linear inequalities in m variables has no 
solution, show that ATy < c has a subsystem (A')Ty < d of at most m + 1 
inequalities having no solution. 

1.17 Prove the LP fundamental theorem 1.15. 

1.18 / / (LP) and (LD) have a nondegenerate optimal basis AB, prove that 
the strict complementarity partition in Theorem 1.14 *s 
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1.19 If Q is positive semi-definite, prove that x* is an optimal solution 
for (QP) if and only if x* isa KKT point for (QP). 

1.20 Show that M of (1.6) is monotone if and only ifQis positive semi-
definite. 

1.21 Prove the monotone linear complementarity theorem 1.16. 

1.22 Let P(y) = - C + J2T yiAi, where C and Ai, i = 1, . . . , m, are given 
symmetric matrices. Formulate the minimization of the max-eigenvalue of 
P(y) as a (PSD) problem. What does its primal problem look like? 

1.23 Prove X · S > 0 if both X and S are positive semi-definite matrices. 

1.24 Prove that two positive semi-definite matrices are complementary to 
each other, X · S = 0, */ and only if XS = 0. 

1.25 Prove Farkas' lemma 1.17 for positive semi-definite programming. 

1.26 Let both (LP) and (LD) for a given data set (A,b,c) have interior 
feasible points. Then consider the level set 

Ω(*) = {ΐ/: c-ATy>0,-z + bTy>0} 

where z < z* and z* designates the optimal objective value. Prove that íl(z) 
is bounded and has an interior for any finite z < z*, even T¿ is unbounded. 

1.27 Given an (LP) data set (A, b,c) and an interior feasible point x°, 
find the feasible direction dx (Adx = 0^ that achieves the steepest decrease 
in ihe objective function. 

1.28 Given an (LP) data set (J4,J>,C) and a feasible point (x°,y°,s°) € 
(ftj , 7lm, Tl%) for the primal and dual, and ignoring the nonnegativity con-
dition, write the systems of linear equations used to calculate the Newton 
steps for finding points that satisfy the optimality equations (1.2), (1.9), 
and (1.4), respectively. 

1.29 Similar to our discussion on quadratic programming and linear com-
plementarity, demonstrate that finding a KKT point of a convex nonlinear 
programming problem can be reduced to solving a monotone complementar-
ity problem with possible "free" variables. 

1.30 Show that the ball-constrained linear problem (BP) can be written in 
the (BD) form and write the KKT conditions for both of them. 
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1.31 Given a scalar a > 0, a positive diagonal matrix S, and an m xn 
matrix A, find the formula for y € Hm such that 

minimize eTS~~lATy 
subject to \\S^ATy\\2 < a2. 

1.32 Show the optimality conditions for the minimizer y* of (BD) in Sec-
tion 1.5.5: 

(Q + MV)y* = -6, μ*>0, ||ΐΠΙ<1, μ*(1-||!/ΊΙ) = 0, 

and 
«? + *«*/)>: 0, 

are necessary and sufficient. 



Chapter 2 

Geometry of Convex 
Inequalities 

Most optimization algorithms are iterative in nature, that is, they generate 
a sequence of improved points. Algorithm design is closely related to how 
the improvement is measured. Most optimization algorithms use a merit or 
descent function to measure the progress. Some merit or descent functions 
are based on the objective function. For example, if we know a lower bound 
z of the optimal objective value, f(x) — z is a measure of how far a; is from 
the solution set. Another example measures the residual or error of the 
optimality conditions represented by a system of equations and inequali-
ties involving the derivatives of the objective and constraint functions, as 
discussed in the preceding chapter. 

One particular merit or descent function measures the "size" of the con-
taining set—a set that contains a solution. A typical example is the bisec-
tion method for finding a root of a continuous function within an interval. 
The method measures the length of the containing interval. In each step, 
the middle point of the containing interval is tested, and, subsequently, a 
new containing interval is selected and its length is a half of the previous 
one. Thus, these containing intervals shrink at a constant rate 1/2. 

A generic central-section algorithm for multiple-variable problems can 
be described as follows: Given xk, a "good" interior point in a containing 
set, we check to see if a* is desirable. If not, we generate a separating 
hyperplane and place it through xk and cut the containing set into two 
parts. If we can assure that the solution set lies in one of the two parts, 
then the other part can be deleted. This leads to a new containing set 
that is smaller than the previous one. A new "good" interior point in the 
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new containing set can be tested and the process continues. Obviously, this 
method can be applied to any convex problems. 

The question that arises is how to select the test point and where to 
place the cut. Ideally, we would like to select a "center" point that divides 
the containing set into two approximately "equal" parts with respect to 
certain measures of the containing set. Then, we will have a shrinking rate 
of about 1/2 for the sequence of the containing sets. 

Various centers were considered as test points. In this chapter, we re-
view these centers and their associated measures. We show that, similar to 
these central-section algorithms, interior-point algorithms use a new mea-
sure of the containing set represented by linear inequalities. This measure is 
"analytic and is relatively easy to compute. Its associated center is called 
the analytic center. 

2.1 Convex Bodies 
A natural choice of the measure would be the volume of the convex body. 
Interest in measure of convex bodies dates back as far as the ancient Greeks 
and Chinese who computed centers, areas, perimeters and curvatures of 
circles, triangle, and polygons. Unlike the length of a line segment, the 
computation of volumes, even in two and three dimensional spaces, is not 
an easy task for a slightly complex shaped body. In order to measure 
cultivated lands, Chinese farmers weighted the amount of sand contained 
in a down-scaled body whose shape is identical to the land, then compared 
the weight to the amount of sand in an equally down-scaled unit-square 
box. 

2.1.1 Center of gravity 
Associated with the volume of a convex body, the center of gravity will be 
the choice as the test point (Figure 2.1). We have the following theorem: 

Theorem 2.1 Let Ubea compact convex body in Tlm with center of gravity 
y9, and let Ω+ and Ω" be the bodies in which a hyperplane H passing 
through y9 divides Ω. Then the volumes V(Q+) and ν(Ω~) satisfy the 
inequality 

V(U*) < (l - (1 - ^ γ ) Λ ) V(fl)9 where * = + or - . 

This result shows that by successively cutting through the center of 
gravity, these convex bodies shrink at a constant rate of at most (1 -
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Figure 2.1. A hyperplane H cuts through the center of gravity of a convex 
body. 

l/exp(l)), where exp(l) is the natural number 2.718.... This rate is just 
slightly worse than 1/2 in the bisection method. 

Let the solution set contain a ball with radius r and the initial containing 
set be contained in a ball with radius R. Then we know that the volumes 
of the containing sets are bounded from below by 7rmrm and bounded from 
above by KmRm, where itm is the volume of the unit ball in Tlm. Thus, 
a solution point must be found in 0(mlog(R/r)) central-section steps, be-
cause the volumes of the containing sets eventually become too small to 
contain the solution set. 

The difficulty with the gravity-center section method lies in computing 
the center and volume of a convex body. It is well known that computing 
the volume of a convex polytope, either given as a list of facets or vertices, 
is as difficult as computing the permanent of a matrix, which is itself very 
hard (called #P-Hard). Since the computation of the center of gravity is 
closely related to the volume computation, it seems reasonable to conclude 
that no efficient algorithm can compute the center of gravity of Ω. 

Although computing the center of gravity is difficult for general convex 
bodies, it is relatively easy for some simple convex bodies like a cube, a 
simplex, or an ellipsoid. This leads researchers to use some simple convex 
bodies to estimate Ω. 

2.1.2 Ellipsoids 

It is known that every convex body contains a unique ellipsoid of maximal 
volume and is contained in a unique ellipsoid of minimal volume (Figure 
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2.2). We have the following general theorem: 

Theorem 2.2 For every full dimensional (bounded) convex body Ω C Km 

there exists a unique ellipsoid £(Ω) of maximal volume contained in ft. 
Moreover, Ω is contained in the ellipsoid obtained from £(Ω) by enlarging 
it from its center by a factor of m. 

Figure 2.2. The max-volume ellipsoid inscribing a polytope and the con-
centric ellipsoid circumscribing the polytope (R/r < m). 

Let ]¿e be the center of the max-volume ellipsoid inscribing Ω. Through 
the center we place a hyperplane H and divide Ω into two bodies Ω+ and 
Ω~. Then, we have a central-section theorem: 

Theorem 2.3 The Volumes of the new ellipsoids satisfy the inequality 

f (£(Ω*)) < 0.843Κ(£(Ω)), when * = +or - . 

Thus, one can use the max-volume inscribing ellipsoid as an estimate 
of Ω. These ellipsoids will shrink at a constant rate in the central-section 
method. The volume of £(Ω) is also bounded from below by 7rmrm and 
bounded from above by 7rmiZm. Thus, a solution point must be found in 
0(mlog(Jl/r)) central-section steps. Apparently, to compute j¿e one needs 
to use the structure of the convex body. If the convex body is represented by 
linear inequalities, there is a polynomial complexity bound for computing 
an approximate point of g*. 

Another approach is the original ellipsoid method, which monitors the 
volume of an ellipsoid that contains the solution set. This is based on a 
similar theorem: 
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Theorem 2*4 For every (bounded) convex body Ω C Tlm there exists a 
unique ellipsoid 3?(Ω) of minimal volume containing Ω. Moreover, Ω con-
tains the ellipsoid obtained from Τ?(Ω) by shrinking it from its center by a 
factor ofm. 

Moreover, let ye be the center of an ellipsoid E C Hm- Through its cen-
ters we place a hyj>erplane Äjmd divide E into two bodies (half ellipsoids) 
25+ and E". Let E(E*) and E(E~~) be the new min-volume ellipsoids con-
taining 25+ and 2J~", respectively (Figure 2.3). Then, we have the following 
central-section theorem: 

Theorem 2.5 The Volumes of the new ellipsoids satisfy the inequality 

V(B(E*)) < exp(-.5/(m + 1))V(E), where * = + or - . 

Figure 2.3. Illustration of the min-volume ellipsoid containing a half el-
lipsoid. 

In algebra, let the ellipsoid 

E = {y € Tlm : (y - y')TQ(y - y') < 1}. 

Then, E containing the half ellipsoid {y €E : aTy < aTye} is given by 

Έ = {y € Um : (y - y°)TQ{y -?)< 1}, 

where 

m +1 y/aTQa 
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and 

v m2 - 1 V m + 1 aTQa ) 

Therefore, the new containing ellipsoid can be easily constructed and 
its center can be computed in 0(m2) arithmetic operations. Since the 
volumes of the ellipsoids are bounded from below by 7rmrm and the initial 
one is bounded from above by 7rmJlm, a solution point must be found 
in 0(m2log(R/r)) central-section steps. We see that the ellipsoid method 
does not keep the "knowledge" of the cutting plane after the new containing 
ellipsoid is updated. 

2.2 Analytic Center 

The centers discussed in the preceding section are "universal," meaning 
that they are invariant of the representation of a convex body. A drawback 
of these centers is that they generally cannot be computed cost-effectively. 
For the ellipsoid method, its advantage in not keeping knowledge of the cut-
ting planes is also a disadvantage to practical efficiency for solving certain 
problems, such as linear programs. Thus, another type of center, called 
the analytic center for a convex polyhedron given by linear inequalities, was 
introduced. 

2.2.1 Analytic center 

Let Ω be a bounded poly tope in Tlm represented by n (> m) linear inequal-
ities, i.e., 

n = { y € f c m : c - i l T y > 0 } , 

where A € ftmxn and c € Kn are given and A has rank m. Denote the 
interior of Ω by 

Ω= {y €llm : c - ATy > 0}. 

Given a point in Ω, let a "position" function of y satisfy 

1. d(y, Ω) = 0 if y is on the boundary of Ω; 

2. d(y,(l) > 0 if y is in Ω; 

3. U d < c and let Ω' = {y € Hm : d - ATy > 0} (thereby, Ω' C Ω), 
then d{y,n')<d(y,n). 
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This function is dependent on the analytic representations of Ω, not just 
the set. We may have d(y, ft') < d(y, Ω) even when í l c í l ' geometrically. 
Thus, d(y, Ω) is really a function of point y, and the data A and c as well. 

One choice of the functions is 
n 

where a,j is the jth column of A. Traditionally, we let s := c—ATy and call 
it a slack vector. Thus, the function is the product of all slack variables. 
Its logarithm is called the (dual) potential function, 

β(2/,Ω) := logdd/,Ω) = ¿ l o g ( C i - aT
jV) = ¿ l o g s , · , (2.1) 

and -B(y1 Ω) is the classical logarithmic barrier function. For convenience, 
in what follows we may write β(β,Ω) to replace B(y,il) where s is always 
equal to c — ATy. 

Example 2.1 Let A = (1, -1) and c = (1; 1). Then the set of Ω is the 
interval [-1,1]. Let A' = (1, - 1 , -1) and d = (1; 1; 1). Then the set oftt 
is also the interval [—1,1]. Note that 

d( - l /2 , Ω) = (3/2)(l/2) = 3/4 and ß ( - l / 2 , Ω) = log(3/4), 

and 

d(- l /2 , Ω') = (3/)(l/2)(l/2) = 3/8 and #(-1/2, Ω') = log(3/8). 

The interior point, denoted by ya and sa = c - ATya, in Ω that maxi-
mizes the potential function is called the analytic center of Ω, i.e., 

#(Ω) := B(ya,íl) = maxlog¿(ΐ/,Ω). 
y€to 

(ya,8a) is uniquely defined, since the potential function is strictly concave 
o 

in a bounded convex Ω. Setting VB(y,ft) = 0 and letting xa = (5e)""1e, 
the analytic center (ye, sa) together with xa satisfy the following optimality 
conditions: 

Xs = e 
Ax = 0 (2.2) 

—ATy — s = —c. 
Note that adding or deleting a redundant inequality changes the location 
of the analytic center. 
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Example 2.2 Consider Ω = {y € R : - y < 0, y < 1}, tofttcA is interval 
[0,1]. I%e analytic center is ya = 1/2 ti/üA s a = (2,2)T. 

Consider 

n times 

Ω' = {y € Ä: - y < 0, · · ·, - y < Ö, y < 1}, 

tiz/wcA is, a^atn, interval [0,1] but u-y <0" is copied n times. The analytic 
center for this system is ya = n/(n + 1) with xa = ((n + l)/n, · · ·, (n + 
l)/n, (n + l ) ) r . 

The analytic center can be defined when the interior is empty or equal-
ities are presented, such as 

n = { y € f t m : c - 4 T y > 0 , By = 6}. 

Then the analytic center is chosen on the hyperplane {y : By = 6} to 
maximize the product of the slack variables s = c - ATy. Thus, the interior 
of Ω is not used in the sense that the topological interior for a set is used. 
Rather, it refers to the interior of the positive orthant of slack variables: 
TV± := {s: 8 > 0}. When say Ω has an interior, we mean that 

o 

1V+ Π{θ : s = c - ATy for some y where By = b} φ 0. 

o 

Again ft£:= {a 6 ft+ : * > 0}, i.e., the interior of the orthant %%. Thus, 
if Ω has only a single point y with 8 = c - j4Ty > 0, we still say Ω is not 
empty. 

Example 2.3 Consider the system Ω = {x : Ar = 0, eTa? ~ n, x > 0}, 
U/ÄICÄ t$ coiled Karmarkar's canonical set. / / x = e is in Ω tfcen e is the 
analytic center of Ω, ¿fce intersection of the simplex {x : eTx = n, a? > 0} 
and ¿Äe hyperplane {x: Ax = 0} (Figure 24). 

2.2.2 Dual potential function 
In this section we present some geometry of the dual potential function. We 
may describe Ω = {y € Hm : c - ATy > 0} using only the slack variable 8: 

SQ := {a € Tln : ATy + s = c for some y, « > 0}, 

or 
«So := {* € ftn : 8 - c € #(ΛΤ), s > 0}, 
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Figure 2.4. Illustration of the Karmarkar (simplex) polytope and its an-
alytic center. 

which is the intersection of the affine set 

Aa = {seTln: s-cen(AT)} 

and the positive cone (orthant) fc+. The interior of SQ is denoted by 

Sn—Aanlil. 

Let s be an interior point in SQ. Then consider the ellipsoid 

E, = {tenn: \\s~l{t-8)\\<i}. 

This is a coordinate-aligned ellipsoid centered at 8 and inscribing the posi-
tive orthant W+. The volume of the coordinate-aligned ellipsoid is 

Moreover, we have 
(JE,rUn)C<Sh, 

that is, the intersection of E8 and An is contained in <SQ (Figure 2.5). 
o 

Thus, the potential function value, B(s,Q), at an 8 eSn plus log7rn is 
the logarithmic volume of the coordinate-aligned ellipsoid centered at 8 and 
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AS2 

Figure 2.5. Coordinate-aligned (dual) ellipsoids centered at points 5's on 
the intersection of an affine set A and the positive orthant; they are also 
contained by the positive orthant. 

inscribing 7£+. Therefore, the inscribing coordinate-aligned ellipsoid cen-
tered at the analytic center of «Sh, among all of these inscribing coordinate-
aligned ellipsoids, has the maximal volume. We denote this max-potential 
of SQ by B((l). 

We now argue that the exponential of β(Ω) is an "analytic" measure of 
«So or Ω. 

1. βχρ(β(Ω)) = ΟίίΩ=0; 

o 

2. βχρ(β(Ω)) > 0 if ίΐφ 0, and if Ω contains a full dimensional ball with 
radius r or {y : ATy < c - re} φ 0 (here we assume that ||a.¿|| = 1 
for j = l,2,...,n), then B(Ü) > nlogr; 

3. H d < c and let Ω' = {y € Km : d - ATy > 0} (thereby, Ω' C Ω), 
then β(Ω') < β(Ω). 

Note that the max-potential B(il) is now a function of data A and c. 
Let 8a (or ya) be the analytic center of SQ (or Ω). We now consider the 

ellipsoid 
nEa. = {t € Tln : \\(Sa)-l(t - 8a)\\ < n}, 
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which is enlarged from E8a by a factor of n. The question is whether or 
not this enlarged coordinate-aligned ellipsoid nE8a DAQ contains SQ. The 
answer is "yes" according to the following theorem: 

Theorem 2.6 The analytic center sa € SQ is the center of the unique 
maximal-volume coordinate-aligned ellipsoid E8* inscribing the orthant 7£+. 
Its intersection with AQ is contained by poly tope SQ. Moreover, polytope 
SQ itself is contained by the intersection of AQ and the ellipsoid obtained 
from E8a by enlarging it from its center by a factor n. 

Proof. The uniqueness of the analytic center is resulted from the fact that 
the potential function is strictly concave in the interior of the polytope and 
A has a full row-rank. Let ya be the analytic center and sa = c - ATya, 
then there is xa such that Axa = 0 and Xasa = e. Thus, we have xa > 0 
and cTxa = n. For all s = c - ATy > 0 we have 

\\(Sa)-l(8-sa)\\2 = \\X*s-e\\2 = \\Xas\\2-n < ((xa)Ts)2-n = n2-n < n2. 

This completes the proof. 

D 

2.2.3 Analytic central-section inequalities 

We now develop two central-section inequalities for the analytic center. 
They resemble the results for the previously discussed centers in that they 
show the volume of a polytope containing a solution set can be reduced 
at a geometric rate. First, we study how translating a hyperplane in Ω = 
{y : c- ATy > 0} will affect the max-potential value. More specifically, 
we have the following problem: If one inequality in Ω, say the first one, of 
c-ATy > 0 needs to be translated, change c\ —ajy > 0 to ajya—a'[y > 0; 
i.e., the first inequality is parallelly translated, and it cuts through the 
center ya and divides Ω into two bodies (Figure 2.6). Analytically, c\ is 
replaced by afya and the rest of data are unchanged. 

Let 

Ω+:={!/: a J V - a f 3 / > 0 , c ; - a j y > 0 , ¿ = 2,...,n} 

and let ya be the analytic center of Ω+. Then, the max-potential for the 
new convex polytope Ω+ is 

βχρ(£(Ω+)) = (af y« - aft*) f[(Cj - e^*). 

Regarding 5(Ω) and #(Ω+), we prove the following theorem: 
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Figure 2.6. Translation of a hyperplane. 

Theorem 2.7 Let (I and Ω+ be defined as the above. Then 

2?(Ω+) < Β(ίϊ) - 1, 

or 
βχρ(β(Ω+)) < βχρ(-1)βχρ(£(Ω)), 

where exp(—1) = l/exp(l). 

Proof. Since ya is the analytic center of Ω, there exists xa > 0 such that 

r ( c - / y e ) = e and Axa = 0. (2.3) 

Recall that e is the vector of all ones and Xa designates the diagonal matrix 
of xa. Thus, we have 

sa = (c-ATya) = (Xa)-le and cTxa = n. 

Let Cj = Cj for j = 2,..., n and c\ = af ya, and let sa = δ - .ATye. Then, 
we have 

eTXa8* = e T r ( c - / f ) = 6 T r c 
= cTa?e - xl (ci - af ya) = n - 1 . 

Thus, 

βχρ(0(Ω+)) = Tjf£ 
exp(ß(ß)) 11*9 
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= (IL^V<exp(-l). 
η 

α 

Now suppose we translate the first hyperplane by a /?, 0 < ß < 1, the 
fractional distance to the analytic center, i.e., 

Ω+ := {y : (1 - ß)cx + ßajya - ajy > 0, cá - a]y > 0, j = 2,..., n}. 

If /? = 0, then there is no translation; if ß = 1, then the hyperplane is 
translated through the analytic center as in the above theorem. Regarding 
B{U) and #(Ω+), we have the following inequality: 

Corollary 2.8 

# ( Ω + ) < β ( Ω ) - £ . 

Now suppose we translate k(< n) hyperplanes, say 1,2,..., fc, cutting 
through Ω; i.e., use multiple cuts passing through Ω, and let 

Ω+ := {y : (1 - ßa)ca + fyajy* - ajy > 0, j = 1,..., fc, 

Cj-ajy>0, i = fe + l,. . . ,n}, 

where 0 < /?j < 1, j = 1,2,..., k. Then, we have the following corollary: 

Corollary 2.9 

β(Ω+)<β(Ω)-£/?,, 

This corollary will play an important role in establishing the current best 
complexity result for linear inequality and linear programming problems. 

These corollaries show the shrinking nature of the coordinate-aligned 
ellipsoids after a cut is translated. They enable us to develop an algorithm 
that resembles the central-section method. Recall that the volume of the 
maximal coordinate-aligned ellipsoid contained in the polytope SQ is 

V{E(il)) := V(E,a) = πη · βχρ(β(Ω). 
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U k hyperplanes are translated with 0 < ßj < 1, j = 1,..., jb, 

V(E(U+)) < exp(- ¿ f t ) - V(E(Q)). 
i=i 

Since exp(~ ]C¿=i ßj) < *> the volume shrinks geometrically, establishing 
the linear convergence of central-section methods. 

Again, if a lower bound on the max-potential of the solution set is n log r 
and the max-potential of the initial containing set is n log i?, then a solution 
must be found in 0(nlog(A/r)) central-section steps. Moreover, if we can 
translate multiple inequalities and the max-potential is reduced by 0(y/n) 
at each step, a solution must be found in 0(y/nlog(R/r)) central-section 
steps. 

Hs analytic center 

Figure 2.7. Addition of a new hyperplane. 

In the following, we study the problem when placing additional hyper-
planes through the analytic center of Ω (Figure 2.7). When a hyperplane 
is added, the new convex body is represented by 

Ω+ = {y : c - ATy > 0, al+xy
a - al+xy > 0}. 

Analytically, c is replaced by (c;a£+1ya) and A is replaced by (A, an+i). 
Again, the question is how the max-potential of the new poly tope changes 

compared to that of Ω. Let 

Γ(Ω)! = ^ + 1 ( ^ ( A - « ) 2 ^ ) - i a n + 1 = JaT+dAiS^ATyian+i . 

Then, we have an inequality as follows: 
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Theorem 2.10 

β(Ω+)) < Β(ίϊ) + log(r(íl)i) + 2 log 2 - 1.5. 

Proof. Again, xa and {ya,sa) satisfy condition (2.3). Let 

sa = c-ATya and C u = Cn+i - al+ly
a. (2.4) 

Then, 

K+i = <£+1(v
a-va) 

= αΙ+Μ{ΧαΫΑτ)-ι{Α{ΧαγΑτ)(να -ya) 

= α^+ 1(Λ(Χβ)ΜΓ)- ι .4(Χ-)2(^ν - ^ V ) 
= aX+1(^(X°)Mr)-M(Xe)2(-c + ATya + c - ¿rj/») 

= aT
n+M(.Xa)2ATrlA{X*n3* - (X-r'e) 

= aX+1(^(Xe)2Ar)-1yUf0(A'eäe-e). (2.5) 

Note that we have 

eTXaSa = eTXa(c - ATya) = eTXac = n. (2.6) 

Thus, from (2.5) 

e*p(g(n+)) _ K+i A 8 ? 
«ρ(β(η)ΜΩ)ι Γ(Ω)Χ jLl *? 

r(n), i j ( a w 

= ||Α-*°-β||Π(^β7). (2.7) 
¿=ι 

Let a = Χβ5β. Then, to evaluate (2.7) together with (2.6) we face a 
maximum problem 

maximize f{a) = ||a - e|| Π~—ι a i 
s.t. eTa = n, a > 0. 
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This maximum is achieved, without loss of generality, at ax = ß > 1 and 
a2 = . . . = an = (n - /J)/(n - 1) > 0 (see Exercise 2.4). Hence, 

<- VSíHíT 

n - 1 

- β 1 δ 

To derive the last inequality we have verified that *Λ^(^+£) n + 1 is an 
increasing function of n forn > 2 and its limit is exp(—1.5). This completes 
the proof. 

D 

Note that Γ(Ω)Ι = */aJ[+1(j4(5a)""2j4T)"'1an+i is the square-root of the 
maximal objective value of the problem: 

max al+1(y-ya) s.t. y e {y : \\(Sa)-lAT(y - ya)\\ < 1}. 

This value can be viewed as the distance from the center to the tangent 
plane On+i of the ellipsoid constraint; see Figure 2.8. 

A polytope can always be scaled to fit in a unit ball so that Γ(Ω)Ι < 1 
and log Γ(Ω)Ι + 2 log 2 -1.5 < 0. Thus, the max-potential of the containing 
polytope tends linearly to —oo when appropriate hyperplanes are added. 

In general, if k additional hyperplanes cut through the analytic center, 
i.e., 

Ω+ = {y : c - ATy > 0, (%+&* - al+ly > 0, - · -, a^ky
a - c%+ky > 0}, 

we have Corollary 2.11. 

Corollary 2.11 

β(Ω+) < 5(0) + ¿1Ο 6 (Γ(Ω)<) + (k + 1)log(* + 1) - (* + ^ ) , 

where 
r(tt)i = ^αΤ+.(Α(8°)-*ΑΤ)-ΐαη+ί , < = 1, ...,*. 
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Figure 2.8. Illustration of τ((ϊ)χ: the distance from ya to the tangent 
plane an+1. 

2.3 Primal and Primal-Dual Potential 
Functions 

The analytic center defined in Section 2.2 can be represented in two other 
equivalent ways. One uses a (primal) setting defined below, while the other 
uses both the primal and dual settings. 

FVom the duality theorem, we have a (homogeneous) linear program-
ming problem related to finding a point in Ω = {y : c - ATy > 0}. We call 
it the primal problem: 

minimize cTx 
s.t. Ax = 0, x > 0. 

Then the problem of finding a point in Ω is the dual. 
If Ω is nonempty, then the minimal value of the primal problem is 0; if Ω 

is bounded and has an interior, then the interior of Ah := {x e Kn : Ax — 
0, x > 0} is nonempty and x = 0 is the unique primal minimal solution. 

2.3.1 Primal potential function 

One can define a potential function for XQ as 

n 

V{x, Ω) = n log(cTx) - Σ lQg xi. * e<£n . (2.8) 
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This is the so-called Karmarkar potential function. We now show that this 
quantity represents the logarithmic volume of a coordinate-aligned ellipsoid 
whose intersection with AQ contains «So = 1V+ Π AQ. 

Recall that we are interested in finding a point a € «$n, which is equiv-
o 

alent to finding a point in Ω. Let x €ΛΏ· Then, for all a € SQ we must 
have 

ll*s||2 < (xTs)2 = (cTx)2. (2.9) 
The equality is true since xTs = xT(c — ATy) = cTx — yTAx = cTx. 

Let 8 be the point that minimizes \\Xs\\ subject to s € SQ. Then, 

8 = 8(x) := c - Λτί/(3) where y = y(x) := (AYM7")-1 A*ac. 

Since §TJC2(a - a) = 0 for any β € «Sh, we have, for any s 6 «SQ, 

||*e||a = ||JT(, - 8) + Xsf = ||X (s - S)||2 + \\Xsf, 

or 
\\X(s - S)||2 = ||X*||2 - ||XS||a < ||X*||2 < (c*·*)2. 

Thus, let Ex be the coordinate-aligned ellipsoid 

E, := {se1Zn: \\X(a - S)\\ < cTx) 

that is centered at 5 (Figure 2.9). Then, we must have 

SuC{Exr\Au). 

Furthermore, the volume of Ex is 

ν^ - -ά^χΓ - H J ^ 7 ' ( 2 · 1 0 ) 

where πη is the volume of the unit ball in Kn. Thus, 

p(x,n) = iogV(js;iC)-iog^. 
In the next chapter, we will show that Karmarkar's algorithm actually 

generates sequences {0 < xk EXu) such that 

V(xk+\tt)<V(xk,tt)-.2 

for k = 0,1,2,..., as long as the ellipsoid is still too "fat". In other "words", 
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Figure 2.9. Coordinate-aligned (primal) ellipsoids centered at points S's 
on an affine set A; they also contain the intersection of A and the positive 
orthant. 

That is, the volume of the containing ellipsoids shrinks at a constant rate. 
Note that Exu contains the solution set SQ. Therefore, Karmarkar's algo-
rithm conceptually resembles the ellipsoid method. 

Since the primal potential function represents the volume of a coordinate-
o 

aligned ellipsoid containing «So, let us minimize it over all x €ΛΉ· Note 
that the primal potential function is homogeneous of degree 0 and there is 
an 0 < 8a € 5h, so that we can fix cTx = (sa)Tx = n. Then the problem 
becomes 

minimize V{x, Ω) = n log n — Σ"^ log Xj 
T ° 

s.t. c1 x = n, x €ΛΏ · 
The problem minimizes a strictly convex function over a bounded feasible 
set (cTx = (sa)Tx = n and x > 0 imply that x is bounded). Thus, the 
minimizer is unique and the optimality conditions are 

x E Xn and Xs = X(c - ATy) = e for some 8 € SQ. (2.11) 

One can see that 8 (or y) in (2.11) is in fact the analytic center of SQ 
(or of Ω), since this condition is identical to condition (2.2) for defining the 
analytic center of Ω. Let xa

y called the primal analytic center, satisfy these 
conditions. Then, we have Theorem 2.12. 
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Theorem 2*12 There is a unique minimal-volume coordinate-aligned el-
o 

lipsoid Exa, where xa EXu, whose intersection with AQ contains polytope 
SQ. Moreover, polytope SQ contains the intersection ofAa and the ellipsoid 
obtained from Exa by shrinking it from its center by a factor ofn. In fact, 
the two ellipsoids Ex* and E8· (in Theorem 2.6) are concentric, and they 
can be obtained from each other by enlarging or shrinking with a factor n 
(Figures 2.5 and 2.9). 
Proof. The uniqueness of Exa is already demonstrated earlier. 

To prove Exa and E8* are concentric, we only need to prove that the 
center of Ex* is the analytic center of SQ. Recall that s is the center of Exa 
with 8 = c — ÁFy, where 

y = (A(Xa)2ATrlA(Xa)*c. 

On the other hand, from (2.11) we have 

X f t ( c ^ V ) = e or i e c = e + X M V , 

where ya is the analytic center of ft. Thus 

Xa(c-ATg) 
= Xac-XaAT(A(Xa)2AT)-lA(Xa)2c 
= e + XaATya - XaAT(A{Xa)2ATrlAXa(e + XaATya) 
= e- XaAT(A(Xa)2AT)"lAXae = e. 

Thus, y = ya and s = sa since y also satisfies the optimality condition of 
(2.2) and such a point is unique. 

Since Xasa = e, cTxa = n and 8 = sa, if we shrink Exa by a factor of 
n, the smaller ellipsoid is 

\Ε* = {tenn: IKST^-Olisi) , 
n 

which is exact E8*. 

D 

2.3.2 Primal-dual potential function 
o o 

For x eXn and s eSn consider a primal-dual potential function, which has 
the form 

V>n(x,*) := nlog(xT8)-J2l°S(zj*j) 
= n log (c T * ) - I>g* í -Ek>g*¿ (2.12) 
= 7>(*,fl) - β(β,Ω). 
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This is the logarithmic ratio of the volume of Ex over the volume of EB. 
We also have, from the arithmetic-geometric mean inequality 

ψη(χ,s) = nlog(a?Ts) - ^log(xj8j) > nlogn, 

and from Xasa = e 
ψη(χα,8α) = nlogn. 

Thus, xa and 8a minimizes the primal dual potential function. Furthermore, 
nlogn is the precise logarithmic ratio of the volumes of two concentric 
ellipsoids whose radii are differentiated by a factor n (Figures 2.5 and 2.9). 
This fact further confirms our results in Theorem 2.12. 

2.4 Potential Functions for LP, LCP, and PSP 

The potential functions in Sections 2.2 and 2.3 are used to find the analytic 
center of a polytope. In this section, we show how potential functions can 
be used to solve linear programming problems, linear complementarity, and 
positive semi-definite programming. 

We assume that for a given LP data set (A,b,c), both the primal and 
dual have interior feasible point. We also let z* be the optimal value of the 
standard form (LP) and (LD). Denote the feasible sets of (LP) and (LD) 
by Tv and T&, respectively. Denote by T = Tv x T&, and the interior of T 

by£. 

2.4.1 Primal potential function for LP 

Consider the level set 

Q(z) = {yeUm: c - ATy > 0, -z + bTy > 0}, (2.13) 

where z < z*. Since both (LP) and (LD) have interior feasible point for 
given (i4,6,c), Ω(ζ) is bounded and has an interior for any finite z, even 
Ω := Td is unbounded (Exercise 1.26). Clearly, (l(z) C Ω, and if z^ > z\, 
Ω(^) C il(zi) and the inequality - z + bTy is translated from z = z\ to 
Z = Z2. 

From the duality theorem again, finding a point in fl(z) has a homoge-
neous primal problem 

minimize cTx' — zx'0 

s.t. Ax1 - bx'Q = 0, {χ', χ'ο) > 0. 
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For (X',XQ) satisfying 

Ax1 - bx'0 = 0, (χ',χΌ) > 0 , 

o 
let x := x'/x'0 €Tp, i.e., 

Ac = 6, a; > 0. 

Then, the primal potential function for ίϊ(ζ) (Figure 2.10), as described in 
the preceding section, is 

V(x\ Ω W) = (n + 1) log(crs' - zx'0) - ¿ log*;. 
¿=o 

n 
= (n + 1 ) log(cT3 - z) - ^ l o g x j =: P n +! (a;, z). 

The latter, TVHOE» ¿), is the Karmarkar potential function in the standard 
LP form with a lower bound z for z*. Based on our discussion in Section 
2.3.1, we see that it represents the volume of a coordinate-aligned ellipsoid 
whose intersection with AQ(Z) contains <Sh(*)· 

The objective hyperplane The updated objective hyperplane 

Figure 2.10. Intersections of a dual feasible region and the objective 
hyperplane; bTy > z on the left and bTy > bTya on the right. 

One algorithm for solving (LD) is suggested in Figure 2.10. If the objec-
tive hyperplane is repeatedly translated to the analytic center, the sequence 
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of new analytic centers will converge to an optimal solution and the poten-
tials of the new polytopes will decrease to -oo. This will be discussed in 
more detail in Chapter 4. 

As we illustrated before, one can represent Ü(z) differently: 

p times 
, * s 

fi(z) = {y: c - 4 T y > 0 , - s + 6Ty>0, · · , - * +&T2/>0}, (2.14) 

i.e., u—z + bTy > 0" is copied p times. Geometrically, this representation 
does not change Ω(ζ), but it changes the location of its analytic center. 
Since the last p inequalities in Ω(ζ) are identical, they must share the same 
slack value and the same corresponding primal variable. Let {x\ χ'0) be the 
primal variables. Then the primal problem can be written as 

p times 
/ « s 

minimize ¿Fx1 —zx'0 zx'Q 
p times 

s.t. Ax' -bx'0 bx'Q = 0, (χ', χ'0) > 0. 

o 

Let x = χ'/(ρχ'ο) EFp- Then, the primal potential function for the new 
(l(z) given by (2.14) is 

n 

Ρ(*,Ω(ζ)) = ( n - h ^ l o g ^ V - ^ p ^ - ^ l o g ^ . - ^ l o g ^ 

n 

= (n + p) log(cTs -ζ)-^2loSxj +plogp 

=: Vn+P{x,z)+p log/9. 

The function 
n 

Pn+p{x,z) = (n + p) \og{cTx -ζ)~Σ logs,· (2.15) 

is an extension of the Karmarkar potential function in the standard LP form 
with a lower bound z for z*. It represents the volume of a coordinate-aligned 
ellipsoid whose intersection with AQ(Z) contains «SQ(*)I where u—z + bTy > 
0" is duplicated p times. 
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2.4.2 Dual potential function for LP 

We can also develop a dual potential function, symmetric to the primal, for 

n 

ßn+p(y, 8, z) = (n + p) log(* - bTy) - ] T logsh (2.16) 
¿=i 

where z is a upper bound of z*. One can show that it represents the 
volume of a coordinate-aligned ellipsoid whose intersection with the affine 
set {x : Ax- b} contains the primal level set 

p times 

{x € Tv : cTx - z < 0, · ·, cTs - * < 0}, 

where "cTx - z < 0" is copied p times (Exercise 2.9). For symmetry, we 
may write ßn+p(y,s,z) simply by #n+p(e,£), since we can always recover 
y from s using equation ATy = c - 8. 

2.4.3 Primal-dual potential function for LP 

A primal-dual potential function for linear programming will be used later. 
o o 

For x epp and (y, 8) €Td it is defined by 
n 

ψη+ρ{χ> *) := (Λ + P) log(3Ts) ~ Σ toe(*ia¿)» (2·17) 

where p > 0. 
We have the relation: 

n n 

ψη+ρ (a?, s) = (n + p) log(cTs - 6Tj/) - ] T log a?,· - ] T log «,· 

n 

= Pn+/,(x,6T3/)~53logei 

n 

= Bn+p(8,CTx) - 53 log^ . 

i=i 

Since 

V>n+p(a}s) = plog(sTs) + Ψη(ζι8) > plog(xTa) + nlogn, 
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then, for p > 0, ^n+p(x,s) -> -oo implies that xTa -► 0. More precisely, 
we have 

xr8 < ^ ^ ( » . ^ - » l o g » ) 
~ P 

We have the following theorem: 

Theorem 2.13 Define the level set 

*(<*) := {(*,»,*) €¿: φη+Ρ(χ,8) < δ}. 

i) 

« ( í ' J C ^ Í 2 ) if S^S2. 

ü) 

Φ (*) = {(*,y,e) e J-: Ψη+Ρ{χ,8) < δ}. 

iii) For every t5, Φ(ί) »« ftotináed and its closure Φ(Α) /tas non-empty in-
tersection with the solution set. 

Later we will show that a potential reduction algorithm generates se-
quences {xk,yk,sk} ersuch that 

1>n+^(*k+1,Vk+l,sk+1) < V W A O ^ Í A 8 * ) - -05 

for k = 0,1,2,.... This indicates that the level sets shrink at least a constant 
rate independently of m or n. 

2.4.4 Potential function for LCP 

A potential function can be defined for the linear complementarity problem 
introduced in Section 1.3.7. Let 

T := {(x, a): s = Mx + q, (x, a) > 0} 

o 

have an interior feasible point (x7 a) > 0. Then, for (a?, a) eT consider the 
primal-dual potential function 

n 

ψη+Ρ{χ, s) := (n + p) log(a:Ta) - ^logfoe^), 
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where p > 0. Again, 

φη+ρ(Χ, 8) = p \og(xT8) + ψη(Χι *) > p\og{xT s) + U log U, 

then, for p > 0, VWpfo«) -> -oo implies that the complementarity gap 
xTs -4 0. More precisely, we have 

Λ < e x p ( ^ ^ g ) " n l ° 8 n ) . 
P 

We have the following corollary: 

Corollary 2.14 Let the LCP be monotone and have non-empty interior, 
and define the level set 

9(δ) := {(x,y,s) €>: Vn+/>(*,s) < <*}· 

i) 

9{Sx)c9(fi) if δχ<δ2. 

Φ (δ) = {(a?,y,s) € T : ψη+μ{χ,8) < δ). 

iii) For every δ, Φ(5) is bounded and its closure Φ(5) has non-empty in-
tersection with the solution set. 

We will also show that a potential reduction algorithm generates se-
o 

quences {ar, 8*} €f for the monotone LCP such that 

for fc = 0,1,2, .... 
The potential function definition also applies to the nonlinear comple-

mentarity problem described in Section 1.3.10, where 8 = Mx+q is replaced 
by 8 = f(x). 

2.4.5 Potential function for PSP 

The potential functions for PSP of Section 1.3.8 are analogous to those for 
LP. Fbr given data, we assume that both (PSP) and (PSD) have interior 



2.4. POTENTIAL FUNCTIONS FOR LP, LCP, AND PSP 69 

O O 

feasible points. Then, for any X €TV and (j/, S) €Td, the primal potential 
function is defined by 

Vn+p(X, z) := (n + p) log(C · X - z) - logdet(X), z < z*\ 

the dual potential function is defined by 

Br+p{y,S,z) := (n + p)iog{z - bTy) - logdet(S), z > z\ 

where p > 0 and z* designates the optimal objective value. 
o o 

Por X eFp and (y, S) eTd the primal-dual potential function for PSP 
is defined by 

* * , ( * , S) := (n-f-p)log(X#5)-log(det(X).det(5)) 
= (n + p) log(C · X - fcry) - log det(X) - log det(S) 
= 7>n+p(A:,bTy)-logdet(5) 
= ßn-fP(5,C#X)-logdet(X), 

where p > 0. Note that if X and S are diagonal matrices, these definitions 
reduce to those for LP. 

Note that we still have (Exercise 2.10) 

^n + P(*,S) = plog(X#S) +1>n(X,S) > plog(X ·S) + nlogn. 

Then, for p > 0, ψη+ρ(Χ, S) -4 -oo implies that Χ · 5 -4 0. More precisely, 
we have 

X ^ < e x p ( ^ ^ 5 ) ^ n l Q g n ) . 
~ P 

We also have the following corollary: 

Corollary 2.15 Let (PSP) and (PSD) have non-empty interior and define 
the level set 

»(i) := {(X,y,S) eh 1>n+P{X,S) < δ). 

i) 

*(¿') C *(¿2) if δ1 < δ2. 

ϋ) 

* (δ) = {(X, y,S)€T: ψη+ρ(Χ, S) < δ}. 

iii) For every δ, 9(δ) is bounded and its closure Φ(5) has non-empty in-
tersection with the solution set. 
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2.5 Central Paths of LP, LCP, and PSP 
Many interior-point algorithms find a sequence of feasible points along a 
"central" path that connects the analytic center and the solution set. We 
now present this one of the most important foundations for the development 
of interior-point algorithms. 

2.5.1 Central path for LP 

Consider a linear program in the standard form (LP) and (LD). Assume 
O 0 0 

that Τφ 0, i-e-, both Τνφ 0 and Τάφ 0, and denote z* the optimal objective 
value. 

The central path can be expressed as 

C = { ( * , V , * ) € £ Xs = ^ e \ 

in the primal-dual form. We also see 

C = {folM)€7": ^n(s,s) = nlognj . 

For any μ > 0 one can derive the central path simply by minimizing the 
primal LP with a logarithmic barrier function: 

(P) minimize cTx — μ ]£?=ι log Xj 
s.t. Ax = ft, x > 0. 

o 

Let χ(μ) epp be the (unique) minimizer of (P). Then, for some y € Hm it 
satisfies the optimality conditions 

Xs = μβ 
Ax = b (2.18) 

-ATy — s = — c. 

Consider minimizing the dual LP with the barrier function: 

(D) maximize bTy + μ ]££=ι *°δ 8i 
s.t. ATy + « = c, $ > 0. 

o 

Let (3/(μ),$(μ)) €^d be the (unique) minimizer of (D). Then, for some 
x € Tln it satisfies the optimality conditions (2.18) as well. Thus, both 
minimizers χ(μ) and (ί/(μ), $(μ)) are on the central path with χ(μ)τ8(μ) = 
ημ. 
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Another way to derive the central path is to consider again the dual 
level set (l(z) of (2.13) for any z < z* (Figure 2.11). 

Then, the analytic center (y(z),s(z)) of Ω(ζ) and a unique point 
(x'(z),x'0(z)) satisfies 

Ax'(z) - bx'0{z) = 0, X'{z)s = e, a = c - ATy, and x'0(z)(bTy - z) = 1. 

Let z(z) = a?'(^)/a?ó(z), then we have 

Ax(z) = 6, X(z)s{z) = e/4(z) = (bTy(z) - z)e. 

Thus, the point (x{z),y(z), s(z)) is on the central path with μ = bTy(z) — z 
and cTx(z) — 6Tj/(z) = a:(z)Ta(z) = n(bTy(z) — z) = ημ. As we proved 
earlier in Section 2.4, (x(z),y(z)}s(z)) exists and is uniquely defined, which 
imply the following theorem: 

Theorem 2.16 Let both (LP) and (LD) have interior feasible points for 
the given data set (Ay 6, c). Then for any 0 < μ < oo, the central path point 
(»(μ),2/(μ),β(μ)) exists and is unique. 

The objective hyperplanes 

Figure 2.11. The central path of y(z) in a dual feasible region. 

The following theorem further characterizes the central path and utilizes 
it to solving linear programs. 



72 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES 

Theorem 2.17 Let (χ(μ),α(μ),8(μ)) be on the central path. 

i) The central path point {χ(μ), β(μ)) is bounded for 0 < μ < μ° and any 
given 0 < μ° < oo. 

ii) For 0 < μ' < μ, 

ατχ(μ') < οτχ(μ) and bTy(¿) > bTyfa). 

iii) (χ(μ),β(μ)) converges to an optimal solution pair for (LP) and (LD). 
Moreover, the limit point X(0)P* is the analytic center on the pri-
mal optimal face, and the limit point s(0)z* is the analytic center on 
the dual optimal face, where (P*,Z*) is the strict complementarity 
partition of the index set {1,2, ...,n}. 

Proof. Note that 

(χ(μ°)-χ(μ))τ(8(μ°)-8(μ))=0, 

since (χ(μ°) - χ(μ)) € λί(Α) and (β(μ°) - 8(μ)) € Κ(ΑΤ). This can be 
rewritten as 

¿ (Β(μ%ζ(μ)ί + χ{μ*)Αμ)ί) = η(μ° + μ) < 2ημ°, 

or 

{ [7(μ%+7υ^)^2η-
Thus, χ(μ) and β(μ) are bounded, which proves (i). 

We leave the proof of (ii) as an exercise. 
Since χ(μ) and s(/i) are both bounded, they have at least one limit point 

which we denote by a:(0) and «(0). Let x*p* (x%* = 0) and s%. (aj>· = 0), 
respectively, be the unique analytic centers on the primal and dual optimal 
faces: {xp· : Ap+xp* = b, xp* > 0} and {sz+ : sz· = cz* — A%* y > 
0, cp* - Äp+y = 0}. Again, we have 

or 

Σ (eJx0*)¿ + *j*(f»)i) = »Λ 
i 

i€P* x ^ / j / jez* 
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Thus, we have 
Χ(μ)ΐ > Xj/n > 0, j € P* 

and 
*(/*),· > a*j/n > 0, j 6 Z*. 

This implies that 
χ(μ)ί -^ o, i e z* 

and 
•(/*)¿ -* 0, j € P*. 

Furthermore, 

or 

ίπ-ί)ίπ-ί)^ίπ^)ίπ·^)· 
\ά£Ρ· ) Vez* / \i6P* / Vez* / 

However, (Il¿ep* ^¿ΧΠ^ζ· *J) *s ^ e maximal value of the potential func-
tion over all interior point pairs on the optimal faces, and x(0)p* and s(0)z* 
is one interior point pair on the optimal face. Thus, we must have 

(π^)(π^«(π^)(π·<ο>')· 
y€P* / \¿€Z* / \j€P* J \j€Z* ) 

Therefore, 
X(0)P* = x*p* and s(0)z* = 8*Z., 

since xj,* and $£♦ are the unique maximizer pair of the potential function. 
This also implies that the limit point of the central path is unique. 

D 
We usually define a neighborhood of the central path as 

M(*l) = h*,Vf*)£& \\Χβ-μβ\\<ημ and μ = ^ 1 , 

where ||.|| can be any norm, or even a one-sided "norm" as 

IWI-oo = |min(0,min(a;))|. 

We have the following theorem: 



74 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES 

Theorem 2.18 Let (x,y, s) 6 λί(η) for constant 0 < η < 1. 

i) The Λί(η) O {(a?, y, β) : χτ8 < ημ0} is bounded for any given μ° < oo. 

ii) Any limit point of λί(η) as μ -► 0 is an optimal solution pair for (LP) 
and (LD). Moreover, for any j € P* 

where x* is any optimal primal solution; for any j € Z* 

83 - n ' 
where 8* is any optimal dual solution. 

2.5.2 Central path for LCP 
O 

Consider the monotone LCP in Section 1.3.7 where Τφ 0. The central path 
can be expressed as 

C = {{x}s) €T: Χβ = μβ, 0 < μ < oo j . 

We have the following corollary: 

Corollary 2.19 Let the monotone LCP have interior feasible points. Then 
for any 0 < μ < oo, the central path point (ζ(μ), 8(μ)) exists and is unique. 
Moreover, 

i) The central pair (χ(μ), 8(μ)) is bounded where 0 < μ < μ° for any given 
0 < μ° < oo. 

ii) (χ(μ), 8(μ)) converges to an optimal solution of (LCP), and the limit 
point is a maximal complementarity solution. 

The central path definition and the corollary also apply to the monotone 
complementarity problem described in Section 1.3.10, where a = Mx + g is 
replaced by s = f(x) and /(·) is a monotone function. 

2.5.3 Central path for PSP 
o 

Consider a PSP problem in Section 1.3.8 and Assume that Τφ 0, i.e., both 
o o 

Τρφ 0 and ΤάΦ 0· The central path can be expressed as 
C = {(X,y,5) eh XS = μΐ, 0 < μ < oo} , 
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or a symmetric form 

C = {(X,y,5) eh X'BSX* = μΐ, 0 < μ < oo}, 

where ΧΛ € Λ4£ is the "square root" matrix of X € M%, i.e., A" δΧ 5 = X. 
We also see 

C = {{X,y,S) e£: tl>n(X,S) = nlogn} . 

When X and S are diagonal matrices, this definition is identical to LP. 
We also have the following corollary: 

Corollary 2.20 Let both (PSP) and (PSD) have interior feasible points. 
Then for any 0 < μ < oo, the central path point (Χ(μ),2/(μ),5(μ)) exists 
and is unique. Moreover, 

i) the central path point (Χ(μ),3(μ)) is bounded where 0 < μ < μ° for any 
given 0 < μ° < oo. 

ii) For 0 < μ1 < μ, 

0·Χ(μ')<σ·Χ(μ) and bTy{¿) > bTy&). 

iii) (Χ(μ), 5(μ)) converges to an optimal solution pair for (PSP) and (PSD), 
and the rank of the limit of Χ(μ) is maximal among all optimal solu-
tions of (PSP) and the rank of the limit 5(μ) is maximal among all 
optimal solutions of (PSD). 

2.6 Notes 
General convex problems, such as membership, separation, validity, and 
optimization, can be solved by the central-section method; see Grötschel, 
Lovász and Schryver [170]. 

Levin [244] and Newman [318] considered the center of gravity of a con-
vex body; Elzinga and Moore [110] considered the center of the max-volume 
sphere contained in a convex body. A number of Russian mathematicians 
(for example, Tarasov, Khachiyan and Érlikh [403]) considered the center 
of the max-volume ellipsoid inscribing the body; Huard and Lieu [190,191] 
considered a generic center in the body that maximizes a distance func-
tion; and Vaidya [438] considered the volumetric center, the maximizer of 
the determinant of the Hessian matrix of the logarithmic barrier function. 
See Kaiser, Morin and Trafalis [210] for a complete survey. 

Grünbaum [172] first proved Theorem 2.1, with a more geometric proof 
given by Mityagin [286]. Dyer and FVieze [104] proved that computing the 
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volume of a convex polytope, either given as a list of facets or vertices, is 
itself #P-Hard. Furthermore, Elekes [109] has shown that no polynomial 
time algorithm can compute the volume of a convex body with less than 
exponential relative error. Bárány and Fiirendi [42] further showed that 
for Ω € 7lm, any polynomial time algorithm ̂ hat gives an upper and lower 
bound on the volume of Ω, represented as V((l) and 3£(Ω), respectively, 
necessarily has an exponential gap between them. They showed 

^(n)/Z(n)>(cm/logm)m
> 

where c is a constant independent of m. In_other words, there is no poly-
nomial time algorithm that would compute V(il) and ]£(Ω) such that 

νχΩ)/Ζ(Ω) < (cm/ log m)m. 

Recently, Dyer, Rrieze and Kannan [105] developed a random polynomial 
time algorithm that can, with high probability, find a good estimate for the 
volume of Ω. 

Apparently, the result that every convex body contains a unique ellip-
soid of maximal volume and is contained in a unique ellipsoid of minimal 
volume, was discovered independently by several mathematicians—see, for 
example, Danzer, Grunbaum and Klee [94]. These authors attributed the 
first proof to K. Löwner. John [208] later proved Theorem 2.2. 

ikrasov, Khachiyan, and Érlikh [403] proved the central-section Theo-
rem 2.3. Khachiyan and Todd [222] established a polynomial complexity 
bound for computing an approximate point of the center of the maximal 
inscribing ellipsoid if the convex body is represented by linear inequalities, 
Theorem 2.5 was proved by Shor [380] and Nemirovskii and Yudin [321]. 

The "analytic center" for a convex polyhedron given by linear inequal-
ities was introduced by Huard [190], and later by Sonnevend [383]. The 
function d(y, Ω) is very similar to Huard's generic distance function, with 
one exception, where property (3) there was stated as "If Ω' C Ω, then 
d(í/> Ω') < d(y> ft)·" The reason for the difference is that the distance func-
tion may return different values even if we have the same polytope but two 
different representations. The negative logarithmic function dd/,Ω), called 
the barrier function, was introduced by FHsch [126]. Theorem 2.6 was first 
proved by Sonnevend [383], also see Karmarkar [217] for a canonical form. 

Todd [405] and Ye [465] showed that Karmarkar's potential function 
represents the logarithmic volume of a coordinate-aligned ellipsoid who con-
tains the feasible region. The Karmarkar potential function in the standard 
form (LP) with a lower bound z for z* was seen in Todd and Burrell [413], 
Anstreicher [24], Gay [133], and Ye and Kojima [477]. The primal potential 
function with p > 1 was proposed by Gonzaga [160], Rreund [123], and Ye 
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[466, 468]. The primal-dual potential function was proposed by Tanabe 
[400], and Ibdd and Ye [415]. Potential functions for LCP and PSP were 
studied by Kojima et al. [230, 228], Alizadeh [9], and Nesterov and Ne-
mirovskii [327]. Noma [333] proved Theorem 2.13 for the monotone LCP 
including LP. 

McLinden [267] earlier, then Bayer and Lagarias [45,46], Megiddo [271], 
and Sonnevend [383], analyzed the central path for linear programming 
and convex optimization. Megiddo [271] derived the central path simply 
minimizing the primal with a logarithmic barrier function as in Fiacco and 
McCormick [116]. The central path for LCP, with more general matrix M, 
was given by Kojima et al. [227] and Güler [174]; the central path theory 
for PSP was first developed by Nesterov and Nemirovskii [327]. McLinden 
[267] proved Theorem 2.17 for the monotone LCP, which includes LP. 

2.7 Exercises 
2.1 Find the min-volume ellipsoid containing a half of the unit ball {x 6 

K* : \\x\\ < 1}. 

2.2 Verify Examples 2.1, 2.2, and 2.3. 

2.3 Compare and contrast the center of gravity of a polytope and its ana-
lytic center. 

2.4 Consider the maximum problem 

maximize f(x) = \\x - e|| Π£=ι xj 
s.t. eTx = n} x>0e Tln. 

Prove that its maximizer is achieved at x\ = β and x^ = . . . = xn = 
(n - β)/(η - 1) > 0 for some 1<β<η. 

2.5 Let Q= {yenm: c-ATy > 0} φ 0, Ω'= {y 6 Tlm : d -ATy > 0} φ 
0, and c' < c. Prove B(Ü') < β(Ω). 

2.6 Prove Corollaries 2.8 and 2.9. 

2.7 Prove Corollary 2.11. 

2.8 If Ω = {y : c—ATy > 0} is nonempty, prove the minimal value of the 
primal problem described at the beginning of Section 2. Sis 0; if (I is bounded 
and has an interior, prove the interior of Χςχ := {x € %n : Ax = 0, x > 0} 
is nonempty and x = 0 is the unique primal solution. 
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2.9 Let (LP) and (LD) have interior. Prove the dual potential function 
¿?n+i(l/>e>¿)* where z is a upper bound of z*, represents the volume of a 
coordinate-aligned ellipsoid whose intersection with the affine set {x: Ax = 
b} contains the primed level set {x € Tv : cTx < z}. 

2.10 Let XjS e Mn be both positive definite. Then prove 

ψη(Χ,S) = nlog(X · S) - log(det(X) · det(5)) > nlogn. 

2.11 Consider linear programming and the level set 

*(*) := {(*>y,*) €>: Ψη+Ρ(χ,8) < δ}. 

Prove that 
*(δι) C *(á2) if δ1 < ¿2, 

and for every δ 9(δ) is bounded and its closure 9(6) has non-empty inter-
section with the solution set 

2.12 Consider the linear program 

max bTy s.t. 0 < j/i < 1, 0 < jfc < 1. 

Draw the feasible region the the (dual) potential level sets 

{y : #6(2/,*,2) < 0} and {y : B5(y,*,2) < -10}, 

respectively, for 

1- 6=(1;0); 

2. 6=( l ; l ) / 2 ; 

3. 6=(2;l) /3. 

2.13 Consider the polytope 

{yeTl2: 0 < yu 0 < y2 < 1, y\ + ya < *}· 

Describe how the analytic center changes as z decreases from 10 to 1. 

2.14 Consider the linear program 

max bTy s.t. 0 < yx < 1, 0 < y2 < 1. 

•Draw the feasible region, central path, and solution set for 
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1. δ=(1;0); 

2. 6 = ( l ; l ) / 2 ; 

3. δ=(2;1)/3. 

Finally, sketch a neighborhood for the third central path. 

2.15 Prove (ii) of Theorem 2.17. 

2.16 Prove Theorem 2.18. 



Chapter 3 

Computation of Analytic 
Center 

As we mentioned in the preceding chapter, a favorable property of the 
analytic center is that it is relatively easy to compute. In this chapter, 
we discuss how to compute the analytic center using the dual, primal, and 
primal-dual algorithms in three situations: 1) from an approximate analytic 
center, 2) from an interior-point, and 3) from an exterior point. 

3.1 Proximity to Analytic Center 

Before we introduce numerical procedures to compute it, we need to discuss 
how to measure proximity to the analytic center. Recall that Ω (or SQ) is 
a bounded polytope in %m (or Tln) defined by n (> m) linear inequalities, 
i.e., 

Π = { » 6 Γ : s = c-ATy>0} 

or 
SQ = {s e Kn : s = c - ATy > 0 for some ¡/}. 

o 

For a point y €17, the potential function of Ω is given by (2.1), simply 
written by B(y) in this section. Ideally, a measure of closeness of y € Ω to 
the analytic center ya would be 

B(y*) - B(y) = (maxB(y)) - B(y). 

The problem is that we have no knowledge of ya or B(ya). 

81 

Interior Point Algorithms: Theory and Analysis 
by Yinyu Ye 

Copyright © 1997 John Wiley & Sons, Inc. 



82 CHAPTER 3. COMPUTATION OF ANALYTIC CENTER 

Since ya is the maximizer of B{y), a measure would be the residual of 
the optimality condition (2.2) at y, which can be rewritten as 

Vß(y) = AS~le = 0. 

Note that the negative Hessian 

-V2B(y) = AS-2AT, 

is a positive definite matrix for any s > 0. Therefore, for one measure of 
the proximity, we consider the (-V2ß(j/)_1)-norm of the gradient vector 
Vß(y) 

»fcW3 := \WB(v)\\lv,B(v)-i 
= \\AS e\lAs-aAr)-i f o i x 
= eTS-lA^(AS~2AT)-lAS-1e {ό ' 
= I I P O O I I 2 , 

where 
p(s) := S-*Ar(AS-*AT)-*VB(y) 

= ~5-MT(i45-MT)-M5"1e. ^¿) 

The vector p(«) can be viewed the normalized gradient vector of B at s = 
c — -ATy. It can also be viewed the scaled Newton direction; see Section 
3.2.1 below. 

Setting 

x(s) = S^il - S-lÄr{AS'2ÄrylAS'l)e, (3.3) 

we have 
Ax(a) = 0, 

p(s) = Sx(s) - e and ty¿(e) = ||Sa;(s) - e||. 

If %(e) = 0, then Vß{y) = 0, y = ya, a = «a, and also a(s) == a;a which 
minimizes the primal (homogeneous) potential function V(x, Ω) of (2.8) for 

o 

x €ΛΏ· 
Denote V(xy Ω) simply by P{x) in this section, i.e., 

n 
V(x) = nlog(cTa:) - y^logSj·. 

¿=i 

As we discussed earlier, this quantity represents the logarithmic volume of 
a coordinate-aligned ellipsoid that contains «So, and the minimization of 
the potential function results in the analytic centers of Ω or SQ. 
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Another measure is to use the norm of a scaled gradient projection of 
the primal potential function. Note that V{x) is homogeneous of degree 0 
so that we may fix cTx = n. Then 

VV{x) = -2-c - X~le = c - X~le. 
C1 X 

The scaled gradient projection of X(c - X~le) onto the null space of AX 
becomes 

p{x) := (I^XAT{AX2AT)'lAX)X{c-X^le) 
= (/ - XAT{AX2AT)-lAX)(Xc - e). 

In general (including the case cTx φ n), we let 

p(x) := (/ - XAT(AX2ATylAX)(Xc - e) (3.4) 

and 

^ (x) 2 := ||p(x)||2 

= (Xc - e)T(I - XAT(AX2AT)-1AX)(Xc - e). 
(3.5) 

p(x) can be viewed the scaled Newton direction as well; see Section 3.3.1 
below. 

Let 

y(x) = {AX2AT)-lAX{Xc-é) = {AX2AT)-lAX2c ( . 
8{x) = c-ATy(x). V*} 

(Recall that $ = s(x) is the center of the containing ellipsoid Ex discussed 
in Section 2.3.1.) Then, we have 

p{x) s= Xa{x) - e and ηρ{χ) = ||-X"s(a:) - e||. 

Clearly, if ηρ(χ) = 0, # = s e and y(x) = ya, and s(x) = $a. 
The third measure is to use both the primal and dual. For an z € ΛΌ 

and a j / € f i o r s = c - ATy € «So, the measure would be defined as 

ΐ | ( χ , · ) ^ | | Λ - β | | = | |Χ · -β | | . (3.7) 

Again, if η(χ, í ) = 0 , a i = a:e,j/ = ya, s = 5a, and ^n{x,s) = nlogn, where 
recall the primal-dual potential function 

n 

ψη{χ, s) = nlog(xTa) - ]Tlog(a;;^). 
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Theorem 3.2 below proves the "equivalence" of these measures and oth-
ers. The upshot is that if one measure of proximity is near 0, they are all 
near 0 and an approximate analytic center can be found using any of them. 
Therefore, we may use whichever measure suits our needs. 

We first present a lemma whose proof is Exercise 3.1. 

Lemma 3.1 IfdeKn such that ||d||oo < 1 then 

erd>_±Hll + <h)>_crd__m_, 

We present the following theorem to equalize these measures. 

Theorem 3.2 Let (y,*) be an interior point and {ya,8a) be the analytic 
center ofil orSa, and let x be an interior point ofXn and xa be the primal 
potential minimizer with cTxa = n. 

i) 

Vd(s) <v(x,s) 

and 
ηρ(χ)<η(χ,8). 

O 

Conversely, t/f/d($) < 1 then there is an x(s) EXa such that 

0 

and %ίην{χ) < 1 then there is a s(x) eSa such that 

η{χ,8(χ))<ηρ(χ). 

ii) Ι/η(χ,8) < 1, then there is a x > 0 with Ax = 0 and cTx = 8Tx = n 
such that 

Ί-η{χ,8)2Ιη 

iii) // η(χ, s) < 1 with cTx — n, then 

Φ,β)2 

Ψη(χ,8)-·ψη{χα,8α)< 

V{x) - V(xa) < 

2(1-η(χ,8)) ' 

Φ,*)2 

and 

B(va)-B(y)< 

2(1-*(*, ·)) ' 

η{*,»)2 

2(1-η{χ,β)) ■ 
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iv) Ιίη(χ,8) < 1, then 

and 

ll*-'»*-e||< / ( f ; Í V 
Proof, i) Given « > 0 w e can verify that tyf(*) is the minimal value and 
x(s) is the minimizer of the least-squares problem 

minimize \\Sx - e|| 
s.t. Ax = 0. 

Since x in η(χ, a) is a feasible point for this problem, we must have 

Vd(s) = rtx(s),s) <η{χ,β). 

Conversely, setting x = x(s) will do it. 
Similarly, given x > 0 we can verify that ηρ(χ) is the minimal value and 

(y(x),s(x)) is the minimizer of the least-squares problem 

minimize \\Xs — e|| 
s.t. s = c — i4Ty. 

Since (j/,«) in T/(:C, S) is any point for this problem, we must have 

ηρ(χ) = η{χ13(χ))<η{χ18). 

Conversely, setting y = y(x) and s = s(a:) will do it. 

ii) Let x = (n/aj(*)T*)s(a) and r;(f, s) = ||5f - e||. Then 

Ax = 0 and cT£ = sTf = n. 

Furthermore, 

Vd(sf = ||S*(*)-e||2 

- \\Sx(s) - (x(s)Ts/n)e + (x(s)Ts/n)e - e||2 

= \\Sx{8) - (*(5)τ*/η)β||2 + \\(χ(8)
τ8/η)β - e||2 

= \\Sx - e\\2(x(8)
Te/n)2 + (1 - x(e)T*/n)2n 

= 17(3, 8)2(x(8)T
8/n)2 + (1 - x(8)T8/n)2n. 

Thus, we have 

{x(»)Te/nf(n[B, e)2 + n) - 2(x(e)T*/«)n + n - ^(s)2 = 0. 



86 CHAPTER 3. COMPUTATION OF ANALYTIC CENTER 

Consider this relation as a quadratic equation with variable x(s)Ts/n. Since 
it has a real root, we have 

in2 - 4(r/(á,s)2 + n)(n - %(*)2) > 0 

or 

n - ηά\*Γ 
which gives the desired result. 

iii) Let η = η(χ, s) < 1. Prom Lemma 3.1 and cTx = sTx = n, 

Denote by xa and j / a ($a = c - -ATy°) the center pair of Ω. Noting that 
Xa8a = e, we have 

V»„(x,β)-V'n(í^ββ) = έ l o g ( ^ ) - ¿ l o g ( x , · * i ) < - ^ - τ - (3.8) 

The left-hand side of (3.8) can be written as 

¿Jog J B J -¿ lo g a ! i +¿ log*y -¿ Io g . i = í>(*)-7>(**)+5(»e)-B(y). 
j=l j = l j = l j = l 

Since ya maximizes B(y) over the interior of Ω and xa minimizes V{x) over 
the interior of X, we have 

B(ya)-B(v)>o 

and 
V{x) - P(se) > 0. 

Thus, we have the desired result. 
iv) Prom (i), %(*) < η{χ,8). Let j/° = y, *° = s, and the sequence 

{y*>**} be generated by the dual Newton procedure (3.9) in the next sec-
tion. Then, using the result of Theorem 3.3 we show by induction that 

\\{8«)-ι8*-β\\<Σηά{8γ. 

Obviously, this relation is true for k = 1 by the definition of 7jd(s°) = *?d(s). 
Now assuming it is true for fc. Since we have 

8k+1=8k-Sk(Skx(8k)-e)1 



3.2. DUAL ALGORITHMS 87 

IKSW""-**)!! = \\(S°rlSk{Skx(8k)-e)\\ 
< ||(5°)-15*||||(5*x(5fc)-e) 

< [l + 2T\ä(sy\\\(Skx(sk)-e)\\ 
2 * - l \ 

2fc-X \ 2 " - l 
2» 

Thus, 

, | ( 5 o r i e f c + i _ e | | < 11(50)-!,* _ e(| + ||(Js°)-i(s*+i _ e*)|| 

^2*-1 2*-l \ / 2 * - l \ 

Σ »w + Σ wW ̂ *)2 

2 f c + 1 - l 

= Σ «W-
Similarly, we can prove the primal result using the primal Newton procedure 
3.13 and Theorem 3.8 below. 

3.2 Dual Algorithms 
In this section we consider dual algorithms in which we need only a dual 
initial point y € 7lm. These algorithms will primarily update dual solutions 
that converge to the analytic center of 0; primal solutions will come as by-
products. Each solution is generated by solving a system of linear equations. 
Thus, the problem of computing the analytic center is solved by separating 
it into a sequence of simple problems. 

3.2.1 Dual Newton procedure 
Given y € Ω, we call it an η-approximate (analytic) center if %($) < η < 1. 
The dual Newton procedure would start from such a (j/, s) and any x with 
Ax = 0 (e.g., x = 0). 



88 CHAPTER 3. COMPUTATION OF ANALYTIC CENTER 

Rewrite the system of equations (2.2) as 

x-S~le = 0 
Ax = 0 

-ATy-8 + c = 0, 

and apply the Newton step: 

dx+S~2d, = -x + S~le 
Adx = 0 

-ATdy-da = 0. 

Multiplying A to the top equation and noting Ax = 0 and Adx = 0, we 
have 

AS~2d, = AS~xe, 
which together with the third equation give 

dy = -{AS-2ATylAS-le and dB^AT{AS'%ATYlAS'le. (3.9) 

(Thus, to compute (dy,d8) we don't need any x.) Finally, we update (y, s) 
to 

2/+:=í/ + dy and 5 + : = e + d,. 

Note that from (3.2) and (3.3) 

dB = -Sp(s) = -S(Sx(8) - e). 

We can estimate the effectiveness of the procedure via the following 
theorem. 

Theorem 3.3 Let (y,s) be an interior point and *?<*(*) < 1. Then, 

s+ > 0 and %(*+) < */d(*)2. 

Proof. Note that from the proof of (i) of Theorem 3.2 

ηΛ(β+) = ||5+x(*+) - e|| < ||S+*(*) - e||, 

where x(s) > 0. But 

\\S+x(*)-e\\2 = ||(25 -S2x(s))x(a)-ef 

= ¿(·ί«(·)ί-1)4 

< (¿O^OOj-i)2)2 

= l|S*(*)-e||4 

= 77.1(a)4 < 1 . D 
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Therefore, the dual Newton procedure, once a (y,s) satisfies 7/d(«) < 
η < 1, will generate a sequence {yk} that converges to ya quadratically. 
The next question is how to generate an r/-approximate center with η < 1. 

3.2.2 Dual potential algorithm 

Let y be any interior point in Ω. Let us apply the Newton procedure with 
a controlled step-size: 

where constant 0 < a < 1. Observe that if a = τ/«ι(β) = ||p(*)|| of (3.2), 
this reduces to the Newton procedure. In general, r/d(s) > 1, which implies 
the step size α/ι^ (θ) < 1. 

Let 
dy = ?L-(AS-2ATrlAS-le 

and 
d8 = -ATdy, 

which is the maximizer of the ball-constrained linear problem with a radius 
a: 

maximize VB(¡/)Td„ 
s.t. <(-V 2 ß(j / ) )d y <a 2 , 

or 
maximize —eTS~1Ärdy 

s.t. <%AS-2ATdv < a2. 
Note that 

s+ = a + d. = a - ATdy = 5(e - S~lATdy). 

Thus we must have e+ > 0, since ||S_1d,|| = ||5-ΜΓ<ίν|| < α < 1, i.e., 
(j/+,s+) remains in the interior of Ω. 

Recall from (3.2) and (3.1) 

p(s) = -S-1AT(AS~2AT)-lAS-1e = Sx(s) - e. 

Then, 

d. = - A ' d , = -^Sp(s), 

and 
β Γ 5 - ^ . = α | | ρ ( β ) | | 3 . 
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Furthermore, *+ = 8 + d8 = a - aSp(*)/||p(s)|| = S(e - ap(8)/||p(s)||), i.e., 
HS""1«* - e|| = a. Thus, from Lemma 3.1 we have 

<%♦)-<%) > ^- ( . - - . ) - 2 ( 1 !y : ; , : : ' ! ; I U ) 

> «IIPWII- 2 ( 5 ^ ) · («<>) 

Hence as long as ||p(s)|| > 3/4 we have 

ß ( y + ) - * % ) > * , 

where constant 

Note that if a = 1/3 then δ > 1/6. In other words, the potential function 
is increased by a constant. Note that the potential function is bounded 
above by the max-potential B(ya). Thus, in a finite time we must have 
Vd(s) = ||p(e)|| < 3/4 < 1, which implies that the quadratic-convergence 
condition is satisfied or y is an 3/4-approximate center. 

Theorem 3.4 The number of total iterations of the dual potential algo-
rithm to generate an approximate analytic center of ya of Ω, starting from 

y eílf is bounded by 0(B(ya) - B(y)). 

Recall that B(y) represents the logarithmic volume of the coordinate-
aligned ellipsoid centered at s € SQ and inscribing ft". Thus, the dual 
potential algorithm generates a sequence of ellipsoids whose volumes in-
creases at a constant rate; see Figure 3.1. 

3.2.3 Central-section algorithm 
The next question is how to compute the analytic center if an interior point 
y is not known. This can be done with a central-section method. Consider 
the following set: 

il(c) = {y e Tlm i ATy < c}. 

Obviously, il(c) = Ω, whose interior is assumed nonempty and bounded. 
o 

Then, for any given c>c,U (c) is also nonempty and bounded. Moreover, 
y = 0 is an interior point in (1(c) if c > 0. Let us choose c° such that c° > e 
and (P >c. Then from the result in the preceding section we will generate 
an approximate center for Ω° := Ω(ο°) in 0(Β(Ω°) - #(0, Ω0)) iterations. 
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Figure 3*1. Dlustration of the dual potential algorithm; it generates a 
sequence of contained coordinate-aligned ellipsoids whose volumes increase. 

Let y° be an approximate center for Ω0. Erom now on, we will generate a 
sequence of {c*} and {y*}, where c < c*+1 < c* and yk is an approximate 
center for Ω* := Q(c*). Moreover, 

# (Ω)<β(Ω* + 1 )<β(Ω*) -5 , 

where δ is a positive constant, until c*+1 = c. This process terminates with 
y*+1 as an approximate center for Ω = Ω(ο). 

We first describe a conceptual central-section algorithm. 

Algorithm 3.1 (Conceptual Algorithm) Let (y°, s°) be the analytic 
center of Ω0 = Cl(<P) and let β be a constant in (0,1). Set k := 0. 

While <*φα do; 

1. Translating Inequality: Find % such that c$> c% and update 

c*+l = max{ci,ß(c* - ajyk) + afyk} = maxfc, £*? + ajyk), 

ή*1 = c) for j φ i. 

Then, from the central-section theorem in the preceding chapter, we 
have either 

#(Ω* + 1 )<β(Ω*)- (1- /? ) if <$+1>CÍ; (3.11) 
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or 
β(Ω*+1) < B(ñk) if ή+ι=α. (3.12) 

Note that the latter case can happen only n times. 

2. Updating Center: Compute the center ¡/*+1 ο/Ω*+1, using Newton's 
method from yk which is an approximate center of Ω*+1. 

3. Letk:=k + 1 and return to Step 1. 

Clearly, the central-section algorithm will stop after 0(β(Ω0)—#(Ω))+η 
iterations. If 

B(il°)<nlogR and B(Ü)>nlogr, 

then, 0(nlog(A/r)) + n iterations suffice. 
Numerically, we will never be able to compute the exact analytic center. 

We must use approximate centers instead of perfect centers in the central-
section algorithm. We discuss this issue now. 

Algorithm 3.2 (Using Approximate Centers) Let {y°ys°) be an ap-
proximate analytic center of Ω0 = Ω(β°), wiíh ηά(*°) < η < 1$ and let β be 
a constant in (0,1) such that η + (1 - β)(ϊ + η) < 1. Set k := 0. 

While ck¿c do; 

1. Translating Inequality: Find i such that <$ > Ci and update 

ck
i+

l=max{ci,ß8t+ajyk}} 

ή+ι=ή for j*i. 

2. Updating Approximate Center: Compute an approximate analytic cen-
ter yk+1 ofilk+1 so that %(s*+1) < η, using one of the Newton pro-
cedures in Theorem 3.2 starting from yk, which is an approximate 
center of Ω*+1. 

3. Let k := k + 1 and return to Step 1. 

To show that yk is an approximate center of Ω*+1, we prove the following 
Lemma: 

Lemma 3.5 There exists a point x+ > 0 such that 

Az+=0 and ||X+*+ - e|| < η + (1 -/?)(1 4-17) < 1, 

where s+ = c*+1 - ATyk. 
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Proof. Let x+ = x(sk) > 0 with e* = c* - ATyk. Then, 

Ax+ = Ax{sk) = 0 

and 
\\χ++-4\ = η*(+)<η. 

Note that s+ = sj for j φ i and s![ >sf > /?*£. Thus, 

| |X+s+-e | | = | | * V - e + J T ^ + - X V | | 
< ||X+s* - e|| + ||X+s+ - X+s*|| 
< \\X+sk-e\\ + \zts*(ß-l)\ 
< η + (1- /?)( !+, , ) . 

α 

Lemma 3.5 shows that, after an inequality is translated, yk is still in the 
"quadratic convergence" region of the center of Ω*+1, because we choose 
η + (1 — β)(1 + η) < 1. Thus, a closer approximate center, j / f c + 1 with 
ηά(***1) < *7 for Ω*+1, can be updated from yk in a constant number of 
Newton's steps. We now verify that the potential function is still reduced 
by a constant for a small η after a translation. 

Lemma 3.6 Let (yk,sk) be an approximate center for Ω* with */d(s*) < η 
and let Ω*+1 be defined above. Then, if c*+1 > c¿ in the update 

#(Ω*+1) < B{ílk) - δ for a constant δ > 0; 

otherwise ck+l = c¿ and 

β(Ω*+1) < β(Ω*). 

ΓΛβ latter case can happen only n times. 

Proof. The proof of the first case is similar to Theorem 2.7 of Chapter 2. 
Let (ya,sa) and (l/+,si) be the centers of Ω* and Ω*+1, respectively. Note 
that A(Sa)~le = 0, (c*)T(5·)-^ = (ea)T(5tt)~1e = n, and 

s% = ck+*-ATy% 

where 
c* + 1 =c j , i ^ t and c * + 1 = c * - ( l - £ ) * * * 

Note that we still have 

eT(S")-18l = er(5a)-1c*+ 1 = n - (1 - /?)(*?/«?) < n - (1 - 0)(1 - „). 
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The last inequality is due to (v) of Theorem 3.2. Therefore, 

«ρ(Β(Ω»»)) Λ ( 4 ) j 
βχρ(Β(Ω*)) 11 a} 

< ( η - ( 1 - ^ ) ( 1 - ι ? ) ) η 

< exp(-( l - /?)( l -»?)). 

The proof of the latter case is straightforward. 

From the lemma, we can conclude that 

D 

Theorem 3.7 ίηΟ(β(Ω°)-β(Ω))+η central-section steps, the algorithm 
will generate an approximate analytic center for Ω. 

3.3 Primal Algorithms 
In this section we consider primal algorithms, in which we need only a 
primal initial point x € XQ. These algorithms will primarily update primal 
solutions that converge to xa; dual solutions are generated as by-products. 
Like the dual algorithms, each solution is found by solving a system of 
linear equations. Primal algorithms have several advantages, especially 
when additional inequalities are added to Ω. We will discuss it in detail in 
Chapter 8. 

3.3.1 Primal Newton procedure 
Given x € ΛΌ, we call it an //-approximate (analytic) center if ηρ(χ) < η < 
1. The primal Newton procedure will start from such an x and any (y, e) 
with 8 = c - ATy (e.g., y = 0 and s = c). 

Rewrite the system of equations (2.2) as 

-X~le + s = 0 
Ax = 0 

-ATy-s + c = 0, 

and apply the Newton step: 

X~2dx + d8 = X~le-8 
Adx = 0 

-ATdy-da = 0. 
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Multiplying AX2 to the top equation and noting Adx = 0, we have 

AX2d, = -AX(Xs - e), 

which together with the third equation give 

dy = (AX2AT)-lAX(Xa - e) and d, = -AT{AX~2AT)-lAX(Xs - e), 

and 
dx = -X(I-XAT(AX2AT)-lAX)(X8-e) . 

= -JC(I - XAT(AX2AT)-lAX)(Xc - e). (όΛό) 

The last equality is due to s = c-ATy and ( J - X A T ( 4 X M T ) - M X ) X 4 r = 
0. (Thus, to compute dx we don't need any (y, s).) Finally, we update x to 

x+ := a; + da?. 

Note that from (3.4) and (3.6) 

dx = -Χρ(χ) = -X{Xs{x) - e). 

We can estimate the effectiveness of the procedure via the following 
corollary: 

Corollary 3.8 Let x be an interior point of XQ and rfp(x) < 1. Then, 

x+ > 0, Ax+ = 0, and ηρ(χ+) < ηΡ{χ)2. 

We leave the proof of the corollary as an Exercise. 
We see the primal Newton procedure, once an x € XQ satisfies ηρ(χ) < 

η < 1, will generate a sequence {xk} that converges to xa quadratically. 
The next question is how to generate an r/-approximate center with η < 1. 

3.3.2 Primal potential algorithm 
o 

Consider the primal potential function V(x) for x €ΛΉ= {z : Ax = 0, x > 
0}. Again, this quantity represents the logarithmic volume of a coordinate-
aligned ellipsoid that contains SQ. 

The analysis of the remaining two algorithms in this section requires a 
o 

simple fact about the primal potential function. Given x €fc* and dz € 7£n, 
let x+ = x+dx and ||Jf~1da.|| < 1. Then, from the concavity of log function 
we have 

nlog(cTs+) - nlog(cra?) < -=r-cT(x+ - x) = -7r-cTdx, x c* x cJ x 
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and from Lemma 3.1 we have 

Thus, 

- V P W ^ + 2(/™iU)- (314) 

Karmarkar's algorithm 

We now describe Karmarkar's algorithm to reduce the potential function. 
Since the primal potential function is homogeneous of degree 0, we can 
normalize eTx = n and work in the region 

/Cp = {x : Ax = 0, eTx = n, x > 0}. 

This is the so-called Karmarkar canonical form. Its related LP canonical 
problem is given as 

minimize cTx 
s.t. x e JCp. 

Starting from any x° in K% we generate a sequence {xk} such that 

Vix1**1) < V{xk) - 1/6 

for k = 0,1,2,... until an approximate center of Ω is generated. 
One observation regarding Kp is that if Ae = 0, e is the analytic center 

of Kp. Unfortunately, in general we may not have Ae = 0. However, with 
a given xk > 0 and Axk = 0, we may transform the LP problem into 

(LP') minimize (d6)Txt 

s.t. x1 e K'p := {x1 : Akx' = 0, eTx' = n, x1 > 0}. 

where 
ck=Xkc and Ak = AXk. 

Note that if a pure affine scaling transformation, 

x' = (Xk)~xx, 
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had been used, the last inequality constraint would become eTXkx' = n. 
But as we discussed before, the potential function is homogeneous, so that 
we can use a projective transformation, 

n(XkY X 
s' = T(s) = eT{xkylx for z€/Cp, 

whose inverse transformation is 

* = r ~ 1 ( * ' > = ¿ ^ for /€^· 
Obviously, T(xk) = e is the analytic center for K'p. In other words, Kar-
markar transforms xk into the analytic center of K'p in (LP')· 

Note that the potential function for (LP') is 

P'(x') = nlog({ck)Tx') - ¿ log*; · . 

o 

The difference of the potential function values at two points of Kp is invari-
ant under this projective transformation, i.e., 

V\T{x2)) - V'(T(xx)) = P(x2) - V(xl). 

To reduce P'{x')y one may reduce its linearized function 

Vi>'(e)V = ( ( ^ c * -efx> = ( ^ c * -efX> = ^ ( c * ) V - n. 

Since cTxk and n are fixed, we simply solve the following ball-constrained 
linear problem: 

minimize (c*)T(:r' - e) 
s.t. Ak{x' - e) = 0, eT(s' - e) = 0, ||:r' - e\\ < a. 

According to the discussion in Chapter 1, the solution of the problem is 

■—-"ΡΓ 
where 

= c* - (A*) V - A*e, 
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where A* = (c*)Te/T» = cTxk/n, and 

yk = {Ak{Ak)T)-lAk<*. 

Thus 
p* = Xk(c - ATyk) - (cTxkln)e. 

Using relation (3.14) we consider the difference of the potential values 

^ , - n e ) < v P w - « ) + 5 ^ = - « « + ^ . 

Thus, as long as ||p*|| > f £-*- > 0, we have 

7>V) - ^'(e) < -S, 

for a positive constant δ = 3α/4 - a3/2(l - a). Again we have δ = 1/6 if 
o = 1/3. Let 

xk+l
 = Γ - 1 ( Ϊ ' ) . 

Then, 
V(xk+1) - V{xk) < -δ. 

Thus, in 0(V(x°) -V{xa)) iterations, we shall generate a pair (xk,yk) such 
that 

\\Xk(c - ATyk) - (cTxk/n)e\\ < | £ £ , 

or 
| | -^A-*(c-^V)-e | |<3/4<l , 

c x 

which indicates that y* is an 3/4-approximate analytic center of Ω. 

Affine potential algorithm 

In this section, we use a simple affine scaling transformation to achieve a 
reduction in V. Given x eXa with cTx = n, let us apply the Newton 
procedure with a controlled step-size: 

x+ = x _ - £ L x ( / - XAT(AX2AT)~lAX)(Xc - e), 

where constant 0 < a < 1. Observe that If a = ift>(a?) = ||ρ(α?)|| of (3.4), 
this reduces to the Newton procedure. In general, ηρ(χ) > 1, which implies 
the step size α/ηρ(χ) < 1. 

Let 
dx = j^rX(I- XAT(AX2AT)-1AX)(Xc- e) 
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and ¿4 = X~ldx, which is an affine transformation. Then, d'x is the mini-
mizer of the ball-constrained linear problem with a radius a: 

minimize VV(x)TXd'x 

s.t. ΑΧ(ϋχ=0, K | | < a , 

where the gradient vector of the potential function at x with cTx = n is 

VV{x) = ^ c - JJT'e = c - X~le. 

Note that 

cTx 

x+ = x + d* = Χ(β + JT M.) = X(e + <ζ). 

Thus we must have a:+ > 0, since ||djp|| = a < 1, i.e., x+ = a: + dx remains 
in the interior of XQ. 

Rrom (3.4) and (3.5) we have 

d'= ~W)\\Xp{x)' 
and 

VP(x)Tdx = -a||p(s)||2. 

Furthermore, s+ = X(e - ap(x)/\\p(x)\\) and HA""1*;* - e|| = a. Thus, 
from (3.14) we have 

2(l-\\X-Hx+-x)\\O0) 

> -<*||p(*)ll + 
a2 

2(1 - a) · 

Hence as long as ||p(x)|| > 3/4 we have 

V{x+)-V{x)<-S, 

where constant 
á = 3a/4-2(íbj>0· 

In other words, the potential function is increased by a constant. Note 
that the potential function is bounded below by the min-potential V{xa). 
Thus, in a finite time we must have ηρ{χ) = ||p(ar)|| < 3/4 < 1, which 
implies that the quadratic-convergence condition is satisfied or x is an 3/4-
approximate center of XQ. 
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Theorem 3.9 The number of total iterations of the primal potential al-
gorithm to generate an approximate analytic center of xa, starting from 
x €ΛΏ, w bounded by 0{V{x) - P(xa)). 

Since V{x) represents the logarithmic volume of the coordinate-aligned 
ellipsoid centered at s(x) and containing <Sh, the primal potential algorithm 
generates a sequence of ellipsoids whose volumes decreases at a constant 
rate, see Figure 3.2. 

Figure 3.2. Illustration of the primal potential algorithm; it generates 
a sequence of containing coordinate-aligned ellipsoids whose volumes de-
crease. 

3.3.3 Affine scaling algorithm 

In the affine potential algorithm above, since AXe = 0 we have 

p(x) = Xs(x) — e, 

where again 

y(x) = (AX2ATylAX2c and *(*) = c - ATy. 

Here, (y(x),s(x)) is usually called the dual affine scaling estimate at x. 
Because the problem is homogeneous in z, we have assumed that cTx = 

n. Then, for some step-size Θ = —fcy > 0, the affine potential algorithm 
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produces 

x+ = x - ΘΧρ{χ) 
= (1+θ)χ-ΘΧ28(χ) 

= (l + 9)X(e-T^Xs(x)). 

Again since scaling is immaterial, we simply let 

x+:=X{e-TL-Xa(x)). 

This update is called the affine scaling algorithm step and the vector 
X2s{x) = X{I-XAT{AX2AT)"1AX)Xc is called the affine scaling direc-
tion. 

Note that eTp(x) = cTx — n = 0, we must have 

max{X5(a;)} = max{p(a;)} -f 1 > 1. 

The following theorem can be established using Exercise 3.1 and similar 
analyses in the above section. Note that the step-size here is generally 
larger than the one previously used. 

Theorem 3.10 Choose 

θ λ 
1 + 0 max{Xs(x)} 

for constant 0 < A < 2/3. Then, 

^'-^-w^j *A<2/3 

or 

V{x+)-V{x)<-^ if A = 2/3. 

3.4 Primal-Dual (Symmetric) Algorithms 

In this section we consider symmetric primal-dual algorithms in which both 
primal and dual variables are treated equally. These algorithms are most 
popular and effective in practice. 
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3.4.1 Primal-dual Newton procedure 

Let (y, s) be an interior point of Ω or «SQ, and let z be an interior point of 
XQ. The primal-dual Newton step for system (2.2) is: 

Sdx + Xde = e - Xs, 
Adx = 0, (3.15) 

-ATdy-d8 = 0. 

Multiplying AS'1 to the top equation and noting Ax = 0 and Adx = 0, we 
have 

AXS~ld, = -AST^JTa - e) = ¿ S ^ e , 

which together with the third equation give 

dy = ~(^X5""1i4T)^1i45-1e and d, = i4T(AY5"1ilT)-1AS"1el 

and 
dx = - S " 1 ^ - XAT{AXS-lAT)-lAS-l)(Xa - e). 

Note that we need both primal and dual interior-points to start the proce-
dure. We update (a:, y, s) to 

x+=x + dx, y + =y-hdy, e+ = s + de. 

We can estimate the effectiveness of the procedure via the following 
theorem: 

Theorem 3*11 If the starting point of the Newton procedure satisfies 
η(χ,8) < 1, then 

x+ > 0, Ax+ = 0, *+ > 0 

and 

4(1 -!?(«,«)) 

Proof, l b prove the result we first see that 

||*+.+-e|| = 110.4.11. 

Multiplying the both sides of the first equation of (3.15) by (X5)""1/2, we 
see 

Ddx + D~ld8 = r := (XS)~l/2{e - Xs), 
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where D = S^X'1'2. Let p = Dd* and q = D~ldt. Note that pTg = 
d^d, > 0 (For LP djd, = 0, but here we relax this property to include 
cases άζά, > 0 for solving other broader problems). Then, 

\\Dxd,\? = \\PQ\\2 

= £,(PM)2 

2 [ Σ Mi 

< 2Í ¿ (Pj+qjfß 
\Pj<lj>0 

< 2(||r||2/4)2. 

Furthermore, 

||r||2 < \\(XS)-^f\\e - Xstf < ^ ^ f L , 

which gives the desired result. We leave the proof of a;4",*4" > 0 as an 
Exercise. 

D 

Clearly, the primal-dual Newton procedure, once an approximate center 
pair pair x € XQ and s e SQ satisfies η(χ, s) < η < 2/3, will generate a 
sequence {a?*,j/*,**} that converges to (a;a,ye,att) quadratically. 

The next question is how to generate such a pair with 

η(χ, a) = \\Xs - e|| < η < 2/3, (3.16) 

3.4.2 Primal-dual potential algorithm 
0 ° T 

Given any x EXu and s ESa with sTx = n, we show how to use the 
primal-dual algorithm to generate an approximate analytic center pair using 
the primal-dual potential function. We use the same strategy: apply the 
Newton procedure with a controlled step-size. 
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Lemma 3.12 Let the directions (dx,dy, d,) be generated by equation (S.15), 
and let 

_ ay/mm(X8) 
WiXSyWie-XsW (d f) 

where a is a positive constant less than 1 and min(v € 7ln) = min,{u,| j = 
1, ...,n}. Then, we have 

x/)n(x + $ds,8 + θά.) - φη(χ,β) 

< -ay/^(Xs)\\(XS)-^(e - Xs)\\ + ¿ ^ 1 _ . 

Proof. It can be verified from the proof of the primal-dual Newton proce-
dure that 

r := maX(||Ö5-1de||00i||ÖX-1dx||oo) < 1. 
This implies that 

x+ := x + Bdx > 0 and s+ := s + θά8 > 0. 

Then, from Lemma 3.1 and (3.14) we derive 

< eeT(Xd8 + Sdx) - eeT{S~ld8 + X~ldx) 

2(1 - r ) 

The choice of Θ in (3.17) implies that 

lifts-1*«8 + I I^-^IP < <*2· 
Hence, we have r < a and 

Hftg-^IP + HftY-'tf a2 , . 
2(T=7) - 2(1^) * (3·18) 

Moreover, 

ftsT(Xd, + Sdx) - eeT(S-1dt + X^d*) 
= Θ (eT(Xd. + Sdx) - eT(S-ld, + X" 1 *)) 
= Θ {eT(Xd. + 5dx) - eT(XS)~1 (Xd. + Sd*)) 
= 0(e - {XS)-le)T(Xd. + Sds) 
= 0(e - (XÄJ-'e^ie - Xs) (from (3.15)) 
= -fl(e - XS)T{XS)~l(e - XS) 

= -e\\{xsyvy-xs)\Y 
= -a^miñC^IKA-SÍ- ' /^e - Χβ)||. (3.19) 
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Therefore, we have the desired result combining (3.18) and (3.19). 

D 

Theorem 3.13 Letx+ and 8^ be defined in Lemma 3.12. Then, %/η(χ,8) > 
η for a positive constant η < 1, we can choose a such that 

ψη(χ + θάχ, 3 + θά8) - ψη(χ, 8) < -δ 

for a positive constant δ. 

Proof. Note that 

ay/mm(X8)\\(XS)-1/2(e - Xs)\\ = ay/mm(Xs)\\{XS)-l'2e - (X5)1/2e||. 

Let z = Xs and z\ = min(z) < 1 (since eTz = n). If zx < 1/2, then 

ay/^(z)\\Z-1/2e - Z1/2e\\ > a\l - zt\ > a/2. 

Thus, we can select an a such that 

^η(*+,*+) - ψη(χ,8) < - | + *_ a ) < - ¿ . 

If *i > 1/2, then 

aVmta^ | | £~ 1 / 2 e - J^1/2eH > {a/y/2)\\Z'l^e - Z1/2e||. 

Let zn = max(z) > 1. If zn > 2, then 

(a/y/2)\\Z-l'2e- Z^2e\\ > {a/>fi)\JZ-l/y/Z\ > a/2. 

Again, we have 

ψη(Χ+,8+) - tl>n(x,8) < - | + ^ _ ^ "'· 

Finally, let min(*) > 1/2 and max(z) < 2. Then 

ay/^(z)\\Z^2e - Zl/2e\\ = ay/tá^\\Z~1/2(e - *)|| > (a/2)||e - z\\. 

Thus, if ||e - z\\ = ||e — J£s\\ > r?, we can select an a such that 

^n(a?+,e+) - ^n(z,s) < - ¿ . 

D 



106 CHAPTER 3. COMPUTATION OF ANALYTIC CENTER 

Thus, until \\Xs - e|| < η < 1, the primal-dual potential function at 
(ar+, A"1") will be reduced by a constant for some a. Therefore, in 
0(ψη(ζ°ι s°) - nlogn) iterations, we shall generate a pair (a:,y), such that 

η(χ, s) = ||Xs - e|| = ||X(c - ATy) - e|| < */, 

which indicates that x and y are an approximate analytic center pair for SI. 
Note that this complexity bound depends only on the initial point (z°, s°). 

Recall that the primal-dual potential function represents the logarithmic 
ratio of the volume of the containing ellipsoid Em over the volume of the 
contained ellipsoid E8. The progress of the algorithm can be illustrated in 
Figure 3.3. 

Figure 3.3. Illustration of the primal-dual potential algorithm; it generates 
a sequence of containing and contained coordinate-aligned ellipsoids whose 
logarithmic volume-ratio reduces to nlogn. 

3.5 Notes 
The proof of Lemma 3.1 is due to Karmarkar [217]; that of Theorem 3.2 is 
mostly due to Gonzaga [161, 162], Renegar and Shub [358, 360], Roos and 
Vial [367], Tseng [422], Vaidya [436], and Goffin et al. [144]. 

The dual algorithm with a starting interior point, described in this 
chapter, is similar to the one of Vaidya [436]. 
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The primal or dual affine potential algorithm was proposed by Gonzaga 
[160], Freund [123], and Ye [466, 468], The affine scaling algorithm was 
originally developed by Dikin in 1967 [98, 99], and was rediscovered by 
Barnes [43], Cavalier and Soyster [79], Kortanek and Shi [235], Sherali, 
Skarpness and Kim [378], Vanderbei and Lagarias [448], and Vanderbei, 
Meketon and Freedman [449]. 

The primal-dual algorithm described in this chapter is adapted from 
the one in Kojima, Mizuno and Yoshise [231, 230, 232] and Monteiro and 
Adler [298, 299]. The primal-dual procedure result in (iv) of Theorem 3.2 
was proved by Mizuno [288]. 

Finally, we remark the relation among potential reduction algorithms. 
We provide a simple argument that the primal-dual potential function is 
also reduced in either the primal or the dual potential reduction algorithm 
described earlier. 

Given x and (y, s) in the interior of XQ and «So, respectively. We have 
shown in the preceding chapter that 

n 
ψη{χ, s) = nlog(8Tx) - ]jTlog(xj8j) = V(x) - B(y). 

¿=i 

Thus, if we update the dual (y, s) to (j/+, s+) such that 

B(y+)>B(y) + S, 

then we must also have 

ψη(χ}8+) <ψη(χ,*)-δ; 

or if we update the primal x to x+ such that 

V{x+) < V{x) - <S, 

then we must also have 

Thus, to make either the primal or dual potential reduction leads to the 
same reduction in the primal-dual potential function. Therefore, all these 
algorithms must stop in 0(φη(χ0^ 8°) — nlogn) iterations. Again, this com-
plexity bound depends only on the initial point (x°, 8°). Moreover, the pri-
mal algorithm does not need knowledge of s° and the dual algorithm does 
not need knowledge of #0, while the primal-dual algorithm uses both x° 
and s°. 
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3.6 Exercises 
3.1 Prove a slightly stronger variant of Lemma 3.1: IfdeTln such that 

0 < max{d} < 1 then 

-eTd > ¿log(l - 4) > -eTd - „,„ ll¿11* . 

3.2 Given s > 0 ven^ that x(e) is the minimizer of the least-squares 
problem 

minimize \\Sx — e\\ 
s.t. Ax = 0. 

Given x > 0 verify that y(x) is the minimizer of the least-squares problem 

minimize \\Xs - e|| 
s.t. s = c — ATy. 

3.3 Let x be an interior point of Xu and ηρ(χ) < 1. Prove that in the 
primal Newton procedure (3.13), 

x+ > 0, Ax+ = 0, and ηρ(χ+) < ηΡ(χ)2. 

3.4 Prove the primal inequality in (iv) of Theorem 3.2. 

3.5 Let e € Kp = {x : Ax = 0, eTa; = n, z > 0}. Then, prove that 

KpC{x: \\x-e\\<y/^T)}. 

3.6 Consider the projective transformation and Karmarkar's potential func-
tion. Prove 

P'(T(x2)) - P'(T(x1)) = V{x2) - V(xl). 

3.7 t/itn^ Exercise 3.1 to show Theorem 3.10. 

3.8 / / the starting point of the primal-dual Newton procedure satisfies 
η(χ,β) < 1, prove the update 

3+ > 0, Ax+ =0 , s+ > 0. 

3.9 In each Newton procedure of Chapter 3, a system of linear equations 
needs to be solved. Prove that the solution d = {dx,dy,d8) to each system 
is unique. 

3.10 Do some algorithm appear to use less information than others? Do 
some algorithm appear more efficient than others? Why? 

o o 

3.11 Given x €TP and (y, s) €F¿ for (LP), design primal, dual, and 
primal-dual algorithms for finding a point in the neighborhood of the central 
path and determine its iteration bound. 



Chapter 4 

Linear Programming 
Algorithms 

In the preceding chapter we have used several interior algorithms to com-
pute an approximate analytic center of a polytope specified by inequalities. 
The goal of this chapter is to extend these algorithms to solving the stan-
dard linear programming problem described in Section 1.3.5. 

o o 

We assume that both Tv and Τά are nonempty. Thus, the optimal faces 
for both (LP) and (LD) are bounded. Furthermore, we assume b φ 0, since 
otherwise (LD) reduces to finding a feasible point in T&. 

Let z* denote the optimal value and T = Tv x T¿- In this chapter, we 
are interested in finding an e-approximate solution for the LP problem: 

cTx — z* <e and z* — bTy < e. 

For simplicity, we assume that a central path pair 0&o,2/o,s°) with μ° = 
(x°)T8°/n is known. We will use it as our initial point throughout this 
chapter. 

4.1 Karmarkar's Algorithm 
We first show how Karmarkar's algorithm may be adapted to solve (LP) 
and (LD). The basic idea is the following: Given a polytope Ω(2*) of 
(2.13), i.e., 

Sl(zk) = {y: c-ATy>0, -zk + bTy > 0}, 

where zk < z*, and a xk £fp, we step toward its analytic center using Kar-
markar's algorithm presented in the previous chapter. Each step results in 
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a reduction of the associated Karmarkar potential function 7>n+i(x, zk) = 
V(x> fi(¿*)), which represents the logarithmic volume of a coordinate-aligned 
ellipsoid containing fl(zk). When an approximate center j / * + 1 is gener-
ated, it is used to translate the hyperplane bTy > zk to bTy > z*+1 := 
&Ty*+\ i-e-> through j / * + 1 . Since z*+1 > zk and ü(zk~*"1) has shrunk, both 
7VM(*I** + 1 ) and the max-potential β(Ω(2τ*+1)), which represents the log-
arithmic volume of the max-volume coordinate-aligned ellipsoid contained 
in Ω(έ), are further reduced. The algorithm terminates when the potential 
function has been reduced enough to guarantee an approximate solution 
for (LP) and (LD). 

More specifically, starting from («0,j/0,«0) and letting z° = bTy° < z*t 
o 

the algorithm, generates sequences {xk eTp}> {yk € Td), and {zk < bTyk}, 
such that 

Pn+1(x*+V*+1) < K+i(xk,zk) -δ for * = 0,1, . . . . 

where constant δ > .2. Then when 

Ρη+ι(χ",ζ*) - Vn+i(x°,z°) < (n + l)log J - nlog2, 
C X -"" Z 

from Proposition 4.2 which will be proved at the end of the section, we 
must have 

z* - bTyk < z* - zk < c. 

That is, we have an c-approximation solution for (LD). Moreover, there 
is a subsequence of {(aj*,y*,a*)} whose points are approximate analytic 
centers of (l(zk). Thus, along this subsequence cTxk - bTyk -> 0. 

Here is how the algorithm works. Given xk ETp and zk < bTyk, where 
yk € Fd* we again transform the (LP) problem into Karmarkar's canonical 
form: 

(LP') minimize (c*)T:r' 

s.t. x1 6 K'p. 

where 
K'p := {x1 € ftn+1 : Akx' = 0, eTx' = n + 1, x' > 0}, 

c*=(5**C), and Ak = (AXk, - 6 ) . 

This is accomplished via an extended Karmarkar's projective transfor-
mation 

( (n+MX*)-*· \ 

(&ΪΓ* from xe:Fp-
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Obviously, T(xk) = e is the analytic center for Kp. In other words, the 
projective transformation maps xk to the analytic center of Kp in {LP'). 
Each feasible point x € Tp is also mapped to a feasible point x' € K!p. 
Conversely, each feasible point x1 € Kp can be transformed back to an 
x € Tp via the inverse transformation, Γ - 1 , given by 

X e r - V ) = ^ T ^ from x'€K'p, 
xn+\ 

where x'[n] denotes the vector of the first n components of x1 € 7£Λ+1. 
The projective transformation T also induces the potential function 

P¿+1 associated with (LP1): 

n+l 

n + i (*'> **) = (» + 1) log((c*)Ta:') - £ log^J), *' € £ . 
i=l 

o 
Again, the difference of the potential values at two points xl, x2 ETV is 
invariant under the projective transformation, i.e., 

K+i(T{x*),zk) - V'n+ÁT{xl),zk) = Pn+i(x2,zk) - Vn+1{x\zk). 

Therefore, a reduction of the potential P¿+1 for the transformed problem 
induces the same amount of reduction of the potential Pn+i for the original 
problem. 

lb reduce Vn+\{x\zk), we again solve the following ball-constrained 
problem 

minimize (<Ρ)τ(χ' — e) 
s.t. Ak(x' - e) = 0, eT(a:' - e) = 0, \\x' - e|| < a. 

According to the discussion in Section 3.3.2, the solution of the problem is 

*-e = -°F¡¡' 
where 

* - {'-(Α:)Τ(ΑΥ)ΤΙΪ'(Λ:))* 
n + 1 
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and 
yk = 2/(**):=ita + **2/i, 
in = (Ak(Ak)T)-*b, (4.1) 
J/2 = (^(Afc)T)"M(X*)2C. 

Again the difference of the potential values 

^η+ΐΐ̂  >* ; ^η-Ηΐβ,* J S ~<* β Τ ^ _ *̂ + 2(1 - α) ' 

Thus, as long as ||p*|| > η° %+̂ * for a constant 0 < r/ < 1 we can choose 
an appropriate a such that 

n+i(*V)-p;+i(e,**)<-¿. 

for a positive constant δ = αη - α2/2(1 - a). (If τ; is slightly less than 1, 
a can be chosen such that δ > .2.) Let 

Then, 

In this case, we simply let zk+l = z*. 
However, when ||p*|| < ης *̂ ~* , we can still reduce the potential func-

tion by increasing zk to zk+x > zk. Note that pk can be decomposed as 

k , »x ( Xkc\ ( XkAT \ . „. cTxk-zk 

( Xk(c - ATy(zk)) \ _ cTxk - zk 

~ n + 1 e · (4 ,2 ) 

Thus, ||p*|| < η° %+1* implies that (xk,y(zk)) is an ^-approximate 
center pair for (l(zk). Consequently, 

( Xk(c-ATy{zk))\ 
{ bTy(zk)-z" J > 0 ) 

that is 
ATy(zk) < c and zk < bTy{zk). 

By the duality theorem, zk+l = bTy(zk) > zk is a new lower bound for 
**, which makes Vn+x(xk\**+1) < Pn+i(s*,**). We now update il(zk) to 
Ω(ζ*+1), that is, we translate the inequality bTy > zk through y(zk) to cut 
Ü(zk). 



4.1. KARMARKAR'S ALGORITHM 113 

We may place a deeper cut and try to update zk in each step of the 
algorithm. We can do a simple ratio test in all steps to obtain 

z = argmax{6Tj/(z) : ATy(z) < c}. (4.3) 

(This test returns value z = —oo if there is no z such that ATy(z) < c.) 
This leads us to a possible new dual feasible point and a new lower bound 
bTy(z) > bTy(zh) > zk, and guarantees 

n -f- 1 

to ensure a potential reduction of at least .2. We describe the algorithm as 
follows: 

Algorithm 4.1 Given a central path point (a?°,y°, 5°) 6f. Let z° = bTy°. 
Set k := 0. 

While (cTxk -zk)>e do; 

1. Compute j/i and jfe from (4-1). 

2. Compute 2 from (4.3). If 2 > zk then set j / A + 1 = y(z) and zk+l = 
bTyk+l, otherwise set j / * + 1 = yk and zk+l = zk. 

3. Let 

and 

4. Let k := k + 1 and return to Step 1. 

Since zk+l > zk and ||p(**+1)ll > c T ' ^ W (Exercise 4.1), we have 

Lemma 4.1 For k = 0,1,2, ... 
Ρη+1(**+\**+1) < ^ ( I * , ! * ) - Í, 

tu/iere 5 > .2. 

We now estimate how much we need to reduce the potential function 
in order to have zk = bTyk close to z*. We establish a lower bound for the 
potential function value. 
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Proposition 4.2 Given a central path point (a?°,y0,$0) νοΜιμ0 = (x°)Ts°/n, 
and consider the dual level set (l(z) where z° := bTy° — μ° < z < z*. There 
exists an x(z) € Tv such that the max-potential of (l(z) 

Β(ίϊ(ζ)) > B(ü(z°)) + (n +1) l o g ^ & L - f _ n l o g 2 ) ( 4 . 4 ) 

o 

and for all x Efp the primal potential 

-Ρη+Λχ,ζ) > Vn+x{x\z°) + (n + l)\ogC**W_~J -n\og2. (4.5) 

Proof. First, recall that the max-potential of Ω(ζ) is 

Β(ίϊ(ζ)) = max { £ logfo - ajy) + log(bTy -z)\, 

so that we have 

Pn+i(x,z)-B((l{z))>{n + l)log(n + l), V i 6 f p Vz<z*. (4.6) 

Let y(z) be the analytic center of U(z) and let s(z) = c-ATy(z). Then, 
from the central path theory in Section 2.5.1, there is a central path point 
0 < x(z) € Un such that 

Ax(z) = b and X(z)s(z) = μ(*)β, 

where 

= Mi& = **)-*«*) = bry{z) _,. 
n n 

Thus, 
n 

w * ) ) = £>gSi(*)+iog(&ry(*)-*) 

= Σ 1OS(M(*)/*J (^)) + log MÍ*) 
i'=l 

(n + 1) \οξμ(ζ) - ] Γ 1ο§<φ),· 
i = l 

= (n +1) log((n + 1)μ(ζ)) - £1ο8χ(*),· - (n + 1) log(n + 1) 
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n 
= (n + 1) log(cTx(z) - z) - J^ log «(*),· - (n +1) log(n + 1) 

+ΡΛ+ι(χ°,ζ°) - (n + 1) log(n + 1). (4.7) 

Since μ(ζ) < μ° (see Exercise 4.3), we have 

(*(*) - x°)T(s(z) - s°) = 0 or χ(*)τβ0 + 8(ζ)τχ0 = η(μ° + μ(ζ)), 

which implies that 

t(^v+;&*>)-"<*+»«.>>. 
Therefore, 

which, from the arithmetic-geometric mean inequality, further implies 

π(̂ )ί2"· 
Combining inequalities (4.6), (4.7) and (4.8), we have 

B(il(z)) > Pn + 1(x°,Z°)-(n + l)log(n + l) 

+(" + 1)1°Scrai._zo -" l QS2 

> B(il(z0)) + (» + l)log ^ ~ * - nlog2. 
C X "~ Z 

o 

Also, for all x €ΡΡ we have from (4.6) 

Vn+\{x,z) > 5(fi(z)) + (n + l)log(n + l) 

> ^ 1 ( ^ f ^ ) + (n + l ) I o g ^ ^ - n l o g 2 . 

These inequalities lead to the desired result. 

(4.8) 
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The proposition indicates that if the net reduction of max-potential or 
the primal potential of Sl(z), where z = bTy for some y € ?d, is greater 
than (n + 1) log(cT£° - z°)/e + nlog2, then we have 

(n + l ) l o g y J 0 ^ 0
Z - n l o g 2 < ( n + l ) l o g c r a ; 0

£ _ ^ - n l o g 2 , 

which implies that 

z* - bTy = z* — z < cTx(z) — z < t 

and 
cTx(z) - z* < cTx(z) — z < e, 

i.e., x(z) and y are e-approximate solutions for (LP) and (ZJD). 
In the proposition, x(z) is chosen as a central path point. This need not 

0 

be the case. The proposition holds for any í €FP that is in the neighbor-
hood λί(β) of the central path, i.e., for some y it satisfies 

for a constant 0 < β < 1. More specifically, we have Corollary 4.3. 

Corollary 4.3 Given the interior feasible point (a:0,y0,e0) with 
μ° = (x°)Ts°/n, and consider the dual level set íl(z) where z° := bTy° — 

o 

μ° < z < z*. Letx ETp satisfy condition (4.9). Then 

B(Ü(z)) > β(Ω(ζ0)) + (n + 1)log£j¡Z* ~°^ 

O 

and for all x 6ΤΡ the primal potential 

Pn+l(x, z) > Vn+1 (x°,z°) + (n + 1) log f,*"* - 0{n). 
C X "™" Z 

These lead to the following theorem: 

Theorem 4.4 In at most 0(n\og(cTx° - z°)/e + n) iterations, Algorithm 
4Λ will generate xk €Tv and yk 6 T& with zk < bTyk < z* such that 

cTxk -zk<e 

and, thereby, 
cTxk - bTyk < € 

at termination. 
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4.2 Path-Following Algorithm 

While Karmarkar's algorithm reduces the primal potential function, the 
path-following algorithm reduces the max-potential B(il(zk)) by down-
sizing (l(zk). Beginning with (yk,sk), an approximate analytic center of 
U(zk) with fjd(s*) < η < 1, where 

· * - ( # - $ ) > α 

Let β be a constant in (0,1). Then, similar to what has been done in the 
central-section algorithm of Chapter 3, we update z*+1 from zk at the fcth 
iteration 

and then find an ^-approximate center of (l(zk+1). Accordingly, 

B{n{zk+l))<B{ü{zk))-5, 

where δ is a positive constant. This process stops with y* as an approximate 
center for Ω(^*), where zk > z* — c. The total number of iterations is 
bounded by 0(nlog(cTa;0 - z°)/e + nlog2) from Proposition 4.2, which is 
the same bound as in Karmarkar's algorithm. 

In an additional effort, Renegar developed a new method to improve 
the iteration bound by a factor y/ñ. His algorithm can be described as the 
following. For z° < z < z* consider (l(z) of (2.14) where p = n, that is, 

n times 

il(z) = {y: c - ATy > 0 , - z + bTy > 0 , · · · , - z + bTy > 0}, 

where a—z + bTy > 0" is copied n times. The n copies of the objective 
hyperplane have the effect of "pushing" the analytic center toward the 
optimal solution set. 

Note that the slack vector β € Tl2n and 

c-ATy \ 

- 1 bTy.:z >o· 
bTy - z ) 

Thus, an+i = · · · = «2n- The primal potential function associated with 
o 

(l(z) is V2n(x,z) where x €FP. Following the proof of Proposition 4.2, 
o 

there are points x(z) epp such that 

B((l(z)) -B((l(z°)) > 2nlogC^)_~J - 0(n). 
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Algorithm 4.2 Given an approximate analytic center y° of Q(z°) with 
Vd{s0) < η < Í9 set k := 0. 

While (cTx(zk) - bTyk) > e do; 

L Update zk+1 = bTyk - ßs%n. 

2. Via the dual Newton procedure compute an approximate analytic cen-
ter yk+l with ηά(β

Μ) < η for Ω(>+ 1). Let x1 = x(sk+1) € K2n 

given by (3.3) for Q(zk+l), which minimizes 

minimize ||5*+1a; - e|| 
n times 

s.t. (A, -6 , · · ·, -b)x = 0, x € ft2n, 

and let x(zk+l) = χ'[η]/{ηχ?2η) where x'[n] denotes the vector of the 
first n components of x1. 

3. Let k := k + 1 and return to Step 1. 

The following Lemma provides a guide for choosing constants η and β 
to ensure yk remains an approximate analytic center of ίΐ(2?*+1). 

Lemma 4·5 Let β = 1 - η/y/ñ. Then, there exists a point x+ > 0 such 
that 

(Λ,-&,· · · , -δ)ζ+ = 0 and pT+s+ - e\\ < η +η{1+ η), 

where 

s+ 

( c-ATyk 

> 0. 
bTyk-z~ 

\ bTyk - z*+1 

Proof. Let x+ = £($*) > 0 of (3.3) for Ω(ζ*), which minimizes 

minimize \\Skx — e|| 

s.t. {A, -6 , · ·, -&)χ = 0, a: € 7l2n. 

Since **+i = - - - = **n, we have #++1 = · · · = a£n> 

{A, -6 , ·. -, -6)x+ = Α φ * ) = 0, 
and 

| | 5 * * + - e | | = *,(·*)< * 
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Note that *+ = sk for j < n and sf = ßsk for i > n + 1. Thus, noting 
that s+ and s* share the same first n components and s++1 - s*+1 = · · · = 
•Í+.i - *n+i = (0 - l)«2m we have 

pT+*+-e | | = | |X+s*-e + X+s+--A:+s*|| 
< | | Χ + β * ~ β | | Η - | | Χ + 8 + ~ Χ + ^ | | 

< \\x+sk-e\\ + yfc\xtnsk
n(ß-i)\ 

< 9 + v ^ ( l - / J ) ( l + i?) 
< f? + 7?(l + r/). 

Lemma 4.5 shows that, even though it is not perfectly centered, yk is in 
the "quadratic convergence" region of the center of Ω(ζ*+1), if we choose 
η+η(1+η) < 1. Thus, anr/-approximatecentery*+I withies**1) < ijfor 
Ω(ζ*+1) can be updated from yk in a constant number of Newton's steps. 
For example, if choose η = 1/5, then one Newton step suffices. 

We now verify that the max-potential of Ω(ζ*+1) is reduced by y/nS for 
a constant δ. 

Lemma 4.6 Let (y*,**) be an approximate center for Qk with f?d(s*) < η 
and let Ω(ζ*+1) be given as in Step 1 of Algorithm ¿.2. Then, 

β(Ω(ζ*+1)) < B{ü{zk)) - y/ηδ for a constant δ > 0. 

Proof. The proof is very similar to Theorem 2.7 in Chapter 2. Let (j/a, ea) 
and (y+,s+) be the centers of (l(zk) and Ω(ζ*+1), respectively. Note we 
have 

„ft — . . . — «ft — J/T ft _ k 

Also, 

and 

(A,-b,--,-b)(Sa)-le = 0, 

(c, -zk, ■■·, -zk)T{Sa)-ie = (se)T(5e)-1e = 2n, 

s i = 

where 

/ c-ATy% 
bTy%-zk+1 

\ bTy%-zk+l 

Zk+1 = Zk + (1 - ß)8k
n 

>o, 
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Then we have 

eT(sar18a
+ = eT(Se)-1(c;-**+1;···;-**''"1) 

= eT(S°)-Hc; -**;·· ·; -*') - n(l - ß){sk
2JsL·) 

= 2n-n(l-/J)(4>$n) 
< 2η-η{1-β)(1-η). 

The last inequality is due to (iv) of Theorem 3.2. Therefore, 

expgW**-»)) _ fi « ) j 
βχρβ(Ω(ζ*)) - 11 ¿¡ 

2n-n(l - /?)( l - t7) 2n 

- l 2n ' 
< exp(-n( l - /J ) ( l -» , ) ) 

= exp(-Vñ»/(l -1/)). 

Taking the logarithm of each side completes the proof. 
D 

From the lemma, Proposition 4.2 can be used to conclude the following 
theorem: 

Theorem 4.7 In at most 0(y/n\og{cTx° - «°)/e + i/ñ) iterations, Algo-
O 

rithm 4-2 will generate a (x(zk),yk) ef such that it is an approximate 
center for Sl{zk), where 

cTx(zk) - bTyk < cTx(zk) -zk<e. 

4.3 Potential Reduction Algorithm 
At this point, we can see the difference between Karmarkar's and the path-
following algorithms. The former, called potential reduction algorithms, 
are equipped with a primal potential functions, which are solely used to 
measure the solution's progress. There is no restriction on either step-
size or ¿-update during the iterative process; the greater the reduction of 
the potential function, the faster the convergence of the algorithm. The 
path-following algorithms are equipped with the max-potential, so that the 
¿-update needs to be carefully chosen and each step needs to stay close 
to the central path. Thus, from a practical point of view, Karmarkar's 
algorithm has an advantage. 
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The next question is whether or not we can improve the complex-
ity bound by the same factor for potential reduction algorithms. Let 

o 

(a?, y, s) €p. Then consider the primal-dual potential function in Section 
2.4.3: 

n 

V>n+p(*,s) = (* + p)\0g{xT8) - ^ l o g ^ * ; ) , 

where p > 0. Let z = bTy, then $ra; = crx — z and we have 

n 

Recall from Chapter 2 that when p = 0, ψη+Ρ(χ,8) is minimized along the 
central path. However, when p > 0, ^n+pfo*) ~* """°° means that a: and 
8 converge to the optimal face, and the descent gets steeper as p increases. 
In this section we choose p = y/ñ, which is greater than p = 1 used in 
Karmarkar's algorithm. 

Whereas Karmarkar's algorithm reduced the primal potential function 
Pn+P(x,z) when stepping toward the analytic center of the dual level set 
and increasing ¿, there was no estimate on how much the function was 
reduced. The potential reduction algorithm of this section will give such a 
reduction bound. The process calculates steps for x and e, which guarantee 
a constant reduction in the primal-dual potential function. As the potential 
function decreases, both x and s are forced to an optimal solution pair. 

Consider a pair of (xk
1y

k,sk) 6T. Fix zk = bTyk, then the gradient 
vector of the primal potential function at xk is 

We directly solve the ball-constrained linear problem for direction dx: 

minimize Wn+p (xk, zk)Tdx 
s.t. Adx = 0, IK**)-1«**!! < a. 

Let the minimizer be dx. Then 

* - a | |p* | | ' 

where 

p* = P(zk) :== (/ - XkÁr(A(Xk)2AT)-lAXk)XkVVn+fi(x
k,zk). 
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Update 

**+1=** + 4 = **-ηΡ| , (4.10) 
and, in view of Section 3.3.2, 

7 W * * + 1 , z») - rn+p(x
k, zk) < -eii^H + ^ 2 i _ . 

Thus, as long as ||p*|| > η > 0, we may choose an appropriate a such that 

7 > η + , ( ζ * + ν ) -Pn+p(x
k,zk) < -& 

for some positive constant δ. By the relation between ψη+ρ(χ,β) and 
*Pn+p{z,z)> the primal-dual potential function is also reduced. That is, 

V.„+,(a:*
+1

)e*)-^n+/>(x*)e*)<-¿. 

However, even if ||p*|| is small, we will show that the primal-dual potential 
function can be reduced by a constant δ by increasing zk and updating 
(yky). 

We focus on the expression of p*, which can be rewritten as 

pk = (J-XkAT(A(Xk)>AT)-*AXk)( I».+ p).Xkc-e) 
C 3/ ~- Z 

c* X* 

where 

and 

a{zk)=c-ATy{zk) (4.12) 

v{zk) = ya - **(&:/vi, 
Vl = (Α(Χ*)2#)-χΙ>, (4.13) 
»2 = (Λ(Χ*)2Λτ)-1Α(Χ*)2ο. 

Regarding ||p*|| = ||ρ(ζ*)||, we have the following lemma: 

Lemma 4.8 Let 

k (xk)T8k cTxk-zk
 Λ (xk)Ta{zk) 

u* = -i—'- = and a = -—'-—-—- . 
n n n 

If 

||p(z*)|| < min (vyf^ Λ~η), (4-14) 

then the following three inequalities hold: 

«(**)> 0, \\Xk8(zk) - HI < Vl·, and μ < (1 - .5η/^/η)μ". (4.15) 



4.3. POTENTIAL REDUCTION ALGORITHM 123 

Proof. The proof is by contradiction. 

i) If the first inequality of (4.15) is not true, then 3 j such that 8j(zk) < 0 
and 

Μζ*)\\>ι-&^*ΐΦ')>ΐ-

ii) If the second inequality of (4.15) does not hold, then 

lb(**)ll2 = B ^ * * V ^ + ^ . - 4 ' 

> ( ( !^ ) ν + ( (η±ρ)Μ_1 ) 2 η (4.16) 
ημκ ημκ 

where the last relation prevails since the quadratic term yields the 
minimum at 

(n + ρ)μ _ n 
ημ* n + η2 

iii) If the third inequality of (4.15) is violated, then 

ίϋ±|!ίί>(1+ 1 ) ( !_&>! , 

which, in view of (4.16), leads to 

f l u 

- {l 2 2jV 

> ( i - v ) 2 · 

a 

The lemma says that, when ||p(**)ll is small, then (xk,y(zk),a(zk)) is 
in the neighborhood of the central path and bTy(zk) > zk. Thus, we can 
increase zk to bTy(zk) to cut the dual level set Ω(ζ*). We have the following 
potential reduction theorem to evaluate the progress. 



124 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS 

Theorem 4.9 Given {xk,yk,sk) ep. Let p = y/ñ, zk = bTyk, xk+1 be 
given by (4.10), and yk+1 = y(zk) in (4.13) and sk+1 = s(zk) in (4.12). 
Then, either 

rl>n+p(x
k+1,a

k)<il>n+p(x
k,8k)-S 

or 
xl>n+p{xk,8k+l)<tl>n+p{x\sk)-S 

where δ > 1/20. 

Proof. If (4.14) does not hold, i.e., 

IW**)||>«in(,yi5Z,i-,), 

then 

Ρη+„(**+Ι, **) - Pn+P(xk, zk) < - a min (jlJ-^f^ , 1 - *) + 2^ia) > 

hence from the relation between Vn+P and ψη+ρ, 

t/>n+P(xk+1,sk) - i/>n+p{xk,8k) < -a min (vJ^-^ Λ~η) + 2 ( 1 ° _ . · 

Otherwise, from Lemma 4.8 the inequalities of (4.15) hold: 

i) The first of (4.15) indicates that j/*"*"1 and s*+1 are in Td-

ii) Using the second of (4.15) and applying Lemma 3.1 to vector X*sfc+1//¿, 
we have 

nlog( 

= 

^ 
V. 

< 

xk)T8k+l 

nlogn — 

nlogn-h 

nlogn-l-

1 / k> 

-][>6(φ*+1) 

1—1 

||X*e*+VM - 1 
2(1-| |Α-*β*+1/μ-

V2 

2(1-1») 
n 

A? 
-e| |oo) 

V2 

< nlog(x*) V - 5>β(**β*) + 20=ñ) · 
¿=ι 
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iii) According to the third of (4.15), we have 

y/ñQog&F**1 - log(**)V) = v Q o g 4 < - 2 . 

Adding the two inequalities in ii) and iii), we have 

ψη+,ίχΚ,β»*1) < 4n+p(x
ky) - 2 + ^ L . 

Thus, by choosing η = .43 and a = .3 we have the desired result. 

D 

Theorem 4.9 establishes an important fact: the primal-dual potential 
function can be reduced by a constant no matter where xk and yk are. In 
practice, one can perform the line search to minimize the primal-dual poten-
tial function. This results in the following primal-dual potential reduction 
algorithm. 

Algorithm 4.3 Given a central path point (ar°,y°, s°) ef. Let z° = bTy°. 
Set k := 0. 

While (sk)Txk > c do 

L Compute y\ and y*i from (4*13). 

2. If there exists z such that s(z) > 0, compute 

z = arg min 0n+p(«*,«(«)), 

and if\l)n+p{x
k,s{z)) < *l>n+p{xk,sk) then yk+l = y(z), s*+1 = s(z) 

and zk+* = bTyk+l; otherwise, yk+l = yk, sk+1 = sk and zk+1 = zk. 

3. Let sfc+1 = xk - áXkp(zk+l) with 

ά = argmm^n+p(s* - aXkp(zk+l),sk+l). 
cr>0 

4» Let k := k + 1 and return to Step 1. 

The performance of the algorithm results from the following corollary: 

Corollary 4.10 Let p = y/ñ. Then, Algorithm 4*3 terminates in at most 
0{y/nlog(cTx° - bTy°)/e) iterations with 

cTxk - bTyk < c. 
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Proof. In 0(v/nlog((x°)Te°/e)) iterations 

-^ log( (*° ) T
S %) = 4n+p(x

k,8k)-iJ,n+p(x
0,s0) 

> ^ l o g ( x * ) V + nlogn - ψη+ρ(χ°,a0) 

= vSlog((x*)V/(*°)T«°)· 

Thus, 
y/ñlog(cTxk — bTyk) = y/ñlog(xk)Tak < \/ñloge, 

i.e., 
cTxk - bTyk = (xkfsk < e. 

Ώ 

4.4 Primal-Dual (Symmetric) Algorithm 
Another technique for solving linear programs is the symmetric primal-
dual algorithm. Once we have a pair (a:, y, s) ef with μ = xTs/n, we can 
generate a new iterate x+ and (|/+,e+) by solving for dx, dy and d8 from 
the system of linear equations: 

Sdx + Xde = 7μβ - Xs, 
Adx = 0, (4.17) 

-ATdy-d8 = 0. 

Let d := (da.,dy,d,). To show the dependence of d on the current pair 
(χ,β) and the parameter 7, we write d = d(a?,«,7). Note that d^d8 = 
-dJi4Tdy = 0 here. 

The system (4.17) is the Newton step starting from (x, s) which helps 
to find the point on the central path with duality gap 7*1/1, see Section 
2.5.1. If 7 = 0, it steps toward the optimal solution characterized by the 
system of equations (1.2); if 7 = 1, it steps toward the central path point 
(χ(μ),ί/(μ),β(/ι)) characterized by the system of equations (2.18); if 0 < 
7 < 1, it steps toward a central path point with a smaller complementarity 
gap. In the algorithm presented in this section, we choose 7 = n/(n + p) < 
1. Each iterate reduces the primal-dual potential function by at least a 
constant J, as does the previous potential reduction algorithm. 

To analyze this algorithm, we present the following lemma, whose proof 
is very similar to Lemma 3.12 and will be omitted. 
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Lemma 4.11 Let the direction d = (dx,dy,d,) be generated by equation 
(4.17) with 7 = n/(n + p), and let 

θ *V***x») (4.18) 
ΙΚ^)-1/2(?ίΟτβ-^)ΙΙ 

where a is a positive constant less than 1. Let 

ar+ = a; + 0dx, y+ = y + 0dy, and s+ = s + 0d8. 
o 

Then, we have (rc+,2/+,s+) €T and 

Let i; = X*. Then, we can prove the following lemma (Exercise 4.8): 

Lemma 4.12 Let v 6 Tln be a positive vector and p > y/ñ. Then, 

Combining these two lemmas we have 

for a constant δ. This result will provide a competitive theoretical iteration 
bound, but a faster algorithm may be again implemented by conducting a 
line search along direction d to achieve the greatest reduction in the primal-
dual potential function. This leads to 

Algorithm 4.4 Given {x°,y°,8°) €.£. Setp>y/n and k := 0. 
While (sk)Txk > e do 

Í. Set (x, s) = (xk, sk) and 7 = n/(n + p) and compute (dx, d„, d8) from 
(4.17). 

2. Let xk+l = xk + adX9 y*+1 = yk + &dy, and e*+1 = sk + <Sd, mAene 

ö = arg min if)n+Jxk + ad*, ** + ad,). 
a>0 

5. Lei * := k +1 and return to Step 1. 

Theorem 4.13 Let p = 0(y/n). Then, Algorithm 4-4 terminates in at 
most O(y/ñlofr((x0)T8°/e)) iterations with 

cTxk - bTyk < e. 
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4.5 Adaptive Path-Following Algorithms 

Here we describe and analyze several additional primal-dual interior-point 
algorithms for linear programming. In some sense these methods follow the 
central path 

{ o XT8\ 
(x, 8) EF: Xs = μβ where μ = > 

in primal-dual form, but certain algorithms allow a very loose approxima-
tion to the path. 

Suppose we have a pair (a;, s) € Af, a neighborhood of C, where C C 
o 

N CT. Consider the neighborhood 

(a, a) EF: \\Xs - μβ\\ < ημ where μ = — V 

for some η € (0,1). We will first analyze an adaptive-step path-following 
algorithm that generates a sequence of iterates in Λ/2(1/4). Actually, the 
algorithm has a predictor-corrector form, so that it also generates interme-
diate iterates in Λ/2(1/2). 

Next we consider adaptive-step algorithms generating sequences of iter-
ates in either 

{ o X S I 

(a, a) ef: \\Xs - HI«, ^ W w h e r e M = — \ 
or 

{ o __ χΤ81 

(χ18)€Ρ:\\Χ8-μβ\\00<ημ where μ = — | , 
for any η € (0,1). Here, for any z € iP\ 

and 
ll*+IU 

where (*""),· := min{z¿,0} and (z+)j := max{^-,0} and || · ||oo is the usual 
¿oo norm. Note that ||*||oo = max{||*||+, \\ζ\\^} and that neither || · | |¿ nor 
|| · H+, is a norm, although they obey the triangle inequality. 

We easily see that 

C C λί2(η) C JVoofa) C Μζ(η) CT for eadi η € (0,1). 
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m 
vW 
8{θ) 

:= 
:= 
:= 

χ + θάχ, 
V + Ody, 
8 + θάβ. 

Our results indicate that when we use a wider neighborhood of the cen-
tral path, the worst-case number of iterations grows, while the practical 
behavior might be expected to improve. 

Given (z,¿) € N, we again generate a search direction d = (dx,dyids) 
using the primal-dual Newton method by solving (4.17). Having obtained 
the search direction d, we let 

(4.19) 

We will frequently let the next iterate be (a:+,e+) = (#(#),«(#)), where Θ 
is as large as possible so that (χ(θ), s(0)) remains in the neighborhood Af 
for 0 € [0,0]. 

Let μ(θ) = χ(θ)τ8(θ)/η and Χ(θ) = diag(a;(0)). In order to get bounds 
on S} we first note that 

μ(θ) = {1-β)μ + θη,μ, (4.20) 
Χ{θ)8(θ)~μ{θ)β = {1-θ)(Χ8-μ6) + θ2Όχά„ (4.21) 

where Dx = diag(de). Thus Dxd8 is the second-order term in Newton's 
method to compute a new point of C. Hence we can usually choose a larger 
9 (and get a larger decrease in the duality gap) if Dxda is smaller. In this 
section we obtain several bounds on the size of Dxda. 

First, it is helpful to re-express Dxd8. Let 

p := X - 5 5 5 d x , 
= X*S~*d9i (4.22) 
= (Χ5)- ·5(7μβ-Χ*), 

Note that p + q = r and pTq = 0 so that p and q represent an orthogonal 
decomposition of r. 

Lemma 4.14 With the notations above, 

i) 

\\Pq\\ < ^ l | r | | a ; 

ii) 

- ^ < P ¿ 9 ¿ < ^ - for each ¿; 
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111) 

M-<iffi<iH!k, 

| |P, | |„<tt<Ä. 
The bounds in Lemma 4.14 cannot improved by much in the worst case: 

consider the case where 
r _ e _ ( ΐ , ΐ , . . . , l ) T , 
p = (1/2,1/2,···,1/2,(1 + >/ϊϊ)/2)τ, and 
9 = ( l / 2 , l / 2 , . . . , l / 2 , ( l ~ v ^ / 2 ) T . 

Lemma 4.14 has been partially proved in Theorem 3.11. We leave the rest 
proof of the lemma to the reader. 

To use Lemma 4.14 we also need to bound r. The following result is 
useful: 

Lemma 4.15 Let r be as above. 

i) 7/7 = 0, ίΛβη ||r||3 = ημ. 

ii) Ι/η e (0,1), 7 = 1 and (as, 8) € λί3(η), then ||r||3 < η'μ/(1 - η). 

iU) Ι/η € (0,1), 7 € (0,1), 7 < 2(1 - n) and (*,·) e U~{n), then \\rtf < 
ημ. Moreover, »/(«,«) €Λ/Όο(η) then 

y/l-fl > rj/y/μ> -\/ϊ+η , 

9ο\\ν\\10<{1 + η)μ. 

Proof, i) If 7 = 0, r = -(XS)-6Xs, so ||r||2 = xTs = ημ. 
ii) Now r = {XS)~'b(jte - X«), so ||r|| < 1 I τ?μ, which yields the 

desired result. 
iii) In this case 

^ (7μ - XjSj)2 

IMI2 

i= i * ' * 
= Σ-

= ¿ ( S — ) 
2η7μ + ημ (since áty*y > (1 -17)^) 

- (1-η)μ 
< ημ (since 7 < 2(1 - i;)). 
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Now suppose (a, s) € ·Λ/Όο(*7)> so that XjSj € [(1 - η)μ1 (1 + η)μ] for each 
j . Thus, for each ¿, 

which yields the final result since 0 < 7 < 2(1 — η). 

α 

4.5.1 Predictor-corrector algorithm 

In this section we describe and analyze an algorithm that takes a single 
"corrector" step to the central path after each "predictor" step to decrease 
μ. Although it is possible to use more general values of η, we will work with 
nearly-centered pairs in A/s(f?) with η = 1/4 (iterates after the corrector 
step), and intermediate pairs in A/2(2r/) (iterates after a predictor step). 

Algorithm 4.5 Given (x°, 8°) € λί2(η) with η = 1/4. Set k := 0. 
While {xk)Tak > c do; 

1. Predictor step: set (x,s) = (xh,sk) and compute d = d(a?,$,0) from 
(4.17); compute the largest 8 so that 

(*(*),•(0))€M(2i|) for 0€[O,J). 

2. Corrector step: set (x\ 8*) = (χ(£), s(Ö)) and compute d! = d(x', s', 1) 
from (4.17); set (**+»,·*+*) = (a:' + < , * ' -hd'J. 

S. Le¿ fc := k + 1 and return to Step 1. 

To analyze this method, we start by showing 

Lemma 4.16 For each k, (xk,8k) € .A/ifa)· 

Proof. The claim holds for k = 0 by hypothesis. Fbr fc > 0, let (χ', a') be 
the result of the predictor step at the fcth iteration and let cH = d{x\ s', 1), 
as in the description of the algorithm. Let χ'(θ) and s'(0) be defined as 
in (4.19) and p', q1 and r' as in (4.22) using x\ s1 and d'. Let μ'(0) := 
χ'(θ)τ8'(θ)/η for all 0 € [0,1] with μ' := μ'(0) = (x')T8'/n and μ*+1 := 
μ#(1) = ( χ * + 1 ) τ « * + 1 / η . 

FVom (4.20), 
μ'(θ) = μ' for all 0, (4.23) 
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Figure 4*1. Illustration of the predictor-corrector algorithm; the predictor 
step moves y° in a narrower neighborhood of the central path to y' on the 
boundary of a wider neighborhood and the corrector step then moves y' to 
yl back in the narrower neighborhood. 

and, in particular, μ*+1 = μ'. Rrom (4.21), 

Χ'(θ)β'(θ)-μ'(θ)β = ( l -Ö) (XV- / i ' e ) + Ö2i?X 
= ( 1 - 0 ) ( Χ ν - μ ' β ) + 02ΡΥ, (4.24) 

where Χ'(θ) = diag(a?'(0)), etc. But by Lemma 4.14(i), Lemma 4.15(ii) and 
{χι,8ι)^Μ{2η) with?/ = 1/4, 

It follows that 

\\Χ'(Θ)8'(Θ) - μ'β|| < (1 - ö ) | + <?£ < \μ'. (4.25) 

Thus Χ'(0)β'(0) > ¿e > 0 for ail Θ e [0,1], and this implies that χ'(θ) > 0, 
β'(0) > 0 for all such Θ by continuity. In particular, xk+1 > 0, s*+1 > 0, 
and (4.25) gives (ar*+1,$*+1) € M(l/4) as desired when we set 0 = 1. 

D 
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Now let (a?, s) = (re*, **), d = d(a;, s, 0), μ = μ* = a?Ts/n, and p, # and 
r be as in (4.22); these quantities all refer to the predictor step at iteration 
*. By (4.20), 

μ' = (1-0)μ, or 

μ**1 = (1-0)μ*. (4.26) 

Hence the improvement in the duality gap at the fcth iteration depends on 
the size of §. 

Lemma 4.17 With the notation above, the step-size in the predictor step 
satisfies 

-1 + ^/1 + 4\\Ρς/μ\\/η' 

Proof. By (4.21) applied to the predictor step, 

\\Χ(θ)8(θ)-μ(θ)β\\ = \\{l-0)(X8-(te) + e2Pq\\ 
< (1-θ)\\Χ8-μβ\\ + θ*\\Ρς\\ 
< (1-θ)ημ + θ*\\Ρς\\, 

after using Lemma 4.16. We see that for 

2 

\\Χ(θ)3(θ)-μ(θ)ε\\/μ < (1 - θ)η + θ*\\Ρς/μ\\ 
< 2TJ(1 - θ). 

This is because the quadratic term in Θ: 

{{Ρς/μ^+ηθ-ηΚΟ 

for Θ between zero and the root 

-η+νη? + 4\\Ρ9/μ\\η _ 2 
2||P<?//i|| 1 + y/1 + 4\\Ρς/μ\\/η ' 

Thus, 
\\Χ(Θ)8(Θ) - μ{θ)β\\ < 2>,(1 - θ)μ = 2ημ{θ) 

or(x(0),8(0))€M(2»?)for 

0<θ< . 2 

- - i + V i + 4||P9/7*IIA> 
α 
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We can now show 

Theorem 4.18 Let η = 1/4. Then Algorithm 4*5 will terminate in at most 
O(y/ñlog((x0)Ts0/e)) iterations with 

cTxk - bTyk < c. 

Proof. Using Lemma 4.14(i) and Lemma 4.15(i), we have 

Ι|Ρ<7ΐΙ<^ΙΜ|3 = ^ η μ , 

so that 
2 2 

θ> 1 + y/l + yftn/η \ + >/l + 4*fin 

at each iteration. Then (4.26) and Lemma 4.17 imply that 

μ*+1 

V 1 + y/lTWto) μ 

for each k. This yields the desired result. 

4.5.2 Wide-neighborhood algorithm 

In this section we consider algorithms of the following form based on 7 € 
(0,1) and λί, where λί is a wide neighborhood of either Λ4ο or λί^. 

Algorithm 4.6 Let η € (0,1) and 7 € (0,1) with 7 < 2(1 - η). Given 
{χ°,8°)€λί(η). Setk:=0. 

While {xk)Tsk > e do; 

1. Set (x,8) = (xk
fs

k) and compute d = d(x,s,y) from (4.Π). 

2. Compute the largest Θ so that 

{χ(β),8(θ))ςλΤ for ΘΕ[0,Θ]; 

set(xk+l,8k+l) = (x{S),8($)). 

3. Let k := k + 1 and return to Step 1. 
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Again the selection of Θ makes this an adaptive-step method. We will 
analyze this algorithm for N = M»(f?) and -A/¿(TJ), where η € (0,1). In 
either case, computing Θ involves the solution of at most 2n single-variable 
quadratic equations. 

Note that, if μ* := {xk)Tsk/n, (4.20) implies 

μ*+1 = ( 1 - 0 ( 1 - 7 ) ) / , (4.27) 

so we wish to bound 9 from below. 

Lemma 4.19 Let η € (0,1), y € (0,1), and λί = M»(»7) οτλί^η). Let 
x, 8, d and Θ be as in the kth iteration of Algorithm 4.6, and define p, q 
and r by (4.22). Then 

0>e2:=min|l , | j^-} ίίλί = λίοΰ{η), 

Proof. Suppose first λί = Λ/^(τ/). Then, for each 0 € [O,0¿"], (4.20) and 
(4.21) imply 

Χ(0)*(0)-μ(0)β 
= (1-0)(Χ*-μβ) + 02Ρ9, 
> - ( ( 1 -0 ) | | χ β - . μ β | | -+0 2 | |Ρ^ )β 

> -((l-e)Vßk + ernßk)e 

= -ημ(θ)β. 

HenceLas in the proof of Lemma 4.16, (S(0),A(0)) € λί^(η) for 0 € [0,02 ], 
when 0 > 0¿~. If λί = Λ/Όο(η), a similar proof gives 

W*(0)6 > -Y(0)s(0) - μ{β)β > -ημ(θ)β 

for 0 € [0,02], which again implies Θ > 02. 

D 

We can now prove the following theorem: 

Theorem 4.20 Let η € (0,1) and 7 € (0,1) 6e coiwtonte with 7 < 2(1 -
η). Then Algorithm 4-6, with M = Λ/Όο(ι;) or AÍZiv)* wt/l terminate in 
0{n log((x°)T8°/e)) iterations. 
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Proof. In either case, each iterate lies in λί^(η), where 

l|Pg|L<l|Pilloo<||r||a/4<ni»V4, 
using Lemma 4.14(iii) and Lemma 4.15(iii). Hence 

Θϊ>θ2> 4ψγ/η. 

Then Lemma 4.19 and (4.27) give 

/ + 1 < ^ _ ML^Tj / , (4.28) 

which yields the result. 

D 

The algorithms for the neighborhoods Λ/Όο(?/) and λί^(η) generate se-
quences of points lying in the boundaries of these sets. Since the results 
hold for arbitrary η € (0,1), the algorithms can generate sequences of points 
in a wide area of the feasible region. In particular, 

so when η is close to 1, the neighborhood λί^(η) spreads over almost all of 
the feasible region T, and the points generated by the algorithm based on 
λί^{η) are close to the boundary rather than the central path. 

4.6 Affine Scaling Algorithm 

Soon after Karmarkar published his projective interior-point algorithm, 
many researchers rediscovered the affine scaling algorithm, which was orig-
inally developed by Dikin in 1967. The algorithm is one of the simplest and 
most efficient interior-point algorithms for LP. 

o 

Given an x* €TVy the affine scaling algorithm solves the following prob-
lem to generate the direction: 

minimize cT(x - xk) 
s.t. A(x - xk) = 0, \\(Xk)-l(x - xk)\\ < a, 

where a < 1 and {x : \\(Xk)~l(x - xk)\\ < a) is called the Dikin ellipsoid 
with radius a—a coordinate-aligned ellipsoid contained in the interior of 
the positive orthant. 
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Let its minimizer be a:*+1. Then 

xk+1-*k=-aw¡\' ( 4 · 2 9 ) 

and, in view of Section 1.5.4, 

pk = (I-XkAT{A(Xk)2AT)-lAXk)Xkc 
= Xkc-XkATyk 

= Xk{c-ATyk) 

and 
yk:=y(xk) = (A(X*)2)AT)-M(X*)2c 
s* := s(xk) = c — ATyk. 

We can assume that ||p*|| > 0, for if not, xk is already an optimal solution. 
Thus, 

c T a * + 1 - c V = -a | | f ^ | |<0 . 

The update (4.29) is called small step. A large step update is given by 

s*+*-s* = -a **f* . (4.30) 
max(p*) 

We can safely assume that max(p*) > 0, since if not, the LP problem is 
either unbounded, or any x € Tv is optimal if p* = 0. 

Tb exclude these trivial cases, we impose the following assumption for 
the affine scaling algorithm. 

Assumption 4.1 The objective function cTx is not constant over the fea-
sible region of (LP) and it is bounded from below. 

Proposition 4*21 The following statements hold for the afßne scaling al-
gorithm: 

i) xk ETP for all k > 0; 

ii) The sequence of objective function values {cTxk} strictly decreases and 
converges to a finite value; 

iii) Xksk —> 0 as k —» oo. 

. o 

Proof. Assume that x* €«FP. Using (4.30), we obtain 

(X*)- 1 **" = e - « ^ | ^ y > e - ae = (1 - a)e > 0, 
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from which i) follows. Using (4.30) and noting 

crAV = llP*ll2, 

we obtain 

cTxk+l = cTxk τ - Ε τ Λ τ ν 
max(p*) 

5 **-&¡w 
- ¿Γ** «Λιιν*β* ^ » • - α | | Χ ν | | . (4.31) 

Hence, 
0 < p r V l l < a~l(cTxk - cTxfc+1), V* > 0, 

from which ii) and iii) obviously follows. 

O 

Proposition 4.21 does not guarantee that the sequence {xk} converges 
and not even that {xk} is a bounded sequence. We now concentrate our 
efforts in showing that the sequence {xk} converges. 

Theorem 4.22 For the affine scaling algorithm, the following statements 
hold. 

i) There exists a constant M(A, c) > 0 such that 

\\Xkpk\\ < M{A,c)\\pkf = M{A,c)cTXkpk, V* > 0. (4.32) 

ii) The sequence {xk} converges to a point $ € Tv. 

iii) For all k>0,we have \\xk - x\\ < M(A,c)(cTxk - cTx). 

Proof. The proof of i) follows Exercise 4.13. Using (4.30), (4.31) and 
(4.32), we obtain 

\\xk+l - xk\\ < M{A, c){cTxk - cTa;*+1), Vfc > 0. (4.33) 

Since {cTxk} converges, (4.33) implies that 

oo 

£) | |x*+ 1 - **ll < Km M{A,c)(cTx° - cTxk) < oo. 
fc=0 
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This implies that {xk} is a Cauchy sequence, and therefore a convergent 
sequence. Clearly, x := 1πη*_>οο£* € Tv. We now show iii). Prom (4.33), 
we also obtain 

\\xk - xl\\ < M{A,c)(cTxk - cTxl), V/ > k > 0. 

Letting i -> oo, we obtain 

||** - «|| < M(A, c)(cTxk - cT£), Vk > 0. 

D 

The question is whether or not the limit x is an optimal solution. In 
what follows, let 2 = cT£, and let (P, Z) be the partition of x such that 
xp > 0 and xz = 0. Since ||X***|| -+ 0 (using Theorem 4.21(iii)) and 
xp > 0, we see that Sp -> 0. Furthermore, since {(i/*,**)} is a bounded 
sequence from Exercise 4.14, it must have an accumulation point (£,s). 
Clearly, ATy + s = c, JO = 0, and Sp = 0. 

Lemma 4.23 The set {x € J> : sz = 0} w a face of Tv where the 
objective function is constant, and for anx € Tv, we have 

cT(x -x) = sT(x-x) = §zxz. 

This lemma shows that |Z| > 0. We now show that £ is an optimal 
solution of problem (LP) if the step-size a € (0,2/3]. An important ingre-
dient used in the proof of these results is the following (partial) potential 
function. 

Definition 4.1 The potential function with respect to Z is defined as 

Pz(x, 2) = \Z\ log(cTs - I) - £ loga:,· (4.34) 
jez 

o 

for every x ETP, such that cTx > z. 

The fact that the limit point 2 is an optimal solution of problem (LP) fol-
lows from two results stated below, namely Lemma 4.24 and Theorem 4.25. 
Lemma 4.24 follows as an immediate consequence of Theorem 4.22(iii). 
Theorem 4.26 combines these two results to obtain the conclusion that x is 
an optimal solution of (LP). 

Lemma 4.24 For the affine scaling algorithm, 
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Proof. By Theorem 4.22(ni), we know that for some M(A,c) > 0, 

\\xk - £\\ < M(A, c)(cTxk -1), VJfe > 0. 

Since xz = 0, this implies 

| |x | | | < M(A, c)(cTxk - z), Vk > 0. 

Then, we obtain 

£ x) < y/\Z\\\xk
z\\ < yfiZ\M(A, c)(cTxk -2), V* > 0. 

j£Z 

D 

The proof of the next theorem will be omitted. It is similar to the affine 
scaling theorem described in Section 3.3.3. 

Theorem 4.25 For the affine scaling algorithm, assume that a < 2/3. / / 
x is not an optimal solution lying in the interior of the optimal face of 
problem (LP) then there exist a constant δ > 0 and an integer K such that 

Vz(xk+l, z) - Vz{xk,z) < - J , V* > K. (4.36) 

Combining Lemma 4.24 and Theorem 4.25, we can now show that x is 
an optimal solution of (LP). 

Theorem 4.26 For the affine scaling algorithm, assume that a < 2/3. 
Then the limit x of the primal sequence {xk} is an optimal solution lying 
in the interior of the optimal face of (LP). 

Proof. Assume by contradiction that £ is not an optimal solution lying 
in the relative interior of the optimal face of (LP). By Theorem 4.25, it 
follows that 

lim Pz(s*,2) = -oo. (4.37) 
Λ-»οο 

Noting the fact that 

\z\iog(£x¡) -Σ,ι°εχϊ * Wlo8l*l> 
jez jez 

we obtain 

Vz{x
k,z) = i z i l o g f ^ ^ ' j + I Z I l o g C ^ - E 1 0 ^ * 

\¿->iezxj / jez jez 

> \Z\\osCxk~l + \Z\\ofr\Z\. (4.38) 
1-jez xj 
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Relations (4.37) and (4.38) then imply 

C X *—* Z 

lim — - j = 0, 

which contradicts Lemma 4.24. 

D 

4.7 Extensions to QP and LCP 
Many LP algorithms discussed in this chapter can be extended to solv-
ing convex quadratic and monotone linear complementarity problems. We 
present one extension, the primal-dual potential reduction algorithm, here. 
More results will be introduced in the subsequent chapters. Since solv-
ing convex QP problems reduces to solving monotone LCP problems, we 
present the algorithm in the LCP format of (1.5). 

Once we have an interior feasible point (a?,y, s) with μ = xTs/n, we can 
generate a new iterate a?+ and (y+, s+) by solving for d«, dy and da from 
the system of linear equations: 

Sdx + Xd8 = 7/xe - X«, 

" ( i ) - ( t ) - * {iM) 

where we choose 7 = n/(n + y/n) < 1. Then, we assign a?+ = x + ädxi 

y+ = y + ädy, and *+ = s + öde where 

ö = arg min ̂ n+p(a: -I- adx,s + ade). 

Since M is monotone, we have 

did, = (dx;dy)
T(d8;0) = (dx;dv)

TM(dx;dy) > 0, 

where we have d£d8 = 0 in the LP case. Nevertheless, we can prove Lemma 
4.11 still holds (Exercise 4.7) and from Lemma 4.12 

ψη+ρ(Χ+, S+) - Ψη+ρ&, s) 

for a constant δ. This leads to a primal-dual potential reduction algorithm 
with the same complexity bound presented in Theorem 4.13. 
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4.8 Notes 

A similar result to Proposition 4.2 has been proved by Todd [412]. This 
proposition plays an important role in analyzing several interior-point al-
gorithms. 

The Karmarkar projective algorithm in the LP standard form with a 
lower bound z for z* was first developed and analyzed by Todd and Burrell 
[413], Anstreicher [24], Gay [133], and Ye and Kojima [477]. de Ghellinck 
and Vial [136] developed a projective algorithm that has a unique feature: it 
does not need to start from a feasible interior point. All of these algorithms 
have an iteration complexity 0(nL). Other extensions and analyses of 
Karmarkar's algorithm can be found in Akgiil [8], Anstreicher [22], Asic, 
Kovacevic-Vujcic and Radosavljevic-Nikolic [36], Betke and Gritzmann [55], 
Blair [62], Blum [64], Dennis, Morshedi and Turner [95], Diao [97], Gonzaga 
[159], Kalantari [211], Kovacevic-Vujcic [238], Lagarias [242], McDiarmid 
[266], Nemirovskii [319], Nesterov [324], Padberg [335], Sherali [377], Shub 
[381], Tseng [421], Wei [456], Wu and Wu [460], Zimmermann [489]. 

The path-following algorithm, described in Section 4.2, is a variant of 
Renegar [358]. The difference is the analysis used in proving the complexity 
bound. Renegar measured the duality-gap, while we used the max-potential 
of the level set. A primal path-following algorithm is independently ana-
lyzed by Gonzaga [158]. Both Gonzaga [158] and Vaidya [437] developed 
a rank-one updating technique in solving the Newton equation of each it-
eration, and proved that each iteration uses 0(n25) arithmetic operations 
on average. Kojima, Mizuno and Yoshise [230] and Monteiro and Adler 
[298] developed a symmetric primal-dual path-following algorithm with the 
same iteration and arithmetic operation bounds. The algorithm was pro-
posed earlier by Tanabe [400]. Other variants of path-following or homo-
topy algorithms can be found in Blum [65], Boggs, Domich, Donaldson and 
WitzgaU [67], Nazareth [315, 316]. 

Recently, Vaidya [438] developed a new center, the volumetric center, for 
linear inequalities and a path-following algorithm for convex programming. 
The arithmetic operations complexity bound is identical to that of the 
ellipsoid method, but its iteration complexity bound is less than that of the 
ellipsoid method. Also see Anstreicher [26]. 

The primal potential function with p > 1 and the affine potential re-
duction algorithm were developed by Gonzaga [160]. His algorithm has 
iteration complexity 0(nL). The primal-dual potential function and algo-
rithm were analyzed by Anstreicher and Bosch [28], Freund [123], Gonzaga 
[160], Todd and Ye [415], and Ye [466]. These algorithms possess 0{</nL) 
iteration complexity. Using this function, Ye [468] further developed a pro-
jective algorithm with 0(y/riL) iteration complexity; also see Goldfarb and 
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Xiao [152]. 
The affine scaling algorithm was developed by Dikin [98, 99] and was 

rediscovered by Barnes [43], Cavalier and Soyster [79], Kortanek and Shi 
[235], Sherali, Skarpness and Kim [378], Vanderbei and Lagañas [448], Van-
derbei, Meketon and FVeedman [449], Andersen [19], and Monteiro, Adler 
and Resende [301]. The algorithm also has three forms as the potential 
algorithm has, and one can view that p is chosen as oo for the direction 
of the affine scaling algorithm. The primal or dual algorithm has no poly-
nomial complexity bound yet, but has been proved convergent under very 
weak conditions as described here, see Tsuchiya [425, 426], Tsuchiya and 
Muramatsu [429], Monteiro, Tsuchiya and Wang [305], Saigal [369], Sun 
[396], and Tseng and Luo [424]. Mascarenhas [265] provided a divergence 
example for the affine scaling algorithm. The primal-dual polynomial affine-
scaling-type algorithms can be found in Monteiro, Adler and Resende [301] 
and Jansen, Roos and Iterlaky [199]. 

The primal-dual potential reduction algorithm described in Section 4.3 
is in the primal form. One can develop a potential reduction algorithm in 
dual form, where z, an upper bound for the optimal objective value z*, 
is updated down in each iteration, see Ye [466]. The symmetric primal-
dual potential algorithm of Sections 4.4 and 4.7 was developed by Kojima, 
Mizuno and Yoshise [232]. Other potential reduction algorithms are by 
Gonzaga and Todd [166], Huang and Kortanek [189], and Τιιηςβΐ [432]. 
Todd [408] proposed an extremely simple and elegant 0(y/nL) algorithm. 

The adaptive primal-dual algorithms were developed by Mizuno, Tbdd 
and Ye [292], also see Barnes, Chopra and Jensen [44]. A more practical 
predictor-corrector algorithm was proposed by Mehrotra [276], based on 
the power series algorithm of Bayer and Lagañas [47] and the primal-dual 
version of Monteiro, Adler and Resende [301], also see Carpenter, Lustig, 
Mulvey and Shanno [78] and Zhang and Zhang [486]. His technique has 
been used in almost ail of the LP interior-point implementations. Further-
more, Hung [193] developed a 0(nT»" L)-iteration variant that uses wider 
neighborhoods. As n becomes large, this bound approaches the best bound 
for linear programming algorithms that use the small neighborhood (which 
are not practical). Other polynomial wide-neighborhood algorithms can be 
found in Jansen [198] and Sturm and Zhang [391, 390]. 

There was another polynomial interior-point algorithm, a multiplicative 
barrier function method, which was developed by Iri and Imai [195]; also 
see Sturm and Zhang [389]. 

A modified (shifted) barrier function theory and methods were devel-
oped by Polyak [343]; also see Pan [336], and Polak, Higgins and Mayne 
[341]. 
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Interior-point algorithm computational results can be found in Adler, 
Karmarkar, Resende and Veiga [4], Altman and Gondzio [13], Bixby, Gre-
gory, Lustig, Marsten and Shanno [59], Choi, Monma and Shanno [85, 
86], Christiansen and Kortanek [87], Czyzyk, Mehrotra and Wright [92], 
Domich, Boggs, Rogers and Witzgall [101], Fourer and Mehrotra [119], 
Gondzio [155, 156], Lustig, Marsten and Shanno [255, 259, 257, 258], Mc-
Shane, Monma and Shanno [269], Mehrotra [276], Monma [294], Ponnam-
balam, Vannelli and Woo [345], Vanderbei [445], and Xu, Hung and Ye 
[461]. 

In addition to those mentioned earlier, there are several comprehensive 
books which cover interior-point linear programming algorithms. They are 
Bazaraa, Jarvis and Sherali [48], Bertsekas [53], Fang and Puthenpura [111], 
Saigal [370], and Murty [310]. 

Many researchers have applied interior-point algorithms to solving con-
vex QP and monotone LCP problems. The algorithms can be divided into 
three groups: the primal scaling algorithm, see Anstreicher, den Hertog, 
Roos and Iterlaky [29], Ben-Daya and Shetty [50], Goldfarb and Liu [149], 
Ponceleon [344], and Ye [480, 467]; the dual scaling algorithm, see Jarre 
[202], Mehrotra and Sun [279], Nesterov and Nemirovskii [326], and Rene-
gar and Shub [360]; and the primal-dual scaling algorithm, see Kojima, 
Mizuno and Yoshise [231, 232, 230], Mizuno [288], Monteiro and Adler 
[299], Monteiro, Adler and Resende [301], and Vanderbei [444]. 

Relations among these algorithms can be seen in den Hertog and Roos 
[184]. Given an interior feasible point (z,¿), the following is a summary of 
directions generated by the three potential algorithms. They all satisfy 

Adx = 0, d8 = -ATdy for LP, 

Adx = 0, da = Qdx~ATdy for QP, 

and 

da = Mdx for LCP. 

Furthermore, they satisfy, respectively, 

Primal: 

d, + T^X~2d* = -s + -£±-X-*e, 
(n + p) (n + p) 

Dual: 

(n + p) {n + p) 

and 
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Primal-dual: 

Xds + Sds = -Xs + 
XT8 

Jñ+7)e' 

where p > y/n. These algorithms will reduce the primal-dual potential 
function by a constant, leading to 0(plog(l/e)) iteration complexity. 

4.9 Exercises 
4.1 In Algorithm 4.1, prove that ||p(**+1)|| > ρΤ**+** * * - Then prove 

Lemma 4.1. 

4.2 Compare Karmarkar's algorithm presented in this chapter to that de-
scribed in Chapter 3. What will happen if b = 0 and z = 0 in (LP) and 
(LD) solved here? 

4.3 Let x(z) € Tv be on the central path associated with Ω(ζ) in Proposi-
tion 4.2. Prove z* > z> z° implies μ(ζ) < μ(ζ°). 

o 

4.4 If x €fp satisfies condition (4-9), prove 
n / A \ 

»)· s(tH 
Use this inequality to prove Corollary 4-3. 

4.5 Choose several appropriate constants η for Algorithm 4-2 and calculate 
how many dual Newton steps are necessary to compute yk+1 from yk. Does 
the choice of constants affect the complexity of the algorithm? 

4.6 Develop a potential reduction algorithm in dual form using the dual 
potential function B(y^8^z) of (2.16), where z is a upper bound for the 
optimal objective value z*. 

4.7 Using the technique in the proof of Lemma 3.12 to prove Lemma 4-11* 
Moreover, show Lemma 4*11 holds even ifd£d8 > 0 instead ofdí£d8 = O as 
in the LP case. 

4.8 Let v € Tln be a positive vector and p > \Jn. Prove 

y/riMy)\\V-V\e - & j A ) | | > yffi . 
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4.9 Use p + q = r end pTg = 0 ¿o prove Lemma 4-14-

4.10 Describe the primal affine scaling algorithm mentioned at the end of 
Section 4.6. Starting from x = e, use it to complete the first three iterations 
for solving 

minimize x\ + 3a?2 
S.t. X\ + X2 + -&3 == 3, 

4.11 5Λοΐϋ ¿Λα* */max(p*) < 0 and ||p*|| ^ 0 in the affine scaling iteration, 
then the LP problem is unbounded. 

4.12 In both updates (4.29) and (4*29), show that z*+1 €Tp. 

4.13 Let {Ayc) be given. Prove there exists a constant M(Ayc) > 0 with 
the property that for any diagonal matrix D > 0, the (unique) optimal 
solution x* of 

maximize cTx — ^||£>a:||2 

s.t. Ax = 0 

satisfies 
\\x*\\<M(A,c)cTx*. 

4.14 Show that the sequence of the dual estimates {(j/*,**)} generated by 
the affine scaling algorithm is bounded. 



Chapter 5 

Worst-Case Analysis 

There are several remaining key issues concerning interior-point algorithms 
for LP. The first Is the arithmetic operation complexity. In the previous 
chapters, we have analyzed the total number of iterations needed to solve 
a LP problem approximately. Since it solves a KKT system of linear equa-
tions with dimension m + n and n>m, each iteration of all interior-point 
algorithms uses 0(n3) arithmetic operations. Thus, their best operation 
complexity bound is 0(η3δlog(JS/e)), when the initial gap (z°)Ts° < R. 
(We assume (x°)Ts° < R throughout this section.) The question is whether 
or not the arithmetic operations can be reduced in each iteration. 

The second issue involves termination. Unlike the simplex method for 
linear programming which terminates with an exact solution, interior-point 
algorithms are continuous optimization algorithms that generate an infinite 
solution sequence converging to the optimal solution set. If the data of an 
LP instance are integral or rational, an argument is made that, after the 
worst-case time bound, an exact solution can be "rounded" from the latest 
approximate solution. Thus, several questions arise. First, under the real 
number computation model (i.e., the LP data consists of real numbers), 
how do we argue termination to an exact solution? Second, regardless of 
the data's status, can we utilize a practical test, one which can be computed 
cost-effectively during the iterative process, to identify an exact solution so 
that the algorithm can be terminated before the worse-case time bound? 
Here, the exact solution means a mathematical solution form using exact 
arithmetic, such as the solution of a system of linear equations or the so-
lution of a least-squares problem, which can be computed in a number of 
arithmetic operations bounded by a polynomial in n. 

The third issue involves initialization. Almost all interior-point algo-
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O 

rithms solve the LP problem under the regularity assumption that Τφ 0. 
A related issue is that interior-point algorithms have to start at a strictly 
feasible point. Since no prior knowledge is usually available, one way is to 
explicitly bound the feasible region of the LP problem by a big M number. 
If the LP problem has integral data, this number can be set to 2L in the 
worst case, where L is the length of the LP data in binary form. This set-
ting is impossible in solving large problems. Moreover, if the LP problem 
has real data, no computable bound is known to set up the big M. 

5.1 Arithmetic Operation 
The primary computation cost of each iteration of interior-point algorithms 
is to inverse a normal matrix AX2AT in the primal form, AS"2AT in the 
dual form, or AXS"1AT in the primal-dual form. However, an approxi-
mation of these matrices can be inverted using far fewer computations. In 
this section, we show how to use a rank-one technique to update the inverse 
of the normal matrix during the iterative progress. This technique reduces 
the overall number of operations by a factor y/ñ. 

Consider the normal matrix A(X°)2AT where x° is the initial point of 
a primal algorithm. To multiply and invert require 0(m2n) operations and 
after one iteration of the algorithm, a new point, x1, is generated. Instead 
of inverting A(Xl)2AT for the second iteration, we will use AD2AT, where 
D is a positive diagonal matrix defined by 

d = ( Xo. if 1/1.1 < x°j/x} < 1.1 
J \ Xj otherwise. 

In other words, if x) did not change significantly, its old value is used; 
otherwise, its new value will be used. The inverse of the normal matrix 
AD2AT can be calculated from the previous inverse using the Sherman-
Morrison-Woodbury rank-one updating formula (Exercise 1.1) whenever dj 
is assigned a current value zj. Each update requires 0(m2) arithmetic 
operations. The procedure can be extended by letting D° = Xo and for 
iterations k > 1, 

d* f d*-1 if l / i . i < d*-7x? < l.i 
* \ x* otherwise. 

Now we estimate the total number of updates needed before the algo-
rithm terminates. Let 

J t = { i : | ¿[1/1.1.1.1]}. 
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Then, the computation work in the tth iteration is 0(τη2|Ι*|) operations, 
where | / | denotes the number of elements in set J. Thus, the total opera-
tions up to the fcth iteration is 0(m2n + m2 Σ*=ι Ι̂ *Ι)> Whe r e m2<n m the 
estimate is the amount of work at the initial iteration t = 0. We have the 
following lemma to bound this estimate. 

Lemma 5.1 

| | ( I ^ - V - < O l l o o < 0 . 1 for any * = 0,1,.... 

and 

¿|/*| < ιΐν^έΐκι»1-1)-1^ -*'-1)ll-
¿=1 t = l 

Proof. The proof of the first inequality is straightforward. Let 

σ ' Η Ι Φ ' Γ ν - ^ Ι Ι ι for ¿ = 0,1,.... 

Then, fort = 1,2,... 

M 

~ it ^- 1 

= ll(Di-1)-V-<*t-1)lli-|/tl/n 
= IKP'-1)-1^4 - x*-1 + x*-1 - d'-1)!!, - I/'I/II 
< IK^"1)-V - x'"1)!! + I K ^ - T V 1 - O l l i - l/'l/n 

Thus, we have 

k 

Σΐ/Ί/π < Σ ο κ ^ - τ ν - ^ Ι Ι ι Η ν - 1 - * ' ) 

= •°-»*+EiKIJl"I)"I^-*l"1)iii. 

Since <τ° = 0, ak > 0, and || · \\x < || · ||2, we have the desired result. D 
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Furthermore, when 

IKD^rV-*'-1)!!^«, 
for t = 1,2,... (as it will be in Algorithm 5.1 below), 

k 

If fc is about 0(Vnlog(iZ/e))} then the total number of rank-one updates is 
bounded by 0(n log(R/e)) and the total number of operations is bounded 
by 0(m2nlog(H/c)). 

It is important to note, however, that the sequence of points generated 
using the approximate normal matrices is different than the sequence that 
would be generated by using the exact matrices. Therefore, it is necessary 
to study the convergence of the new sequence. As an example, consider 
primal potential reduction algorithm in Section 4.3. Replacing Xk in the 
normal matrix by a positive diagonal matrix D such that 

¿ < ! < 1 . 1 for j = l,...,n, 

we now have 

eiw**)ii' 
where 

p(zk) = (J - DAT(AD2AT)-1AD)DVPn+p(x
k,zk). 

The point xk+1 exactly solves the problem 

minimize VPn+p(x
k> zk)T(x - xk) 

s.t. A{x - xk) = 0, \\D{x - xk)\\ < a. 

Following the analysis in Section 4.3, p(zk) can be rewritten as 

Λ**) = ΐ π ^ ) - D{Xkrle = D(Xkrlp(zk), (5.1) 
C X — Z 

where p(zk) is given by (4.11), 

»(**) = (AD*AT)-lmDc-í¿g£D(X><)-*e) (52) 

s(zk) = c-ATy(zk). V ' ' 

Thus, we have 

\\p{zk)\\ = \\D(Xk)-lp(zk)\\ > \\p(zh)\)/\\D-lXk\\ > ||p(z')||/l.l. 
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Also useful is the inequality 

||(xfcrV+1-**)ll = ||pr*r10i>-1(s*+1-**)ll 
< ικ^Γ^ΙΙΙρ-ν*1-**)!! 
< l.l\\D-1(xk+1-xk)\\ = l.la. 

Combining these facts, 

vvn+P(*ky)T(*k+l -**)=-<*iip(**)ii, 
and the reduction of the potential function is 

V^p{xk+\zk) - ? W z * , * * ) < -α\\ρ(ζ")\\ + 2£'}"ζα) · 

Since Lemma 4.8 still holds for p{zk), we only need to modify the po-
tential reduction inequality in the proof of Theorem 4.9 by 

Therefore, upon choosing η = 0.43 and a = 0.25, Theorem 4.9 is still valid 
for δ > 0.04. As a result, the following modified primal algorithm can be 
developed. 

Algorithm 5.1 Given x° e£p and (j/°, 8°) €T<t- Let z° = bTy° and D° = 
Xo. Set a = 0.25 and k := 0; 

Whüe (sk)Txk > e do 

1. Forj = l , . . . ,n , t / d ^ / ^ g [1/1.1,1.1] then <#=*$. LetD:=Dk. 
Then, compute (y(zk),s{zk)) of (5.2) andp(zk) of (5.1). 

2. If there exists z such that s(z) > 0, compute 

z = argmmV>n+p(zN*(s)), 

and ifrl>n+p{xk>s{z)) < VWp(**,sfc) then y"*1 = y{2), s*+1 = s{z) 
and zk+1 = bTyk+l; otherwise, y*+1 = yk, sk+x = sk and z*+1 = zk. 

3. Let x"*1 = xk - aDp(zk+l)/\\p(zk+1)\\. 

4. Let Dk+1 =Dk andki-k + l, and return to Step 1. 

To summarize, we have 
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Theorem 5.2 Let p = y/ñ and ψη+ρ(χ°}8°) < 0(^/ñlogR). Then, Algo-
rithm 5.1 terminates in 0(y/ñlog(R/e)) iterations and uses 0(ns log(U/c)) 
total arithmetic operations. 

The normal matrix in dual or primal-dual algorithms can be updated 
in a similar manner and most algorithms have their operation complexity 
improved by the same factor 0(y/n). Up to this point, the most efficient 
LP algorithms use 0(nz log((x°)T8°/e)) operations in the worst case. The 
KKT matrix in solving convex QP and LCP can be approximated as well 
and the most efficient algorithms also use 0(n3 log((x°)T8°/e)) operations 
in the worst case. 

In practice, the rank-one technique is virtually unused. There are two 
reasons. First, A is "sparse" (containing very few nonzero components) in 
practice so that sparse numerical linear algebra procedures will be used to 
factorize the normal matrix, see Chapter 10. The total number of opera-
tions in a complete factorization is significantly below 0(n3)1 so the saving 
of using rank-one update is insignificant or may be even negative due to its 
overhead cost. Secondly, the practical step-size a is much larger than the 
theoretical limit, so that often a:*4"1 is dramatically changed from xk. 

5.2 Termination 
We now turn our attention to the termination of interior-point algorithms, 
the object of a great deal of research efforts. These efforts resulted in four 
basic approaches. 

• The first is a "purification" procedure to find a feasible vertex whose 
objective value is at least as good as the current interior point. This 
approach can be done in strongly polynomial time when using the 
simplex method, and it works for LP with real number data. One 
difficulty which arises with this method is that many non-optimal 
vertices may be close to the optimal face, and the simplex method 
still requires many pivot steps for some "bad" problems. Moreover, 
the (simplex) purification procedure is sequential in nature. 

• The second is a theoretical result to identify an optimal basis. A 
test procedure was also developed to show that, if the LP problem 
is nondegenerate, the unique optimal basis can be identified before 
the worst-case time bound. The procedure seemed to work fine for 
some LP problems but it has difficulty with degenerate LP problems. 
Unfortunately, most real LP problems are degenerate. The difficulty 
arises simply because any degenerate LP problem has multiple opti-
mal bases. 
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• The third approach is to slightly randomly perturb the data such that 
the new LP problem is nondegenerate and its optimal basis remains 
one of the optimal bases of the original LP problem. Questions remain 
on how and when to randomize the data during the iterative process, 
decisions which significantly affect the success of the effort. 

• The fourth approach is to guess the optimal face and to find a feasible 
solution on the face. It consists of two phases: the first phase uses 
interior point algorithms to identify the complementarity partition 
(P*, Z*), and the second phase solves two linear feasibility problems 
to find the optimal primal and dual solutions. One can use the solu-
tion resulting from the first phase as a starting point for the second 
phase. 

In this section we develop a termination procedure to obtain an exact 
solution on the interior of the optimal face. We shall see that (i) the ter-
mination criterion is guaranteed to work in finite time, (ii) the projection 
procedure (solving a least-squares problem) is strongly polynomial and can 
be efficiently performed in parallel, and (iii) the approach identifies the 
optimal face, which is useful in sensitivity analysis. 

It has been noticed in practice that many interior-point algorithms gen-
erate a sequence of solutions converging to a strictly complementary solu-
tion for linear programming. It was subsequently proved that numerous 
interior-point algorithms for linear programming indeed generate solution 
sequences that converge to strictly complementary solutions, or interior 
solutions on the optimal face. Recall that the primal optimal face is 

flp = {xp* - Ap*xp* = 6, xp* > 0}, 

and the one for the dual is 

tod = {(ί/, sz*): <4p*2/ = cp*, 8Z* = cz· - Ä%.y > 0}, 

where (P*,Z*) is the strict complementarity partition of the LP problem. 
Note that these faces have strictly feasible solutions. Define 

ξρ(Α, 6, c) := miniGp* {max*^6Ωρ χά) > 0, 
ξά(Α, 6, c) := mini€Z· {max( l M^) € a i srf > 0, (5.3) 
ξ(Α, 6, c) := min{£p(¿, 6, c), ξά{A, 6, c)} > 0. 

5.2.1 Strict complementarity partition 
To measure the magnitude of positivity of a point x € 7J!}l, we let σ(χ) be 
the support, i.e., index set of positive components in x, that is, 

σ(χ) = {%: Xi > 0}. 
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We first prove the following theorem. 

Theorem 5.3 Given an interior solution xk and sk in the solution se-
quence generated by any of interior-point algoriíhms possessing property 
(5.7) below, define 

ak = {j : ** > 4) . 
Then, for K = 0(y/n(\og(R/£2(A, 6, c)) + logn)) we have 

σ* = Ρ* for all k>K. 

Proof. For simplicity, we use ξ = ξ(Α, 6, c). For a given j € P*, let (x*, 5*) 
be a complementarity solution such that x¿ is maximized on the primal 
optimal face Ωρ, Le, Xj > £P(J4,6,C) > ξ. Since 

(xk - x*)T(sk - s*) = 0, 

Σ * ? Α ? + Σ · Ϊ Χ ? = (**)ΤΛ (5.4) 

Thus, if (x*)ra* < c, then 

Jk\T e * 

On the other hand, inequality (5.4) can be written as 

Σ 3Κ*ίβ?) + Σ $<■*β?) = (**)τ**· (5·6) 
»GP* * t€£* * 

Almost all interior-point algorithms generate a solution sequence (or sub-
sequence) (xk,8k) such that 

min(XV) 

where η is a positive constant. Thus, from (5.6) and (5.7) we have 

§(****) < («*)*V, 

or 
ar? ¡r?s* 12. > tf > n-»> 
a$ (x*)re* - ' 
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or 
x) > η-*χ) > η~ηξ. (5.8) 

Thus, if e < η-,»ξ2, recalling (5.5) we must have 

** < e/ξ < n-'€ < x). 

Similarly, we can prove this result for each j 6 P*. Moreover, for each 

xkj < c/í < η-ηξ < s). 

Due to the polynomial bound of these interior-point algorithms, in 
0(Vñ(log(i?/í2) + logn)) iterations we shall have 

(xk)Tsk < e = η-"ζ*. 

This concludes the proof of the theorem. 

a 

5.2.2 Project an interior point onto the optimal face 
In practice, we don't wait to see if ak = P*. In the following we develop a 
projection procedure to test if σ* = P* and if an exactly optimal solution 
can be reached. For simplicity, let P = ak and the rest be Z. Then we 
solve 

{PP) minimize \\{Xt>)-l(*P-*i>)\\ 
s.t. Apxp = b, 

and 
(DP) minimize \\{Sk

zr
l AT

z(y - yk)\\ 
s.t. Äpy = cp. 

Without loss of generality we assume that Ap has full row rank. These 
two problems can be solved as two least-squares problems. The amount 
of work is equivalent to the computation in one iteration of interior-point 
algorithms. Furthermore, if the resulting solutions x*p and y* satisfy 

xp > 0 and s*z~cz- Ä^y* > 0, 

then obviously x* = (a?p,0) and y* are (exact) optimal solutions for the 
original LP problems, and ak = P* (Figure 5.1). 

Let d* = ( X * ) - 1 ^ - ^ ) and dy = y-yk and da = (S^A^y-y9*). 
Then, the two problems can be rewritten as 

(PP) minimize ||4χ|| 
s.t. ApXpdx = b — ApXp = Αχχ\% 
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Figure 5.1. Illustration of the projection of yk onto the (dual) optimal 
face. 

and 
(DP) minimize | | ( 5 | ) - Μ Μ 

s.t. Aj>dy =: cp - Aj>yk = s$>. 

Thus, if both ||dx||oo and ||̂ 5||οο are less than 1, we must have xp > 0 and 
sz = cz - -Â y > 0. Since ak -> F* from the proof of Theorem 5.3 and 
the right-hand sides of the constraints of both problems converge to zero 
as (xk)Tsk -> 0, ||dx|| and ||d,|| must converge to zero. After ak = P = P*, 
both (PP) and (PD) are feasible. Note that the solutions of (PP) and (PD) 
are 

dl = Xk
PAT

P{Ap(Xk
PYAT

P)-lAzx
k

z and <ζ = (Sfr-1 A^ApA*)-1 AP8P. 

Thus, 

irciioo 
= \\XPAl(Ap(Xk

P)2Al)-lApXP{XP)-iAT
P{APAlrlAzX

k
z\\oa 

< \\XkpAl{Ap{XkpYAl)-lApXkp\\\\{Xp)-xAl{ApAT
P)-iAzx

k
z\\00 

< \\(Xk
P)-lAl(ApAlrlAx^\U 

< \\(XP)-*\\\\Al(APAlrlA,m*z\U' 

Let 
C(A,b,c) = maK(l,\\ÄP'.(Ap.ÄP\)-1Az4). 

Then, if ak = P = P* and min(xP) > C(A,6,c)max(x|), 

ll<Clloo < 1 which implies that xp > 0. 
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Similarly, when min(s|) > ζ{Α, 6, c) max(sp) then 

Ĥ CIloo < 1 which implies that 8p > 0. 

Recall (5.5) that each component of x% and sP is less than ε/ξ(Α, 6, c) 
and (5.8) that each component of xk

p and sk
z is greater than ξ(Α, 6, ο)η~η. 

This essentially shows that in 

°K*(Äi8l·*·)) 
iterations the above projection procedure will succeed in generating the 
complementarity partition and an exact optimal solution pair. To summa-
rize, we have a condition-based complexity bound. 

Theorem 5.4 All O(y/ñlog(R/e))-iteration polynomial-time interior-point 
algorithms discussed earlier, coupled with the termination procedure, will 
generate an optimal solution in 0(^/η(Ιοζ(ηζ(Α1^ό)/ξ2(Α, 6,c)) + logn)) 
iterations and 0(n3(log(RC(A,b,c)/£2{A,b,c)) + logn)) arithmetic opera-
tions. If the LP problem has integral or rational data, then 

Ä < 2 L , C(A,b,c)<2L, and £(¿,&,c) > 2~L, 

where L is the size of the LP data. Thus, ak = P* and an exact solution 
will be generated in 0(y/nL) iterations and 0(n3L) operations. 

When an interior solution x*py P = P*, on the primal optimal face is 
obtained, it can be cornered to an optimal basic solution in no more than 
n — m pivot operations. See details in Section 10.5. 

5.3 Initialization 
Most interior-point algorithms have to start at a strictly feasible point. The 
complexity of obtaining such an initial point is the same as that of solving 
the LP problem itself. More importantly, a complete LP algorithm should 
accomplish two tasks: 1) affirmatively detect the infeasibility or unbound-
edness status of the LP problem, then 2) generate an optimal solution if 
the problem is neither infeasible nor unbounded. 

Several approaches have been proposed to resolve these issues: 

• Combining the primal and dual into a single linear feasibility problem 
(1.1), then applying LP algorithms to find a feasible point of the 
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problem. Theoretically, this approach can retain the currently best 
complexity result. Practically, the disadvantage of this approach is 
the doubled dimension of the system of equations which must be 
solved at each iteration. 

• The big M method, i.e., add one or more artificial column(s) and/or 
row(s) and a huge penalty parameter M to force solutions to become 
feasible during the algorithm. Theoretically, this approach holds the 
best complexity. The major disadvantage of this approach is the nu-
merical problems caused by the addition of coefficients of magnitude. 
It also makes the algorithms slow to converge. This disadvantage 
also occurs in the primal-dual "exterior" or "infeasible" algorithm. A 
polynomial complexity can be established for this approach if the LP 
problem possesses an optimal solution and if the initial point is set 
to Me. Thus, the big M difficulty even remains in these polynomial 
infeasible interior-point algorithms. 

• Phase I-then-Phase II method, i.e., first try to find a feasible point 
(and possibly one for the dual problem), and then start to look for an 
optimal solution if the problem is feasible and bounded. Theoretically, 
this approach can maintain the polynomial complexity result. The 
major disadvantage of this approach is that the two (or three) related 
LP problems are solved sequentially. 

• Combined Phase I-Phase Π method, i.e., approach feasibility and 
optimality simultaneously, lb our knowledge, the currently "best" 
complexity of this approach is 0(nlog(R/e)). Other disadvantages of 
the method include the assumption of non-empty interior and/or the 
use of the big M lower bound. Also, the method works exclusively in 
either the primal or the dual form. 

In this section, we present a homogeneous and self-dual (HSD) LP al-
gorithm to overcome the difficulties mentioned above. The algorithm pos-
sesses the following features: 

• It solves the linear programming problem without any regularity as-
sumption concerning the existence of optimal, feasible, or interior 
feasible solutions, while it retains the currently best complexity re-
sult 

• It can start at any positive primal-dual pair, feasible or infeasible, 
near the central ray of the positive orthant (cone), and it does not 
use any big M penalty parameter or lower bound. 
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• Each iteration solves a system of linear equations whose dimension is 
almost the same as that solved in the standard (primal-dual) interior-
point algorithms. 

• If the LP problem has a solution, the algorithm generates a sequence 
that approaches feasibility and optimality simultaneously; if the prob-
lem is infeasible or unbounded, the algorithm will produce an infea-
sibility certificate for at least one of the primal and dual problems. 

5.3.1 A HSD linear program 
Our algorithm is based on the construction of a homogeneous and self-dual 
linear program related to (LP) and (LD). We now briefly explain the two 
major concepts, homogeneity and self-duality, used in our construction. 

In the context of interior-point algorithms, the idea of attacking a 
standard-form LP by solving a related homogeneous artificial linear pro-
gram can be traced to many earlier works. (By a homogeneous linear 
program, we do not mean that all constraints must be homogeneous, or 
equivalently all right-hand sides zero. We allow a single inhomogeneous 
constraint, often called a normalizing constraint) Karmarkar's original 
canonical form is a homogeneous linear program. One advantage of work-
ing in the homogeneous form is that we don't need to be concerned about 
the magnitude of solutions, since a solution is represented by a ray whose 
quality is scale-invariant. A disadvantage is that these related homogeneous 
problems, especially if they do not use any big M parameters, usually in-
volve combining the primal and dual constraints and thus usually lead to 
algorithms requiring the solution of linear systems roughly twice as large 
as other methods. 

Self-dual linear programs, meaning that the dual of the problem is equiv-
alent to the primal, were introduced many years ago. We state the form 
of such problems, with inequality constraints, and their properties in the 
following result, whose proof is omitted. 

Proposition 5.5 Let Äe Rpxp be skew-symmetric, and letb = -c€ B?. 
Then the problem 

(SDP) minimize cTu 
s.t Aü > 6, u > 0, 

is equivalent to its dual. Suppose that (SDP) has a feasible solution u. Then 
u is also feasible in the dual problem, and the two objective values sum to 
zero. Moreover, in this case (SDP) has an optimal solution, and its optimal 
value is zero. 
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The advantage of self-duality is that we can apply a primal-dual interior-
point algorithm to solve the self-dual problem without doubling the dimen-
sion of the linear system solved at each iteration. 

We now present a homogeneous and self-dual (artificial) linear program 
(HSDP) relating (LP) and (LD). Given any x° > 0, 8° > 0, and y°, we let 
n° = (x°)Ts° -f 1 and formulate 

(HSDP) min n°0 
s.t. Ax -br +60 =0 , 

-ATy +cr -co > 0, 
bTy -cTx +ζθ >0 , 

-bTy +cTx -ζτ = -n°, 
y free, x > 0, τ > 0, 0 free, 

where 

6 = 6-Ax°, c = c-ATy°-s0, z = cTx° + 1 - bTy°. (5.9) 

Here 6, c, and z represent the "infeasibility" of the initial primal point, dual 
point, and primal-dual "gap," respectively. 

Note that the top three constraints in (HSDP), with r = 1 and 0 = 
0, represent primal and dual feasibility (with x > 0) and reversed weak 
duality, so that they define primal and dual optimal solutions. Making 
r a homogenizing variable adds the required dual variable to the third 
constraint. Then, to achieve feasibility for x = sc°, (y, a) = (y°, e°), we add 
the artificial variable 0 with appropriate coefficients, and then the fourth 
constraint is added to achieve self-duality. 

Denote by s the slack vector for the second constraint and by κ the 
slack scalar for the third constraint. Denote by Th the set of all points 
(y, a;, r, 0,8, κ) that are feasible for (HSDP). Denote by T% the set of strictly 
feasible points with (α,τ,β,κ;) > 0 in JV Note that by combining the 
constraints, we can write the last (equality) constraint as 

(8°)Tx + (x°)T8 + T + K - n°0 = n°, (5.10) 

which serves as a normalizing constraint for (HSDP). Also note that the 
constraints of (HSDP) form a skew-symmetric system, which is basically 
why it is a self-dual linear program. 

With regard to the selection of (χ°,ί/°, 8°), note that if x° (respectively, 
(i/°, 8°)) is feasible in (LP) ((LD)), then b (c) is zero, and then every feasible 
solution to (HSDP) with r > 0 has x/r feasible in (LP) ((y, s)/r feasible 
in (LD)). Conversely, if z < 0, then every feasible solution to (HSDP) with 
0 > 0 and r > 0 has cTx — bTy < ζθ < 0, so either x/r or (y, s)/r must be 
infeasible. 
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Now let us denote by (HSDD) the dual of (HSDP). Denote by y1 the dual 
multiplier vector for the first constraint, by x' the dual multiplier vector 
for the second constraint, by τ' the dual multiplier scalar for the third 
constraint, and by 0' the dual multiplier scalar for the fourth constraint. 
Then, we have the following result. 

Theorem 5.6 Consider problems (HSDP) and (HSDD). 

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) 
with (y,x,r,0) being replaced by {ν',χ',τΊΦ). 

ii) (HSDP) has a strictly feasible point 

y = y ° , x = x°>0, r = l, 0 = 1, s = 8° > 0, n = 1. 

iii) (HSDP) has an optimal solution and its optimal solution set is bounded. 

iv) The optimal value of (HSDP) is zero, and 

(y, a;, r, 0, s, K) € Th implies that η°θ = xTs + τκ. 

v) There is an optimal solution (y*,x*,r*,e* = 0,s*,/c*) 6 Th such that 

(?:::)>«■ 
which we call a strictly self-complementary solution. (Similarly, we 
sometimes call an optimal solution to (HSDP) a self-complementary 
solution; the strict inequalities above need not hold.) 

Proof. In what follows, denote the slack vector and scalar in (HSDD) by s' 
and κ', respectively. The proof of (i) is based on the skew-symmetry of the 
linear constraint system of (HSDP). We omit the details. Result (ii) can be 
easily verified. Then (iii) is due to the self-dual property: (HSDD) is also 
feasible and it has non-empty interior. The proof of (iv) can be constructed 
as follows. Let (y, JC, r, 0, s, κ) and (2/',a?',r',0',¿',/c') be feasible points for 
(HSDP) and (HSDD), respectively. Then the primal-dual gap is 

η°(θ + θ') = xTs' -f- 8Tx' + τκ' + κτ'. 

Let (j/', x*, r', 0', s\ κ') = (j/, a?, r, 0, e, /c), which is possible since any feasible 
point (y', x\ r', 0;, *', κ') of (HSDD) is a feasible point of (HSDP) and vice 
versa. Thus, we have (iv). Note that (HSDP) and (HSDD) possess a 
strictly complementary solution pair: the primal solution is the solution for 
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(HSDP) in which the number of positive components is maximized, and the 
dual solution is the solution for (HSDD) in which the number of positive 
components is maximized. Since the supporting set of positive components 
of a strictly complementary solution is invariant and since (HSDP) and 
(HSDD) are identical, the strictly complementary solution (y*, x*} r*, Θ* = 
0, **, Κ*) for (HSDP) is also a strictly complementary solution for (HSDD) 
and vice versa. Thus, we establish (v). 

D 

Henceforth, we simply choose 

2,0 = 0, x° = e, and s° = e. (5.11) 

Then, n° = n + 1 and (HSDP) becomes 

(HSDP) min (n + l)0 
s.t. Ax -br +W 

-ATy +cr -cñ 
bTy -cTx +2Θ 

—bTy +cTx —Er 
y free, x > 0, r > 0, Θ free, 

where 
b = b - Ae, c = c-e, and z = cTe 4-1. (5.12) 

Again, combining the constraints we can write the last (equality) constraint 
as 

eTx + eTs + T + K - (n + 1)0 = n + 1. (5.13) 

Since 0* = 0 at every optimal solution for (HSDP), we can see the normal-
izing effect of equation (5.13) for (HSDP). 

We now relate optimal solutions to (HSDP) to those for (LP) and (LD). 

Theorem 5.7 Let (y*,a:*,r*,0* = 0,e*,/c*) be a strictly self complemen-
tary solution for (HSDP). 

i) (LP) has a solution (feasible and bounded) if and only if r* > 0. In Ms 
case, X*/T* is an optimal solution for (LP) and (|/*/r*,e*/r*) is an 
optimal solution for (LD). 

ii) (LP) has no solution if and only if κ* > 0. In this case, χ*/κ* or 
S*/K* or both are certificates for proving infeasibility: if cTx* < 0 
then (LD) is infeasible; if -6Tj/* < 0 then (LP) is infeasible; and if 
both cTx* < 0 and -bTy* < 0 then both (LP) and (LD) are infeasible. 

= 0, 
>0 , 
> 0 , 
= - ( n + l), 
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Proof. If (LP) and (LD) are both feasible, then they have a complementary 
solution pair & and (y, §) for (LP) and (LD), such that 

(£)TS = 0. 

Let 
n + 1 n 

a ~ e T f + eTS + l > U · 
Then one can verify (see (5.13)) that 

y* = ay, x* = ax, f * = a, 0* = 0, S* = aS, S* = 0 

is a self-complementary solution for (HSDP). Since the supporting set of 
a strictly complementary solution for (HSDP) is unique, r* > 0 at any 
strictly complementary solution for (HSDP). 

Conversely, if r* > 0, then κ* = 0, which implies that 

Ax* = br\ ATy* + s*=cr*, and (*·) V = 0. 

Thus, X*/T* is an optimal solution for (LP) and (y*/r*> S*/T*) k m optimal 
solution for (LD). This concludes the proof of the first statement in the 
theorem. 

Now we prove the second statement. If one of (LP) and (LD) is in 
feasible, say (LD) is infeasible, then we have a certificate x > 0 such that 
Ax = 0 and cT£ = - 1 . Let (y = 0, s = 0) and 

n + 1 
a e T i + e T I + l ' 

Then one can verify (see (5.13)) that 

y* = ay, x * = a5, f* = 0 , Θ* = 0, 5* = αβ, Λ* = a 

is a self-complementary solution for (HSDP). Since the supporting set of 
a strictly complementary solution for (HSDP) is unique, κ* > 0 at any 
strictly complementary solution for (HSDP). 

Conversely, if r* = 0, then κ* > 0, which implies that cTx* - bTy* < 0, 
i.e., at least one of cTx* and —bTy* is strictly less than zero. Let us say 
cTx* < 0. In addition, we have 

Ac*=0, y l V + ** = 0, ( a j* )V=0 and x* + s*>0. 

Ftom Earkas' lemma, χ*/κ* is a certificate for proving dual infeasibility. 
The other cases hold similarly. 

D 

FVom the proof of the theorem, we deduce the following: 

Corollary 5.8 Let (#, £, f, Θ = 0, S, κ) be any optimal solution for (HSDP). 
Then if κ > 0, either (LP) or (LD) is infeasible. 
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5.3.2 Solving (HSD) 
The following theorem resembles the central path analyzed for (LP) and 
(LD). 

Theorem 5.9 Consider problem (HSDP). 

i) For any μ > 0, there is a unique (y, a:, r, 0, s, κ) in J^, such that 

( « ) ■ ' * 

ii) Let {dy%dx,drid$}d8,dK) be in the null space of the constraint matrix of 
(HSDP) after adding surplus variables s and κ, i.e., 

Adx -bdr +bde = 0, 
-ATdy +cdr -cde - d , = 0, ( χ 

bTdy -cTdx +zd$ -d« = 0, ^ 1 4 ' 
-bTdy +cTdx -zdT = 0. 

Then 
(dx)

Tde + drdK=0. 

Proof. For any μ > 0, there is a unique feasible point (y, x, r, 0, s, κ) for 
(HSDP) and a unique feasible point (y', a', r1,^, $',*') for (HSDD) such 
that 

Xs' = μβ, 5«' = μβ, TTC' = μ, /cr* = μ. 

However, if we switch the positions of (y, x, r, 0, *, /c) and (y', x', r\ 0', «',«') 
we satisfy the same equations. Thus, we must have 

(y',x',r',0', *',*') = (y,x,r,0,5,*), 

since (HSDP) and (HSDD) have the identical form. This concludes the 
proof of (i) in the theorem. 

The proof of (ii) is simply due to the skew-symmetry of the constraint 
matrix. Multiply the first set of equations by dj\ the second set by d£, the 
third equation by dT and the last by d$ and add. This leads to the desired 
result. 

D 

We see that Theorem 5.9 defines an endogenous path within (HSDP): 
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which we may call the (self-) central path for (HSDP). Obviously, if Xo8° = 
e, then the initial interior feasible point proposed in Theorem 5.6 is on the 
path with μ = 1. Our choice (5.11) for x° and s° satisfies this requirement. 
We can define a neighborhood of the path as 

M(V) = {(y,*,T,<M,/c) e ft : || ( X* ) - μβ\\ < ημ, 

XT8 + ΤΚ\ 
where μ = — > 

η + 1 J 

for some η 6 (0,1). Note that from statement (iv) of Theorem 5.6 we have 
θ = μ for any feasible point in Th> 

Since the (HSDP) model constructed and analyzed does not rely on any 
particular algorithm for solving it, we may use any interior-point algorithm, 
as long as it generates a strictly complementary solution. Given an interior 
feasible point (y, a;, r, 0, $, /c) € J^, consider solving the following system of 
linear equations for {dy,dx,dr,dQ,ds,dK)\ 

{dy,dx,dr,dB,d8,dK) satisfies (5.14), 
/ XdB + Sdx \ / X s \ , „ _ 
{r^d^^dr ) = V»-\TK ]· (5"15) 

Let d := (dy, d*, dr,d$, dt,dK). Ίό show the dependence of d on the current 
pair (a?, r, 8, κ) and the parameter 7, we write d = d(x, r, ¿, *, 7). 

In what follows we apply the predictor-corrector algorithm in Chapter 
4 to solving (HSDP): 

Predictor Step. At iteration fc, we have (yfc,£*,T*,0*,$*,/c*) € λί(η) 
with i; = 1/4. Set (a:, r, 5, κ) = (a:*,r*, s*, nk) and compute d = d(x, r, *, κ,0) 
from (5.14,5.15). Let 

y(a) := yk + ady, a:(a) := xk + adx, 
r(a) := r* + adT, 0(a) := 0* + ad*, 
e(a) := s* + ode, /c(a) := Λ* + adK. 

We determine the step size using 

ä := max {a : (y(a),a:(a),r(a),e(a),s(a),/c(a)) € λί(2η)}. (5.16) 

Corrector Step. Set 

(ί,',χ',τ',Ο', *' ,*') = (ί/(ά),χ(^),τ(δ),β(ο),^),/€(δ)) 
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and compute d' = φ ' , τ ' , θ ' , κ / , Ι ) from (5.14,5.15). Then let y*+1 = y' + 
4 , s*+1 = x1 + <ζ, r*+1 = r ' + < , 0*+1 = Θ' + d¿, s*+1 = s1 + d'„ and 
/ c ^ z r / c ' + d^. We have 

{yk+\xk+\T*+\ek+\sk+\Kk+l)eM(ri). 

Termination. We use the termination technique described earlier to ter-
minate the algorithm. Define ak be the index set {j : x* > $*, j a 
l,2,...,n}, and let P = σ* and the rest be Z. Then, we again use a 
least-squares projection to create an optimal solution that is strictly self-
complementary for (HSDP). 

Case 1 : H T * > K * , we solve for y, xp, and r from 

min ||(S*)-US(j,*-y)|p +||(X»-1(4 - xP)\\2 

s.t. ilpajp = 6r*, 
-Aj,y = -cpr*, 

otherwise, 

Case 2: r* < /c*, and we solve for y and a?p from 

min ||(ár¿)-M5(y*-»)|p +||(^)"1(4 -*/>)||2 

s.t. -4pxp = 0, 
- ¿ £ y = 0, 

b'y -CpXp = Kk 

This projection guarantees that the resulting Xp and s£ (s*z = C^T* -
-A ŷ* in Case 1 or s% = -.A^y* *n Case 2) are positive, as long as (xk)T8k + 
TkKk is reduced to be sufficiently small by the algorithm according to our 
discussion in the preceding section on termination. 

Theorem 5.10 TheO(y/ñlog(R/t)) intenor-point algorithm, coupled with 
the termination technique described above, generates a strictly self-comple-
mentary solution for (HSDP) in 0(y/n(\og(c(A,b,c)) + logn)) iterations 
and 0(n8(log(c(i4,b,c)) + logn)) operations, where c(A,b,c) is a positive 
number depending on the data (J4,6,C). If (LP) and (LD) have integer 
data with bit length L, then by the construction, the data of (HSDP) re-
mains integral and its length is 0(L). Moreover, c(A% b,c) < 2L. Thus, the 
algorithm terminates in 0(y/nL) iterations and 0(nzL) operations. 

Now using Theorem 5.7 we obtain 
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Corollary 5.11 Within 0(y/n(log(c(A, 6, c)) + logn)) iterations and 
0(n3(log(c(A, &, c)) -f logn)) operations, where c(A, b,c) » a po5*tit;e nt*m-
fter depending on the data (A,6,c), the 0(y/nlog(R/e)) interior-point al-
gorithm, coupled with the termination technique described above, generates 
either optimal solutions to (LP) and (LD) or a certificate that (LP) or (LD) 
is infeasible. If (LP) and (LD) have integer data with bit length L, then 
c{A,b,c)<2L. 

Again, c(A1 b,c) plays the condition number for the data set (A, 6, c). 
Note that the algorithm may not detect the infeasibility status of both 

(LP) and (LD). 

Example 5.1 Consider the example where 

A=(-l 0 0 ) , 6 = 1, and c = ( 0 1 - 1 ) . 

Then, 

3,* = 2, s* = (0,2,l)T, τ* = 0, 0*=Ο, s* = (2,0,0)T, κ* = 1 

could be a strictly self-complementary solution generated for (HSDP) with 

cTx* = 1 > 0, bTy* = 2 > 0. 

Thus (y*,e*) demonstrates the infeasibility of (LP), but x* doesn't show 
the infeasibility of (LD). Of course, if the algorithm generates instead x* = 
(0,1,2)T, then we get demonstrated infeasibility of both. 

5.3.3 Further analysis 

In practice, we may wish to stop the algorithm at an approximate solution. 
Thus, we wish to analyze the asymptotic behavior of rk vs. 0*. 

Theorem 5.12 . / / (LP) possesses an optimal solution, then 

1 - 2 T / 

( e ^ + e ^ + l ) 

where x and (j/, a) are any optimal solution pair for (LP) and (LD); other-
wise, 

** ^ Í T- , τί , ι\ f°r M *i (eTx + eT5 + 1) 
where x and (y, s) are any certificate for proving the infeasibility of (LP) 
or (LD), and moreover, 

2(n +1) - K* - 0* - K* - (1 - 2η) J 

r * > 7 ^ V ^ - T T forall k, 
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Proof. Note that the sequence generated by the predictor-corrector algo-
rithm is in λί(2η). Note that 

y* = ay, x* = a£, r* = a, 0* = 0, 8* = a£, «* = 0, 

where 
- n + 1 

a ~ e T * + eT5 + l > 0 ' 

is a self-complementary solution for (HSDP). Now we use 

(xk - x*)T(sk - O + (r* - r*)(/c* - «*) = 0, 

which follows by subtracting the constraints of (HSDP) for (y*,..., κ*) from 
those for (yk,..., **) and then multiplying by ((yk - y*)T, . . . , * * - /c*). 
This can be rewritten as 

(xk)T8* + (s*)T3* + « V = (n + 1)μ* = (n + 1)0*. 

Thus, 

T ~ ( η + 1)μ*Τ - n - h l r ~ (e*s + eT§+1) * 

The second statement follows from a similar argument. We know that 
there is an optimal solution for (HSDP) with 

* ^ n + 1 
* - ( e ^ + e ^ + l ) > 0 · 

Thus 
K/e>_±z2rL 

(eT2 + eT5 + l) 

for all Jb. In addition, from relation (5.13) we have /c* < (n+l)+(n+l)0* < 
2(n + 1) for all k. 

a 

Theorem 5.12 indicates that either rk stays bounded away from zero 
for all fc, which implies that (LP) has an optimal solution, or rk and 0k 

converge to zero at the same rate, which implies that (LP) does not have 
an optimal solution. In practice, for example, we can adopt the following 
two convergence criteria: 

1. (xk/Tk)T(8k/rh) < Cl) and (ί*/τ*)||(8,β)|| < c3, 

2. T* < e3. 
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Here ci, €2, and C3 are small positive constants. Since both (xk)T8k + 
rfcrt* and 0* decrease by at least (1 - l/Vn +1) & every two iterations, 
one of the above convergence criteria holds in 0(y/nt) iterations for t = 
max{log((ar°)Te°/(€i€§)), log(||6,c||/(e2C3)}. If the algorithm terminates by 
the first criterion then we get approximate optimal solutions of (LP) and 
(LD); otherwise we detect that (LP) and (LD) have no optimal solutions 
such that ||(5, ^>||x < (1 - 2η)/ε3 - 1 from Theorem 5.12. 

5.4 Infeasible-Starting Algorithm 
Other popular and effective algorithms to overcome the initialization diffi-
culty are the so-called infeasible-starting algorithms. These algorithms start 
from some x° > 0, 8° > 0 and y°, but Ax° - b may not be 0 and s° may 
not equal c - ATy°, that is, (a:0,*0, j/°) may not be feasible for the primal 
and dual and it is an interior but infeasible-starting point. The algorithms 
are based on the following theorem which resembles the central path and 
its proof is omitted here. 

Theorem 5.13 Consider problem (LP) and (LD). For any given x° > 0 
and s° > 0 and y° and any μ, U > 0, there is a bounded and unique 
(j/, x > 0, s > 0) in such that 

) = ( u{A¡fi-b) ) . 
) \ v(ATy» + 8° - c) ) 

We see that Theorem 5.13 defines an interior but infeasible "central" path: 

T 
SLJLp 

C = Uy,x>0,8>0):l Ax = b + pSfaiAx0 - b) 

and its neighborhood 

JVfo) = {(I/. x > 0,* > 0) : mln(X«) > ημ, ^ J^ < -fa, 

for some η 6 (0,1). The first inequality is identical to the Afe inequality 
discussed in Section 4.5.2, and the next two inequalities make sure that 
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the (relative) feasibility error decreases to zero faster than the (relative) 
complementarity gap. 

Let 

po > min{||(u, w)l|oo : Au = 6, Ατυ -f-it; = c for some v}, (5.17) 

and let p > po be a number for which we want to find an optimal solution 
pair (y*,x*,y*), if it exists, such that 

P>ll(**,Olloo. 

Algorithm 5.2 lei 17 6 (0,1) and 7 6 (0,1). Given {y0,x°,8°) = p(0,e,e). 
Set k := 0 and 0° = 1. 

While (xk)T8k > e and ||(a:*,*fe)||i < ■fc{xk)Tsk do; 

1. Compute directions from 

Xkd. + Skdx = wke-Xk8k, 
Adx = b-Axk, 

-ATdy-d„ - 8k-c + ATyk. 

2. Compute the largest ä so that 

{yk,xk,8k) + a(dv,dx,d,)eAf{tf 

and 
(1* + adx)

T(8k + ad.) < (1 - a(l - y)){xk)T8k 

for every a e jO,ö]. Set 

(yk+\xk+\sk+l) = (yk,xk,sk) + ä(dv,dx,d,) 

and 

ö*+i = ( 1 _ ä)0k 

5. Let k := k + 1 and rettirn ¿o Step Í. 

One can verify that 

Axk-b = 0*(Ar°-&) 
A V + 8 f c - c = 0*(Ary° + * o - c ) , 

(5.18) 

that is, the Axk - 6 and ATyk + e* - c approach to zero on the same rays, 
respectively. 

We now present the following theorem: 
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Theorem 5.14 Let 
P > I I ( * * , O I U 

where (y*,£*,y*), if it exists, is an optimal solution pair for (LP) and (LD). 
Then, Algorithm 5.2 terminates in 0(n2t) iterations, where 

t _ Ljs /W{(a*)V, \\Ax° - b\\, ||c - ¿ V - *°||}\ 

At the termination, if(xk)T8k < e, then (!/*,£*, sk) is an e-approximate so-
lution for (LP) and (LD); otherwise there is no optimal solution (y*, x*,s*) 
suchthatlftx'^s^Woo^p. 

U (LP) and (LD) have integer data and its binary data length is L, 
we may set p = 2L. Then, no optimal solution (y*, £*,$*), such that 
||(2*,s*)||oo < P actually implies that at least one of (LP) and (LD) is 
infeasible. 

lb prove the above theorem, we need a couple of lemmas, whose proofs 
are left as exercises. 

Lemma 5.15 Suppose that at the kth iteration, for all j = 1, . . . , n, 

\(d*)ifa)i-V%d*M<V β ^ \£<18\<η. 

Then, 

a > mm < 1, — '·**—. —— > . 
" I V 1 ) 

Note that if (y*, xk, sk) is a feasible pair, then d£d8 = 0 and the condi-
tions of the above lemma hold for η = 0(n/¿*). Nevertheless, we can prove 
that the conditions hold in general for η = 0(η2μ*)> if (LP) and (LD) 
have solutions. Thus, from the lemma a > Ω(1/η2), which implies that μ* 
converges to zero at the rate of (1 - Ω(1/η2)). 

Lemma 5.16 At the kth iteration, we have 

D~xdx = -ekPD^{x° - ii°) + 0k(I - P)D(s° - w°) 

- ( / - P)(XkSk)~'s{Xk8k - 7μ*β), 

dy = -ek(y° - v°) - (AD2ATrlAD(ekD"1(x° - u°) + ekD(s° - w°) 

-(XkSk)-*(Xksk-wke)), 

Dd8 = ekPD-l{x°-u°)-ek(I-P)D(80-w0)-P(XkSk)-'B(Xk8k 

where 
D = (Xky*{Sk)-*, P = DAT(AD2ATy1AD, 

and (u°,v°yW0) is the minimizer of (5.17). 



172 CHAPTER 5. WORST-CASE ANALYSIS 

From the definition of p and p°, we have 

Ι Ι (Λ«>0)| |ΟΟ<Ρ0<Λ 

Thus, 
-pe <x°-u°<2pe and -pe<s°-w° < 2pe. 

Therefore, 

\\D-ld.\\ 
< ek\\D~le\\ + ek2p\\De\\ + \\(XkSk)-6(Xk8k - 7μ*β)|| 
< 0*2p||(X*S*)-8||(||e*|| + ||«*||) + \\(XkSk)-*(Xkak - 7μ*β) 

< 40kp\\(XkSk)-6\\\\(xk, 8k)\\ + \\(XkSk)-*(Xksk - 7M*e)||. 

Since x*8j > ημ* for each j and 

Jb e* \ l l ^ \\t~k Jb\i| ^ * ^ * \ T e * ΙΚ^,^ΙΙ^ΙΚχ*,**)^^^^*)^*, 

we have 

4e»p\\(XkSk)->\\\\(xk,sk)\\ <4ekp-L;£-p(x
kFsk < ^ -

and 

\\(XkSk)-*(Xksk - 7 A ) I I < ν/ημ*(1-27-Η72/^) 

This implies that ||X>—Α€*β|| < 0(ny/¡¡F). Similarly, we have ||Dde|| < 
0(η\/μ£). Combining them, we have 

\(dx)
Td8\ = 0(η2μ") and (40¿(<W¿ = 0 ( » V ) for each ¿, 

implying that the conditions of Lemma 5.15 hold. 
The question now is what happens if 

| | (^ , · * ) | | ι >^ ( * * ) τ · *? 

Suppose that there is an optimal solution pair such that ||(x*,«*)||oo < p-
Then, from (5.18) we see 

A(ßkx° + (1 - ek)x* - xk) = 0 
AT($ky° + (1 - 9k)y* - yk) + (Ö*«° + (1 - β*)β* - «*) = 0 -
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So we have 

(0*3° + (1 - Θ*)Χ* - Χ")Τ{Θ"8° + (1 - θ")8* - 8k) = 0, 

which means 

(θ"χ° + (1 - ek)x*)Tsk + (eks° + (1 - ek)8*)Txk 

= (0**° + (1 - ek)x*)T(eka° + (1 - 0*)O + (a:fc)Tefc. 

Using this inequality together with 

x° = s° = pe, x* <pe, 8* < pe, and {x*)T8* = 0, 

we have 

0fcp||(*fcV)lli 
= 0*((«*)Γ

β° + (x°)T8k) 
< {0kx° + (1 - ek)x*)T8k + (ek8° + (1 - 0*)e*)ra:fc 

= (0*a;0 + (1 - ek)x*f{ek8° + (1 - 0*)s*) + (zfc)T** 
< 0knp2 + (xk)T8k. 

Furthermore, (yk,xk,8k) € Λ/*(»;) means that 

(xk)Tak > θ"(χ°)τ8° = Ö^/»2. 

Hence we must have 

ekp\\(xk,8k)\\l<2(xk)T8k, 

which leads to a contradiction. 

5.5 Notes 

Using the rank-one updating technique to improve the arithmetic operation 
complexity of interior-point algorithms by a factor of y/ri was first due to 
Karmarkar [217]. Gonzaga [158] and Vaidya [437] used this technique to 
obtain the current-best LP arithmetic complexity bound 0(nzL); see also 
Mizuno [287] for a general treatment. Specific computation issues of the 
rank-one technique were presented in Shanno [375]. 

Parallel worst-case complexity results on interior-point algorithms can 
be seen in Goldberg, Plotkin, Shmoys and Tardos [147, 148] and Nesterov 
and Nemirovskii [326]. 
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The convergence behavior of various interior-point trajectories was stud-
ied by Adler and Monteiro [6], Giiler [173], Lagarias [241], McLinden [267], 
Megiddo and Shub [274], Monteiro [295] [296], and Monteiro and Tsuchiya 
[304]. The analysis of identifying the optimal partition of variables at a 
strictly complementary solution was due to Giiler and Ye [177]. Adler and 
Monteiro [7], Jansen, Roos and Terlaky [198], Greenberg [167, 168], and 
Monteiro and Mehrotra [302] provided a post-optimality analysis based on 
the optimal partition of variables. 

The termination procedure described here was developed by Mehrotra 
and Ye [281]. They also reported effective computational results for solv-
ing Netlib problems. A more recent termination or cross-over procedure 
for obtaining a basic optimal solution is developed by Andersen and Ye 
[17], Bixby and Saltzman [60], Kortanek and Zhu [236], and Megiddo [272]. 
Andersen and Ye proved a polynomial bound and showed its practical effec-
tiveness. For a comprehensive survey on identifying an optimal basis and 
the optimal partition, see El-Bakry, Tapia and Zhang [108]. 

The homogeneous and self-dual algorithm is due to Mizuno, Todd and 
Ye [479], which is based on the homogeneous model of Goldman and Tucker 
[153, 431]. The algorithm is simplified and implemented by Xu, Hung and 
Ye [461]; also see Tutuncu [435]. A combined phase I and phase II algorithm 
was proposed by Anstreicher [25], also see Freund [124]. 

Infeasible-starting algorithms, which are very popular and effective, 
were developed and analyzed by Lustig [254], Kojima, Megiddo and Mizuno 
[226], Mizuno [289], Mizuno, Kojima and Todd [291], Potra [347], Tanabe 
[401], Wright [458], and Zhang [482]. Under certain conditions for choosing 
the initial point, these algorithms have polynomial iteration bounds (e.g. 
Zhang [482] and Mizuno [289]). In fact, using a smaller neighborhood and 
the predictor-corrector type algorithm in the preceding chapter one can re-
duce the iteration bound in Theorem 5.14 to 0(nt) with the same selection 
of the initial point. A surface theory of all infeasible-starting interior-point 
algorithms can be seen in Mizuno, Todd and Ye [293]. 

There have also been efforts to look for lower bounds on the number of 
iterations required; see Anstreicher [27], Bertsimas and Luo [54], Ji and Ye 
[207], Powell [352], Sonnevend, Stoer and Zhao [384, 385], and Zhao and 
Stoer [488]. One important recent result is due to Ibdd [411], who obtains 
a bound of at least n1/3 iterations to achieve a constant factor decrease in 
the duality gap. The algorithm he studies is the primal-dual affine-scaling 
algorithm, which is close to methods used in practical implementations. He 
allows almost any reasonable step size rule, such as going 99.5 percent of 
the way to the boundary of the feasible region, again as used in practical 
codes; such step size rules definitely do not lead to iterates lying close to 
the central path. The weakness of the primal-dual affine-scaling algorithm 
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is that no polynomiality or even global convergence has been established 
for it, except for the case of very small step sizes, and practical experiments 
indicate that the algorithm alone may not perform well. 

Tbdd also showed that his lower bound extends to other polynomial 
primal-dual interior-point methods that use directions, including some cen-
tering component if the iterates are restricted to a certain neighborhood of 
the central path. Todd and Ye [416] further extended his result to long-
step primal-dual variants that restrict the iterates to a wider neighborhood. 
This neighborhood seems the least restrictive while also guaranteeing poly-
nomiality for primal-dual path-following methods, and the variants are even 
closer to what is implemented in practice. 

Recently, Atkinson and Vaidya [439] used a combined logarithmic and 
volumetric potential function to derive an algorithm for LP in 0(nllAmllAL) 
iterations. Their algorithm is simplified and improved by Anstreicher [26] 
and Ramaswamy and Mitchell [356]. 

Condition-based complexity analyses could be found in Renegar [359], 
who developed a general condition number and ill-posedness theory for 
the generalized linear programming. See also Filipowski [115], Freund and 
Vera [125], and Todd and Ye [417] for a related discussion. Their dis-
cussion addresses the issue that interior-point algorithms do not provide 
clear-cut information for a particular linear programming problem being 
infeasible or unbounded. They provide general tools, approximate Farkas' 
lemma (Exercise 5.12) and the "gauge duality" theory (e.g., FVeund [122]), 
for concluding that a problem or its dual is likely to be infeasible, and ap-
ply them to develop stopping rules for a homogeneous self-dual algorithm 
and for a generic infeasible-starting method. These rules allow precise con-
clusions to be drawn about the linear programming problem and its dual: 
either near-optimal solutions are produced, or we obtain "certificates" that 
all optimal solutions, or all feasible solutions to the primal or dual, must 
have large norm. Their rules thus allow more definitive interpretation of 
the output of such an algorithm than previous termination criteria. They 
have given bounds on the number of iterations required before these rules 
apply. 

More recently, Vavasis and Ye [452] proposed a primal-dual "layered-
step" interior point (LDP) algorithm for linear programming. This algo-
rithm follows the central path, either with short steps or with a new type of 
step called a layered least-squares (LLS) step. The algorithm returns an ex-
act optimum after a finite number of steps; in particular, after 0(n3-5c(A)) 
iterations, where c(A) is a function of the coefficient matrix, which is in-
dependent of b and c. One consequence of the new method is a new char-
acterization of the central path: we show that it composed of at most n2 

alternating straight and curved segments. If the LIP algorithm is applied to 



176 CHAPTERS. WORST-CASE ANALYSIS 

integer data, we get as another corollary a new proof of a well-known theo-
rem of Tardos that linear programming can be solved in strongly polynomial 
time provided that A contains small-integer entries. Megiddo, Mizuno and 
Tsuchiya [273] further proposed an enhanced version of the LIP algorithm. 

5.6 Exercises 
5.1 Verify inequality 

in Section 5.1 

5.2 In the termination section, prove if both ||dx||oo and ||d«||oo are less 
than 1, then xp > 0 and sz = cz - A%y > 0, which imply ¿hat σ* = P*. 

5.3 Analyze the complexity bound of the termination procedure if Ap is 
not of full row rank. 

5.4 Prove that if the LP problem has integral data, then 

C(A,b,c)<2L and ξ(Α,^β) > 2~L
y 

where L is the size of the binary LP data. 

5.5 Prove that the total number of required pivots in the process described 
at the end of Section 5.2.2 is at most \σ(χρ.)\ -m<n-m. 

5.6 Prove Proposition 5.5. 

5.7 Prove Theorem 5.10 for the predictor-corrector algorithm described in 
Section 5.S.2. 

5.8 Similar to ξ(Α, fr, c) and ζ(Λ, 6, c), derive an expression for the condi-
tion number c(A,b,c) in Theorem 5.10. Prove that if the LP problem has 
integral data, then 

c(A,b,c) <2L
} 

where L is the size of the binary LP data. 

5.9 Prove that in Algorithm 5.2 

Axk-b = ek(Ax°-b) 

and 
c _ ATyk _8k= 0 * ( c _ ATy0 _ s 0) 
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5.10 Verify Lemma 5.16 

5.11 (Gauge Duality Theorem) Show that 

a := min{||z||: Mz > d} 

and 
η := min{||í|r : MTr = t, dTr = 1, r > 0} 

satisfy OLÍ] = 1. Here, ||.|| is a p norm, p = 1,2,..., and ||.||* is the corre-
sponding dual norm. 

5.12 Using the "gauge duality" result (Exercise 5.11) to show the following 
approximate Farkas' lemma. LetA€ Tlmxn, b € Km, and c € Tln. Let 

ot8 

= πύη{||«||: Ax = 6, x > 0}, 
= min{||y||: ATy < c}, and 
= min{||s||* : ATy + s = c, s > 0}. 

£e¿ 

A* = min{||u|r : ATy < ti, 6Ty = 1}, 
= min{||t/||* : Ax = v, cTs = - 1 , ar > 0}, and 
= min{||u;||: Ar = 0, cTa: = —1, x > -w}. 

Then 

Here, 

axßu = otyßv = a8ßw = 1. 

is a p norm and ||.||* ts the corresponding dual norm. 

5.13 If every feasible solution of an LP problem is large, i.e., \\x\\ is large, 
then the problem is near infeasible. Prove this statement using Exercise 
5.12. 



Chapter 6 

Average-Case Analysis 

The idea of average-case analysis is to obtain rigorous probabilistic bounds 
on the number of iterations required by an iterative algorithm to reach some 
termination criterion. Although many interior point algorithms devised 
in the last several years are polynomial time methods, in practice they 
generally perform much better than worst-case bounds would indicate. A 
"gap" between theory and practice exists that average-case analysis might 
(at least partially) close. 

There are two main viewpoints in the probabilistic analysis of algo-
rithms. First one can develop randomized algorithms, and show that, on a 
worst-case instance of a problem, the average running time of the algorithm 
has a certain bound, or the running time satisfies a certain bound with high 
probability, or the running time always satisfies a certain bound and the 
algorithm gives a correct answer with high probability, meaning converging 
to 1 as the dimension of the problem goes to oo. 

Second one can consider the expected running time of a deterministic 
algorithm when applied to problem instances generated according to some 
probability distribution (or class of such distributions). For linear pro-
gramming, researchers have provided some theoretical justification for the 
observed practical efficiency of the simplex method, despite its exponential 
worst-case bound. Of course, this viewpoint might be less compelling, since 
one can always argue that the distribution chosen for problem instances is 
inappropriate. 

Another minor viewpoint is the so called one-step analysis: at an it-
eration we make an nonrigorous but plausible assumption concerning the 
current data generated by the algorithm, and then address the expected 
behavior or behavior which occurs with high probability at that iteration. 
The anticipated number of iterations is then defined to be the number of 
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iterations required if this behavior actually occurs at every iteration (or at 
least once every, say, ten iterations). This analysis is distinct from the two 
just described. As the reader will see, the assumptions we make at each 
iteration can be inconsistent with one another. Nevertheless, such an ap-
proach might add insight in the case where a more rigorous analysis seems 
intractable. 

In this chapter, we first develop a one-step analysis for several adaptive 
interior-point algorithms described in Section 4.5, which all have complex-
ities of 0{nll2 log(l/e)) or 0(n log(l/e)) iterations to attain precision e. 
(Here we assume, without loss of generality, that (x°)Ts° = R = 1.) Based 
on the one-step analysis, we anticipate that these algorithms would only 
require 0(nlIA log(l/c)) or 0((logn)log(l/c)) iterations, where n is the 
number of variables in (LP). 

We then develop a rigorous analysis, based on the second main view-
point of probabilistic analysis, of interior-point algorithms coupled with the 
termination procedure described in Chapter 5. We will first show that a 
random linear feasibility problem can be solved in 0(y/n\ogn) iterations 
with high probability. Using the homogeneous and self-dual algorithm de-
scribed in Chapter 5, we then show that the expected number of iterations 
required to solve a random LP problem is bounded above by 0(y/n\ogn). 

Let us formally define high probability: an event in n-dimensional space 
is true with probability approaching one as n -► oo. Such an event is called 
a high probability event Note that a result based on high probability may be 
stronger than the one based on the standard expected or average analysis. 
We first derive some Observations: 

1) Let events E\ and E2 be true with high probability. Then the event 
Εχ Π Ε2 is also true with high probability. 

2) Let the event E\ be true with high probability, and let E\ imply E^. 
Then the event E2 is also true with high probability. 

Observation (1) cannot be induced to m events where m is proportional 
to n. However, we have the following lemma: 

Lemma 6.1 Let Éj be the complement of Ej, j = 1,2,.... Then, if the 
probability 

then Ε1ΠΕ2Π... Π Em is true with high probability for any 1 < m < n. 
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Proof. The proof simply follows 

n 
Pr(JS?i Π ΕΊ ΓΙ... Π Em) > Pr(Et ΓΊ E2 Π... n En) > 1 - ]jT P r ( ^ ) 

i=i 

for any 1 < m < n. Since limn-^ooil - Σ"=ι Pf(^i)) == * > w e ^ a v e ^e 
lemma proved. 

D 

6.1 One-Step Analysis 

Consider two adaptive interior-point algorithms in Section 4.5: the predictor-
corrector and wide-neighborhood algorithms, with worst-case complexities 
0(n1 / 2 log(l/c)) and 0(nlog(l/e)) iterations to attain precision e—to gen-
erate (a;*,j/*,*fc) €T from (α·°,2/0,*0) such that μ*/μ° < c» respectively. 
The progress will be far faster in the predictor-corrector algorithm if ||Pg|| 
is typically smaller than the worst-case bound given by Lemma 4.14. FVom 
(4.23) and (4.24), the corrector step will be far better centered than is guar-
anteed by Lemma 4.16, and the predictor step will be much longer than 
Oin"1'2) by Lemma 4.17. 

On the other hand, Lemma 4.14 shows that, for the wide-neighborhood 
algorithm, ||Pg||oo and | |Ρς| |^ can onty be bounded by a multiple of ||r||2, 
not Hrjl̂ o, unless an extra factor of n is introduced. But ||r|| may be large 
compared to ||r||oo, which is related to η with (x,s) € Λ/Όο(*/)· Again, if 
||Pg||oo and ||Pg||¿o are typically much smaller than the bound given by 
Lemma 4.14, then the duality gap reduction will be far greater. 

Fbr now, we note the following results which follow immediately from 
Lemmas 4.17 and 4.19, and inequalities (4.26) and (4.27). 

Corollary 6.2 Consider the predictor-corrector and wide-neighborhood al-
gorithms in Section 4-5. 

i) If at a particular iteration we have \\Pq\\ < ηι^2μ in the predictor step of 
the predictor-corrector algorithm, then the duality gap at that iteration 
will decrease at least by a factor of (1 - 2/(1 + \/\ + 8y/n)). 

ii) Let η and 7 be as in Theorem 4.20. If at a particular iteration of 
the wide-neighborhood algorithm we have ||Pg||oo < μ* logn for M = 
ΜΌο{η) and \\Pq\\n < μ* logn for Af = Afc(tf), then the duality gap 
at that iteration will decrease at least by a factor (1—777(1—7)/ logn), 
with either λίοο(η) οτΜ^(η). 
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6.1.1 High-probability behavior 
In this section we provide heuristic arguments as to why we might expect 
||Pg||, ||Pi||ooj and ||Ρφ||κ t o be of the sizes stated in the above corollary. 
Recall that p and q are the projections of r € Tin onto the subspaces U and 
U1 respectively. In this section we suppose r is fixed, but assume that 

Assumption 6.1 U is a random subspace of1ln of dimension d:=n — m, 
drawn from the unique distribution on such subspaces that is invariant under 
orthogonal transformations. 

Given that U is the null space of AXl/2S~1/2 =: A, this assumption 
would hold, for example, if each component of the matrix A were inde-
pendently drawn from a standard normal distribution. Note that such 
assumptions, made at different iterations and hence values of X and 5, are 
not consistent with one another. Further, for several interior-point algo-
rithms the asymptotic behavior of (xk,sk) is known, and this behavior is 
also inconsistent with our assumption, see the next chapter. On the other 
hand, it is also known that the asymptotic behavior is in favor of the con-
vergence of the duality gap to 0 (see Chapter 7). Thus, such inconsistency 
may not deny our result which, under the assumption, establishes a faster 
convergence rate for the duality gap to 0. We will comment further on our 
approach at the end of the chapter. 

For now let us examine the consequences on Pq of our assumption. Note 
that to compensate for the deficiencies of our assumption, the results we 
obtain hold with probability approaching 1 as n -> oo. We establish the 
following theorem: 

Theorem 6.3 Let ξ = ||r||oo/||r||. Then, with the assumption above, 

i) 

Pr (\\Pq\\ < tt ί2ξ* + ^ V / 2 ] -♦ 1 <wn-foo¡ 

ii) 

Pr (l lPilli < (J26ÖÜ) ||r||3) -► 1 a* n -* oo. 

Before we show how these results are proved, we indicate how they 
relate to the bounds on ||Pg|| that form the hypotheses of Corollary 6.2. 
In Corollary 6.2(i), we are analyzing the predictor step, so r = -(XS)l/2e 
and (a?, s) € M(l /4) . Hence ||r||2 = xTs = ημ and IMISo = I I ^ I U < 
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μ + \\Xa - μβ\\ < 5μβ. Thus ξ2 < 5/(4n) and by Theorem 6.3(i), with 
probability approaching 1 

which is the hypothesis of Corollary 6.2(i). 
For Corollary 6.2(ii), we consider first the case where H = Μ^{η). Then 

by Theorem 6.3(ii) and Lemma 4.15(iii), with probability approaching 1 

llalli < ^ I M I a <1ο6(η)μ*, n 

which gives the hypothesis of Corollary 6.2(ii) in this case. Now suppose 
λί = ·Λ/Όο(τ?). Then with high probability 

\\Pq\\Z> < log(n)^fc 

as above. Also, by Lemma 4.14(iii) and Lemma 4.15(iii), 

lirA<*f<^<f 
Hence ||Pg||oo < log(n)^* with probability approaching 1, which gives the 
hypothesis for Corollary 6.2(a) with λί = Λίοο(ν)· 

6.1.2 Proof of the theorem 
Now we sketch the proof of Theorem 6.3. The proof of (i) is long and 
technical and hence we omit it here. However, we will prove a slightly 
weaker version of (i) at the end of this section. 

Because p and q are homogeneous of degree 1 in ||r||, we assume hence-
forth without loss of generality that r is scaled so that 

g = r/2 satisfies ||(j|| = 1. 

Let F = (<7, H) be an orthogonal n xn matrix. If we express the vector p 
in terms of the basis consisting of the columns of F, we get 

Lemma 6.4 We can write 

Ρ=(1 + ζ)9 + ηΗν, (6.1) 

where - ^ has a beta distribution with parameters if and ψ; η = \/\ — ζ2; 
and v is uniformly distributed on the unit sphere in 1ln~l. 
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Figure 6.1. Illustration of the projection of r onto a random subspace. 

Proof. Since p and q are orthogonal with p + q = r, p lies on the sphere of 
center r/2 = g and radius \\g\\ = 1 (Figure 6.1). Thus p can be written in 
the form (6.1), with η = y/l -ζ2 and ||ν|| = 1. We need to establish that 
ζ and v have the given distributions. 

Note that ||p||2 = (1 + C)2 + *72 = 2(1 + C)· However, we can obtain the 
distribution of ||p||2 directly. The invariance under orthogonal transforma-
tions implies that we can alternatively take U as a fixed d-subspace, say, 
{x €ftn : Xd+i = · · · = xn = 0}, and r uniformly distributed on a sphere 
of radius 2. Then r can be generated as 

/2Ai 2A2 2Xn\T 

ΙΐμΐΙΊ|λ|Γ""ΊΙλ|ΐ; ' 
where λ ~ iV(0, /) in Kn (i.e., the components of A are independent normal 
random variables with mean 0 and variance 1, denoted by JV(0,1)). But 
then 

/2λ! 2λ2 2A i f t Λ Τ 

p"VlWniA| | ,"e ,HA| | , 0 ,"" ,7 ' 
and IIPH2 = 4(A? + · ·. + λ2)/(λ? + - - ■ + A2). This has the distribution of 
four times a beta random variable with parameter | and ^ , which confirms 
the distribution of (· 

Now let W be an orthogonal matrix with Wg = g. W can be thought of 
as rotating the sphere with center g around its diameter from 0 to 2g = r. 
We can view the random d-subspace U as the null space of an m x n random 
matrix Ä with independent standard normal entries. The fact that p is the 
projection of r onto U is then equivalent to Äp = 0, r—p = ÄTv for some v. 
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But then (AWT)Wp = 0 and r-Wp = Wr-Wp = (AWT)Tvy so that Wp 
is the projection of r onto I/' = {x : (ÄWT)x = 0}. If Ä has independent 
standard normal entries, so does ÄWT, so U1 is also a random d-subspace. 
Thus Wp has the same distribution as p. But writing W as HW'HT+ggT

% 

where W" is an arbitrary orthogonal matrix of order n - 1, we see that v 
has the same distribution as W'v. Since ||t;|| = 1, v is uniformly distributed 
on the unit sphere 7ln~l. 

Since p + q = r = 2g, relation (6.1) implies 

q = (1 — £)<j — ηΗυ> so that 

Pff = i jV - 2C^C?̂ rv - 7/2(fft;)2 (6.2) 

> - l l^ l^e , (6.3) 

where G := diag(p), and p2, (-Ην)2, and (τ/ρ - ζΗν)2 denote the vectors 
whose components are the squares of those of p, ffv, and ηg — ζΗυ, respec-
tively. 

The proof of Theorem 6.3(i) proceeds by using (6.2) to evaluate ||Pg||2, 
and then analyzing all the terms in the resulting expression. The proof of 
Theorem 6.3(ii) follows from (6.3) (which gives \\Pq\\Zo < ||/Ttf|ßo) and the 
following result: 

Lemma 6.5 Let F = [g,H] be an orthogonal matrix. If v is uniformly 
distributed on the unit sphere in Hn~l

 t 

Pr(||*V|U<y£Íp) -> 1 as n -> oo. 

Proof. Since v is uniformly distributed on the unit sphere in Tln"1, it can be 
generated as follows: υ = λ/||λ||, where A ~ JV(0,1) (the standard normal 
distribution in 7ln~l). Hence we wish to obtain an upper bound on ||ίίλ||οο 
and a lower bound on ||λ||, both of which hold with high probability. Now 
||λ||2 is a x2 random variable with n — 1 degrees freedom, so 

Ε(||λ||2) = n - 1 , 
Var(P||2) = 2 ( n - l ) . 

FVom Chebychev's inequality, we have 

Pr (P | | > (1 - e)y/ñ^l) -41 as n -4 oo (6.4) 
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for any c > 0. 
Let Λο be a standard normal variable, and let Λ' = (λ0, Λ), also N(0,I) 

but in Kn. Then ||λ'||οο = maxí^· :,; = 0,1,2,· · · ,η - 1} where vt = |A¿| 
has the positive normal distribution. Then 1 — JV+(a:) = 2(1 — N(x)) where 
JV+ is the distribution function of p, and N is the normal distribution 
function. It now follows from results in extreme value theory 1 that 

Pr (llA'Hoo < V
/21og(2n)) -4 1 as n -4 oo. 

Since F\' is also N(0,I), 

Pr (lIFA'Hoo < >/2]0g(2n)) -4 1 as n -4 oo. 

Now we have 

II^AHoo < Hi^Vlloo -+· HAOPIIOO. 

Since \\g\\ = 1, 

Pr (||Aop||oo < ty/\ogn\ -4 1 as n -4 oo 

for any e > 0. Prom the above relations and (6.4), we get the result of the 
lemma. 

D 

We conclude this section by showing how (6.2) and Lemma 6.5 imply a 
slightly weaker form of Theorem 6.3(i). Indeed, (6.2) yields 

HPill < Λ 2 Ι Ι + 2|Ci||IWUMrü|| 4 η2\\{Ηυγ\\ 
< IWIoollell + 2|W|oo + | |^IUI^II 
= ae+||jjfi||oo. 

By Lemma 6.5, this is at most 3ξ 4 y/3log(n)/n with probability ap-
proaching 1 as n -4 oo. This bound would lead one to hope that \\Pq\\ 
would be at most (nlog(n))1/2^ at a typical predictor step. The predictor-
corrector algorithm, with the worst-case bound 0(y/nlog(l/e)), would re-
quire at most 0((n log(n))1/4 log(l/c)) iterations of this type, while the 
wide-neighborhood algorithm, with the worst-case bound 0(nlog(l/e)), 
would require at most 0((logn)log(l/e)) iterations of this type. 

lS. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-
Verlag (1987), pp. 42 and 71. 



6.2. RANDOM-PROBLEM ANALYSIS I 187 

6.2 Random-Problem Analysis I 
We now develop a rigorous analysis, based on the second main viewpoint 
introduced at the beginning of the chapter, of interior-point algorithms 
coupled with the termination procedure described in Chapter 5. We use a 
simple problem, the homogeneous linear feasibility problem, to illustrate the 
analysis and show that a random such problem can be solved in 0(y/ri log n) 
iterations with high probability. 

Consider finding a feasible point for the homogeneous linear system 

X = {χ : Ax = 0, x > 0, x φ 0}. (6.5) 

We assume that A € fcmxn has full row-rank. Let us reformulate the 
problem as a Phase I linear program: 

minimize z ,fi fiv 
s.t. Ax + (-Ae)z = 0, eTx = 1, {x, z) > 0, [ } 

and its dual 

maximize λ ,β 7ν 
s.t. * = - Λ τ ί / - β λ > 0 , sz = l + eTATy>0. ^i} 

Obviously, LP problem (6.6) has nonempty interior, its optimal solution 
set is bounded, and its optimal objective value is 0 if and only if X is non-
empty. In fact, we can select an initial feasible point as x° = e/n, z° = 1/n 
for the primal, and y° = 0, A0 = — 1, 8° = e and 8°z = 1 for the dual. 
Thus, (x°,z°) and (i/°,A°) are "centered," and the initial primal-dual gap 
is (1 + 1/n). 

We now specialize the termination procedure proposed in Chapter 5 for 
solving problem (6.6). Suppose A = (Αρ,Αζ), where 

P = {j : *ή > **} and Z = {j : x) < 3$}. 

We solve the least-squares problem 

(PP) minimize \\{Χ%)'ι(χΡ - xk
P)\\ 

s.t. Ap(xp - x^) = Azx% 4- (~-Ae)zk 

and 
(PU) minimize \\{Sk

z)-
xAT

z{y - yk)\\ 
s.t. A£(2/ - yk) = 5$,. 

Here, we have ignored variable z and the last (normalization) equality con-
straint eTx = 1 in the problem, when we apply the termination projection. 
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In particular, if A = Ap, then the minimizer x* = xp of (PP) satisfies 

(Xk)-l(x* - xk) = XkAT{A(Xk)2AT)(-Ae)zk. 

Thus, 

||(**)-V-**)|| 
= \\XkAT(A(Xk)2AT){-Ae)zk\\ 
= \\XkÄr(A(Xk)2Är)AXk(Xk)-1Är(AÄr)-1(-Ae)zk]\ 
< \\XkÄr(A{Xk)*AT)AXk\\{Xk)-lÄr{AÄr)-1(-Ae)zk\\ 
< ¡\(Xk)-1AT(AAT)-1Ae(-zk)\\ 

< \\{Xkrl\\\\AT(AATrlA4\^\ 
< yfrzk\\(Xk)-l\\. 

(Note that C(A,6,c) defined in Section 5.2.2 is less than or equal to y/n 
here.) This implies that if min(:c*) > y/nzk

1 then the projection x* satisfies 

| | (X*)-V - e|| < y/n^WiX")-^ < 1, (6.8) 

O 

and x* must be a point in X. 
Let the optimal partition of problem (6.6) be (P*,Z*). K system (6.5) 

has an interior feasible point, then A = Ap* and z* = 0. Using Theorem 
5.4 with η = 1 in (5.7), we have, when the duality gap zk — Xk < ξ2/η2, 

s) < ξ/η2 < ξ/η < x), j € P* and s$ > ξ/η > ξ/η2 > x), j € Z*, 

or 
ns) < 4 , j € P* and s) > nx), j 6 Z*, 

where, recall from (5.3), that for the standard LP problem 

ξ := £(A,b,c) = min{£p,&}. 

Thus, in 0(y/n(\ log£| -flogn)) iterations we have Ap = A*P = A and (6.8), 
o 

and therefore we generate an interior-point in X. 
Consider the case that system (6.5) is empty, then the optimal value 

z* = λ* of problem (6.6) is positive and we can choose y = yk in (DD) and 
have 

s = -ATyk = e*+eA*. 
Thus, if A* > 0, then we must have 8 > 0, which proves that X is empty 
from the Farkas lemma. Note that in 0(y/n(\ logz*| + logn)) iterations we 
have the duality gap zk - Xk < z* or A* > zk — z* > 0. 
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Let us estimate ξ for problem (6.6) if system (6.5) has an interior feasible 
point x such that 

p(l/n) < Xj < p{n) for j = 1,2,..., n + 1 , (6.9) 

where p(a) is a polynomial ad for a constant d > 1. Then, for problem 
(6.6) we must have 

&>p(l/n)/(np(n)) and £, = 1, 

since (x/eTXjQ) is a primal optimal solution and y = 0 is a dual optimal 
solution with § = (0, 1)T. Thus, ξ > p(l/n)/(np(n)). 

On the other hand, if system (6.5) is empty then {s : s = -ATy > 0} 
has an interior feasible point (y,e). Let (y,s) satisfy 

P(l/n) < sj <p(n) for j = l,2,...,n + 1. (6.10) 

Then, the dual LP problem (6.7) has a feasible point y = y/eT§, s = §/eT81 

X = min(e), and s* = 0. Thus, z* > X > p(l/n)/(np(n)). 
To summarize, we have 

Theorem 6.6 Let p(a) = ad for a constant d>l and let the homogeneous 
system (6.5) either have a feasible point x satisfying (6.9) or be empty with 
an I = —ATy satisfying (6.10). Then, finding a feasible point for system 
(6.5) or proving it empty can be completed in 0(y/nlogn) iterations by 
an 0(y/nlog(l/e)) interior-point algorithm, where each iteration solves a 
system of linear equations. 

We emphasize that ξ or z* is a non-combinatorial measure of the fea-
sible region X or its dual. Fbr an LP problem (as opposed to a feasibility 
problem), ξ or z* is determined by the geometry of the optimal face. 

6.2.1 High-probability behavior 

Prom Lemma 6.1 we can derive several propositions. 

Proposition 6.7 Let £j, j = l,2,...,n, have the identical standard Gauss 
distribution N(0,1) and condition on the event that Xj > 0 for j = 1, ...,n. 
Then, with high probability, 

ρ(1/η)<χά<ρ(η) for ¿ = l,2,...,n, 

where p(n) = nd for some constant d>\. 
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Proposition 6.8 Let xj, j = 1,2, ...,n, have the identical Cauchy distri-
bution, i.e., the quotient of two independent JV(0,1) random variables, and 
condition on the event that Xj > 0 forj = 1, ...,n. Then, with high proba-
bility, 

p(l/n) < Xj < p{n) for j = 1,2,..., n, 

where p(n) = nd for some constant d>\. 

Proposition 6.9 Let XQ, X\,..., Am be independent JV(0,1) random vari-
ables and condition on the event that A¿ < \Xo\/Vd for i = 1, . . . , m (d~ 
n-m>l). Then, the non-negative random variables, i¿ .:= 1 - y/dXi/\Xo\ 
for i = 1, . . . , m, satisfy 

p(l/n) < ¡ti < p(n) for i = 1, . . . , m, 

with high probability, where p(n) = nd for some constant d. 

The first two propositions are relatively easy to prove. To prove the 
third, we first prove a similar proposition: 

Proposition 6.10 Let Ao, Ai,...f Am be independent i\T(0,l) random vari-
ables and condition on the event that A< < |Ao|/V» for i = 1, . . . , m (d = 
n — m>l). Then, the non-negative random variables, X{ := |Ao|/VS — X% 
for % = 1, . . . , m, satisfy 

P(l/w) <Xi< p{n) for i = 1, . . . , m, 

with high probability, where p(n) = nd for some constant d > 1. 

Proof. In proving Proposition 6.10, we fix p(n) = n4. Let /(A) be the 
probability density function of N(0,1), 

P(m) :=Pr(a;i >0,x2 > 0,...,a;m > 0) 

and 
P ( m - l ) :=Pr(ar2 > 0, . . . ,xm > 0). 

Also note that |iV(0, l) | has the probability density function 2/(A) in [0, oo). 
Then, we have 

P(m) 
= Pr(>i >0,x 2 > 0, . . . ,xm > 0) 

/•oo rXo/Vd f\o/Vd rXo/Vd ™ 

= / 2/(Ao)/ / (λχ)/ / (A, ) · · . / / ( λ , „ ) Π ^ 
JO J—oo «/—oo J—oo ¿«Q 

/•OO fO fQ i»0 « · 

> / 2/(λο)/ / (A,) / / (A2) . · · / / ( λ ^ Π ^ 
JO «/-oo J - o o «/—oo i = s 0 

= (1/2Γ-
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We also have 

P(m) 
= Ρ φ ι >0,x2 > 0 , . . . , s m >0) 

/•oo f\o/>/d r\o/>/d fXo/y/d ™ 

= / 2/(λο)/ /(A,)/ /(Aa)···/ / ( λ „ ) Π ^ 
«/O J—oo ·/—oo J—oo ¿ = Q 

/«oo /.0 fXo/y/d r\o/y/d w» 

> / 2/(Ao)/ / (λχ) / / (A2) . · · / /(A^HdAi 
•/O «/ —OO J—OO J—OO ¿-jQ 

roo fXo/y/d rXo/y/d w» 

= (1/2)/ 2/(Ao)/ /(Aa).-/ /(Aro) f [ dA< 
Λ ./-oo /-oo i=0,i*l 

= P(m - l ) / 2 . 

Consider the probability 

P{- := Pr(xi <p(l/n)|x! > 0,...,xm > 0). 

We have 

i roo r^o/^/d ρλο/y/d "» 

= PL· 2/(λ°)/ /- '<W /(λ2)··Π^ 
"("0 7o JXo/y/d-n-* J-oo ¿J 

1 /»oo rXo/y/d j rXo/>/d w» 

^("») /o Jxo/Vd-n-* ν2π y-«, ¿J 

n~4 P(m - 1 ) 
V^f P(m) 

Now consider the probability 

Pf := Pr(a?i > p{n)\xx > 0, . . . ,3m > 0). 

We have 

pi-
Λ roo pXo/y/d-nA pXo/y/d m 



192 CHAPTER 6. AVERAGE-CASE ANALYSIS 

= 7 ¿ T / 2/(λο)/ /(λθ/ /(Ai)...n^i 

+ P¿-T/ 2/(λο)/ /(Ai)/ /(λ2)· . ·Π^ 

:= i*++ /*'+. 

For ΡΊ'+, we have 

-i roo rXo/y/d-n4 pX^/Vd *n 

= 7¿T/ 2/<W / ( λ ι ) / /(λ2)··Π^ 

< p ¿ r /°°2/(Ao)dAo 

1 /*°° 2 

■ ^J¡T£| , , ,H' /* ' r '* '* ) 

^ P T T / ^ e x p ( - ( n 4 - l ) / 2 ) e x p ( - * V 2 n 4 ) d ( * / n 2 ) 
"("») Jn* V27T 

< 2mn2exp(-(n4-l)/2) 
= 0(n-*) 

for n large enough. For Ĵ "*", we have 

P? 

= pT-r/ 2/(Ao)/ f(Xi) /(λ2)· · ·Π^ 
P{m) J0 y_oo J-oo ** 

< p ^ / 2/(Ao)/ /(AO/ /(λ3)· · ·Π^ 

í'(m) y0 y-« y-oo ¿.o 
P(m-l) Γ*2/̂ -«« 

* ~PM"7_OO / ( A l ) d A l 

/
n2/\/5-n4 

/(Ai)dA, 
-OO 
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= 2 Γ f(Xi)dX1 

= 0{n~2). 

Thus, the probability, Ρχ, that either 0 < xy < p(l/n) or χχ > p(n) 
satisfies 

Pi := Pf+P+ = Pf + P*+ + /*'+ < 0(rr2). 
The same result holds for P», t = 2,...,m, the probability that either 0 < 
x% < P(Vn) or x% > Ρ(™)· Thus, we shall have 

m 

t = l 

which approaches zero as n -> oo. Using Lemma 6.1 we prove Proposition 
6.10. 

a 
In a similar manner, we can prove that Pr(n~2 < |λο| < ri*\x\ > 

0,..., Xm > 0) approaches 1 as n -4 oo. This leads to the final proof of 
Proposition 6.9 for d = 7. 

In the next section, we prove that the conditions in Theorem 6.6 are 
satisfied with high probability for some random LP problems. 

6.2.2 Random linear problems 
Let A € TVnxn of the homogeneous linear system (6.5) be standard Gaus-
sian: Each component of A is independently distributed as a standard 
Gauss random variable. 

Since each column, a¿, of A is also standard Gaussian, a¿/||a¿|| is uni-
formly distributed on the unit sphere in 7lm. This is a special case of a 
rotationally-symmetric distribution. Denote by d = n - m. It is shown that 
the bases of the null space of A are standard Gaussian random vectors. 

Corollary 6.11 The probability that system (6.5) has a feasible point is 

Corollary 6.12 The probability that system (6.5) has an interior feasible 
point is 
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Proof. From the strictly complementary property of linear systems, this 
probability is the probability that the dual 

8 = ATy > 0, 8φ0 (6.11) 

is infeasible. However, the latter probability is exact 

1 - Pnm = Pnd· 

Ώ 

Theorem 6.13 With probability one, exactly one of systems (6.5) and 
(6.11) is empty and the other has an interior feasible point. 

Proof. The probability that (6.11) has an interior feasible solution is pnm. 
Note that these two events are exclusive, and pn¿ + Pnm = 1· 

D 

We now prove another lemma. 

Lemma 6.14 System (6.5) is feasible if and only if there is a partition 
A = («4B, AN), where AB is mxm, such that 

ABXB + (ANe)xm+i = 0, x ψ 0 and x > 0 (6.12) 

is feasible. 

Proof. It is obvious that system (6.12) being feasible implies that (6.5) 
is feasible. Conversely, if (6.5) is feasible, then it implies that 0 belongs 
to the polytope P defined as the convex hull of the columns of A. Let 
(οι,α2, ...,αα) be a minimal affinely independent set of columns of A such 
that 0 belongs to the convex hull of (ai,a2,...,ad). By Carathéodory's 
theorem d < m + 1, if d < m + 1, take as columns of AB as (αι,α2, ...,a¿) 
plus m-d any other columns of A. If d = m + 1 , then there is an (m 4-1)-
vector ü such that 

(ai,02,...,am+i)ö = 0 and ü > 0. 

Let 6 be the sum of the rest of the columns in A, and let (t>, 1) be a vector 
in the null space of the matrix (αχ, α2,..., am+i, b) (since b can be expressed 
as a linear combination of (αι,α2, ...,am+i)). Then, for scalars a and r/, 

*(O,/J)=O(J)+/J(;) 
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is also in the null space of (αι, α2,...,am+i,b). Let 

fc = argmin< τ4 : j = 1,2, ...,(m + 1) > . 

If Vfc = 1, then select a* = 0 and /?* = 1; if t/* < 1, then select a* = 1 and 
/?* = ü*/(l - vfc); else select a* = - 1 and /?* = ü*/(i>* - 1). In all of the 
three cases, x* = χ(ά*, β*) > 0 and x% = a?£,+2. In other words, the lemma 
is true by selecting AB = (αχ, . . . ,a*-i,aÄ+i,... ,am+i). 

α 

Let us call the partition satisfying the condition in Lemma 6.14 a basic 
feasible partition. We now analyze a feasible solution of (6.5) or (6.11). We 
develop the following result: 

Theorem 6.15 With high probability, a feasible point of system (6.5) or 
(6.11) satisfies condition (6.9) or (6.10), respectively. 

Proof. Let (Aß, AN) be any partition of A and a = Aj^e/y/n - m. Con-
sider the system 

{AB, α)ζ = 0, x¿0 and x > 0. (6.13) 

Since (Í4B) a) is standard Gaussian, the vector £ in the null space of (Aß, a) 
is the line generated by a standard Gauss random vector (Ai, A2,..., Am+i), 
that is, 

Xi = SXi for i = 1,2,..., m + 1, 

where δ is a scalar. Without loss of generality, we can let S > 0. Hence, 
(AB> Λ-ΛΓ) is a 6o5tc feasible partition or £ is feasible for system (6.13) if 
and only if Xi = Ai > 0 for i = 1,2, ...,m + 1. Thus, each component of 
a feasible solution of (6.13) has the identical distribution |iV(0, l) | . Thus, 
due to Proposition 6.7, with high probability 

P(V*0 <*i< P(n) for i = 1,2, ...,m + 1. 

Note that £ induces a feasible solution for system (6.5) by assigning 

XB = (¿i,...,£m)T and xN = (xm+i/Vn -m)e . 

This completes the proof for (6.5). 
The same result applies to the dual slack vector s of system (6.11) when 

it is feasible, where m is replaced by n — m. 

a 
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Based on Theorems 6.13 and 6.15, we have the final result 

Theorem 6.16 With high probability the homogeneous random linear fea-
sibility problem (6.5) can be solved in 0(y/n\ogn) iterations. 

Proof. Rrom Theorem 6.13, with probability one either A = Ap or z* > 0 
for problem (6.6) associated with (6.5). Then from Theorem 6.15, with high 
probability, there exists positive primal variables or positive dual slacks (not 
both) satisfying condition (6.9) or (6.10). Thus, the theorem follows from 
Theorem 6.6. 

D 

Note that the non-homogeneous linear system 

Ax = 6, x > 0, (6.14) 

where (A, —6) is standard Gaussian, can be solved by solving the system 
(6.5) with A := (A, -6), which remains standard Gaussian. Note that 
system (6.14) is feasible if and only if b € P* where (P*, Z*) is the optimal 
partition of problem (6.6). Thus, 

Corollary 6.17 With high probability the random linear feasibility problem 
(6.14) can be solved in 0(y/n\ogn) iterations. 

6.3 Random-Problem Analysis II 

This section analyzes the average complexity of interior-point algorithms 
for solving the probabilistic LP model of Todd. This model allows for de-
generate optimal solutions, and does not provide a feasible starting point. 
We refer to this model as "Todd's degenerate model." The lack of an initial 
solution in the degenerate model is problematic for many interior point al-
gorithms, which require an interior solution to start. We obtain a bound of 
0(y/n\ogn) iterations for the expected number of iterations before termi-
nation with an exact optimal solution, using the homogeneous and self-dual 
algorithm of Chapter 5 as applied to this model. 

Denote by Th the set of all points that are feasible for (HSDP). Denote 
by J^ the set of strictly feasible (interior) points in Th% with (x, r, s, κ) > 0. 
It is easily seen that (HSDP) has a strictly feasible point: y = 0, x = e > 
0, r = 1, 0 = 1, 8 = e > 0, κ = 1. 

From Theorem 5.7, it is clear that the key to solving a LP problem, 
or alternatively detecting its infeasibility or unboundedness, is to find a 
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strictly self-complementary solution to (HSDP). Many interior point algo-
rithms might be used to solve (HSDP), as long as they generate a sequence 
or subsequence of feasible pairs which converge to a strictly complemen-
tary solution of the problem being solved, such as the predictor-corrector 
or wide-neighborhood algorithm described in Chapter 4. By using the 
analysis employed in Section 5.3, with η = 1/4, we generate a sequence 
(y*, a*, r*,0*, «*,«*) €λί(η), and 

9 μ 1 + ^1 + 4 ^ + 1) 

6.3.1 Termination scheme 

In this section we consider the problem of generating an exact optimal 
solution to (HSDP). For simplicity, we denote 

. - (;)«*-». .-(;)ctr». 

To begin, let (u*, y*, v*, Θ* = 0) be any strictly self-complementary solution, 
i.e., u* + v* > 0. Note that 

eTu* + eTv* = eTx* + r* + eTs* + κ* = n + 1. 

Define 

σ£ = {t: 0 < ι < n + 1, < > 0}, and fj¡¡ = m i n « + υ'). 

We refer to σ£ as the self-complementary partition of (HSDP), and clearly 
0 < ÍJJ < 1. Our goal here is to use the iterates (u*, vk) of the algorithm to 
eventually identify the complementary partition, and to generate an exact 
optimal solution of (HSDP). Using the techniques developed in Chapter 5, 
we can prove the following result: 

Lemma 6.18 Let ζ = (1 — 9|)̂ £/(f% +1). Then in order to obtain v!¡ < ζ < 
ujN Í € Oft, and u* < ζ < v*, j $ σ%, it suffices to have 

o" < (¿τυ*(«)2· <6·16> 
Given an iterate (a;*,r*,j/fc, s*,«*), let Ap denote the columns of A 

having x*j > s*, and let xp denote the corresponding components of x. 
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Similarly let Az and sz denote the remaining columns of A, and the corre-
sponding components of 8. Note that (6.15) implies that 0* -* 0, so Lemma 
6.18 implies that eventually we always have P = σ£ \ {n +1} . In what fol-
lows, we assume that Ar is in fact large enough so that P = σ%\{η + 1}. 
We employ the following projections to generate an exact optimal solution. 
We distinguish two cases: 

Case 1. (r* > nk). Find the solution Xp of 

(PPl) nun | | * p - 4 | | 

s.t. Apxp = brk. 

If xk
p > 0, then compute the solution yk of 

(DPI) min | * * - 4 | | 

s.t. Aj>y = cPTk, czi* - Äzv = sZ} 

and set 
4 = czr

k - AT
zy

k = 4 - AT
z(y

k - yk). 

Case 2. (r* < «*). Find the solution i p of 

(PP2) min | | s p - 4 | | 
s.t. ApXp = 0. 

If xk
P > 0, then compute the solution yk of 

(£>P2) min | | * z - S | | | 

s.t. Aj,y = 0, -A%y = β ,̂ 

and set i\ = -Ají/*, and ft* = &Ty* - Cpip. 
According to Lemma 6.18, exactly one of the above cases occurs for 

all sufficiently large k. Also, Case 1 eventually occurs exactly when (LP) 
has an optimal solution, in which case (PPl) and (DPI) are both clearly 
feasible. In what follows, we consider Case 1 only, since our random model 
always has a solution. 

It is easily seen from the definition of (HSDP) that: 
(PPl) is equivalent to 

min ¡|a?p-a?í,|| . β 1 7 , 
s.t. Ap(xp-xkp)=Azx

k
z + bek; K°'l() 
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(DPI) is equivalent to 

min \\czO
k-Ä%(y-yk)\\ . . 

s.t. ÜL?(y-y*) = epí* + 4 . { ' 
because 

4 ~ 4 = ^I(2/fc-i/fc) + Mfc. (6.19) 
from (5.4) and 0* -* 0, we conclude that (x%¡ s\,) -4 0 as k -> oo, and 

also ** -4 0 if {n 4-1} € σ£. Using these facts and (6.17)-(6.18) we can 
easily deduce that 

{xk
P - x { , ) - > 0 and (á | - sk

z) -4 0 as fc -> oo. 

FVom this relation and Lemma 6.18 it follows that (i£, rk > 0,8%) > 0 (if 
fc is large enough) is a strictly complementary solution to (HSDP). 

The above discussion shows that our projection scheme works provided 
k is large enough. Below we give a more precise characterization of this 
fact. Again, for our probabilistic model, to be described below, only Case 
1 occurs provided k is large enough. Therefore in what follows we assume 
that fc is large enough and that we are always in Case 1. 

A matrix Ap satisfies the Haar condition if every square submatrix of 
Ap is invertible. It is well known that the standard Gaussian matrix Ap 
is a Haar matrix with probability one. Thus, for the purposes of studying 
probabilistic behavior,A we only have to deal with matrices that satisfy the 
Haar condition. Let Aß denote any square submatrix of Ap with its full 
row or column dimension. Also, if Ap has more rows than columns, let A, 
Az, and b denote the A^-corresponding rows of A, Az, and fc, respectively; 
Otherwise, A = A, Az = Az, and b = b. Then we have 

Lemma 6·19 Let (xp > 0,r* > 0,3/*,s£ > 0) be any strictly (self) com-
plementary solution for (HSDP). Then Case 1 occurs and (PPl) generates 
£p>0 and sk

z > 0 whenever 

θ* < ( l - l X g y m (6.20) 
- ( n + mi + v ^ M i ^ z | | ) 

Proof. Assume that (6.20) holds. Since (6.20) implies (6.16), we have 
rk > Kk and P must be the self-complementary partition σ£ \ {n +1} , by 
Lemma 6.18. From (6.17), the constraint in (PPl) is clearly equivalent to 

Ap(xP - xk
P) β Azx% + (fc - Ae)0k, 

and it is consistent. Note that 6 = Apx*P. We have 

Ap(xP -xkp+ e0k - a:J>0*) = Az(x
k

z - eek). (6.21) 
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One solution to (6.21) is 

xP - xP + e$k - xp0k = ÄB1ÄZ{X% - e#h) 

if Ap has more rows than columns, or 

otherwise. Thus, the solution £p of (PP1) must satisfy 

¡ 4 - 4 | | < | ¿ 5 l i Í , ( 4 - e(9fc)| + Θ* ||e - 411. (6.22) 

For the first term in (6.22), we have 

< max{max(4), θ") \\e\\ \\Λ^ΑΖ\\ 

where the last inequality is from (5.5). Fbr the second term of (6.22), we 
have 

0* | |e-411 < *y |P | -2e**i . + ||4lP 

< Py/lP] - 2eTx*P + {¿ΤχΡ)* 

< 0*(n + l), 

since eTxp < n + 1. Substituting the above two inequalities into (6.22) 
results in 

114-4» < ^^m\\Ä-B
lÄz\\^(n + i)ek 

< il + y/nfalÄg\){n + l)£, (6.23) 

so (6.20), (6.23), and (5.7) imply that Xp > 0. 
Now consider (DPI). From (6.18), the constraint in (DPI) is clearly 

equivalent to 
Al(y - yk) = {CP - e)0* + 4 ; 
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and it is consistent. Note that cp = PTy*. We have 

Al(y - y* - »*«*) = 4 - εθ". (6.24) 

Similarly, the solution yP of (DPI) must satisfy 

14 - 41 < H^tfSrV}. - eÖfc)| + ** He - 411 · (6-25) 

For the first term in (6.25), we have 

< max{max(*£), #*} INI l U i ^ f 

where the last inequality is from (5.5). Fbr the second term of (6.25), we 
have 

** Ik -411 < eyiz|-2e**;, + ||4i|2 

< ek^\Z\-2eTxP + (eT8*z)
i 

< 0*(n + l). 

Substituting the above two inequalities into (6.25) results in 

»4-411 < {ji^yAP\\\Ä-B
1Äz\\ + (n + i)^ 

< ( l 4 - v ^ | | i ^ i z | ) ( n + l ) p (6.26) 

so (6.20), (6.26), and (5.7) imply that Sk
z > 0. 

D 

6.3.2 Random model and analysis 
In this section we describe a random LP model proposed by Todd ([410]), 
and perform a probabilistic analysis of the behavior of the homogeneous and 
self-dual algorithm, using the finite termination scheme described above. 
We will refer to the model under consideration as "Tbdd's degenerate 
model." 
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Todd's Degenerate Model. Let A = (A\t -¿2)1 where A% is m x n¿, n¿ > 
1, r%\ +n2 = n, and each component of -A is i.i.d. from the JV(0,1) distri-
bution. Let 

-(*)· - 0 · 
where the components of X\ € 7lni and 82 € 7£na are Li.d. from the 
|iV(0,l)| distribution. Finally let 6 = Ax,c = s + Λτπ. We assume that 
either π = 0, or the components of π are i.i.d. from any distribution with 
0(1) mean and variance. 

Clearly this model has degenerate solutions if n\ φ m, and produces 
instances of (LP) having no easy feasible starting point. This presents an 
obstacle for most interior point methods, which require interior feasible 
points for initialization. Since an instance of Todd's degenerate model 
always has an optimal solution, it follows from Theorem 5.7 that n-f 1 € σ£. 
Therefore, if the homogeneous and self-dual algorithm described in Chapter 
5 is applied to an instance of Todd's degenerate model, we are eventually 
always in Case 1. 

Now, we begin a probabilistic analysis of the self-dual algorithm equipped 
with the termination scheme described in the preceding section. Since our 
finite termination criterion in Lemma 6.19 depends on ft, from a strictly 
complementary solution (a;*,r*,e*) to (HSDP), we must first infer a valid 
value of ft from the given strictly complementary solution (i, s) for (LP) 
and (LD). 

Let 

ξ = min(i + *) = min ( ** V p = 1 + eTx + eTS. (6.27) 

Note that x* = (n + l)x/p, r* = (n -h l)/p, y* = (n + 1)ττ//δ, κ* = 0, and 
a* = (n +1)81p is a strictly self-complementary solution to (HSDP). Thus, 
we have the following proposition: 

Proposition 6.20 Consider Todd's degenerate model with optimal solu-
tion (χ,δ). Then there is a strictly self-complementary solution 
(ar*,r*,y*,s*,/c*) to (HSDP) such that ft > ξ/β. 

This proposition and Lemma 6.19 lead to Lemma 6.21. 

Lemma 6*21 Consider an instance of Todd's degenerate model, and let | 
and p be as in (6.27). Suppose íhat k is large enough so that the following 
inequality is satisfied: 

Qk < U ~ V)t /g 28) 
-(n + imi + yfiWÄJÄzU)' 
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where 
Ap = Ai and Az = A2. 

Then (PP1) and (DPI) generate solutions x£ > 0 and #*, sk
z > 0, so that 

x = (ip,0) and y,s = (0,$z) «o/ve (X/y anrf (LZty, u/Aere xP = fp/r*, 
j/ = yfc/rfe, and S^ = «|/rfc. 

Using the criterion in the previous lemma, we can terminate the algo-
rithm once (6.28) holds. Ftom 0° = 1, (6.15), and (6.28), this definitely 
happens if 

which requires 

* = 0(V^) (logn + log ,3 + log(l + y/K\\ÄBlÄz\\) - log?) . 

We now introduce a lemma which is frequently used later and whose 
straightforward proof is omitted. 

Lemma 6*22 Let ζ αηάη be two continuous random variables, with sample 
space (0,oo). Define the new variables ξ = πιίη(ζ,η) and p = max(C,Tj). 
Then, for any x>0, 

/«(*)</«(*) + /n(*) « ¿ /,(*)</<M+ /*(*). 

where fx(-) is the probability density function (p.d.f) of a random variable 
X-

Let A have distribution \N(0} 1)| with the p.d.f. 

fx(x) = v ^ e x p i - a : 2 ^ ) . 

Then, 

rl/n i»oo 
E(log£) = / log xf¿(x)dx+ / log xfAx)dx 

Jo ς Ji/n ς 

> — logn + / log xf^(x)dx 

fl/n 
> - l o g n - / \logx\f^(x)dx. 
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Using Lemma 6.22, we have 

rl/n rl/n 
/ |loga;|/|(a:)da; < n |logx|/A(a;)da; 

< ny/2/π |logx|exp(-a^/2)da: 

[l¡n 

< ny/2/π I | logada 

r— f1/n 

= —ny/2/π I logxdx 
Jo 

= ny/2/w(l + log n)/n 
< 1 + logn. 

Also, we have 

E(logp) = E(log(l + βτ£χ + eTS2)) < log(l + E(eT*! + eTs2)) = O(logn). 

Moreover, consider 

E(log(l + ^ | | i ^ i z | | ) ) 

< El logí l + ^ í ^ l U i ^ l N 

< E hog I (i + vG) I \z\ + Σ l^¿la¿ll3 

= log(l + y/n) + (1/2)E ( log 2 ( 1 + U^f)) , 

where äj is the jth column of A. Note that (Aß, —äj) is a Gaussian matrix, 
ÄßXäj has the distribution of the Cauchy random variables λ»/λ0 where 
A<, i = 0,1,...,\ÄB\} are independent JV(0,1) random variables. Note that 
\ÄB\, the dimension of ^ B , is less than or equal to m. Without losing 
generality, we assume \AB\ = m. Hence 

i + ΙΙ^,ΙΙ2 ~ A3 + A? + - + AS» ~ ± 
λ0 U3 

L 
2 ' 
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where i/2 has a chi-square distribution with m+1 degrees of freedom, x2(m+ 
1), and Uj is a |JV(0, l) | random variable. Thus, 

E < E [ &minieZ{i/2}J 

= E [logmax{f73}j - E [log(min{»/¿})2j 

:= E[log^3]-E[log(i>)2]. 

Using Lemma 6.22 again, we have 
roo 

E(logjp] = / logxfc(x)dx 
Jo 

< logi / xfo(x)dx\ 

< logQf°*|Z|/,,,Or)dx) 

< \og(\Z\ j " xf#{x)dx^ 

= log(|Z|(m + l)) , 

where rf is a χ2(τη +1) random variable, whose expected value is m +1 . 
Finally, 

E[log(i>)2] = 2E[logi>] 
rOO 

= 2 / \ogxfp(x)dx 
Jo 

/•l/n /»oo 

= 2 / logxfp(x)dx + 2 I \ogxfp(x)dx 
JO Jl/n 

> -21ogn-f 2 / logx/¿>(a?)dx 
Jo 

rlfn 
> - 2 log n - 2 / | log x\fp (x)dx 

Jo 

,1/n 
> - 2 1 o g n - 2 / 

Ji 
and 

/ n\logx\U(x)dx < / " \logx\\Z\fx(x)dx 
Jo Jo 

< \Z\y/2/w / | logs) exp(-x2/2)dx 
Jo 
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< \Z\y/2ß Í \\ogx\dx 
Jo 

< \Z\y/2fH{l + \ogn)ln 
< 1 + logn. 

Therefore, termination occurs on an iteration fc, whose expected value 
is bounded as 

E[Jk] < 0(y/n\ogn). 

Thus we have proved the main result: 

Theorem 6*23 Assume that the homogeneous and self-dual algorithm, us-
ing the termination scheme described in the preceding section, is applied to 
an instance of Todd's degenerate model. Then the expected number of iter-
ations before termination with an exact optimal solution of (LP) is bounded 
above by O(v^logn). 

6.4 Notes 
For examples in linear programming randomized algorithms, we cite the 
recent paper of Seidel [374], who gives a simple randomized algorithm whose 
expected running time for (LP) is 0(m\n)y and the references therein. 

For the expected running time of the simplex method, a determinis-
tic algorithm, when applied to LP instances generated according to some 
probability distribution (or class of such distributions), see Adler, Karp and 
Shamir [2], Adler and Megiddo [3], Borgwardt [70], Megiddo [270], Smale 
[382], Todd [409], and the references cited there. 

uOne-step analysis" of a variant of Karmarkar's method can be seen in 
Nemirovsky [319]. Similar analysis of a primal-dual method can be seen 
in Gonzaga and Todd [166]. The analysis described in Section 6.1 is due 
to Mizuno et al. [292]. Let us describe a possible program to make one-
step analysis rigorous. Suppose we assume that our original problem (LP) 
is generated probabilistically as follows: the entries of A are independent 
standard normal random variables, b = Ae and c = ATy + e for some y. 
Then (x, s) = (e, e) is an initial point on the central path C. Moreover, for 
all of our algorithms, r is a multiple of e and U is a random subspace with 
the orthogonal transformation-invariant distribution. Hence our analysis 
holds at the initial iteration. We now apply an algorithm that requires that 
each iterate lies in C and hence r = e at each iteration. However, the null 
space U of AXl/2S~~1/2 will have a different induced distribution at later 
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iterations. We could hope that before (x,s) gets too close to an optimal 
pair, this induced distribution is somewhat close to what we have assumed 
in Section 6.1.2, so that its Radon-Nikodym derivative with respect to our 
distribution is suitably bounded. In this case, the probability that \\Pq\\ 
exceeds η1^2μ, which is small under the distribution we have assumed, will 
also be small under the distribution induced by the initial probabilistic 
generation of (LP). Hence, for most iterations, the improvement in the 
duality gap would be as in Corollary 6.2. A great number of difficulties need 
to be resolved before such an approach could succeed. We would probably 
need bounds on how fast the probabilities in Theorem 6.3 approach 1, and 
clearly as (x, *) approaches the optimum the induced distribution differs 
drastically from what we have assumed. 

In the meantime, we hope that the one-step nonrigorous analysis has 
lent some insight into the practical behavior of primal-dual algorithms. 
Our algorithms using M = λί^(η) for η close to 1 are quite close to imple-
mented primal-dual methods, and the result of our nonrigorous analysis, 
that 0((logn)log(l/e)) iterations typically suffice, is borne out by several 
large-scale tests. 

The properties of the Gaussian matrix in Section 6.2 and the rotationally-
symmetric distribution LP model can be found in Borgwardt [70]. In par-
ticular, system (6.5) was discussed in Girko [140], Schmidt and Mattheiss 
[372], and Todd [410]. Our probabilistic analysis is essentially focused on 
the initialization and termination of interior-point algorithms. In other 
words, we have focused on the factor £(>l,6,c) and £(.A,b,c) in the worst 
complexity result of Section 5.2. Essentially, we have proved that, for the 
above random problem, C(J4, 6, c) = y/ñ with probability 1 and ξ(Α, 6,c) > 
p(l/n) with high probability. Possible new topics for further research in 
this area include whether our analysis will hold for other probability distri-
butions and the expected behavior. 

Most of results in Section 6.3 are due to Anstreicher et al. [31, 30], 
where they proved that Theorem 6.23 holds for a more general degenerate 
model ([410]): 

Todd's Degenerate Model· Let A = (Ai,A2,As), where Αχ is m x 
fii, m > 1, πχ < m, ri\ -f ri2 + Π3 = n, and each component of A is i.i.d. 
from the AT(0,1) distribution. Let 

*=(!)■ s=(i)' 
where the components of x\ and S3 are i.i.d. from the |JV(0,1)| distribu-
tion. Finally let b = Ax, c = S + ATit. We assume that either π = 0, or 
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the components of π are i.i.d. from any distribution with 0(1) mean and 
variance. 

6.5 Exercises 

6.1 Prove Proposition 6.7. 

6.2 Prove Proposition 6.8. 

6.3 Prove Corollary 6.11. 

6.4 Let λ0, λι,..., Am be independent N(0,l) random variables and con-
dition on the event that A< < \Xo\/Vd for i = 1, . . . , m (d = n - m > 1). 
Prove that Pr(n~2 < |Ao| < n2\x\ > 0, ...,a:m > 0) approaches 1 as n -> oo, 
where xi := |Ao|/Ve - A¿ /or i = 1, . . . , m. 

6.6 Prove Proposition 6.20. 

6.6 Prove Lemma 6.22. 



Chapter 7 

Asymptotic Analysis 

Interior-point algorithms generate a sequence of ever-improving points a:0, xl, 
..., xk,... approaching the solution set. For many optimization problems, the 
sequence never exactly reaches the solution set. One theory of iterative al-
gorithms is referred to as local or asymptotic convergence analysis and is 
concerned with the rate at which the optimality error, {r*}, of the gener-
ated sequence converges to zero. Obviously, if each iteration of competing 
algorithms requires the same amount of work, the speed of the convergence 
reflects the effectiveness of the algorithm. This convergence rate, although 
it holds locally or asymptotically, allows quantitative evaluation and com-
parison among different algorithms. It has been widely used in classical 
optimization and numerical analyses as an efficiency criterion. Generally, 
this criterion does explain the practical behavior of many iterative algo-
rithms. 

In this chapter we analyze the asymptotic convergence rate of iteration 
sequences generated by some interior-point algorithms. The asymptotic 
complexity presented in this chapter has several surprising but pleasing as-
pects. First, the theory is simple in nature. Second, it partially explains 
the excellent behavior of interior-point algorithms in practice. Third, it 
provides a tool to identify the strict complementarity partition for the ter-
mination method discussed in Chapter 5. 

7.1 Rate of Convergence 

The asymptotic convergence rate is a rich and yet elementary theory to 
predict the relative efficiency of a wide class of algorithms. It consists of 
two measures: the order and ratio of convergence. 
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7.1.1 Order of convergence 
In Section 1.4.4 we have introduced, p, the order of convergence. To ensure 
that those definitions are applicable to any sequence, they are usually stated 
in terms of limit superior rather than just limit and 0/0 is regarded as a 
finite number. In optimization, these technicalities are rarely necessary 
since {r* > 0} represents a measure towards optimality, and rk = 0 implies 
that optimality is exactly reached. 

We might say that the order of convergence is a measure of how good 
the tail of {rk} is in the worst case. Large values of p imply the faster 
convergence of the tail. The convergence of order equal two is called (sub) 
quadratic convergence. Indeed, if the sequence has order p > 1 and the 
limit 

lim 7-TT- = ß < oo 

exists, then there exists a finite K, such that 

<2ß 

or 
(20)»/(p-Dr*+i < [(20)1/<,'-1>rfc],, 

and 
{2ß)i/(r-»rK < x 

for all fc > K. Thus, if we wish to reduce 

(2/})i/(p-Dr* < c, 

we need only 

. „ loglog(l/c) + log log {{2ß)XI(v~l)rK)~l 

k — Jt\ = -
logp 

iterations, since 

(2ß)l«*-»rk < ({2β)ι'(*-ντκΥ~Κ . 

We also have the following proposition: 

Proposition 7.1 Let the positive sequence {rk} converge to zero. Then, 
the order of convergence equals 

λ-*οο logr* 
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Example 7.1 The sequence with rk = (a)k where 0 < a < 1 converges to 
zero with order unity. 

Example 7.2 The sequence with rk = (a)2 where 0 < a < 1 converges to 
zero with order two, and the sequence is quadratically convergent. 

7.1.2 Linear convergence 
Most of iterative algorithms have an order of convergence equal to unity, 
i.e., p = 1. It is therefore appropriate to consider this class in greater detail 
and develop another measure of speed for this class: the ratio of linear 
convergence, which was introduced in Section 1.4.4. 

Linear convergence is the most important type of convergence behavior. 
A linearly convergence sequence, with convergence ratio /?, can be said to 
have a tail that converges to zero at least as fast as the geometric sequence 
M(ß)k for some fixed positive number M independent of k. Thus, we also 
call linear convergence geometric convergence. 

As a rule, when comparing the relative effectiveness of two competing 
algorithms both of which produce linearly convergent sequences, the com-
parison is based on their corresponding convergence ratio—the smaller the 
ratio the faster the convergence. The ultimate case where ß = 0 is referred 
to as superlinear convergence. We note immediately that convergence of 
any order greater than unity is superlinear. It is possible for superlinear 
convergence to have unity convergence order. 

Example 7.3 The sequence with rk = l/k converges to zero. The conver-
gence is of order one but it is not linear, since lim(rfc+1/r*) = 1, that is, ß 
is not strictly less than one. 

Example 7.4 The sequence with r* = (1/*)* is of order unity, and it is 
superlinearly convergent. 

7.1.3 Average order 
In practical optimization, the convergence order at each iteration may not 
be the same during the iterative process. We now define the average order 
related to the speed of convergence of such a sequence. 

Definition 7.1 Let the positive sequence {rk} converge to zero. The av-
erage order per iteration of convergence of {rk} between k and k + K is 
defined as 

(K \ l ' K 

" 5" · 
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where pi is the convergence order from fe-H-1 to k + i. 

In other words, the average convergence order during this period is the 
geometric mean of the orders of each iteration. Using the average order, 
from k to fc -f K we should have 

Tk+K _ (rkyK _ (r*)IIf.i*\ 

The right-hand side is precisely the accumulated convergence orders be-
tween k and K + k. 

Example 7.5 The sequence with r° = a, 0 < a < 1, r*+1 = (rk)2 ifk is 
even and r*"*"1 = rfc if k is odd. Then, the average converge order between 
k to k + 2 is y/2. 

7.1 A Error function 

In optimization, the decision variables form a vector in 7¿n, and iterative 
algorithms generate a sequence {xk} in Hn space. Thus, if {xk} converges 
to the optimal solution set, the convergence properties of such a sequence 
are defined with respect to some particular error or residual function, r(x)% 

that converts the vector sequence into a real number sequence. Such an 
error function satisfies the property that r(x) > 0 for all non-optimal solu-
tions and r(x) = 0 for every optimal solution. Hence, the convergence rate 
of {xk} is represented by the convergence rate of {rk := r(xk)}. 

It is common to choose the error function by which to measure conver-
gence as the same function that defines the objective function of the original 
optimization problem. This means that we measure convergence by how 
fast the objective converges to its optimum. Alternatively, we sometimes 
use the function minxes \\xk - x\\ which represents the distance from xk to 
the solution set S. 

Example 7.6 The pnmal, dual and primal-dual Newton procedures are 
presented in Chapter S. They generate sequences of points {xk}, {sk} and 
{xk,sk}, whose error functions are the proximity measures to the ana-
lytic center rfp{xk), r¡d(sk) and ^xk,sk). When the errors are less than 
1, 1 and 2/3, respectively, f?p(a:*+1) < ηρ(χ

Η)2, f?d(e*+1) < *?d(**)2 and 
rtxk+l,sk+x) < η(χΗ,8Η)2. Thus, these errors converge to 0 quadratically. 

In the analysis of interior-point algorithms the error function is chosen 
as the primal-dual or complementarity gap xTs, which should be zero at an 
optimal solution pair. For an optimization problem that possesses a strict 
complementarity solution, the above two error functions will have the same 
convergence rate. 
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7.2 Superlinear Convergence: LP 
Consider the predictor-corrector algorithm described in Section 4.5. We will 
show that this 0(y/n log(Ä/c))«iteration algorithm actually forces quadratic 
convergence of the duality gap rk := (xk)T8k > 0 to zero. In the context 
of the present work it is important to emphasize that the notions of con-
vergence, superlinear convergence, or quadratic convergence of the duality 
gap sequence in no way require the convergence of the iteration sequence 

We follow the same notations in Section 4.5. At the fcth predictor step, 
let μ* = (x*)Ts*/n, (dx,dt) :=d(x*,e*,0), and 

δ" = ?φ . (7.1) 
μ* 

If 0* = 9 is the largest step-size chosen in Algorithm 4.5, then from Lemma 
4.17 (note Sk = Pq/μ"), 

2 
1-0* < 1 -

1 + λ/1+4||**||/>7 

νΐ + 4\\δ"\\/η-1 

1 + νΊ + 4||ί*||/»7 

4||J*ll/»7 
(1 + λ/1 + 4||ί*||/ι,)2 

11**11/»? (7.2) 

(recall η = 1/4) and 

(χ"+ψ8"+ι < (1 - 0k)(xk)T8k < ^(xkfsk. (7.3) 
V 

Our goal is to prove that ||i*|| = 0((xk)T8k). Then, inequality (7.3) guar-
antees quadratic convergence of (xk)T8k to zero. (In this section, the big 
"0" notation represents a positive quantity that may depend on n and/or 
the original problem data, but which is independent of the iteration k.) 

7.2.1 Technical results 
We first introduce several technical lemmas. For simplicity, we drop the 
index k and recall the linear system during the predictor step 

Xd8 + Sdx = - X s 
Adx = 0 (7.4) 

-ATdv-ds = 0. 
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Let μ = xTa/n and z = Xa. Then from (x, *) € λίι{η) we must have 

(1-η)μ<*ί<(1 + η)μ for i = l,2,...,n. (7.5) 

We shall estimate ||dx|| and ||d«||. Our present objective is to demon-
strate that ||dx|| = 0(p) and ||d,|| = Ο(μ). We start by characterizing the 
direction to more general systems, including LP (7.4) and monotone LCP 
(4.39). 

Lemma 7.2 // dx and d8 satisfy the equation 

Xd8 + Sdx = -Xs 

and the inequality 
(dx)

Td,>0, 
then, 

Hir^H2 + HDd.ii2 < Λ , 
when D = Xl'2S-1'2. 

Proof. Multiplying the diagonal matrix {XS)~1^2 on both sides of the 
equation, we have 

D~xdx + Dd, =-{,XS)l'2e. 

Taking the norms of both sides, 

\\D-1dx+Ddt\\
2 = xTs 

or 
\\D~ldx\\

2 + \\DdBf + (dx)
Tda = xT8. 

Since d£d8 > 0, we have the lemma proved. 

Let (P, Z) = (P*, Z*) be the strict complementarity partition of the LP 
problem. For all fc, Theorem 2.18 and relation (5.8) imply that 

€ < * } < ! / € for jeP (7 . 
ξ<η<ι/ξ for jez, (('0) 

where ζ < 1 is a fixed positive quantity independent of fc. 

Lemma 7.3 // dx and d8 are obtained from the linear system (7.4) and 
μ = xTs/n, then 

||(4,)ζ|| = 0(μ) and ||(4.)ρ|| = 0(μ). 
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Proof. From Lemma 7.2 and relation (7.6), we obtain 

||(4.)*ll = \\DzD-z
l{dx)z\\ 

< \\Ds\\OWñ 

= \\(XzSz)ll*S?\\0{Ji¡) 

= 0 ( V ? ) 0 ( V M ) = 0(μ). 

This proves that ||(<k)z|| = 0(μ). The proof that \\(d.)P\\ = Ο(μ) is 
similar. 

a 

The proofs of ||(dx)p|| = 0(μ) and ||(d4)z|| = 0{μ) are more involved. 
Toward this end, we first note 

x + dx € n(D*AT), 
8 + d, 6 M{AD2). 

This is because from the first equation of (7.4) we have 

(7.7) 

S(x + dx) = -Xda 

X{s + de) = -Sdx. 

Thus, 

s + dx = -(XS-l)da = D2ATdy 

8 + d8 = -(SJT1)«!. = -D~2dxi 

which gives relation (7.7). 

Lemma 7.4 / / ds and d9 are obtained from the linear system (74)> ^en 
(dx)p is the solution to the (weighted) least-squares problem 

minu (l/2)\\Dplu\\2 

s.t. Apu = -Az{dx)z 

and (d8)z = -Α^ν and v is the solution to the (weighted) least-squares prob-
lem 

mln, (l/2)||Dzt>||2 

s.t ÄpV = —(d8)p. 
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Proof. Prom (7.7), we see that 

xp + (dx)P E R(D2
PAl). (7.8) 

Since Sp = 0 for all optimal $*, we must have cp € R{Aj>). Thus, 

8p=cP- Äpy € Ä(A£), 

which implies that 
XP = D2p8P € Ä(D|,Ap)· (79) 

Prom (7.8) and (7.9) we have 

(dx)P € R{D2
PATp). 

Moreover, (dx)p satisfies the equation 

AP{dx)p = -Az(dx)z. 

Thus, (dx)p satisfies the KKT conditions for the first least-squares problem. 
Since AD2(s + dB) = -Adx = 0 and AD2s = Ax = 6, it follows that 

-b = A02d, = ApD2p(d8)P + AzD
2

z{d,)z. (7.10) 

Also, since x*z = 0 for all optimal a;*, we have ApXp = 6 implying b 6 
fc(Ap). Therefore, relation (7.10) implies 

AzD2
z(d8)z 6 ft(AP). 

Moreover, dv satisfies the equation 

Ápdy = -(d,)p. 

Thus, dy satisfies the KKT conditions for the second least-squares problem. 

O 

7.2.2 Quadratic convergence 

Theorem 7.5 If dx and d8 are obtained from the linear system (7.4) and 
μ = xTs/n, then 

\\(άχ)Ρ\\ = 0(μ) and ||(d.)*|| = Ο(μ). 
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Proof. Since the first least-squares problem is always feasible, there must 
be a feasible fi such that 

Nl = 0(ll(4.)*||), 
which, together with Lemma 7.3, implies 

INI = 0(μ). 

Furthermore, from Lemma 7.4 and relations (7.5) and (7.6) 

||(d,)HI = WDpD^i^rW 
< \\DP\\\\D?(dx)P\\ 
< WDPWWDJÜW 

< ||Dp||||2VllNI 
= wixpspr^xpwuixpspyvx^wuüw 
< uxpSpr^wwxpWUXpSpY^wwx^mw 
= 0(||ΰ||) = 0(μ). 

Similarly, we can prove the second statement of the theorem. 
D 

Theorem 7.5 indicates that at the fcth predictor step, dk and dk satisfy 

| | (4)ρ| | = 0(μ*) and ||(<«)*|| = 0(μ"), (7.11) 

where μ* = (xk)Tsk/n. We are now in a position to state our main result. 

Theorem 7.6 Let {(xk,sk)} be the sequence generated by Algorithm 4*5. 
Then, 

i) the Algorithm has iteration complexity 0{y/n\og{R/t)); 

ii) 1 - ek = 0((xk)T8k); 

iii) {xk)Tsk -» 0 quadratically. 

Proof. The proof of (i) is in Theorem 4.18, which also establishes 

lim uk = 0. 
Jb-400 

Rrom relation (7.1), Lemma 7.3 and Theorem 7.5 we have 

ll¿fcll = IPxd.//ifcll<0((xfc)V), 
which, together with inequality (7.2), establishes (ii). 

Rrom inequality (7.3) we see that (ii) implies (iii). This proves the 
theorem. 

D 
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7.3 Superlinear Convergence: Monotone LCP 

In this section, we consider the monotone LCP extension of the predictor-
corrector LP algorithm. We show that this 0(V«log(Jl/€))-iteration al-
gorithm for the monotone LCP actually possesses quadratic convergence 
assuming 

Assumption 7.1 The monotone LCP possesses a strict complementarity 
solution. 

This assumption is restrictive since in general it does not hold for the 
monotone LCP. We will actually show by example, however, that Assump-
tion 7.1 appears to be necessary in order to achieve superlinear convergence 
for the algorithm. 

Again, the LCP being monotone means that the iterate direction 

d8 = Mdx implies d%ds > 0. 

Note that for LP, we have d%d8 = 0. This is the only difference between 
LP and LCP analyses. Almost all technical results on iterate directions 
developed for LP (d%d, = 0) hold for the monotone LCP {d£da > 0). 

7.3.1 Predictor-corrector algorithm for LCP 
In this section, we briefly describe the predictor-corrector LCP algorithm 

o 

for solving the monotone LCP given by (1.4). Recall that T denote the 
collection of all strictly feasible points (x, s) and the neighborhood of the 
central path 

MOi) = { (M eh ΙΙΧβ/μ-βΐΐκη}, 
where μ = xTs/n and η is a constant between 0 and 1. 

To begin with choose 0 < η < 1/4 (a typical choice would be 1/4). All 
search directions dx and da will be defined as the solutions of the following 
system of linear equations 

Xda + Sdx = 7/¿e-X* ,7 1 9v 
Mdx-d8 = 0, < 7 ' " ' 

where 0 < 7 < 1. (This is a special case of system (4.39). There are no free 
variables here.) To show the dependence of d = (dx,d8) on the pair (¿r, s) 
and parameter 7, we write d = d(x,«, 7). 

A typical iteration of the algorithm proceeds as follows. Given (xk, 8k) € 
JViOiJiwes°lvesystem (7.12) with (a?, s) = ($*,sk) and (4B* d«) = ¿(a:*,sk,0) 
Por some step length Θ > 0 let 

χ(θ) = xk -f θάχ, s{ß) = sk + θά8, 
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and μ(θ) = χ(θ)τ8(θ)/η. This is the predictor step. 
Again, we can choose the largest step length Θ < 1 such that for all 

0 < Θ < § (χ(θ), 8(θ)) € Μ2(η + r) where 0 < r < η, and let 

a?' = z(0) and *' = s(S). 

We can compute 0 by finding the roots of a quartic equation. 
Next we solve system (7.12) with (x,a) = (x\s') € Αί(η + τ), μ' = 

(x')Ts'/n, and 7 = 1, i.e., (<£,<) = d(a;'y,l). Let xk+l = x' -fd^ and 
s*+1 = β' + d'#. This is the corrector (or centering) step. 

Similar to Lemma 4.16, for all k we can show that 

(x*,**)€.Wáfo) (7.13) 

as long as 0 < η < 1/4 and 0 < r < η, and 

(aOV = (l-0»)(s*)T«fc + (0fc)2(d,)Td, , 7 1 4 , 

One can also show that 

(dx)
Td. < (x*)T**/4 , 7 1 5 * 

(d'x)
Td't < (x')Ts'/(&n). (lLb) 

Let Sk = Ό%άΒ/μΗ in the predictor step. Then, we can show that 

\\S"\\<V2n/4, (7.16) 
and the following lemma, which resembles Lemma 4.17. 

Lemma 7.7 IfOk := S is the largest Θ such that (χ(θ),8(θ)) € λί2(η + τ) 
with 0 < T7 < 1/4 and 0 < r < rj, ¿ften 

0k> 
l + y/l + 4\\Sk\\/i 

Clearly, this lemma together with (7.14), (7.15) and (7.16) implies that 
the iteration complexity of the algorithm is 0(y/nlog(R/e)) for a constant 
0 < T < η. Note again that 

1 _ Ö * < M . (7.17) 
"" r 

Relations (7.14), (7.15), (7.16), and (7.17), and Lemma 7.7, imply 

i*+1 < (1 + 1/8η)(Μ-Ιμ* + (dx)
Td./n) 

T 

< (1 + 1 / 8 n ) ( i !^M + JtíM). (7.18) 
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From (7.18), we see that if 

||d,|| = ( V ) and ||de|| = 0(μ*), 

then the complementarity gap converges to zero quadratically. 

7.3.2 Technical results 

For a LCP possessing a strictly complementary solution, a unique partition 
P and Z, where P Π Z = {l,2,...,n} and P U Z = 0, exists such that 
x*z = 0 and sj> = 0 in every complementary solution and at least one 
complementarity solution has x*P > 0 and 8*z > 0. We can also prove that 
relation (7.6) holds for the sequence generated by the predictor-corrector 
MCP algorithm. Let μ = xTs/n and z = Xs. We must also have relation 
(7.5)if(*,«)€<A/afa). 

We now introduce several technical lemmas. Fbr simplicity, we drop the 
index k and recall the linear system during the predictor step 

Xd8 + Sdx = -Xs /7io\ 
Mdx-d, = 0. U i y j 

Define D = X^S"1'2. We now estimate ||dx|| and ||d,||. Since M 
is monotone, i.e., {dx)

Tda > 0, both Lemma 7.2 and the following lemma 
hold. 

Lemma 7.8 If dx andd8 are obtained from the linear system (7.19), and 
μ = χτ8/η, then 

Il(d,)zll = 0(/i) and \\(d.)P\\ = Ο(μ). 

The proofs of ||(dz)p|| = Ο(μ) and ||(d«)z|| = Ο(μ) are, again, more 
involved. We first note 

S(x + ds) = -Xd„ 
X(s + dt) = -SdXi 

and therefore 

x + ds = -{XS-l)d. = -DH. (79n. 
8 + d. = -(X~lS)dx = -D~*dx.

 (iM) 

Before proceeding, we need some results regarding (non-symmetric) positive 
semi-definite (PSD) matrices that may be of independent interest. In what 
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follows, we will consider M to be partitioned (following a re-ordering of 
rows and columns) as 

M "(JS &)· (721) 

Lemma 7.9 Let M be a PSD matnx, partitioned as in (7.21). Then 
Mppxp = 0 */ and only if MpPxp = 0. Furthermore, Mppxp = 0 implies 
that {MZP + Mfz)xP = 0. 

Proof. Let x = (a;£,0T)T. If either MPPxP = 0 or M£PxP = 0, then 
xTMx = 0, so z is a global minimizer of the quadratic form yTMy. Con-
sequently (M + MT)a; = 0, which is exactly 

(MPP + M$P)xp = 0 
(MZP + MJz)xP = 0. 

D 

Lemma 7.10 Let M be a PSD matrix, partitioned as in (7.21). Then 

n(M„ M„yn^P Mlf y 

Proof. From the fundamental theorem of linear algebra, it is equivalent to 
prove that 

where //(·) denotes the null space of a matrix. To begin, assume that 

Prom Lemma 7.9, Mppxp = 0. Also xz = -M£zxp, so showing that 
Mzpxp — xz = 0 is equivalent to showing that (Mzp + Mj¡z)xp = 0, 
which also holds by Lemma 7.9. Thus 

( £ - / ) ( : ; ) " · <™> 
The argument that (7.23) implies (7.22) is similar. 
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7.3.3 Quadratic convergence 
Now we can establish 

Lemma 7.11 / / dx and d8 are obtained from the linear system (7.19), 
and μ = xTs/n, then u = (dx)p and υ = (d8)z are the solutions to the 
(weighted) least-squares problem 

min*,, (1/2)||Ι?ρ^||2 + (1/2)||ί)^||2 

s.t. Mppu = -MpZ(d9)z + (d,)p (7.24) 
Mzpu - υ = -Mzz(dx)z· 

Proof. Note that from (7.19), u = (da?)p, v = (d*)z is certainly feasible in 
the problem (7.24). Next, from (7.19) and (7.20), we see that 

xp + (dx)p = -D%MB.dt 'X 

8z + (d,)z = -DY{dx)z 
(7.25) 

Since 8*p = 0 for all optimal ¿*, with x*z = 0, we must have qp = 
-Mppx*P € Tl{Mpp). Therefore, 

Dp2xp = 8p = Mß.ai + gp = Mpp(xp - Xp) + Mpzxz-

Substituting this into the first equation of (7.25) obtains 

Dp2(dx)P = -Mpp(xp - x*p + (dx)P) - MPZ(a;z + (dx)z). (7.26) 

Also «z = Ό"^2χζ^ which substituted into the second equation of (7.25) 
yields 

D2
z(d8)z = - * z - {d*)z. (7.27) 

Then (7.26) and (7.27) together imply that 

( Dp2(dx)P \ ( Mpp Mpz\ 

v D%(d8)z )en{ o / ; · 

Applying Lemma 7.10, we conclude that 

( D?(dx)P \ ( MlP MlP\ 
\ D\{dt)z ) e K { o - / ; · 

which shows exactly that u = (dx)p, v = (d8)z satisfies the KKT conditions 
for optimality in the least-squares problem (7.24). 
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Theorem 7.12 If d^ and d, are obtained from the linear system (7.19), 
and μ - xTs/n, then ||4*|| = Ο(μ) and \\d„\\ = Ο(μ). 

Proof. Due to Lemma 7.8, we only need to prove 

||(d*)HI = 0(M) and ||(*)ζ|| = 0(μ). 

Since the least-squares problem (7.24) is always feasible, there must be 
feasible ü and ϋ such that 

l|e|| = 0(||(4)jr|| + ||(*)p||) and \\v\\ = 0(\\(d*)z\\ + | | ( * ) P | | ) , 

which, together with Lemma 7.8, implies ||ö|| = 0{μ) and ||t5|| = 0{μ). 
Furthermore, from Lemma 7.11 and relations (7.5) and (7.6), 

ll(dx)p||2 + ||(d.)*||a 

= \iDpD?(dm)p\r+\\DiiDS(d.)g\r 

< \\D%\\ ||Γ>Ρ
2(4,)ΗΙ2 + \\D?\\ \\Dz{d.)z\? 

= \\(XpSP)-lXl\\ \\DP\dm)pf + MWzSzr'SlW \\Dz{d.)z\\
2 

< (wiXpSpr'XpW+\\(Xzsgr
l&\\) (\\Dpx(dx)p\\i+n^(d.)^ii2) 

< (MXpSr^XpW + \\{XzSz)-
lS%\\) {\\D?ü\? + \\Όζϋ\?) 

< {\\(XpSp)-lXl\\ + \\{XzSz)-lSl\\) (\\D?\\ ||ö||2 + \\D%\\ \\v\Y) 

< 0(1/M)(||i)p2||||fi||2 + ||D|||||C||2) 

= 0(/i)(||I7p2|H-||I7|i|) 

= 0(ß)(\\(XpSp)Xp2\\ + \\(XzSz)S^\\) 

= 0(μ2). 

O 

The above theorem leads to the result described in Theorem 7.6 for 
the predictor-corrector LCP algorithm. The following proposition concerns 
Assumption 7.1. 

Proposition 7.13 There is a monotone LCP problem, where a strict com-
plementarity solution does not exist, for which the predictor-corrector algo-
rithm or affine scaling algorithm possesses no superlinear convergence. 

Proof. Consider the simple monotone LCP with n = 1, M = 1 and q = 0. 
The unique complementarity solution is s = x = 0, which is not strictly 
complementary. Note that the feasible solution s = x = e is a perfectly 
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centered pair for any e > 0. The direction in the predictor step (or affine 
scaling algorithm) is 

dx = -x/2 and d8 = -a/2. 

Thus, even taking the step size 0 = 1, the new solution will be a = x = e/2. 
Thus, the complementarity slackness sequence is reduced at most linearly, 
with constant 1/4, which proves the proposition. 

D 

7.4 Quadratically Convergent Algorithms 
The predictor-corrector algorithm described in previous sections needs to 
solve two systems of linear equations or two least-squares problems—one in 
the predictor step and one in the corrector step. If one counts each iteration 
as solving one system of linear equations, as is usually done in the classical 
analysis of interior-point algorithms, the average order of convergence of 
this algorithm is only y/2. In this section we further show how to construct 
an algorithm for solving LP and monotone LCP whose order of convergence 
exactly equals 2. We also show that the solution sequence generated by the 
algorithm is a Cauchy, and therefore convergent, sequence. 

7.4.1 Variant 1 
An iteration of the variant proceeds as follows. Given (xk

1s
k) € ^(r/), we 

perform T(> 1) successive predictor steps followed by one corrector step, 
where in ¿th predictor step of these T steps we choose r = n > 0, where 

T 

J>=||. (7.28) 

In other words, at the tth predictor step of these T steps, we solve system 
(7.12) with μ' = (x')Ta'/n and {x, a) = (*', a') € Λί(η + n +... + η_0 (the 
initial {x',a') = (z*,s*) € λί{η)) and 7 = 0, i.e., (dx,d8) = d(x',*',0). For 
some Θ > 0 let 

χ(θ)=χ' + θάχ, a{e) = a' + 9d, and μ(θ) = (a(0))T*(0)/n. 

Our specific choice, $, for Θ is similar as before: the largest Θ such that 

(χ(θ), 8(θ)) € λί2(η + n + ... + n-i + n). 
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Prom the first inequality in (7.14), the fact S < 1, (7.17), and Theorem 7.12 
we have 

M * ) < 1 ! ^ + !!̂ <W1 (7.29) 

for some fixed positive quantity J? independent of k and t. Now update 
x1 := x(§) and a1 := a{9). 

After T predictor steps we have (a;', a1) € M(2t?). Now we perform one 
corrector step as before to generate 

Based on the previous lemmas and results, each predictor step within an 
iteration achieves quadratic convergence order for any positive constant 
sequence {n} satisfying (7.28). For example, one natural choice would be 
n = η/Τ for t = 1,2, ...,T. Since each iteration solves T + 1 systems of 
linear equations, the average order of the convergence of the complementary 
gap to zero in Variant 1 is 2T^T+1^ per linear system solver for any constant 
Γ > 1 . 

Theorem 7.14 Variant 1 generates a sequence {xk, ak} such that the aver-
age convergence order is 2r^T+1^ per linear system solver for any constant 
T>1. 

7.4.2 Variant 2 
Now we develop a new variant where we let T = oo, that is, no correc-
tor step is needed anymore in the rest of the iterations of the algorithm. 
The algorithm becomes the pure Newton method or the primal-dual affine 
scaling algorithm. 

After (xK
9 a

K) e λί{η) for some finite K, we perform only the predictor 
step, where we choose r = τ\ > 0 satisfying (7.28). One natural choice will 
be 

r t = ι;(1/2)* for ¿ = 1,2,.... 

For simplicity, let us reset K := 1. Then, in the fcth iteration we solve 
system (7.12) with 

(ar,8) = (a?*,s*)€^(i/H-¿rt) (where ¿ n : = 0 j 

and 7 = 0, i.e., (dx,da) = d(a?*,s*,0). For some Θ > 0 let 

χ(θ) = xk + 0dx, a(9) = ak + 0ds. (7.30) 
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Our specific choice for Θ is #, the largest Θ such that (χ{θ), s(6)) € MO? + 
Σ*=ι r*)· Now directly update 

xk+l := s(0) and sM := s(0). (7.31) 

Theorem 7.15 Let (xK)TsK be small enough. Then, Variant 2 generates 
a sequence {xk,sk} with k> K such that 

i) the order of the convergence of the complementary gap to zero equals at 
least 2, 

ii) {xk,8k} is a Cauchy, and therefore convergent, sequence. 

Proof. At the Jkth iteration (k > K := 1) we have from (7.29) 

{xk+ifsk+i < fl((**)T**)2
 = A ( ( í r É ) V ) 3 2 * / J | f 

or 
log,«***1)7****1) < 21ofc((**)V) + log2(Ä/r?) + Jb. (7.32) 

For (xK)T8K small enough, the inequality (7.32) implies that {log2((x
k)Tsk)} 

is a geometric sequence (with base close to 2, say, 1.5) tending to —oo. Since 
k is just an arithmetic sequence and log2(Ä/r/) is fixed, we should have 

"»f + ytlffi-to, <7·33) 
geometrically. This implies that 

Uminfl0*«xk+1)T°k+1) > 2 
j £ « log((«*F·*) - ' 

which from Proposition 7.1 proves (i). 
Now from Theorem 7.12, (7.30) and (7.31) 

11**+* - **|| = 9\\d$\\ < Mil = 0(μ*) = 0((xkfsk/n) 

and 
||**+» - S*|| = * | tó| | < ||cf»|| = 0(μ*) = 0((xk)Tek/n). 

Hence, {xk,sk} must be a Cauchy sequence, since {(xk)Tsk) converges to 
zero superlinearly from (i). This proves (ii). 
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To actually achieve the order 2 of convergence of the primal-dual gap, 
we need to decide when to start the primal-dual affine scaling procedure 
described in Variant 2. Note from (7.32) that as long as {log2((a:*)Tsfc)} is 
a geometric sequence with base close to 1.5 tending to — oo, we shall have 
the order 2 of convergence of {{xk)T8k/(x°)T80} to zero. Thus, we can 
start the procedure at any time when (xK)T8K < 1. Again for simplicity, 
let K := 1. Then we add a safety check to see if for k = 1,2,... 

(zk+1)Tsk+l/(*k)Tsk < 1-Ω(ΐΛ/£). ( } 

If both inequalities in (7.34) are satisfied, we continue the predictor step. 
Otherwise we conclude that (xK)T8K was not "small enough," and we do 
one corrector step and then restart the predictor procedure. This safety 
check will guarantee that the algorithm maintains the polynomial com-
plexity 0(y/nlog(R/e)) and achieves the order 2 of the convergence of the 
complementary gap to zero, since eventually no corrector (or centering) step 
is needed anymore in the rest of the iterations, according to the theorem. 

Thus, we have shown that after the complementary gap becomes smaller 
than a fixed positive number, the pure primal-dual Newton method with 
the step-size choice in Variant 2 generates an iteration sequence which not 
only polynomially converges to an optimal solution pair, but one whose 
convergence is actually quadratic. 

In practice, the step size, 0*, in the predictor step can be simply chosen 
as the bound given in Lemma 7.7. Thus, no quartic equation solver is 
needed to guarantee our theoretical results. Also we see that the step 
size in Variant 2 converges to 1 superlinearly while the solution sequence 
remains "centered," i.e., (#*,«*) 6 jVá(2i}), without any explicit centering. 
This may partially explain why the large step strategy does not hurt the 
convergence of the algorithm in practice. 

7.5 Notes 

The issue of the asymptotic convergence of interior-point algorithms was 
first raised in Iri and Imai [195]. They showed that their (product) barrier 
function method with an exact line search procedure possesses quadratic 
convergence for nondegenerate LP. Then, Yamashita [463] showed that a 
variant of this method possesses both polynomial 0(nL) complexity and 
quadratic convergence for nondegenerate LP, and Tsuchiya and Tanabe 
[430] showed that Iri and Imai's method possesses quadratic convergence 
under a weaker nondegeneracy assumption. 
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Zhang, Tapia and Dennis [484, 483] first showed that a primal-dual 
algorithm exhibits 0(nL) complexity, with superlinear convergence under 
the assumption of the convergence of the iteration sequence, and quadratic 
convergence under the assumption of nondegeneracy. Kojima, Megiddo 
and Mizuno [225], Ji, Potra and Huang [205], and Zhang, Tapia and Po-
tra [485] also showed quadratic convergence of a path-following algorithm 
for linear complementarity problems under the nondegeneracy assumption. 
McShane [268] showed that a primal-dual algorithm exhibits 0(y/riL) com-
plexity, with superlinear convergence under the assumption of the conver-
gence of the iteration sequence. Other algorithms, interior or exterior, with 
quadratic convergence for nondegenerate LP include Coleman and Li's [89]. 
Some negative results on the asymptotic convergence of Karmarkar's origi-
nal algorithm and a potential reduction method (with separate primal and 
dual updates) were given by Bayer and Lagarias [47], and Gonzaga and 
Todd [166], respectively. 

Quadratic convergence for general LP, assuming neither the convergence 
of the iteration sequence nor nondegeneracy, was first established by Ye, 
G filer, Tapia and Zhang [476], and independently by Mehrotra [275] and 
Tsuchiya [427]. The algorithm of Mehrotra, and Ye et al., is based on the 
predictor-corrector algorithm of Mizuno et al.; also see Barnes, Chopra and 
Jensen. [44]. As we mentioned before, if one counts each iteration as solving 
one system of linear equations, as is usually done in the analysis of interior-
point algorithms, the (average) order of convergence of the algorithm is 
only y/2. Tsuchiya's result is based on Iri and Imai's 0(nL) method, which 
requires knowledge of the exact optimal objective value in advance. A 
standard way of dealing with this difficulty is to integrate the primal and 
dual problems into a single LP problem, whose size is twice that of the 
original problem. Thus, the (average) order of convergence would actually 
be below y/2. The convergence order 2 algorithm for general LP, counting 
each iteration as solving one system of linear equations of the size of the 
original problem, was first given in Ye [471]. 

Quadratic convergence for the monotone LCP, described in Section 7.3, 
is based on Ye and Anstreicher [475]. They also give an example to show 
that the predictor step cannot achieve superlinear convergence if the LCP 
has no a strictly complementary solution. Monteiro and Wright [306] fur-
ther show that any algorithm that behaves like Newton's method near the 
solution set cannot converge superlinearly when applied to an LCP that 
does not have a strictly complementary solution. 

Recently, Mizuno [290] proposed a superlinearly convergent infeasible-
interior-point algorithm for geometrical LCPs without the strictly comple-
mentary condition. 

Most recently, Gonzaga and Tapia [165, 164] proved that the itera-
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tion sequence (xk,yk,8k) generated by the predictor-corrector algorithm 
converges to an optimal solution on the interior of the optimal face. Con-
sequently, Luo et al. [253] announced a genuine quadratically convergent 
algorithm. Bonnans and Gonzaga [69] developed a simplified predictor-
corrector where the same Jacobian matrix is used in both the predictor 
and corrector steps within one iteration. The convergence order of the 
complementary gap to zero is Γ -f 1, where Γ is the number of predictor 
steps in each iteration. Tsuchiya and Monteiro [428] showed that a variant 
of the long-step affine scaling algorithm is two-step superlinearly conver-
gent. Luo, Sturm and Zhang [250] and later Potra and Sheng [349] and 
Ji, Potra and Sheng [206] analyzed the superlinear convergence behavior 
of the predictor-corrector algorithm for positive semi-definite programming 
without any assumption. 

In the analysis of interior-point algorithms, the error function is chosen 
as the primal-dual gap or complementary xTs which should be zero at 
an optimal solution pair. For an optimization problem that possesses a 
strict complementarity solution, this error bound will lead to the same 
convergence rate for distances from iterates to the solution set, see Hoffman 
[186], Mangasarian [260, 261], and Luo and Tseng [252], and references 
therein. 

7.6 Exercises 

7.1 Prove Proposition 7.1. 

7.2 Prove that the sequence with rk = (1/k)* is of order unity and is 
superlinearly convergent. 

7.3 Let (P, Z) = (P*, Z*) be the strict complementarity partition of the LP 
problem and (xk

}s
k) be generated from the predictor-corrector algorithm. 

Prove 
ξ<ή<1/ξ for jEP 
£ < * f < l / £ for j€Z, 

where ξ < 1 is a fixed positive quantity independent of k. 

7.4 Consider the predictor-corrector monotone LCP algorithm. Prove: 

1. 

(**V)€Mfo) 
as long as 0 < η < 1/4 and 0 < r < η. 
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2. 

(x')T8' = (1 - ek)(xk)Tak + {ek)2(dx)
Td, 

3. 

(d*)Td, < (xk)Tak/4 
K)rdi < (¡r')T*7(8n). 

4. Let 6h = Dxd9/ß
k in the kth predictor step. Then, 

||¿*|| < vfti/4. 

7.5 Prove Lemma 7.7 using the preceding exercise. 

7.6 Why does Variant 1 of the predictor-corrector algorithm have a higher 
order of convergence than the algorithm in Section 7.2, even though it uses 
more predictor steps in each iteration? 

7.7 Prove the safety check described at the end of Section 7.4*2, i.e., to 
see if 

\log((xh+^T8k+l)\/\log((xk)Tsk)\ > 1.5 
(xk+i)T8k+i/(xk)T8k < 1 - Ω(ΐ/ν?ϊ), 

will guarantee that Variant 2 of the algorithm maintains the polynomial 
complexity 0(y/nlog(R/e)) and achieves the order 2 of the convergence of 
the complementary gap to zero. 



Chapter 8 

Convex Optimization 

In this chapter, we discuss interior-point algorithms for solving non-smooth 
and/or nonlinear convex optimization problems. These algorithms illus-
trate how widely applicable potential functions and interior-point algo-
rithms could be in solving broader convex optimization problems. 

8.1 Analytic Centers of Nested Poly topes 

The problem is to find the "analytic" centers of all nested polytopes Ω* C 
Tlm, m<k<n, where for given (δ*,Ρ*,α*) 

Ω* := {y e Tlm : bk < {Pk)Ty < a*}. 

The data (bk,Pk,ck) are recursively related. Initially, P™ is an m x m 
nonsingular matrix and vectors 6m,am 6 Km. Then, for k > m, 

bk+* = ( ^ \ e Uk+\ a**1 = ( * ) € Kk+X 

and 
P*+* = (P*, Pk+X) € 7emx(*+1>. 

Here p*+i is an m x 1 vector, and 6*+i and α*+ι are two scalars. Clearly 
Ω*4* * C Ω* for k > m so we call them "nested." This problem has applica-
tions in dynamic system identification and parameter estimation. 

We assume that the interior of Ωη is non-empty and in fact there is a 
point y such that 

bk + ce < (Pn)Ty <ak- ce, (8.1) 
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where c > 0 is a fixed positive number and e is the vector of all ones. For 
k = l , . . . ,n , Let 

ur = max Λ . 
j=i,...,* 2 

For each fc we may directly apply the state of the art interior-point 
linear programming algorithm to find an approximate analytic center yk 

of Ω*. The number of Newton iterations to obtain yk will be bounded 
by 0{V2k\og{wk/é)), as we discussed earlier. Thus, to generate the se-
quence of approximate centers for all k = m,.. . , n we would need total 
0(n1,6log(i2)n/e)) Newton iterations. 

In this section, we present a recursive interior-point algorithm where 
the number of total Newton iterations is bounded by 0(nlog(tDn/c)). This 
is reduced by a factor of n5 from the above bound. Note that the "average 
cost" (cost per center) to generate all n - m +1 centers (from k = m,. . . , n) 
is 0(n_M+! log(wn/e)). As n > 2m, n_^+ 1 < 2, and the average cost 
becomes independent of m and n. 

The basic idea is as follows. Starting from k = m, we generate an 
approximate analytic center yk of Ω*. Then, using the computation work 
to generate yk we proceed to compute an approximate analytic center yk+l 

of Ω*"1"1. In other words, all earlier computation work would not be wasted 
in computing the current approximate center. 

8.1.1 Recursive potential reduction algorithm 
We now consider the primal potential algorithm of Section 3.3.2 to compute 
a (3/4)-approximate center of Ω*, k = 1, . . . , n. Let us rewrite Ω* as 

Ω* = {y € Tlm : (Ak)Ty < c*}, 

where 

/ «I \ 

-h 

-h ¿ m = (Pl , -Pl ,P2, -P2, . . . ,Pm,-Pm)€ft m x 2 n \ Cm = 

am 

€ft2 m, 

and for k > m 

( * \ 
\ -bk+i ) 
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Por any k, m < k < n, consider the primal (homogeneous) potential func-
tion 

2* 

V{x,ük) = 2*log(c*)Tx - ^Tlogx,·, 

where x > 0 and Akx = 0. For k — 1,..., n, let 

xfc(0) = 

/ 2 / (α , -6 , ) \ 
2 / (e 1 -6 1 ) 
2/(a2 - 62) 
2/(02 - h) 

2/(ofc - bk) 
\ 2/(ofc - bk) ) 

eft2*. 

Then, for k - m,... ,n we have Akxk{0) - 0 and (c*)Tx*(0) = 2*, and 

Ρ(χ*(0),Ω*) = 2k\og{2k) + 2Yá\og({aj-bj)l2) 

< 2fclog(2Jk) + 2*logiD. (8.2) 

Starting at k = m, we apply the primal potential reduction algorithm 
to generate an (3/4)-approximate analytic center of fim from xm(0). The 
algorithm reduces the primal potential function V(x, ilm) by a constant 1/6 
per iteration. In each iteration, we have normalized the computed iterates 
xm(l),xm(2),... such that (cm)Txm(·) = 2m. Let 7"" be the number of to-
tal potential reduction iterations to generate a (3/4)-approximate analytic 
center ym of flm. We must have 

P(xm(Tm),ilm) - P(xm(0),ilm) < -(1/6)7™. 

Now consider k = m + 1. Let 

■ ( 

xm(Tm) 
3 m + i ( T m ) = | 2 / ( a m + 1 - 6 m + 1 ) Jett2*"*1). 

2/(am +i - 6m+i) 

Note that we have Am+lxm+l{Tm) = 0, a?m+1(0) and a?m+1(Tm) share the 
same last two components, and (cf6)Txk(Tm) =2fe, fc = m,m-j-l. Thus, 
we must have 

-p(x™+i(Tm), nm+1) - -P(a;m+1(0),nm+1) 
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2(m+l) 

= 2(m + l)log(2m + 2 ) - ] T log*m+1(Tm)i 

2(m+l) 

-2(m + l)log(2m + 2) + Σ log*m+1(0)i 

2m 2m 

= -Siog^^^ii+E10«^"**1^· 

2m 2m 

2m 2 m 

= 2m log(2m) - ^ log xm (Tm)i + 2m log(2m) + ^ log zm (0), 

= P(xm(rm), Um) - P(a;m(0), nm) 
< -( l /6)Tm. 

This inequality implies that when reduce V(x> íím) we also simultaneously 
reduce V{x¡Üm+x) by a same amount. 

Starting from xm+l(Tm) we reduce the (new) primal potential function 
P(x,ilm^1) by a constant 1/6 per iteration and normalize the generated 
iterates s m + 1 (Tm +1), a?m+1 (Tm + 2),... such that (cm)Tsm(.) = 2(m +1). 
We stop the procedure as soon as a (3/4)-approximate analytic center, 
2/m+1, of ftm+1 is generated. Assume that a?m+1(rm+1), Tm+1 > Tm, is 
the last iterate. Then, we have 

V(xm+l(Tm+1)}n
m+1) - 7>(xm+1(Tm),fim+1) < -( l /6)(Tm + 1 - Tm). 

Hence, 

p(apm+1(Tm+1),nm+1) - P(a;m+1(0),nm+1) 
= p(a?m+1(Tm+1),nm+1) - P(xm + 1(rm),fim + 1) 

+7>(*m+1(Tm)>nm+1) - P(*m + 1(0) l ir
, + 1) 

< -( l /6)(Tm + 1 - Tm) - ( l /6)rm 

= -( l /6)Tm + 1 . 

Therefore, we can continue this process for k = m + 2, m + 3, ..., n 
to generate the sequence of (3/4)-approximate analytic centers yk of Ω*, 
A: = m,...,n. Immediately after we generate ¿* with the primal iterate 
x*(T*), we have (ck)Txk(Tk) = 2fe and 

V(xk(Tk),ilk) -7>(xk(0),Uk) < -(1/6)T*. (8.3) 
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We let 
/ **(!*) \ 

\ 2/(α*+ι-6*+ι) / 

We always have Ak+lxk+l(Tk) = 0, x*+1(0) and xk+x(Tk) share the same 
last two components, and (c*)Ta:*(r*) = 2k and (c*+1)Ts*+1(r*) = 2(fc + 
1). Thus, we have 

p(a^+i(T*),n*+1) - Ρ(α;*+1(0),Ω*+1) 
= P(xÄ(rfc),nfc)-7>(a:fc(0),nfc) 
< -(1/6)Γ*. 

Starting from xk+l(Tk) we reduce the (new) primal potential function 
Ρ(£,Ω*+1) by a constant 1/6 per iteration and normalize the generated 
iterates xk+x(Tk + l),xk+l(Tk + 2),... such that (c*)Ts*(.) = 2(fc + l). We 
stop the procedure as soon as a (3/4)-approximate analytic center, y*+1, 
of Ω*+1 is generated. Assume that xk+l{Tk+l), T*+1 > Γ*, is the last 
iterate. Then, we have 

Ρ(«*+1(Γ*+1)ΙΩ*+1) - ^ ( ^ ( Γ ^ , Ω * * 1 ) < -(1/6)(Γ*+1 -Γ*) , 

which implies that 

p(ar*+1(r*+1),nfc+1) - P(xM(0),Uk+l) 

= P(xk(T% (lk) - 7>(s*(0), ft*) - (1/6)(Γ*+1 - Γ*) 
< -(1/6)Γ*+1. 

According to the recursive nature of the procedure, Γ*, k = m,...,n, 
represents the number of total potential reduction iterations to compute 
the sequence of (3/4)-approximate analytic centers, y*, of Ω* for all t = 
m,.. . , k. 

8.1.2 Complexity analysis 

First, we have the following lemma: 

Lemma 8.1 For all k = m,. . . , n, 

P(x,(lk) > log2klog(e) + 2klog(2fc). 

Proof. Prom (8.1), there is a y such that 

ck _ (^Ak)Ty > ee. 
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Thus, from the inequality in Section 2.3.2, 

V{x,ílk) > B(y,ílk) + 2k\og(2k) 
2* 

= 1£log(ck-(Ak)Ty)j + 2kloir(2k) 

> 2fclog(c) + 2fclog(2Jfc). 

D 

From the lemma and inequalities (8.2) and (8.3), we derive Theorem 
8.2. 

Theorem 8.2 For any k = m,...}n, the number of total potential re-
duction iterations to compute the sequence of {Z/^-approximate analytic 
centers, {y1}, of all Q*, t = m,.. . , k, is bounded by 0(k log(tD*/e)). 

Proof. FVom inequalities (8.2), (8.3) and Lemma 8.1, we have for k = 
τη,.,.,η, 

(ΐ/6)τ* < p(xk(o),nk)-p{xh(Tk),nk) 
< 2Jklog(2Jfe) + 2*log(tD*) - 2Jklog(e) - 2Jblog(2Jk) 

= 2Jblog(iDVc). 

D 

8.2 Convex (Non-Smooth) Feasibility 
The problem studied in this section is that of finding an interior point in 
a general convex set Γ, where Γ C Tlm has a nonempty interior and is 
contained in the cube Ω0 = {y € Tlm : 0 < y < e} = [0, l ] m . Since 
any bounded region can be scaled to fit in the cube, this is not much of a 
restriction. The algorithm starts by representing the cube with 2m linear 
inequalities and testing whether its analytic center, y°, is an element of 
o 

Γ. If yes, the algorithm stops; but if not, it uses a separating hyperplane, 
aTy = aTy°y that passes through the center and divide the polytope into 
two parts—one of which, say {y € Um : aTy < aTy0}, contains Γ. Without 
loss of generality, we assume that a is normalized so that ||a|| = 1. The 
inequality aTy < aTy° is then added to the list of inequalities and an 
approximate analytic center, t/1, of the new, smaller, polytope is computed. 

o 

The new point is tested and the procedure repeats until a point in Γ is 
found; see Figure 8.1. This algorithm is an example of central-section or 
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cutting plane algorithms. Since adding a new inequality adds a variable to 
the primal problem and adds a column to its constraint matrix, these kinds 
of algorithms are also called column generation algorithms. 

Figure 8.1. Illustration of the central-section algorithm for finding an 
interior-point in a convex set Γ; the sizes of a sequence of containing poly-
topes decreases as cuts added at the analytic centers. 

The hyperplane used in each iteration is generated by a separating ora-
cle. For example, consider the problem finding an interior point in a convex 
set defined by a system (finite or infinite) of convex inequalities 

Γ = {y € fcm :/<(»)< 0, i = 1,2,...}, 

where each fc : %m H» % is convex, can be cast in this manner. In particu-
lar, the separating oracle just needs to select a to be <fr/IMI, where g% is an 
arbitrary subgradient of any function /* satisfying fi(y) > 0, i.e. gi € #/»(j/) 
(the subdifferential of /<). Note that for any gi € ö/»(y), fi(y) < fi(y) im-
plies gf(y - y) < 0. Thus, if fi(y) > 0 and /<(y) < 0 then gj(y - y) < 0. 
(In fact, the requirement that fi(y) be computed exactly and pi € dfi(y) 
can be significantly relaxed.) 

In general, the algorithm in this section can use any separating oracle 
o 

that answers the following query: is y° 6Γ; and if not, what is a separating 
hyperplane such that Γ C {y € Um : aTy < aTy0}, where ||a|| = 1? 

The problem under investigation may also be cast as that of finding 
the solution to an infinite system of linear inequalities, which is defined 
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implicitly by the oracle Γ = {y € Km : GFy < 9} for some G € Kmxd 

and 9 e Tld and d is infinite. The classical centering methods that have 
been suggested for the above convex feasibility problem include the center 
of gravity method, the max-volume sphere method, the ellipsoid method, 
the max-volume ellipsoid method, and the volumetric center method. 

The analytic center column generation or cutting plane algorithm com-
putes y as the analytic center of the system of inequalities generated so far. 
In this section, we show that for any given convex feasibility problem with a 
nonempty interior, the algorithm is a fully polynomial-time approximation 
scheme that uses only linear inequalities to approximate the solution set. 
A fully polynomial-time approximation scheme means that for every e, the 
accuracy at termination, the running time is a polynomial in the dimension 
m and 1/c. 

8.2.1 Max-potential reduction 

Now, we use an approximate center yk to generate a cut, where (yk
% sk)\s 

an interior point in Ω = {y € Tlm : ATy < c) and an xk > 0 is known such 
that Axk = 0 and 

\\Xksk-e\\<V (8.4) 

for some 0 < η < 1. Let us place a cut exactly at yk. That is, we add a 
new inequality aTy < aTyk to Ω, and consider the new set 

Ω+ = {y : ATy < c, aTy < aTyk}. 

We now prove a lemma resembling Theorem 2.10. 

Lemma 8.3 Denote by (y, s) the analytic center of Ω and let 

f = y/aT{AS~2AT)-la . 

Then the max-potential of Ω+ 

tf(H+)<#(0) + log(f ) - i 

for some constant δ depending only on η. Moreover, ifO < η < 1/100, then 
we have δ > 0. 

Proof. Denote by y+ the analytic center for Ω+. Let 5+ = c — ATy+ > 0 
and s£+1 = aTyk — aTy+. Then we have 

< w = « T (»*-y + ) 
= aT(AS-2AT)-1(AS-3Är)(yk -y+) 
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= aT{AS-2AT)-1AS-2(ATyk - ATy+) 
= aT{A§~2AT) -iAS~2(-c + ATyk +c- ATy+) 
= oT(vl5-MT)-1A5-2(5+ - sk) 
= β τ (Α5-Μ τ ) - 1 Α5- 1 (5 - , ί* - 5 - V ) 
< ||οτ(Λ5-ΜΓ)-1Α.?-1||| |5-15+ - $ - V | | 
= f l lS-^-e + e- 5-̂ *11 
< f ( | | 5 - 1 g + -e | | + | |e -5-1

e* | | ) 

< f{\\S-13+-e\\+ * ) (from Theorem 3.2). 

Using techniques similar to the proof of Theorem 2.10, we get 

Thus, 

B(Q+) - B(Q) < log(f) + log(4) + ^ f i j . 

Let 

Let η = 1/100. Then we have δ > 0 and the desired result. 

D 

8.2.2 Compute a new approximate center 

In this section, we show how to construct a pair {x^y^s) from {xk,yk,sk) 
such that (A,a)x = 0 with x > 0, (j/, s) is in the interior of Ω+, and 

\\XB - e\\ < η < 1. 

Suppose a pair (a;*,y*,¿*) is given which satisfies (8.4), we use the dual 
scaling for the construction of (z, y, s). Let 

r* = y/aT{A(Sk)-2AT)-1a, 

Ay = -{ß/rk)(A(Sk)-2AT)-la, 
As = {ß/rk)AT(A(Sk)-2AT)-la, 
Ax = -(ß/rk)(Sk)-2AT(A(Sk)~2AT)-1a. 
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Then we set 
y = yk + Ay 

and 

_ / xk + Ax \ _ ( xk - (ß/rk)(Sk)-2AT(A(Sk)-2Är)-1a \ 
x - \ ß/r» ) - { ß/rk )■ 

It can be readily verified that 

_ / c-AT{yk + Ay) \ _ ( ak + Aa \ 
8 * { a V - aT(yk + Ay) ) ~ { ßrk ) 

_ ( ak + {ß/rk)AT(A{Sk)-2AT)-1a \ 

First, we have 

(A,a)x = Axk- (ß/rk)a + (ß/rk)a = 0. 

Second, we have 

s* + {ß/rk)Är(A{Sky2AT)-1a = (5*)(e + p*) 

and 

x* - {ß/rk)(Skr2AT{A(Sk)-2Är)-1a = (5*)"1(A'*5*e -p*), 

where 
p* = (ß/rk)(Sk)-1AT(A{Sk)-2AT)-la. 

Note that we have 
\\pk\\ = ß. (8.5) 

On the other hand, we have 

χ)8)>1-η. 

Thus, if we select η and ß such that 

1 - η - β > 0, (8.6) 

then both 
8 : 

and 

■.(ΛΪ.+ Λ)>· 

■.(η^-Λ)>. 
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A simple calculation yields 

*—(*V)-(£&Mlx,V*) 
where the vector 

(pfc)2 = ((pf)2,(p2
fc)3,-(pi;)3)T. 

Therefore, we have 

\\Xs-e\\ < \\Xksk - a|| + ^||(p*)2||2 + (1 - /J2)2 + \\Xksk - e||||p*|| 

where the last step follows from (8.4) and (8.5). Let β = l/>/2 and η = 0.15. 
Then, 

\\Xs - e|| < 7 = 0.15 + 1/Λ/2 -I- 0.15/Λ/2 < 1. 

Or, we can let 

η = 1/100, and have 7 := 1/100 + Ι.ΟΙ/Λ/2 < 1. 

Furthermore, it can also be easily verified that (8.6) holds. 
Hence, using this (y, s) as a starting pair, we can apply the dual Newton 

procedure of Chapter 3 to generate a pair (j/*+1, $*+l) and χ*+1 = #(y*+1) 
such that 

(A, a)***1 = 0, s * + 1 > 0 , 
s*+! = ( c T , o V ) T - ( i , a ) V + 1 > 0 , 

and 
| | X * + V + 1 - e | | < i y . 

By Theorem 3.3 in Section 3.2.1 and the above given values of 7 and η, 
this can be accomplished in 4 dual Newton steps due to the fact 716 < η. 
This column generation process can be repeated, and from Lemma 8.3 the 
nested sequence of polyhedral sets Ω* generated by the algorithm satisfies 

β(Ω*+1) < B((lk) + log(f*) - δ (8.7) 

where δ is some constant, 

*■* = ν^ -Η^* ) - 2 ^ ) - 1 «^ ! , 

(Ski sk) is the analytic center of Ω*, and α*+ι is the cut generated at the fcth 
iteration. Note that (yk,$k) is solely used for analysis, and the algorithm 
does not need any knowledge of (#*, §*). 
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8.2.3 Convergence and complexity 
O 

Let the solution set Γ be contained in Ω0 = {y € Tlm : 0 < y < e}, and Γ 
contain a full dimensional closed ball with e < | radius. We also assume 

o 

that there exists an oracle which for every y eil0 either returns that # €Γ 
or generates a separating hyperplane {y : aTy < aTy} D Γ, with ||a|| = 1 
being assumed. 

The column-generation, or cutting plane, algorithm from approximate 
analytic centers is as follows: 
Algorithm 8.1 Let 

A° = (j, - i ) € nmx2m, c° = ( o ) € ^2m' (8·8> 

y° = \ e € ftm, 8° = c° - (A°)V = \e € ft2m, z° = 2e € ft2m. 

Set 
k := 0. 

While yk ¿Γ do 

1. Query the oracle to generate a hyperplane {y : cíj[+1y < α^+ι^*} ^ ^ 
with ||α*+ι|| = 1, and let 

Ω*+1 = { y 6 R m : c*+1 - (AM)Ty > 0}, 

tuAere 

A"» = (Λ*,α*+1) and c*+> = ( fl/yfc ) . 

2. Compute (yfc"M,$fc+1,xM"1) 5ticA tfta¿ yfc+1 t5 an η-approximate an-
alytic center of Ω*+1, ustn£ ¿Ae Newton method with the updating 
scheme of Section 8.2.2 and starting from (yfc, s*, a:*), an η-approximate 
ofÜk. 

3. Let k := Λ 4-1 and reítirn ¿o Λβρ 1. 

Let the potential function computed at the exact analytic center yk be 

2m+k 

β(Ω*) = ^ l o g ( c * - ( ^ ) V ) i . 

Clearly the following relations hold, provided that termination has not oc-
curred: 
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ref t ' VA, (8.9) 
and 

β(Ω*+1) < Β(Ω*) + I log(f*)2 - «5 (by Lemma 8.3), (8.10) 

where 

if? ="l+ÁA\Skr\Ak)Trlak+l and 5* = c*-(A*)Ty*. 

Lemma 8.4 For all k > 0, 

ß(n*)>(2m + fc)loge. 

Proof. Rrom (8.9), Γ C fl*. Thus Ω* contains a full dimensional ball with 
€ radius. Let the center of this ball be y. Then c* - (Ak)Ty > ee; thus 

2m+fc 2m+Jb 2m+k 

B[uh) = x ; iog(c
fc - ( ^ )V) i > Σ loe(c* - (A*>T«i ^ Σ**** 

i = l i= l i= l 

where y* denotes the analytic center of Ω*. 

D 

Lemma 8.5 Let 8 = c* - (<4*)Ty /or any y € flk. Then 

i) 0<Sj <1, ¿ = l , . . . ,2m 

ii) 0 < s ¿ < y/m, j = 2m + l , . . . ,2m + fc. 

Proof. For j = 1, . . . , m, s$ = 1 - y¿; since 0 < yj < 1, 0 < «j < 1. 
Fbr j = m + 1, . . . , 2m, 8j = y j - m ; since 0 < y¿-m < 1» 0 < sj < 1. 
For j = 2m + 1 , . . . , 2m + Jfe, 

•J = «J-2mir*m - aJL2my < IK-2m|| y-*™ - y\\ = W^ - y|| < V^. 

The last inequality is due to the fact that 0 < yt~2m < e and 0 < y < e or 
yi-2m € Ωο ^ d y € Ωο 

D 

Lemma 8.4 indicates that, in order to prove finite convergence, one needs 
to show that B(ftk) grows more slowly than 2m + k. By Lemma 8.3, this 
means finding upper bounds on f*. In the following Lemma this is achieved 
by using a construction that bounds Ak(§k)~2(Ak)T from below by using 
a certain matrix Bh, which is simple enough to handle. 
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Lemma 8.6 Let s = c* - (Ak)Ty for any y 6 Ω* and B° = 8/, Bk+1 = 

AkS-i(Akf >: B*; 

ίΛαί is, 
A»S-*{Ak)T-Bk 

is positive semi-definite. 

Proof. Let Y = diag(y). Then 

b r - 2 + ( / ~ y ) - 2 - l - - ¿ a i a T (by Lemma 8.5) 

1 * 
^ 8 / + ΐ Σ % Τ (asO<j/<e) 

m . 

a 

Lemma 8,7 Let sk = c* - (j4*)ry* 6e ¿Λβ siacfc vector at the analytic 
center yk ofilk and (uk)2 == aJ+^B^ak+i. Then 

(u>k)2 > al+Mk{P)-HAk)T)-l*i+i = (ffc)2· 

This lemma implies that upper bounds on the series of (u;*)2 will lead 
to upper bounds on the series (f*)2. 

Lemma 8.8 

tws^'+w) 
Proof. Note that 

detB*+1 = det (ßk + —afc+ieíf-i) = ( l + ^ - M det£*. 

Thus 

logdet £*+1 = logdetB* + log (1 + ^ - ] . 
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But 
(u>*)2 1 T 1 
- ¿ - < 8««=+ι«*+ι = gi 

hence 

m m 2(1 - ^ ^ ) 

(ω*)2 ώώ! 
m ( 1 2 ( 1 - i ^ ) 3 

> ("*)2 

2m 

Thus we have 

logdetB**1 > logdetB0 + ¿ &££■ = mlog8 + ¿ ^ . 

Moreover, 

Ilogdetf^ < iogH5£l£!íi = log (8 + *J_i). 

Therefore, 

¿<£il<mlog(8+i±i)_ml^ 

or 

t(^)2<2m2log(l + Í±i). 

D 

Theorem 8·9 TÄe cutting plane algorithm stops with a feasible solution 
as soon as k satisfies: 

£ i+ *"'<*(' + &> ̂  (-u-i±L·-). 
m - 2m + * + l \ k -1-1 + 2m/ 

Proof Prom relation (8.10) and Lemma 8.4, 

(2m + fc + l)loge < β(Ω*+1) 
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1 1 * = 2mlogi + -5>g( f ) 2 - (* + l)<S. 
3=0 

Thus 

, , fe + 1 f 

- 2(2m 

or 

, i , ¡¡"■i + Ei.C')' „ Λ ., , , , 
< - log — 5 »— (from the concavity of log) 

2 2m + fc + 1 
* ^ ^ ί ^ Γ Γ Γ - (from Lemma 8.7) 2 2m + fc + l 
^ 1, » + 2m2log(l + £&) ,, T 

< - log-2 ?i """̂  (from Lemma 8.8) 

£ < } + 2mlo8(H.0) / W ) . 
m ~ 2m + k + l * \ fc + l + 2m/ 

Theorem 8.9 implies that the complexity of the column generation 
scheme, counted by the calls to the oracle, is 0*(*$r); the notation O* 
means that logarithmic terms are ignored. The largest value of η that 
guarantees 716 < η (so that four dual Newton steps are enough to recenter) 
is about η = .09 with β = .691, In this case constant δ may be negative; 
nonetheless the algorithm will still terminate after 0*{^r) iterations. 

Theorem 8.10 The approximate anaiytic center algorithm, which uses the 
updating scheme of Section 8.2.2 and the Newton method, is, for appropri-
ate values of η and β which depend on the exact mix of recentering and 
updating steps, a fully polynomial-time approximation scheme. 

8.3 Positive Semi-Definite Programming 

Recall that Mn denotes the set of symmetric matrices in Tlnxn. Let M% 
o 

denote the set of positive semi-definite matrices and M + the set of positive 
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definite matrices in Mn. The goal of this section is to extend interior-
point algorithms to solving the positive semi-definite programming problem 
(PSP) and (PSD) presented in Section 1.3.8. 

(PSP) and (PSD) are analogues to linear programming (LP) and (LD). 
In fact, as the notation suggest, (LP) and (LD) can be expressed as a 
positive semi-definite program by defining 

C = diag(c), Ai = diag(ai.), 6 = 6, 

where a», is the tth row of matrix A. Many of the theorems and algo-
rithms used in LP have analogues in PSP. However, while interior-point 
algorithms for LP are generally considered competitive with the simplex 
method in practice and outperform it as problems become large, interior-
point methods for PSP outperform other methods on even small problems. 

Denote the primal feasible set by Tv and the dual by T&. We assume 
o o 

that both jFp and Td axe nonempty. Thus, the optimal solution sets for both 
(PSP) and (PSD) are bounded and the central path exists, see Section 
2.5 Let z* denote the optimal value and T = Tv x T&. In this section, we 
are interested in finding an e approximate solution for the PSP problem: 

C*X-bTy = S^X<t. 

Par simplicity, we assume that a central path pair (X°,y0,S°), which 

(X°y*S°(X°y* = μ°Ι and μ° = Χ ° · 5 ° / η , 

is known. We will use it as our initial point throughout this section. 
o o 

Let X €Fp, (y, S) €Fd, and z < z*. Then consider the primal potential 
function 

V(X, z) = (n + p) log((7 · X - z) - logdet X, 
and the primal-dual potential function 

φ(Χ, S) = (n + p) log(5 · X) - logdet XS, 

where p = y/n. Let z = bTy. Then 5 · Χ = 0 7 · Χ - ζ , and we have 

φ(χ, a) = V(x, z) - logdet S. 

Like in Chapter 4, these functions will be used to solve PSP problems. 
Define the uoo-norm,w, which is the traditional h operator norm for 

matrices, of Mn by 

IMIoo := . max {|λ,·(Χ)|>, 
j€{ l , . . . ,n} 
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where Xj{X) is the jth eigenvalue of X, and the "Euclidean" or 1% norm, 
which is the traditional Frobenius norm, by 

\\X\\:=\\X\\f = VxVX = 

We rename these norms because they are perfect analogues to the norms 
of vectors used in LP. Furthermore, note that, for X 6 Mn, 

n n 

tr(X) = £ A i W a*1«1 d e t ( 7 + * ) = Π ^ 1 + A¿(*))· 
¿=i ¿=i 

Then, we have the following lemma which resembles Lemma 3.1. 

Lemma 8.11 Let X € Mn and ||X||oo < 1. Then, 

HX) > logdet(J + X) > triX) - 2 ( 1 i ^ | | o o ) -

8.3.1 Potent ia l reduct ion a lgori thm 
o 

Consider a pair of (Xk,yk,Sk) 6J7. Fix zk = bTyk, then the gradient 
matrix of the primal potential function at Xk is 

The following corollary is an analog to inequality (3.14). 

-611 Corollary 8.12 Let X" €M£ and \\(Xk)-6(X - Xk)(Xk)-

Then, X €.ΛΊ£ and 

P(X,zk) - V{Xk,zk) < VV(Xk,zk) *(X- Xk) 

\\{Xk)-Hx-xkKXk)-6\\2 

+ 2(l-\\(Xk)-*{X-Xk){Xk)-*\\00)· 

< 1. 

Let 

A = 

/ Ar\ 
A2 

U/ 
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Then, define 

and 

Αχ·Χ 

ΑΧ= | Μ*Χ I =6, 

m 

{=1 

Then, we directly solve the following "ball-constrained" problem: 

minimize VV{Xk,zk)»{X - Xk) 
s.t. A(X - Xk) = 0, 

\\{Xk)-*(X - Xk){Xk)-6\\ < a < 1. 

Let X' = (Xk)-'iX{Xk)-'i. Note that for any symmetric matrices Q,T 6 

Mn and X eMS, 

Q*X*TX* = x 6Qjf8 · τ and \\XQ\\. = \\QX\\. = iiJ^gjir·»!!.. 

Then we transform the above problem into 

minimize (Xky6VP(Xk,zk)(Xky6 »(X' -I) 
s.t. A'(X'-I) = 0, t = l,2,...,t, 

P"-J||<a, 

where 

A' = 
ΑΪ 

Ai) 

(χ·*)Μι(**)·5 

._ I (Xfe)M2(X*)·8 

(xky6Am(xk) *\.5 

Let the minimizer be X' and let X*+1 = (Xky6X'(Xk)6. Then 

P* 
X' - 1 = - a 

Ι |Ρ*ΙΙ' 

where 

v * + i _ y * _ (**)5Ρ*(**)8 

* x - a \\ρ"\\ * 

P* = ^ ( X ^ ^ V P Í X * , ^ ) ^ * ) 6 

= (Xky6VV(Xk, zk){Xky6 - A'Tyk 

(8.11) 
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or 
Pk = £~£s (Xk)*(C - ATyk)(Xk)' -1, 

and 

yk = ^lH(A'A'Tr1A'(xky6vp(xk,zk){xky6. 
n + p 

Here, VA1 is the projection operator onto the null space of A\ and 

/ A'}.A'} A\.A'j ... Α\·Α^ \ 

A'A,T := I ^2 # ̂ 1 ^ # ̂ 2 """ ^2 # ^™ I 6 Mm. 
\A'm'·^ Α·„"·Α>τ "... A'm".A'm) 

In view of Corollary 8.12 and 

(X*)6 VP(X*, z*)(X*)5 * P* 

" α IU*H 

||Pfc|| " "' 

we have 

P(Xk+1,zk) - 7>(XV) < -a||P*|| + ^ 1 _ . 

Thus, as long as ||P*|| > β > 0, we may choose an appropriate a such that 

V{Xk+\zk) -P(Xk\zk) < - i 

for some positive constant ¿. 
Now, we focus on the expression of P*, which can be rewritten as 

P(zk) := Pk = ^^(Xk) bS(zk)(Xk)* - / (8.12) 

with 
5(ζ*) = σ - ^ τ ^ * ) (8.13) 

and 

t ^ k Sk^Xk C*Xk-zk
 / β ,_ χ 

2/(**) := y* = 3/2 - . yi = í/2 — — 2/1 , (8.14) 
η + ρ η + ρ 
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where y\ and 1/2 are given by 

(8.15) yi = (A'A'T)-lA'I = (A'A'T)-1b, 
V2 = Μ'^ τ )~Μ'(Χ Λ ) δ σ(Χ*) · δ . 

Regarding ||P*|| = ||P(^*)||, we have the following lemma resembling 
Lemma 4.8. 

Lemma 8.13 Let 

k Sk*Xk C*Xk-zk . S(zk)^Xk 

uK = = and μ = —— . 
n n n 

if 

\\P{zk)\\ < min (ß^-^Zp A-ß), (8-16) 

then the following three inequalities hold: 

S(z*)xO, \\(Χ*)Λ3{Μ*){Χ*)Λ-με\\<βμ, **d μ<(1- .5 /?Λ/£)μ\ 
(8.17) 

Proof. The proof is by contradiction. Fbr example, if the first inequality 
of (8.17) is not true, then (Xky6S(zk)(Xk)* has at least one eigenvalue 
less than or equal to zero, and 

||P(**)|| > 1. 

The proof of the second and third inequalities are similar to that of Lemma 
4.8. 

D 

Based on this lemma, we have the following potential reduction theorem. 

Theorem 8·14 Given Xk ETP and (j/*, Sk) ETd, let p = y/ñ, zk = bTyk, 
Xk+l be given by (8.11), and yk+l = y(zk) in (8.14) and Sk+l = S(zk) in 
(8. IS). Then, either 

^(X*+SS*)<^(X*,S*) -5 

or 
V > ( ^ S * + 1 ) < ^ ( X * , S * ) - J , 

where δ > 1/20. 
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Proof. If (8.16) does not hold, i.e., 

then, since i¡>(Xk+1,Sk) - i{>(Xk,Sk) = V{Xk+l,zk) - V(Xk,zk), 

*{X»\S>)-«X',S>) < -amin {β^ΣΖΛ-β) + ^ L _ . 

Otherwise, from Lemma 8.13 the inequalities of (8.17) hold: 

i) The first of (8.17) indicates that j / * + 1 and Sk+l are in Ti-

ii) Using the second of (8.17) and applying Lemma 8.11 to matrix 
(Α·*)Β5*+1(Α'*)·5//*, we have 

n log Sk+1 · Xk - log det Sk+lXk 

= nlogS*+1 · Χ'Ίμ - logdet(X*)65fc+1(X*)-6/A* 

= nlogn -logdet(Xfc)-55*+1(X*)5/M 
< nlnm , \\(X")*S»1 &*)Λ / μ ~ I\? 
- n l ° g n + 2(1 - ||(Χ*)β5*+»(Α-*)·5/μ - illoe) 

* n l 0 g n + 2 ( i ^ 

< n logS* . Xk - log det SkXk + f_ . 

iii) According to the third of (8.17), we have 

VG(logS*+1. Xk - log 5* · Xk) = ^ l o g 4 < - f · 
μ ¿ 

Adding the two inequalities in ii) and iii), we have 

*(Xk,5*+1) < 1>{Xk,Sk) - 1 + ^Tfi · 

Thus, by choosing β = .43 and a = .3 we have the desired result. 

D 

Theorem 8.14 establishes an important fact: the primal-dual potential 
function can be reduced by a constant no matter where Xk and yk are. In 
practice, one can perform the line search to minimize the primal-dual po-
tential function. This results in the following potential reduction algorithm. 
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Algorithm 8.2 Given 3* €ΓΡ and (y°,s°) eTd- Let z° = bTy°. Set 
k:=0. 

While Sk · Xk > e do 

1. Compute yi and jfc from (8.15). 

2. Set yk+1 = i/(f), Sk+1 = S(z), zk+l = bTyk+1 with 

z = arg min x/){Xk,S(z)). 

Ifip(Xk,Sk+l) > il>{Xk,Sk) then yk+1 = yk, 5*+1 = Sk, zk+l = zk. 

3. Let Xk+1 = Xk -ä{Xk)*P{zk+l)(Xky* with 

ä = argimnV(X* - a{Xk)*P(zk+1)(Xky6,Sk+1). 

4. Let k:=k + l and return to Step 1. 

The performance of the algorithm results from the following corollary: 

Corollary 8.15 Let p — y/ñ. Then, Algorithm 8.2 terminates in at most 
0(Vnlog(C · Xo - bTy°)/e) iterations with 

C»Xk-bTyk<e. 

Proof. In 0(yfilog(S° · Xo/e)) iterations 

-V^log(5°.X°/c) = 1,(Xk,Sk)-xl>(X0,S°) 

> V^log5**A-fc + nlogn-V(X°,50) 
= ^\og(Sk»Xk/S°*Xa). 

Thus, 

>/£log((7 · Xk - bTyk) = V£log5* · Xk < V^loge, 

i.e., 

C*Xk-bTyk=Sk*Xk<€. 
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8.3.2 Primal-dual algorithm 

Once we have a pair (X,y,S) €.F with μ = S · X/n, we can apply the 
primal-dual Newton method to generate a new iterate X+ and (y+,S+) as 
follows: Solve for άχ, dy and ds from the system of linear equations: 

where 

D-ldxD-l+ds = Λ : = 7 μ Λ - 1 - 5 , 
Μχ = 0, 

-ATdy-ds = 0, 

D = Χ·5(Χ·85Λ-·5)-·δΧ·' 

(8.18) 

Note that άς·άχ = 0. 
This system can be written as 

dx> + ds· = JR*, 
Λ'άχ, = 0, 

-A,Tdy-ds> = 0, 
(8.19) 

where 

dx, = Ό~ΛάχΏ-Λ, ds> = D*dsD\ B! = Ό*{ΊμΧ~ι - 5)D'5, 

and 

4¡ 

V A'm ) V ¿ ^ A » ^ 
Again, we have ds· · άχ> = 0, and 

dy = {A'A'T)-lA'R', ds> = - Λ ' Τ ^ , and dx> = R'- ds> 

Then, assign 

Let 

ds = «4Td„ and dx = D(Jl - ds)D. 

yl/2 _ £>-δχ£>-8 _ D*SD* e - M n 

Then, we can verify that S · X = I · V. We now present the following 
lemma, whose proof is very similar to that for Lemmas 3.12 and 4.11 and 
will be omitted. 
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Lemma 8.16 Let the direction άχ, dy and ds be generated by equation 
(8.18) with 7 = n/(n + p), and ¡et 

6 = ||v-^ul*gv-»/»-v»/»|| ' (8·20) 

where a is a positive constant less than 1. Let 

X+ = X + $dx, y+^y + Bdy, and S+ = S + eds. 

Then, we have (X+,y+,S+) €? and 

tl>(X+,S+)-tl>{X,S) 

- ||V-«/»||oo 2(1 -a) · 

Applying Lemma 4.12 to v 6 Tln as the vector of the n eigenvalues of 
V, we can prove the following lemma: 

o 

Lemma 8.17 Let V €-M£ and p > y/n. Then, 

Rrom these two lemmas we have 

<l>(X+,S+)-il>(X,S) 

*-«^+2(Γ^)=-,ί 

for a constant Í. This leads to Algorithm 8.3. 

Algorithm 8.3 Gwen (X°,y°,5°) €JF. Setp = y/n and k := 0. 
While S**X*>€ do 

1. Se* (X,S) = (X*,S*) and 7 = n/(n + p) and compute (dXidy,ds) 
from (8.18). 

2. Let X*+1 = Xk + ödx, j / * * 1 = y* + ady, and 5*+1 = Sk + öd5, 

ä = arg min ̂ (X* + ad*, 5* + ads). 
a>0 

S. Let k := fc -f 1 and reítirn ¿0 Step ί. 
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Theorem 8*18 Let p = y/n. Then, Algorithm 8.3 terminates in at most 
0(^/nlog(S° · Xo/e)) iterations with 

C*Xk-bTyk<e. 

Primal-dual adaptive path-following algorithms, the predictor-corrector 
algorithms and the wide-neighborhood algorithms similar to those in Sec-
tion 4.5 can also be developed for solving (PSP). 

8.4 Monotone Complementarity Problem 
In this section we present a generalization of the homogeneous self-dual lin-
ear programming (LP) algorithm to solving the nonlinear monotone com-
plementarity problem (MCP) of Section 1.3.10, which includes finding a 
KKT point for convex optimization. 

Here we may let the domain of f(x) be an open set, e.g., the interior of 
the positive orthant. Then, (MCP) is said to be (asymptotically) feasible 
if and only if there is a bounded sequence (xl > 0, sl > 0), 1 = 1,2,..., such 
that 

lim 8l - f(xl) -> 0, 
t—>oo 

where any limit point (£, S) of the sequence is called an asymptotically 
feasible point for (MCP). (MCP) has an interior feasible point if it has 
an (asymptotically) feasible point (x > 0,5 > 0). (MCP) is said to be 
(asymptotically) solvable if there is an (asymptotically) feasible (á,á), such 
that xTS = 0, where (£,S) is called the "optimal" or "complementary" 
solution for (MCP). (MCP) is (strongly) infeasible if and only if there is 
no sequence (x* > 0, s* > 0), t = 1,2,..., such that 

Um s* - /(«*) -> 0. 

Consider a class of (MCP), where / satisfies the following condition: 
Let 

υ : (0,1)-> (l,oo) 

be a monotone increasing function, such that 

\\X(S(x + dx) - /(*) - Vf(x)dx)\\x < v(a)<%Vf(x)dx (8.21) 

whenever 

dxenn, xen%+, ||x-1dx||oo<a<i. 
o 

Then, / is said to be scaled Lipschitz in 7££. 
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Given a central path point x° > 0, 8° = f(x°) > 0 and X°a° = μ°β 
one can develop an interior-point algorithm that generates a maximal com-
plementary solution of the scaled Lipschitz (MCP) in 0(y/ñ\og(¡jP /1)) 
interior-point iterations, where c is the complementarity error. 

However, the initial point x° is generally unknown. In fact, we don't 
even know whether such a point exists or not, that is, (MCP) might be 
infeasible or feasible but have no positive feasible point, lb overcome this 
difficulty, in Section 5.3 we developed a homogeneous linear programming 
(LP) algorithm based on the construction of a homogeneous and self-dual 
LP model. In this section, we present a homogeneous model for solving the 
monotone complementarity problem. The algorithm again possesses the 
following desired features: 

• It achieves 0(>Jn log(l/c))-iteration complexity if / satisfies the scaled 
Lipschitz condition. 

• If (MCP) has a solution, the algorithm generates a sequence that 
approaches feasibility and optimality simultaneously, if the problem 
is (strongly) infeasible, the algorithm generates a sequence that con-
verges to a certificate proving infeasibility. 

8.4.1 A convex property 
o 

Let f(x) be a continuous monotone mapping from 7£+ to Tin. Consider the 
set of residuals 

Ä++ = {a - f(x) e Tln : (x,s) > 0}, 

and for a r € Tln let 

S++(r) = {(*,8) € Tl\\ : 8 = f(x) + r}. 

o 

Since / is continuous in 7l£, we can easily verify that Äf+ is an open 
set. Furthermore, we have 

Theorem 8.19 Consider the mapping F = (Xy,s - f(x)) 6 Tl2n from 
o 

(x, s) € Tl2n. Then F maps Tti^. onto TV^ xi?++ homeomorphically, that 
o 

is, F is one-to-one on TZ++, F maps Tl^\. onto 7£+ XÄ++, and the inverse 
o 

mapping F"1 is continuous on ft+ XÄ++. 

Simply using the monotone of / , we also have the following lemma: 
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Lemma 8.20 Let re Kn. Assume that (a?1,«1) € S++(Olr) and(x2,s2) € 
S++(e2r) where Θ1 and Θ2 are two real numbers. Then 

(Θ2 - el)rT(x2 - x1) < (x2 - xl)T(82 - a1). 

This lemma leads to the next lemma: 

Lemma 8.21 Let r e Kn and #> < Θ1. Assume S++($°r) φ 0 and 
S++(elr) φ 0. Then, for every δ > 0, the union of 

C++$r%S) = {(*,if) € S++{ßr) : xTy < ¿}, Θ € [θ°,θι] 

is bounded. 

Proof. Let (χ°,5°) € S++(0°r) and {x\sl) € S * * ^ ) , and 

max((s°)Tx°,(s1)Tx1)<S. 

Let Θ e [0°, Θ1] and (x, s) € C++(0r, ¿). Then we have by Lemma 8.20 that 

(sl)Tx + Or1)7* < (01 - 0)rTx + c1 

and 
(8°)Tx + (z°)r* < (0° - 0)rTs + c°, 

where 

c1 = (01 - Ö0)!^«1! + 2δ and c° = (Θ1 - í°)|rTa:0| + 2á. 

Thus, if 0° < 01 then we have 

((9 - ί°)((·1)τ* + (*l)Ts) + (** - *)((*°)T* + (*°)T*) 

^(tf-tfV + i*1-*)*0· 
Thus, we have 

T T maxjc^c0} 
6 X&t e S m i n { ( ^ ^ o j i C i ^ i ) } » 

which implies that (a:, *) is bounded. The lemma is obviously true if 0° = 01. 

D 

To prove the convexity of Ä++, it suffices to prove that if the system 

« = /(a-) + r° + 0r, (a:,e)>0 

has a solution at 0 = 0 and 0 = 1, then it has a solution for every 0 € [0,1]. 
Without loss of generality, we may assume r° = 0. Let (a?°,e°) € 5++(0), 
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(a:1,*1) € S++(r), and max((e°)Ta:0,(e1)T»1) < δ*. Now consider the 
system 

Xs = (1 - Θ)Χ°8° + 0 X V and s - /(a:) = 0r, (a,*) > 0. (8.22) 

Let 
θ = {0 € K : system (8.22) has a solution}. 

Then, from the openness of Ä++ *&& Theorem 8.19 we derive Lemma 8.22. 

Lemma 8.22 Θ is an open set and system (8.22) has a unique solution 
(aj(0),*(0)) for every Θ € Θ. Moreover, (a?(0),e(0)) is continuous in 0 € Θ. 

We now ready to prove the following theorem. 

Theorem 8.23 R++ is an open convex subset ofTln. 

Proof. The openness has been discussed earlier. Let 

0*=inf{0: [0,1] CO}. 

Since 1 € Θ, we know by Lemma 8.22 that Θ* < 1 and θ* # Θ. If 0* < 0, 
Or € «R++ for every 0 € [0,1]; hence the theorem follows. Suppose on the 
contrary that Θ* > 0. Let {0* € (0*,1]} be a sequence converging to 0*. 
Then, for k = 1,2,..., we have 

X(0*)s(0*) = (1 - ek)X°8° + 0 * * V , 

s{ßk) - f{x{ek)) = 0*r, and (z(0*), s(0*)) > 0, 

which implies that 

(x(ek))Ts(ek) = (1 -ek){x°)Ts° + Ö V ) 7 * 1 < **. 

Thus, (s(0*),e(0*)) is in the union of (7++(0r,Ä*), 0 € [0,1]. Since the 
union is a bounded subset by Lemma 8.21, we may assume without loss 
of generality that the sequence {(£(0*),«(0*))} converges to some (£,S) € 
ft+n. ß y t h e continuity of the mapping Xy : 7£j_n -» ft£, the point (5, 5) 

Xs = (1 - 0*)X°*° + 0 * * V € ft£+. 

By the continuity of / : 7£J.+ -* 7£n, we then see that 

5 - / ( S ) = (l~0*)O + 0*r = 0*r. 

This implies that (x, 5) € S++(0*r) and 0* € Θ, the contradiction of which 
is 0* f( Θ. Thus we have shown that Af + is a convex set. 

D 
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Let 

8.4.2 A homogeneous MCP model 

Consider an augmented homogeneous model related to (MCP): 

(HMCP) minimize xTs + τκ 

s·4· (O'Í-^/ ÍA·)) ·^· ·"^0· 

***) - ( -ßf$T) ) : *■+" -* ****' <8·23> 
Then, it is easy to verify that V%¡> is positive semi-definite as shown in the 
following lemma. 

Lemma 8.24 Let Vf be positive semi-definite in 11+. Then V%¡) is positive 
o 

semi-definite in 7£*+1, i.e. given (x\r) > 0, 

(dx;dr)
TVil>(x,T)(dx;dr)>0 

for any (dx;dr) € ftn+1, where 

νηχ,τ) - ^ _ / ( e / r ) T _ (x/rfVf(x/rf (*/r)^/(*/r)(*/r) ) ' 
(8.24) 

Proof. 

(d*;d^TV#r,r)(dx;dr) 
= <£V/(*/r)d* - éSVf{x/r)x(dr/r) ,g « . 

-{dT/tau)xTVf(x/r)Tdz + d?sT V/ fc /r^/r 2 lö*Zö; 

= (<**- drx/T)TVf(x/r)(dx - drs/r) 

Furthermore, we have the following theorem, part of which is related to 
Exercise 8.6. 

Theorem 8.25 £e¿ i/> ie ¿wen fty f&jgJJ. TTien, 
o 

i) ^ w α contíntiotw homogeneous function in 7£++1 uritÄ decree 1 and for 
any(x;r) €ft£+I 

(x;r)r^(x,r)=0 

and 
(x;r)TV^(a:,r) = -^(a?,r)T. 
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ii) If f is a continuous monotone mapping from TV+ to 1ln, then ψ is a 
o 

continuous monotone mapping from 7£++1 to TV1*1. 

iii) / / / is scaled Lipschitz with υ = Vf, then ψ is scaled Lipschitz, that is, 
it satisfies condition (8.21) with 

iv) (HMCP) is (asymptotically) feasible and every (asymptotically) feasi-
ble point is an (asymptotically) complementary solution. 

Now, let (^,τ*,«*,«*) be a maximal complementary solution for 
{HMCP). Then 

v) (MCP) has a solution if and only ifr* > 0. In this case, (X*/T*, s*/r*) 
is a complementary solution for (MCP). 

vi) (MCP) is (strongly) infeasible if and only if κ* > 0. In this case, 
(X*/K*,8*/K*) is a certificate to prove (strong) infeasibüity. 

Proof. The proof of (i) is straightforward. 
We leave the proof of (ii) as an exercise. 
We now prove (iii). Assume (χ;τ) € ÄJÜ+1 and let (dx;dT) be given such 

that IKX"1^^; T^drJUoo < a < 1. To prove ψ is scaled Lipschitz we must 
bound 

| ( ί Τ ) ^ + ^,τ + άτ)-φ(Χ,τ)-νφ(χ,τ)(^ά
ά'τ ) ) | | 

(8.26) 
From (8.23) and (8.24), the upper part in (8.26) is identical to 

X (/(I/ + dy)(r + dr)- /(y)r - (V/(y)d, + f(y)dT - V / d / ^ / r ) ) 
= (r+drWinv+^-m-vmdy) 
= r(r+ dT)Y(f(y + dv)-f(y)-Vf(y)dy)1 

(8.27) 
where 

y = χ/τ and y + dv = ^ΓΓ » (8·28) 

that is, 
rd, - xdr da - (dT/r)x 

^-rir + dr)- T + dr · ( 8 · 2 9 ) 
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Note 

I I ^ ^ I L = \\τΧ-1(τάβ-άτχ)/(τ(τ + άτ))\\00 

l l ^ -^ IL+«) / ( ! -« ) ( 8 · 3 0 ) 

< 2α/(1 - a). 

Per the assumption that / is scaled Lipschitz with υ = v/, it follows for 
a e [0,1) that 

||r(r + dr)Y(f(y + d,) - f(y) - Vf{y)dv)\\1 

< T(T + dr)vf(2a/(l - a))^Vmdy 
- T V , B ° " ( ¿ » - »<Wr)TV/(y)(d, - S<WT) (8.31) 

< n(WU-«)) (dg. ̂ )τνν>(χ, T)(da; dr). 

Next we bound the lower part of (8.26). This part is equal to 

r(-f(y + dv)
T(x + dt)-(-m

Tx) 
-[-f(v)Td* - *TV/(y)T<Wr + xTf{y)xdrlri)) 

= r{{x + dx)
T(-f(y + dv)+f(y) + Vf{y)dv) 

-(* + dx)
TVf(y)dy + (*/r)TV/(y)d„(r + dr)) 

= r((a: + dz)T(-/(y + dl,)+/(y) + V/(y)d1,) 
- ( ¿ , - ^ / τ Γ ν / ί » ) ^ ) 

= r^e + X-^dtfY (-/(» + d„) + /(y) + V/(y)d„) 
-rir + dOdJ'V/^d,. 

Thus, using (8.25) and (8.30) 

\T{-f{y + dv)
T{x + dx)-{-f{y)Tx) 

-i-/(»)Td» - *TV/(y)T<Wr + ^ / ( y ^ / r 2 ] ) I 
< r2 ||e + X-^JL ||K(-/(» + d„) + (-/(y) - V/foH,))^ 

+|r(r+ dr)KV/(y)dv 

< (τ*(1 + a)vf(2a/(l - a)) + r(r + dr)) dJ"V/(y)d„ 
= τ^1+α)νΚ2α/(Ι-α)Ητ(τ+^) ( (ς · _ d r 3 ! / T ) T V / ( y ) ( d a _ ¿ ^ ) 

= <1+a)v< ¡iiijjfi (1+"T/r) <*; <*r)rVV(», T)(d.; d,) 
< ( ( ^ ^ f g y - ° ) ) -H^L-) (diC;drrV0(a!,r)(d8;dr). 

(8.32) 
The sum of (8.31) and (8.32) is equal to 

M«)(<**; <*r)TW(x, r)(dx; dr) 
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and it bounds the term in (8.26) leading to the desired result. 
We leave the proof of (iv) as an exercise too. 
We now prove (v). If (a;*,r*,e*,/c*) is a solution for (HMCP) and 

T* > 0, then we have 

s*/r* = f(x*/r*) and (a?·) V / ( r * ) 2 = 0, 

that is, (a:*/r*,Ä*/r*) is a solution for (MCP). Let (i,á) be a solution to 
(MCP). Then r = 1, a; = á, s = S, and « = 0 is a solution for (HMCP). 
Thus, every maximal solution of (HMCP) must have r* > 0. 

Finally, we prove (vi). Consider the set 

Ä++ = {s - /(*) € ftn : (*, a) > 0}. 

As proved in Theorem 8.23, 1Ϊ++ is an open convex set. If (MCP) is 
strongly infeasible, then we must have 0 £ Ä++ where Ä++ represents the 
closure of Ä++. Thus, there is a hyperplane that separates 0 and Ä++, 
that is, there is a vector a e TV1 with ||a|| = 1 and a positive number ξ such 
that 

aT(8 - f(x)) >ξ>0 V a: > 0, a > 0. (8.33) 

For,;" = 1,2,..., n, set Sj sufficiently large, but fix x and the rest of s, a¿ > 0 
must be true. Thus, 

a > 0, or o € 71". 

On the other hand, for any fixed x, we set s = 0 and see that 

~<*Τί(ζ)>ξ>0 Va?>0. (8.34) 

In particular, 
-aTf(ta)>t>0 V¿>0. (8.35) 

From the monotone of / , for every x € TV+ and any t > 0 w e have 

(tx-x)T(f(tx)-f(x))>0. 

Thus, 
xTf(tx) > xTf(x) (8.36) 

and 
Urn xTf(tx)/t > 0. (8.37) 

Thus, from (8.35) and (8.37), 

lim aTf(ta)/t = 0. 
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For an x € ft+, denote 

/«»(*):=: Dm/(te)/*, 

where /°°(a?) represents the limit of any subsequence and its values may 
include co or -co. 

We now prove /°°(o) > 0. Suppose that f°°{a)j < —6. Then consider 
the vector x — a + ee¿ where e,· is the vector with the jth. component being 
1 and zeros everywhere else. Then, for e sufficiently small and t sufficiently 
large we have 

xTf{tx)/t = (a + cejffiHa + eejV/t 
= aTf(t(a + eej))/t + tejf(t(a + ee¿))/t 

< eej/(í(a+ ee,))/í (from (8.34)) 

_ /Q(o + eeJ)) j - / ( to)J /(to)j 
t "·" t 

< c (o(t) + ~ ^ ) (from continuity of/) 

= e(0(e)- i /2) 

< -cJ/4. 

But this contradicts relation (8.37). Thus, we must have 

/ ° » > 0 . 

We now further prove that /°°(a) is bounded. Consider 

0 < (ta-e)T(f(ta)-f(e))/t 
= oT/(ia) - eTf(ta)/t - aT/(e) + eTf(e)/t 
< -eTf(ta)/t - aT/(e) + eT/(e)/i. 

Taking as a limit t -* oo from both sides, we have 

eT/°°(a) < -aT/(e) . 

Thus, /°°(a) > 0 is bounded. Again, we have aTf(ta) < -ξ from (8.35) 
and aTf(ta) > aTf(a) from (8.36). Thus, lim aTf(ta) is bounded. To 
summarize, (HMCP) has an asymptotical solution (x* = α,τ* = 0,8* = 
f°°{a),K* = lim -aTf{ta) > ξ). 

Conversely, if there is a bounded sequence (xk > 0, rk > 0, sk > 0, nk > 
0), then 

Umsk = limr*/(o?*/r*) > 0, hm«* = lim-{xk)Tf(xk/rk) > ξ > 0. 
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Then, we claim that there is no feasible point (x > 0,« > 0) such that 
s - f(x) = 0. We prove this fact by contradiction. If there is one, then 

0 < ((xk;Tk)-(x;l)f(rKxk,Tk)-f/>(x,l)) 

= Or* - x)T{Tkf(xk/Tk) - /(*)) + (r* - lf(xf(x) - {xkff(xk/Tk)). 

Therefore, 

(xk)Tf(xk/rk) > (xk)Tf(x) + rkxTf(xk/rk) - rkxTf(x). 

Since the first two terms at the right-hand side are positive and limr* = 0, 
we must have 

lim(xk)T f(xk/rk) > 0, 

which is a contradiction to «* = —(xk)Tf(xk/rk) > ξ > 0. Also, any limit 
of xk is a separating hyperplane, i.e., a certificate proving infeasibility. 

a 

8.4.3 The central path 

Due to Theorem 8.25, we can solve (MCP) by finding a maximal comple-
mentary solution of (HMCP). Select x° > 0, s° > 0, r° > 0 and κ° > 0 
and let the residual vectors 

r° = 8° - T°f(x0/r% z° = K° + (x°)Tf(x°/T°). 

Also let 
ñ = (r°)Tar° + z°r° = (x°)Ts° + r°«°. 

For simplicity, we set 

x° = e, r° = 1, s° = e, κ° = 1, 0° = 1, 

with 

A ° = e and A ° = l. 
Note that ñ = n + 1 in this setting. 

We present the next theorem. 

Theorem 8.28 Consider (HMCP). 

i) For any 0 < 0 < 1, ¿Aere estste a strictly positive point (x > 0, r > 0,8 > 
0,« > 0) sticA ¿Aa¿ 

(:)-«**ι-(;+"ί$#))-'(£)· (8-38) 
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ii) Starting from {x° = e,T° = l,e° = e,«° = 1), for any 0 < 0 < 1 there 
w a untrue strictly positive point (χ(θ),τ(θ),8(θ),κ(θ)) that satisfies 
equation (8.S8) and 

(8.39) 
( - ' ) - * 

iii) For any 0 < Θ < 1, the solution (x(0), τ(β), «(0), κ(0)) in [ii] is bounded. 
Thus, 

C(0) :={(*, W ) : ( * ) -*(*,r)=*( £ ) , ( ** ) = 0e} 
(8.40) 

/or 0 < 0 < 1 w a continuous bounded trajectory. 

iv) ΤΛβ limit point O£(0),r(0),$(0),/c(0)) is a maximal complementary so-
lutionfor(HMCP). 

Proof. We prove (i). Again, the set 

JÍ++ := | ( * J -0(*fr) : (S,T,S,/C) >oj 

is open and convex. We have (r°; z°) € 1/++ by construction. On the other 
hand, 0 € #++ from Theorem 8.25. Thus, 

Θ (í)e*"· 
The proof of (ii) is due to Theorem 8.19. 
We now prove (iii). Again, the existence is due to Theorem 8.19. We 

prove the boundedness. Assume (x,r,s,/c) 6 C(0) then 

(x;r)T(r°;z°) 
= {χ;τ)τ(30;Κ

0)-(χ;τ)τψ(χ0;τ°) 
= ( s ; r ) V ; K ° ) + ( * ; « ) T ( * ° ; T ° ) - ( * ; K ) T ( * V 0 ) - ( χ ; τ ) τ ^ ° ; τ 0 ) 

= (z;r)V;«0) + (*;«)T(*V0) 
-(«β;τΒ)τ(β(Γ°;*β) + ^(*,τ))-(«;τ)Γ^(«0;τΛ) 

= (a:;r)T(e
0;«0) + (e;«)r(*0;r0) 

-íííf'iT»)1'^;!·) - (χ°;τ°)τψ(χ,τ) - (χ;τ)τψ(χ°;τ°) 
> {X;T)T(80;K0) + (S;K)T(X0;T°) 

-e{x0;T0)T(r0;z°) - {χ;τ)τφ,τ) - {χ°;τΎψ(χ0;τ0) 
= (x;rf(8°;K°) + (S;K)T(X9;T°) -^τ*»0;*0) 
= (χ;τ)τ(8°; κ°) + (8; κ)τ(χ°; τ°) - θ(χ°; τ°)Γ((Λ κ°) - φ(χ°,τ0)) 
= (χ; τ)τ(8°; κ°) + (8; κ)τ(χ°; τ°) - θ(χ°; r°)T(*°;κ°). 
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Also for 0 < Θ < 1, 

θ(χ;τ)τ(ν°;ζ°) = (*;τ)Γ((*;κ) -ψ(χ,τ)) = (s;r)r(s;/c) 

= 0(η + 1)==0(χο;τΟ)Τ(*°;«0)· 
Prom the above two relations, we have 

( S ; T ) V ; K ° ) + ( S ; K ) T ( * V 0 ) < (l + Ö)(x0;r°)T(50;«0). 

Thus, (a?; r; s; κ) is bounded. 
Finally, we prove (iv). Let (a;*,r*,a*,/c*) be any maximal complemen-

tarity solution for (HMCP) such that 

(8*;κ*) = ψ{χ*;τ*) and (x*) V + τ*κ* = 0, 

and it is normalized by 

(r0;z°)T(x*¡T*) = (r0;s0)T(sV°) = (Λ*°)Τ(*°;τ°) = (n + 1). 

For any 0 < Θ < 1, let (a?,r,$, κ) be the solution on the path. Then, we 
have 

((χ;τ)-(*ν*))Γ((*;κ)-(β*;κ*)) 
= (for) - (xV) ) r W(x;r ) - V(*V*)) +Ö(r°;z°)r((x;r) - (x*;r*)) 
> θ(Γ0;ζΥ((χ;τ)-(χ*;τ*)). 

Therefore, 

(x;r)V;0 + (*;«)T(*V*) 
< (Χ;Τ)Τ(8;Κ)-Θ(Γ0;Ζ°)Τ((Χ;Τ) - (χ*;τ*)) 
= (*;τ)Γ(*;κ) - (χ;τ)τ(8;κ) + θ(Αζ°)τ(χ*;τ') 
= 0(Γ°;«°) Γ (Χ· ;Τ· ) 

= θ(η + 1). 

Using χ,·*,· = θ we obtain, 

(χ;τ)Γ(β·;κ*)4-(β;«)Γ(χ*;0 

< θ(η + 1). 

Thus, we have 

^ - < ( η + 1), and — <(η + 1) 
Sj Κ 
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and 

^ < ( n + l ) , and — < ( n + l ) . 
Xj T 

Thus, the limit point, (a;(0), r(0), β(0), κ(0)), is a maximal complementarity 
solution for (HMCP). 

ü 

We now present an interior-point algorithm that generates iterates within 
a neighborhood of C($). For simplicity, in what follows we let x := (x; r) € 
ftn+1, * := (e; Ä) G 7ln+1, and r° := (r°; *°). Recall that, for any x, a > 0, 

χτψ(χ)=0 and x T V#r) =-^(a?)T. (8.41) 

Furthermore, ψ is monotone and satisfies the scaled Lipschitz. We will use 
these facts frequently in our analyses. 

8.4.4 An interior-point algorithm 

At iteration A: with iterate (xk,8k) > 0, the algorithm solves a system of 
linear equations for direction (dx,dB) from 

d8 - Vip(xk)dx = -ητ* (8.42) 

and 
Xkd8 + Skdx = wke-Xksk, (8.43) 

where η and 7 are proper given parameters between 0 and 1, and 

(xk)T8k 

rk = sk - if)(xk) and μ* = -——— . 
n + 1 

First we prove the following lemma: 

Lemma 8.27 . The direction (dx,d8) satisfies 

dT
xd8 = dT

xVt{xk)dx +77(1-7/- 7)(n + 1)μ*. 

Proof. Premultiplying each side of (8.42) by dfi gives 

dT
xd8 - <FxVxl){xk)dx = - ^ ( i * - ^(s*)). (8.44) 
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Multiplying each side of (8.42) by a;* and using (8.41) give 

{χ")τά,+φ{χ")άχ = -V(xk)Trk 

= -V(xknak-tl>(xk)) ( . 
= -V(xk)T8k ( 8 · 4 5 ) 

= -V(n + lfrk. 

These two equalities in combination with (8.43) imply 

did, = dTV^(xk)d,-^dlsk+dJxk+V(n + l)ßk) 
= 4 ν ^ ( ι * ) 4 - η(-(η + l)/i* + 7(n + 1 ) / + η(η + 1)μ*) 
= άΙνφ(χ")άχ+η(1-'ϊ-η){η+1)μ1'. 

For a step-size a > 0, let the new iterate 

x+ :- xk + adx > 0, (8.46) 

and 

8+ := s* + ad, + φ(χ+) - i/>{xk) - aVi/>(xk)dx 

= φ(χ+)-τ(8"-φ(χ'ί))+α(ά,-νφ(χ'')άχ) , . 
= φ(χ+) + (s* - #c*)) - οτ?(β* - V(**)) l j 

= ^»(a;+) + (l-<wj)r*. 

The last two equalities come from (8.42) and the definition of r*. Also let 

r+ = s+ - i/.(a;+). 

Then, we have 

Lemma 8.28 . Consider the new iterate (x+,$+) given by (846) and 
(8.47). 

i) r+ = (1 - αη)^ 

Ü) (x+)8+ = (a:fc)Ta*(l - a ( l - 7 ) ) + α2η(1 -η-<y)(n + 1)/ι*. 

Proof. From (8.47) 
r+ = 8+-φ(χ+) 

= (1 — aa¡)rk. 
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Next we prove (ii) Using (8.41), (8.43), and Lemma 8.27, we have 

(x+)Ts+ 
= (a:+)T(e* + ad, + V(sc+) - V(**) - aVtf (**)<<.) 
= (x+)T(sk + ad,) - (x+)T(^(x*) + aW(a:*)4») 
= {x+)T{8k + ad,) - (xk + ad,)T(i¡>(xk) + aV^(x*)d») 
= (*+)T(*fc + ad.) - a(x*)TVV(**)d, - ad*V(sfc) - a2<£VV(a;fc)dx 

= (x+)T(sfc + ad,) - a2dJVV»(a:*)d» 
= (xk + adx)

T(«* + ad,) - a^v^x*)«* . 
= (sfc)T** + a{dlak + djxk) + a\djd, - d JV^a^d*) 
= (xk)Tsk + a(dje* + dfa:*) + a2ij(l - η - 7)(n + 1)μ* 
= (1 - a(l - 7))(¡c*)Te* + «¡»»/(I -»? - 7)(n + 1)μ*. 

a 

This lemma shows that, for setting η = 1 — 7, the infeasibility residual and 
the complementarity gap are reduced at exactly the same rate, as in the 
homogeneous linear programming algorithm. Now we prove the following: 

Theorem 8.29 Assume that ψ is scaled Lipschitz with v = v$ and at 
iteration k 

where 

|XV-0*«|<ft-*, #**=*£££ 

β = — F — < 1/3. 
3 + 4u*(V2/2) "" 

Furthermore, let η = ß/y/n 4-1, 7 = 1 — fj, and a = 1 in the algorithm. 
Then, the new iterate 

x+ > 0, s+ = 0(«+) + (1 - V>k > 0, 

and 

|X*.+ -M+e|<fti+, μ+=<£££. 

Proof. It follows from Lemma 8.28 that μ+ = 7μ*. FVom (8.43) we further 
have 

S*dx + X*d. = - A - V + μ+e. 

Hence, 

£>-xdx + Dd, = -(XkSk)-l'2(Xk8k - μ+e), 

where D = (X*)1/a(S*)~l/a· Note 

did, = dlVtl>(xk)dx > 0 
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from Lemma 8.27 and 7 = 1 - η. This together with the assumption of the 
theorem imply 

IID-̂ H2 + \\Dd,f < \\{XkSk)-^(Xksk - μ+β)||2 < ^_~βζ^ · 

Also note 

Thus, 

\\Xk8k - μ+ef = ||Χ*β*-μ*β + (1-7)μ*β||2 

= |μ*β-μ*β||2 + ((1-7)μ*)ΊΝ|2 

< (^+^(η+1) ) (μ*) 3 

= 2^(μ*)2. 

1<*ν« . | = \\(x*s»r>'>D->dx\\ < - | £ ^ Μ 
7(1 -β)μ" 

ν/2/3μ* y/2ß yfi. 
-{1-β)μ" 1-β- 2 ' 

since β < 1/3. This implies 

\\D,d.\\ 
< 

< 

< 

< 

< 

that x+ = xk + dx > 0. Furthermore, 

\\D~lDxDd,\\ 

WD-^WUDd^ 

(||Zr1de||
3 + ||Dd.||2)/2 

|(Χ*5*)-1/2(Α'*β'!-μ+) 

\\Xkak - μ+ef 
2(1-/ϊ)μ* 

2/?2(μ*)2 

2(1 -0)μ" 
β2μ" 
ι-β' 

|2 

/2 

we have 

and 

Consider 

9,.k β2μ did. = dlD-lDd, < |D-»d.i IPd.|| < ff j j 

X+s+ - μ+e 
= *+(** + d. + V(*+) - ·0(**) - νν>(α;*)^) - μ+e 
= (X* + £>»)(«* + d,) - μ+e + X+(V(:r+) - V(*fc) - Vtf («*)d») 
= Pxd. + X+(V(*+) - V>(*fc) - νν»(χ*)<ί»). 
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Using that φ is the scaled Lipschitz, d[Vi()(xk)dx = άζά, and the above 
four relations we obtain 

\\X+s+-ß+e\\ 

= \\Dtdt + X+W(x+) - ψ(χ") - W(**)d,)|| 

= \\Dxd. + {Xk)-iX+XkW(x+) - ψ(χ*) - νψ{χ")άχ)\\ 

< \\DM\ + Mxh)~lx+L \\xkMx+) - 1>{xk) - vvix*)^)!, 
< HD.*|| + 2 |X*(V(*+) - *(x*) - V^**)«**)!, 

< ||I?sd.|| + 2v^(y/2/2)dl^{xk)dx 

= \\D,d,\\ + 2v^(s/2l2)dldt 

. (l + 2t^(vfl/2))0V 

Finally, /? = 1/(3 + 4^(>/2/2)) implies that 

(1 + 2MV5/2) )¿V ^ 
1-/J ~ 2 

and 
||X+s+ - μ+β|| < /?μ*/2 < /?7μ* = ft*+. 

It is easy to verify that x+ > 0 and ||Χ*"s+ - μ+β|| < βμ+ implies s+ > 0. 

D 

The above theorem shows that the homogeneous algorithm will gen-
erate a sequence (xk

is
k) > 0 with (xfc+1,s*+1) := (a?+,s+) such that 

sk = %¡){xk) + rk and | | X V - μ*|| < βμΗ, where both ||r*|| and (xk)Tak 

converge to zero at a global rate 7 = l-ß/y/n + l. We see that if tty(>/2/2) 
is a constant, or υ/(2/(1 + y/2)) is a constant in (MCP) due to (iii) of The-
orem 8.25, then it results in an 0(y/nlog(l/c)) iteration algorithm with 
error e. It generates a maximal solution for (HMCP), which is either a 
solution or a certificate proving infeasibility for (MCP), due to (v) and (vi) 
of Theorem 8.25. 

One more comment is that our results should hold for the case where 
o 

f(x) is a continuous monotone mapping from ft" to Tln. In other words, 
f(x) may not exist at the boundary of ft£. 
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8.5 Notes 
The result in Section 8.1 is based on the work of Bai and Ye [41], where 
they try to find an estimate of a unknown parameter vector for a single 
input-single output discrete-time dynamic system. The result can be also 
used to find the frontier of multiple objectives. 

Various centers were considered for the central-section method as we 
mentioned earlier. Goffin, Haurie and Vial [143], Sonnevend [383], and 
Ye [470] were among the first to propose the analytic central-section or 
cutting plane method. Its complexity issues were addressed by Atkinson 
and Vaidya [38], Goflän, Luo and Ye [144, 145], and Nesterov [325]. In 
particular, Atkinson and Vaidya developed a scheme to delete unnecessary 
inequalities and managed to prove a polynomial analytic central-section 
algorithm. The analytic central-section method was used and tested for a 
variety of large scale problems, where they performed quite well; see, for 
example, Bahn, Goffin, Vial and Merle [39], Bahn, Merle, Goffin and Vial 
[40], and Mitchell [284, 285]. 

The primal potential reduction algorithm for positive semi-definite pro-
gramming is due to Alizadeh [10, 9], in which Ye has "suggested studying 
the primal-dual potential function for this problem" and "looking at sym-
metric preserving scalings of the form XQ1'2XXQ1'2? and to Nesterov 
and Nemirovskii [327], and the primal-dual algorithm described here is due 
to Nesterov and Ibdd [329, 330]. One can also develop a dual potential 
reduction algorithm. In general, consider 

(PSP) inf C*X 
s.t. Λ · Χ = 6, XeK, 

and its dual 

(PSD) sup bTy 
s.t. A*#y + S = C, Se K, 

where AT is a convex homogeneous cone. 
Interior-point algorithms compute a search direction (άχ,άγ, ds) and a 

new strictly feasible primal-dual pair X+ and (Y+ ;S+) is generated from 

X+ = X + adXl F + = r + /?dy, S+ = S + ßds, 

for some step-sizes a and ß. 
The search direction (dx,dy,ds) is determined by the following equa-

tions: 
A · dx = 0, ds = -A* · dY (feasibility) (8.48) 
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and 

or 

dx+F"(S)ds = -~j¡X-F'(S) (dual scaling), (8.49) 

or 

ds + F"{X)dx = -^^S-F'(X) (primal scaling), (8.50) 

ds + F"(Z)dx = "Y^S - F\X) (joint scaling), (8.51) 

where Z is chosen to satisfy 

S = F"{Z)X. (8.52) 

The differences among the three algorithms are the computation of the 
search direction and their theoretical close-form step-sizes. All three gen-
erate an e-optimal solution (X, F, 5), i.e., 

in a guaranteed polynomial time. 
Other primal-dual algorithms for positive semi-definite programming 

are in Alizadeh, Haeberly and Overton [11, 12], Boyd, Ghaoui, Feron and 
Balakrishnan [72], Hehnberg, Rendl, Vanderbei and Wolkowicz [181], Jarre 
[203], de Klerk, Roos and Terlaky.[224], Kojima, Shindoh and Hara [233], 
Monteiro and Zhang [307], Nesterov, Todd and Ye [331], Potra and Sheng 
[348], Shida, Shindoh and Kojima [379], Sturm and Zhang [392], Tseng 
[423], Vandenberghe and Boyd [440, 441], and references therein. Effi-
cient interior-point algorithms are also developed for optimization over 
the second-order cone; see Andersen and Christiansen [21], Lobo, Van-
denberghe and Boyd [246], and Xue and Ye [462]. These algorithms have 
established the best approximation complexity results for some combinato-
rial problems. 

The scaled Lipschitz condition used in Section 8.4 was proposed by Ko-
rtanek and Zhu [237] for linearly constrained convex minimization, related 
to the work of Monteiro and Adler [300], and later extended by Potra and 
Ye [351] for the monotone complementary problem. This condition is in-
cluded in a more general condition analyzed by Nesterov and Nemirovskii 
[327], den Hertog [182], den Hertog, Jarre, Roos and Terlaky [183], and 
Jarre [204]. 

Results in Section 8.4.1 are based on Kojima, Megiddo and Mizuno 
[225]. A similar augmented transformation in Section 8.4.2 has been dis-
cussed in Ye and Tse [480] and it is closely related to the recession function 
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in convex analyses of Rockafellar [364]. All other results in Section 8.4 are 
based on Andersen and Ye [18]. Interior-point algorithms for convex pro-
gramming include: Abhyankar, Morin and Trafalis [1] for multiple objective 
optimization, Anstreicher, den Hertog, Roos and Terlaky [29], Ben-Daya 
and Shetty [50], Bonnans and Bouhtou [68], Carpenter, Lustig, Mulvey and 
Shanno [78], Goldfarb and Liu [149], Jarre [202], Kapoor and Vaidya [216], 
Mehrotra and Sun [279], Pardalos, Ye and Han [340], Ponceleon [344], Ye 
[467], Ye and Tse [480], etc. for quadratic programming; Ding and Li [100], 
Güter [174], Harker and Xiao [179] Ji, Potra and Huang [205], Polak, Hig-
gins and Mayne [341], Shanno and Simantiraki [376], Sun and Zhao [398], 
Tseng [422], Zhao [487], for the monotone complementarity problem; Ben-
Tal and Nemirovskii [51], Faybusovich [112, 113], Goldfarb and Scheinberg 
[150], Güter [175], Güter and Tuncel [176], Luo and Sun [249], Luo, Sturm 
and Zhang [250, 251], Monteiro and Pang [303], Muramatsu [312], Ramana 
[354] Ramana, Tuncel and Wolkowicz [355], Saigal and Lin [371], Todd, Toh 
and Tut uncu [414], Vandenberghe, Boyd, and Wu [442], for nonpolyhedral 
optimization; Anstreicher and Vial [32], Byrd, Gilbert and Nocedal [76], 
Coleman and Li [89] Güter [175], den Hertog, Roos and Terlaky [185], Ko-
rtanek, Potra and Ye [234], Mehrotra and Sun [280], Monteiro [297], Nash 
and Sofer [314], Potra and Ye [350], Sun and Qi [397], Tanabe [192], Wang, 
Monteiro, and Pang [455], Zhang [481], for nonlinear programming; Asic 
and Kovacevic-Vujcic [35], Ferris and Philpott [114], Todd [407], Tungel and 
Todd [433], for semi-infinite programming; Birge and Holmes [56], Birge and 
Qi [57], for stochastic programming. 

A new homotopy method, the smoothing method, for solving comple-
mentarity problems and its relation to interior-point methods have been 
developed by Burke and Xu [75], B. Chen and Harker [81], C. Chen and 
Mangasarian [82], X. Chen [83], Gabriel and Moré [129], Hotta and Yoshise 
[188], Kanzow [215], and Qi and Chen [353]. 

Applications, decompositions, inexact iteration, and special data struc-
tures of interior-point algorithms were described in Bixby, Gregory, Lustig, 
Marsten and Shanno [59], Choi and Goldfarb [84], Christiansen and Ko-
rtanek [87], Gondzio [155], Han, Pardalos and Ye [178], Ito, Kelley and 
Sachs [196], Kaliski [212], Pardalos, Ye and Han [340], Ponnambalam, Van-
nelli and Woo [345], Resende and Veiga [361], Tone [418], Wallacher and 
Zimmermann [454]. 

8.6 Exercises 

8.1 Prove Lemma 8.7 
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8.2 Prove the following convex quadratic inequality 

(Ay + b)T(Ay + b)-cTy-d<0 

is equivalent to a matrix inequality 

{ (Ay + b)T /y + d j - 0 · 
Using this relation to formulate a convex quadratic minimization problem 
with convex quadratic inequalities as a (PSD) problem. 

8.3 Prove Corollary 8.12. 

8.4 Prove Lemma 8.16. 

8.5 Describe and analyze a dual potential algorithm for positive semi-
definite programming in the standard form. 

8.6 Let f(x) : Kn -* Kn be a monotone function over a open convex set 
Ω = {x : f(x) > 0, x > 0}, i.e., 

(v-x)T(f(y)-f{x))>o 
for all x, y in Ω. Prove for any convergent sequence (xk > 0, rk > 0) such 
that 

UmTkf(xk/rk) > 0 and limr* = 0, 

we must have 
Hm(xk)Tf(xk/rk) > 0. 

8.7 // (MCP) has a solution, then the solution set is convex and it con-
tains a maximal solution (x*,s*) where the number positive components in 
(x*, 8*) is maximal. Moreover, the indices of those positive components are 
invariant among all maximal solutions for (MCP). 

8.8 Let f(x) : %n -> Tln be a monotone function in Ί1\. Then for any 
{x1 > 0;r' > 0) and (x" > 0;r" > 0), prove 

(χ' - χ")τ(τ'ί(χ'/τ') - τ'7(*"/τ"))+ 

(τ' - Tn)T{{x")Tf{x"/r") - (*')Τ/(*7τ')) > 0. 

8.9 Prove Theorem 8.19. 

8.10 Prove Lemma 8.20. 

8.11 Prove Lemma 8.22. 

8.12 Prove (it) and (iv) of Theorem 8.25. 



Chapter 9 

Nonconvex Optimization 

The aim of this chapter is to describe some results in interior-point algo-
rithms for solving "hard" problems, such as the fractional programming 
problem, the non-monotone linear complementarity problem (LCP), and 
the general quadratic programming (QP) problem, and to suggest some 
directions in which future progress might be made. These problems play 
important roles in optimization theory. In one sense they are continuous 
optimization and fundamental sub-problems for general nonlinear program-
ming, but they are also considered the most challenging combinatorial op-
timization problems. 

9.1 von Neumann Economic Growth 
Problem 

Consider the von Neumann economic growth (NEG) problem: 

7* := max{7 | 3 y φ 0 : y > 0; (B - yA)y > 0}, 

where A = {a^ > 0} and B = {by > 0} are two given nonnegative matrices 
in Tlmxn. Each row-index i stands for a "good," while each column index 
j stands for a "process." Process j can convert α^ units of good i, in one 
time period, into by units of good t. So a process uses goods as materials 
or inputs, and gives goods as products or outputs. Matrix B is referred as 
output matrix, and A is the input matrix. Component y¡ of y denotes the 
"intensity" by which we let process j work. Vector By gives the amounts 
of outputs produced, and Ay gives the amounts of inputs consumed, during 
one time period. Then, 7 represents the growth factor at intensity y. So 
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By > ^Ay requires that, for each good i, the amount of good % produced 
in period t is at least the amount of good t required in period (t + 1) with 
the growth factor 7. The NEG problem is to find the largest growth factor 
using an optimal intensity vector. 

The NEG problem is an example of a fractional programming problem, 
and the results developed in this section can be extended to problems of 
the form: 

/ . ¡MX 
y I 9 fj(y)) 

where / , g : Tln -» K%. 
To solve the NEG problem, we will make a few assumptions. Since they 

are basic assumptions for a meaningful economic growth model, they pose 
minimal restriction. 

Assumption 9.1 A has no all-zero columns. 

Note that 7* is bounded above based on this assumption. In fact, 

> L<=i aij 

There is a related dual NEG problem, 

η* := min{*71 3 x φ 0 : x > 0; {ηΑ - B)Tx > 0}. 

We further assume: 

Assumption 0.2 B has no all-zero rows. 

Then, 77* is also bounded below. But a duality overlap may exist, i.e., it is 
possible η* < 7*. However, under the following irreducibility assumption 
the model is well behaved: η* = 7*. 

Assumption 9.3 There is no (proper) subset S of the rows and no subset 
T of the columns such that Ay = 0 for all i € S and all j € T, and such 
that for all i 6 {1,2,..., m} \ 5, By > 0 for some j € T. 

Moreover, the 7-level set, 

Γ(7) := {0 € Än : eTy = 1, y > 0; (B - yA)y > 0}, (9.1) 

has a nonempty interior for 7 < 7*, meaning in this paper that 

f (7) = {V € Rn : eTy = 1, y > 0; (B - yA)y > 0} 
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is nonempty for 7 < 7*. Note that we have replaced y φ 0 with eTy = 1 in 
the NEG problem, where e is the vector of all ones. This is without loss of 
generality since the system is homogeneous in y. 

Obviously, the underlying decision problem related to the NEG problem 
can be solved in polynomial time: Given matrices A and £, and a number 
7, does the linear system 

{eTi/ = l, ! />0; {B-jA)y>0} 

has a feasible point? Let 0 < 7* < R for some positive Ä. Then, one can 
use the bisection method to generate a 7 such that 7* - c < 7 < 7* in 
0(log(U/e)) bisection steps where each step solves a linear feasibility prob-
lem with data A, B and 7. Therefore, the NEG problem is polynomially 
solvable. 

In this section, we directly solve the NEG problem using an interior-
point algorithm that is in the spirit of earlier central-section algorithms. 
That is, it reduces the size of the 7-level set Γ(7) and its associated max-
potential by by increasing 7. In each iteration, the algorithm increases 7 
and applies the primal-dual Newton procedure to compute an approximate 
analytic center of IX7). We show that the algorithm generates an e approx-
imate solution in 0((m + n)(log(J?/e) -h log(m + n)) iterations where each 
iteration solves a system of (m + n) linear equations. 

9.1.1 Max-potential of Γ(7) 

We apply the analytic center and the max-potential theory to the inequality 
system Γ(7) of (9.1) for a fixed 7 < 7*. Recall that the max-potential of 
IX7), if it has a nonempty interior, is defined as 

( m n 

In the following, we frequently use the slack vector 8 := By — jAy. 
Clearly, since B is a nonnegative matrix, we must have 7* > 0. Without 

loss of generality, we further assume that Γ(0) of (9.1) has a nonempty 
interior. This fact automatically holds if Assumption 9.2 holds. We also 
need the system T(j) to have a bounded and nonempty interior for all 7 < 
7*, so that the analytic center and the max-potential are well defined for 
all 7 < 7*. As we discussed earlier, this is true under Assumptions 9.1 and 
9.3. In what follows, we replace Assumption 9.3 by a weaker assumption: 
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Assumption 9.4 There exists an optimal intensity vector y* 6 Γ(7*) such 
that 

* : = ( B + A)y*>0. 

The following lemma, similar to Proposition 4.2, will help determine how 
small B{y) must be to ensure that 7 and any y € Γ(7) is an c-approximate 
solution. 

Lemma 9.1 Let 0 < 7 < 7*. Then, the system T(y) under Assumptions 
9.1, 9.2, and 9.4 has a bounded and nonempty interior. Moreover, the 
max-potential 

* — m 

B(i) > (m + n) log(^y) + 5>e(*</2) + "WiM, 

where 

í = m a x | z : ( ^ Γ * + Aeln)z $ 2(r + if} > °' 

Proof. Γ(7) being bounded is obvious since eTy = 1 and y > 0. Let y* be 
the one in Γ(7*) such that 

e V = l; 2/*>0; ( £ - 7 * ¿ ) y * > 0 , (9.2) 

and it satisfies 
{B + A)y* =* >0 . 

Let 
7θ±7Ί 

1 + 7 ' 
Then, for 0 < 7 < 7* we must have 

7 < δ < 7*. 

The left inequality follows from 1 + 7* > 1 + 7, and the right inequality 
follows from 7 < 7*, which implies 7(1 + 7*) < 7*(1 + 7), which further 
implies 

1 + 7 
Thus, we have 

(7* - δ)(Β + A)y* = (7* - i)* > 0. (9.3) 
Adding two inequalities (9.2) and (9.3), we have 

((1 + 7* - S)B - SA)y* > (7* - δ)π > 0, 
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(*-ϊϊ£ζ^)»·ϊϊ£^·>°. 
which implies 

(B-yA)y*>^ñ>0, 

since 
δ 

7 = 1 + 7* - δ ' 

Therefore, there is an 0 < ω < 1 such that 
y = (1 - u)y* + ue/n > 0 

and 
(B - iA)y > 0. 

That is, y is in the interior of Γ(7). 
Specifically, let ω = £(y* - i)ft*. Then, we have 

(B-jA)g 
= (P-7il)((l-fc/)if+we/n) 

= (* - Ι(7'7Γ Ύ )) (* - 7¿)y« + $(7>
ΎΓ 7) (B - 7A)e/n 

* (l-^^)(B-yA)y'-l^yAe/n 

> ( l - l(7*r"
 7 ) ) iß - -TW - fa* - l)Aeln 

= w^f+h'-"Awh)"-^Th^Ae,n)) 
> 7 * - 7 -
2 2(1 + 7·) 
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Furthermore, we have 

y > ωβ/η = *( 7*""Ύ )β/η > ^?*~?e/n. 
' 7* ' 1 + 7* ' 

Note that the max-potential 

m n 

0(7) > $ > g ( £ j / - 7^0« + £>g!7¿ , 

which together with the above two bounds give the desired result. 

D 

Note that the above lemma may not hold in general. 

Example 9.1 Let 

Then, for this problem 7* = 2. However, for any 1 < 7 < 2, it must be 
true that (y\ = 1, y2 = 0) is on ¿Λβ boundary ο/Γ(0). 

It can be shown that Assumption 9.3 implies Assumption 9.4. However, 
Assumption (9.4) is weaker than Assumption 9.3. Consider 

*-(ί!) -* - ( ί ! ) · 
This system is reducible but Γ(7) has a nonempty interior for all 7 < 7* = 1, 
and it satisfies Assumption 9.4. 

There is also an economic interpretation for Assumption 9.4: if IX7) has 
an empty interior for some 7 < 7*, then at every optimal intensity vector 
V* 

(B + j i ) / j * 0 f 

which implies that for some good i 

at every optimal intensity vector y*, where fr¿ and a% are the tth row of 
the matrices B and A, respectively. Thus, the tth good is irrelevant, as 
it is neither produced nor consumed, and so can be removed from further 
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consideration. Therefore, we can set up a reduced NEG problem (both row 
and column dimensions may be reduced) such as 

max{7| 3 y ^ 0 : y > 0; (B2-yA2)y > 0; (&i + a^y = 0}, 

where B2 and A2 are the remaining matrices of B and A after deleting 
bi and a^ respectively. Now the reduced 7-level set will have a nonempty 
interior for any 7 < 7*. 

We now prove two more lemmas to indicate that the max-potential of 
Γ(7) is an effective measure for the 7-level set of the NEG problem. 

Lemma 9.2 Let 70 < 71 < 7*. Then, 

B(y°)>B(yl). 

Proof. Let y1 be the analytic center of Γ(7!). Then, since 

(B - y°A)yl = (B - YA)yl + (71 - y°)Ayl 

and (71 - j°)Ayl > 0, we must have 

{B -<fA)yl >{B ~tlA)yl >0. 

This shows that yl is in the interior of Γ(7°). Moreover, (71 - y^)Ayl φ 0, 
since A has no all-zero columns and yl > 0. Thus, 

m n 

0(7°) > Σ ^ ^ - ν ν ^ + Σ 1 0 ^ ) 
m n 

= J^logiBy1 - 71 V + (71 - 7°)V)< + Σ1ο6ί0· 
*=1 p i 

> ¿ l o g ^ - W ^ + f̂ logy) 
♦=1 i = i 

= ß(V). 
D 

Directly from Lemma 9.1, we have Lemma 9.3. 

Lemma 9.3 Let ιηιη(π) > 1/R and ξ > 1/R for some positive R, and let 
7 satisfy (7* - 7)/(7* + 1) > c. Then, the max-potential 

B(lf) >(m + n) log(e/R) - m log 2 - n log n. 
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Figure 9.1. Illustration of the level set Γ(7) on the simplex polytope; the 
size of Γ(7) decreases as 7 increases. 

Lemma 9.3 indicates that if we reduce 

Β(η) < ~0((m + n)(log(Ä/e) + logn)), 

then it must be true that (7* - 7)/(l + 7*) < e and any y € IX7) is an 
e approximate solution. The algorithm actually returns an approximate 
(analytic) center of Γ(7). 

9.1.2 Approximate analytic centers of Γ(7) 
Most of technical results presented in this section are related to those dis-
cussed earlier in Section 2.2. Let 0 < 70 < 7*. Note that for any fixed 7, 
the m + n inequalities defining Γ(7) have corresponding "primal" variables 
x and z. Thus, the analytic center y° of Γ(7°), or simply Γ0, satisfies the 
following conditions: 

( # ) - ( : ) ■ 

where (s°,y°) is feasible with 7 = 7° for the system 

a - ( f l - 7 j l ) y = 0; eTy = 1; (s,j/)>0, (9.5) 

and (x°,z°) is feasible with 7 = 70 for the system 

(B - 7i4) Tx + z = (m + n)e; {x,z)>0. (9.6) 
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Now let yl be the analytic center of Γ1 = Τ(γ) with 71 = 70 + Δ7. For 
a suitable choice of Δ7, we can show that 70 < 71 < 7* and 

ß(V)<ß(7°)-n(i). 

We prove a lemma on how to select Δ7. 

Lemma 9.4 Let 

Δ7 = 0 mm I n^o^yoeii' \\γοΑτχοβ\\ j > 

for some constant 0 < β < 1 and let 71 = 70 + Δ7. Furthermore, update 
the slack variables, letting 

8 = 8°-ΔΊΑν
Ό and y = j/°, 

and 
x = x° and z = z° + ΔΊΑΤΧ°. 

Then, (5,y) and (x,z) are feasible for systems (9.5) and (9.6) with 7 = 71, 
respectively. Moreover, 

\(%-Φ^ 
and 

(5,jf)>0 and (x,z)>0. 

Proof. The two equations in systems (9.5) and (9.6) for 7 = 71 can easily 
be verified. The inequality for the norm can be proved from relation (9.4) 
and the choice of Δ7. 

Il*s-e||
2 = ρτν-Δ7ν)-β||2 

= \\AjX0AY°ef 

<> ß2· 

Similarly, 

\\Zy-ef = \\Y°(z° + A'rÄrx0)-e\\2 

= ||A7y°ylTX0e||2 

< ß2· 
These relations also imply that 

β > 0 and 2 > 0, 
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since 
x = x° > 0 and y = y° > 0, 

which concludes the proof. D 

The above lemma establishes a fact that (5, g) and (£, ¿) are approxi-
mate centers for systems (9.5) and (9.6) with 7 = 71, respectively. Thus, 
(β, 2) or (§, y) can be used as an initial pair of Newton's method to generate 
the new center pair (a?1,*1) and (s1,!/1). 

We now state another technical result that will be used in the next 
section in conjunction with Lemma 9.4. 

Proposition 9*5 Let H = {h#} be a nonnegative m x n-matrix. Then 

\\He\\ < eTHe, 

and 
\\HTe\\ < eTHTe = eTHe. 

9.1.3 Central-section algorithm 

We now present a conceptual algorithm, which uses the perfect center, to 
illustrate the basic idea of our approach: 

1. Let 70 = 0. Use the primal-dual Newton method, which is described 
below, to generate the analytic center y° of Γ° = Γ(7°), and set 
fc:=0. 

2. Let 

Δ7* - ß min I | |Χ M y*e | | , \\YkATXke\\) 

for some constant 0 < β < 1 and update variables 7, s and z like in 
Lemma 9.4. Then use the Newton procedure to generate the analytic 
center y*+1 of Γ*+1 = Γ(7*+1). 

3. If 0(7*+*) > -0{{m + n)(log(ft/c) + logn), then let fc := k + 1 and 
return to Step 2. 

The primal-dual Newton procedure is applied to the systems of equa-
tions in (9.4), (9.5) and (9.6) to find the analytic center of Γ(7). Let 
(χ,ζ,δ,ϋ) be defined in Lemma 9.4 and repeatedly solve for (d8,dy) and 
(dx,dz): 

Sdx + Xd8 = e - £5, 
Ydz+Zdy = e-yf, ( . 

( B - 7 M ) T d x + d , = 0, W-() 

d8-(B- -ylA)dy = 0. 



9.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 287 

Then, let 
x:—£ + dx and z:=z + dz, 

and 
s:=8 + d8 and y~y + dy. 

We now analyze the algorithm using approximate center pairs (s°,t/°) 
and (x°,z°) that are feasible for systems (9.5) and (9.6) with 7 = 70, 
respectively, and 

< S. (9.8) 
11/ X°sO-e\\ 
\\\Z»y°-e ) \ 

As we proved in Theorem 3.2(iii), 

ß(7°) > B{s°,V°) := ¿log»? + ¿logy? > ß(7°) - ^ ^ ■ 

Thus, ß(*,j/) is close to #(7) when (s, y) is an approximate center of Γ(7), 
and it can be used to terminate the algorithm. 

The following lemma is an analogue to Lemma 9.4. 

Lemma 9.6 Let positive constants δ and β satisfy δ + y/2ß < 1. Let 
(x°,z°) and (s°,y°) be a ¿-approximate center pair for Γ(7°). Let Δ7, 71, 
(s,y) and (x,z) be selected as in Lemma 9.4. Then, (s,y) and (x,z) are 
feasible for systems (9.5) and (9.6) with 7 = 71, respectively. Moreover, 

!(£:.* )!*'♦*<>. 
and 

(§,y) > 0 and (x,z)>0. 

Now, using (ár, z) and (5, y) as the initial pair, we apply the Newton 
procedure described by (9.7) to generate a new approximate center pair 
(s^y1) and {xl,zl) for IX71). Note that we terminate the procedure in 
one step, then assign 

(s\yl) = (S+ <*„£ + dy) and (xl,zl) = (2 + dx,z + dz). 

Note that (iv) of Theorem 3.2 and (9.6) indicate that 

Ζψ-e )\\ί 4 l - J - v / 2 / ? ' ( 9 9 ) 
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and 

H ( y V ( y i - y ° ) | | < χ * * ^ ■ (e.io) 

Next, for suitable constants δ and /?, for example, 

¿ = 1/12 and /? = 1/(W2), (9.11) 

we prove that the potential value at (e1, j/1) in Γ1 = IX71) is reduced by a 
constant from the value at (5°,y°) in Γ° = Γ(7°). 

Theorem 9.7 Let δ and β be chosen as in (9.11), and (x°7y
0,s0,z°) sat-

isfy (9.8). Let 

Δ7 - 0 mm I | | X o ¿ r o e | | ' \\Y*ATX*e\ 

and 71 = 70 + Δ7. Let (51,yl) and {xl,yl) be generated in one step of the 
Newton procedure. Then, 

7 ° < 7 X < 7 * , 

and 
B{s\yl) < Β ( Λ ί / ° ) - Ω(1). 

Proof 71 > 7° because Δ7 > 0 and 71 < 7* because Γ1 = T{yl) has a 
nonempty interior. Rrom inequality (9.9) we have 

Now we prove the potential reduction inequality. We have 

(* 0 )V + (*°)V = {χ°)Τ{Β-ΊΧΑ)νΧ + {*Ύν1 

= (y1)T((ß - Ί°Α)τχ° + z°) - A<y(x°)TAyl 

= (m + n ) e V - A 7 ( a : 0 ) T V 

= (m + n ) - Ä 7 ( x 0 ) T V · 

Thus, 

η«*π(*ί) s (^Γ'Τ 
/ A 7 ( x 0 ) r V \ r o + n 

\ m + n J 

< exp( -A 7 (a : 0 ) r V) . 
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Moreover, using (x°)TAyl > 0, Proposition 9.5 and relation (9.10), we have 

A 7 ( x ° ) T V = &feTXttAY1e 

= ¿«Ί* { J i j e o s ' Uyo^r^ i ,} eTX°AYle 

eTX°AY1e 
- PeTX<>AY°e 

> eU- ¿+^ß) 

l-2(S + y/2ß) 
Ι-δ-yßß 

Finally, we have 

B{s\yl)-B{*\y°) 

» = i » <=i Vx 

= £log(*Ja}) + ¿ t o g t f r f ) - ¿log(*?*?) - £ **<*?»?> 
<=1 t = l i = l t = l 

< -ßl~?t?$? -¿>g(*?'?)-!>(*?»?) 

- ~β1ϊ-{δ-^β) + 2ζΓΤ) (fr°™Len«na3.1and(9.8)). 

One can verify 

l - 2 ( J + vfy) J2
 = 1 1 

Ι-δ-yßß 2(1 - i ) 8V2 264 ' 

a 
We now formally state the algorithm. 

Algorithm 9.1 Let 70 = 0. Then generate a S-approximate center y° of 
Γ° = Γ(7°). Set k := 0. 

While B(e*+1,l/*+1) > -0 ( (m + n)(log(Ä/e) +logn)) do 

1. Let 

Δ7* - 0min | | | ^ M y * e | | , | | r * ^ r x * e | | } 
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for some constant 0 < ß < 1 and let 7*+1 = 7* + Δ7*. Let 

s = sk - AyAy1* and y = y*, 

and 

x = x* and 2 = z* + ΔΊΑΤΧ*. 

2. Solve for (d„dy) and {dx,dx) from (9.7) and let 

xh+l = x + dx and zk+l =z + dzy 

and 
8**1 = § + d8 and j / * + 1 = y + d„. 

5. Le¿ Λ := i + 1 and return to Step 1. 

It is well known that an initial ¿-approximate center pair, (¿°,y°) and 
(x°,z°), can be generated in no more than 0((m + n)(log(Ä/e) + logn)) 
interior-point algorithm iterations. Thus, we conclude the following: 

Theorem 9.8 Algorithm 9.1, with a suitable choice ofó and ß, terminates 
in * = 0((m + n)(log(JZ/e) + logn)) iterations and each iteration solves a 
system of(m+n) linear equations. The resulting yk € Γ(7*) and 7* satisfy 

0 < 3LZ2 < c. 
1+7* 

The algorithm also generates the optimal dual vector. More precisely, 
we prove the following result. 

Proposition 9.9 Any limit point of 

lim 
*-*oo eTxk ' 

where xk is generated by Algorithm 9.1, is a solution for the dual NEG 
problem with η = η* under Assumptions 9.1, 9.2, and 9.4. 

Proof. Fbr simplicity, we assume that (a:*, yfc, «*,**) is exactly centered, 
i.e., it satisfies relations (9.4), (9.5), and (9.6). Since at least one component 
of sk converges to zero, eTxk = eT(Sk)~xe tends to +00. Moreover, from 
(9.6) we have 
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Thus, the right-hand vector of the above equation converges to zero. Since 
zk/eTxk > 0 for all Jk, 

lim ( £ - 7 * ^ ^ = - lim -4-τ < 0. 
fc-4oo eTx* fc-4oo e T r 

Furthermore, under Assumptions 9.1, 9.2 and 9.4 we have 7* -► 7* = η*. 
Therefore, any limit point of the sequence of positive xk/eTxk is a solution 
for the dual. 

□ 
Finally we turn our attention to the question raised earlier, that is, what 

happens if Γ(7) has an empty interior for some 7 < 7*? It turns out that 
there exists a nice duality theorem for the NEG problem, that is, under 
Assumptions 9.1 and 9.2, Γ(7) has a nonempty interior for all 7 < η* < y* 
(see Kemeny et al. and Gale in Section 9.6). Thus, the algorithm discussed 
in this paper will precisely generate η* under only Assumptions 9.1 and 
9.2. Similarly, the r/-level set of the dual has an nonempty interior for all 
η > 7* > η*. Thus, one can apply the algorithm for solving the dual to 
generate 7* in the same manner. Thus, we can solve the NEG problem 
under only Assumptions 9.1 and 9.2, which are basic assumptions for a 
meaningful economic growth model. 

9.2 Linear Complementarity Problem 

This section analyzes the linear complementarity problem described in Sec-
tion 1.3.7. We have used T to denote the "feasible region," i.e., 

T = {{x, 8):8 = Μχ + ς, x > 0 and s > 0}. 

We further assume, without loss of generality, that 

T- {(x, s): s = Mx + g, x > 0 and s > 0} 

is nonempty. The problem was solved in Chapters 4 and 7 for the case 
when M is monotone. 

We present a potential reduction algorithm in this section to solve 
the general case. Similar to solving the LP problem, we will describe a 
"condition-based" iteration complexity bound for solving the LCP. This 
condition number characterizes the degree of difficulty of the LCP solution 
when a potential reduction algorithm is used. We show how the condition 
number depends on the data (M,q). 
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9.2.1 Potential reduction algorithm 
We use the familiar primal-dual potential function 

n 
ψ(χ, s) = ψη+Ρ(ν, s) = (n + p) \og{xT8) - ] T log(a^) 

for an interior feasible point (#,*). As described in Chapter 2, p > 0. 
Starting from an interior point (a;0,s0) with 

the potential reduction algorithm generates a sequence of interior feasible 
points {xk,8k} terminating at a point such that (xk)Tsk < e. Such a point 
is found when 

if)(xk,8k) < />logc-f nlogn 

since, from the arithmetic-geometric mean inequality, 
n 

nlog((xk)T8k) - £log(*$e}) > nlog(n) > 0. 

Note that ψ(χ% s) < ψ° implies that xT8 < ψ°/ρ. Hence, the boundedness 

of {(x,s) 6 T: xT8 < ψ°/ρ)} guarantees the boundedness of {(x,s) 6.F: 
1>(x,s)<il>0}. 

To achieve a potential reduction, we again use the scaled gradient pro-
jection method. The gradient vector of the potential function with respect 
to z is 

_ . n + p __ i 

and with respect to s is 

where Δ = xTs. At the kth iteration, we solve the following linear program 
subject to an ellipsoid constraint: 

(JSP) minimize VT%¡)xkdx + VTtß8kd8 

s.t. d8 = Mdx 

\\(Xkrldx\\
2 + \\(Skrld8\\*<a*<l. 

Denote by dx and d8 the minimal solution for (EP). Then, we have 

({xkrldx\__aj¿_ (Q12) 
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where 

and 

P ~ I P 5 J ~ l &S»(x>°-v)-e ;» (913) 

7Γ = ((5*)2 + Af(X*)3MT)-1 (5* -MX k ) (xksk - -^~e\ . (9.14) 

From the concavity of log function and Lemma 3.1 (also see Exercise 
9.4), 

ψ(χ" + da,s* +d.) - # r * , e * ) < -a||p*|| + y (n + p + y - M . (9.15) 

Letting 

a = nun 

We have 

/JBL-J—W (9.16) 

(9.17) 
The algorithm can be described as follows: 

Algorithm 9.2 Given z°,s° > 0 and s° = Mx° + q and k := 0. 
While (xk)Tsk > e do 

1. Compute π of (9.14) andjl· of (9.13), and select a of (9.16); construct 
dx andda of (9.12). 

2. Let xk+l =xk + dx and a*+1 = sk + d8. 

3. Let k := k + 1 and return to Step 1. 

Clearly from inequality (9.17), ||p*||2 can be used to measure the po-
tential reduction at the fcth iteration of the potential reduction algorithm. 

o 

For any x, s €7£+, let 
n + pv g(x, a) = —— Xs - e 

and 

H(x, s) = 2/ - (XMT - S)(S2 + MX2MT)-X{MX - 5). 
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Note that H(x, s) is positive semi-definite (PSD), and 

||p*|p = ^(x*, **)#(**, ak)g{xk, .*). 

Recall that ||^(a:,e)||/f denotes gT(x,s)H(x78)g(x,8). Then, we define 
a condition number for the LCP (M, q) as 

7(M,g,e) = 1ηί{||ρ(χ,β)||^ : xTs > e, ψ{χ,8) < tf>° and (x,s) €>} . (9.18) 

We now derive Theorem 9.10. 

Theorem 9.10 The potential reduction algorithm with p = θ(η) > 0 solves 
the LCP for which f{M}q,t) >0in 

/^° + plog(l/e)-nlogn\ 
"V e(7(M,i,e)) ; 

iterations and each iteration solves a system of linear equations in at most 
0(n3) operations, where 

O 

Proof. Since T is nonempty, by solving a linear program in polynomial 
time, we can find an approximate analytic center (x°,8°) of T. Due to 
(9.15), (9.16), and (9.17) the potential function is reduced by 0{ξ(η{Μ, q, e))) 
at each iteration. Hence, in total 

0((*° + plog(l/e) - nlogn)/£(7(M)g,e))) 

iterations we have if>(xk,8k) < ploge + nlogn and (xk)T8k < c. 

D 

Corollary 9.11 An instance (M}q) of the LCP is solvable in polynomial 
time if 7(M, g, e) > 0 and if l/y(M, q, e) is bounded above by a polynomial 
in log(l/e) andn. 

The condition number 7(M,g,e) represents the degree of difficulty for 
the potential reduction algorithm in solving the LCP (M,q). The larger 
the condition number, the easier the LCP problem. We know that some 
LCPs are very hard, and some are easy. Here, the condition number builds 
a connection from easy LCPs to hard LCPs. In other words, the degree of 
difficulty continuously shifts from easy LCPs to hard LCPs. 
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9.2.2 A class of LCPs 
Instances of LCP can be separated into various classes that can be charac-
terized by their condition number. Beginning with a class of problems that 
are simple to solve, we describe a sequence of propositions concerning the 
condition number of progressively more difficult problems. 

Proposition 9.12 Let p > n. Then, for M being a diagonal and PSD 
matrix, and any q € Kn, 

y(M,q,e)>n. 

Proof. If M is diagonal and PSD, then the matrix 

/ - (XMT - S)(S2 + ΜΧ2ΜτΓι{ΜΧ - S) 

is diagonal. It is also PSD since the jth diagonal component is 

ή + Mfä -sl + Mfc)^· 
O 

Therefore, for all (x, s) ef and p > n, 

~f{M,q,t)>\\g(x,8)\\*>£>n. 
n 

D 

Proposition 9.13 Let p >n + y/2n. Then, for any PSD matrix M and 
any q € Kn, 

7 (M,? ,£ )>1 . 

We leave its proof to the reader. 
Instances with PSD matrices are examples of a larger class of problems 

whose condition number is greater than 1. To define this class, we start 
with the following lemma. 

Lemma 9.14 ||p*|| < 1 implies 

sk + MTnh > 0; xk - π* > 0 

and 
2 n~^A* < Δ < 2 η + ν^"Δ*, 

n+p n+p 

where Δ = (¡r*)T(s* + Μτττ*) + (sk)T(xk - nk). 
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Proof. The proof is by contradiction. Let § = 8k + MTnk and £ = xk — π*. 
It is obvious that if s ? 0 or x γ 0, then 

IIP*H2 > i . 

On the other hand, we have 

Hence, the following must be true 

(*5#-»)'-<·. 
that is, 

2n-y/5i±k < Δ < 2η + ν ^ ^ 
η + ρ η-1-ρ 

D 

Δ can be further expressed as 

Δ = 2Δ*-? Τ ΤΓ* . 

Now let 

E+(Affi) 

= {π : xTs - qTw < 0, x - π > 0 and a -f Μτπ > 0 for some (as,s) €J*}. 
Then, using Lemma 9.14 we have the following propositions: 
Proposition 9.15 Let E+(M,g) be empty for an LCP (M,q). Then, for 
p>n + y/2n, 

7 (M,g ,e )>l . 
Proposition 9.16 Let 

{π : xTs - qTK > 0, x - π > 0 and 8 + Μτπ > 0 /or some (x, s) €F} 

be empty for an LCP (M, g). Then, for 0 < p < n — >/2tt 

7 (M,g ,e)>l . 
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Proof. The proof again results from Lemma 9.14. 

a 

Now, let 

g = {(M,q): T is nonempty and E+(Af,g) is empty}. 

It may not be possible in polynomial time to tell if an LCP problem (Af, q) 
is an element of Q (this is ateo true for some other LCP classes published 
so far). However, the co-problem, to tell whether an LCP problem (M,q) 
is not in <7, can be solved in polynomial time. We can simply run the 
potential reduction algorithm for the LCP problem. In polynomial time 
the algorithm either gives the solution or concludes that (Af, q) is not in Q. 

We see that the new class Q has the same bound on the condition number 
as the PSD class, that is, 7(Af, g, c) > 1. Here, we list several existing types 
of LCPs that belong to {?. 

1. M is positive semi-definite and q is arbitrary. 

We have if Σ+ is not empty, then 

0 < (x - n)T(a + Λίτπ) = xTs - qTn - πτΜτπ 

which implies 
xT8 - qTw > πτΜτπ > 0, 

a contradiction. 

2. Af is copositive and q > 0. 

We have 
xT8 — qTn = xTMx + qT(x — π). 

Thus, x > 0 and x - π > 0 imply xTs — qTn > 0, that is, Σ+ is empty. 

3. M~l is copositive and M~lq < 0. 

We have 

xT8 - qTn = 8TM~Ts - (M~lq)T(8 + Af τ π ) . 

Thus, β > 0 and 8 + Af τπ > 0 implies xTs - ^ τ π > 0, that is, Σ+ is 
empty. 

Although a trivial solution may exist for the last two classes (e.g., x = 0 
and 8 = q for the second class), our computational experience indicates that 
the potential reduction algorithm usually converges to a nontrivial solution 
if multiple solutions exist. 
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Example 9.2 

M={i -\) and q=(l)· 
For this example the potential reduction algorithm constantly generates the 
solution 

a; = (2; 2) and ¿* = (0;0) 

from virtually any interior starting point, avoiding the trivial solution x = 0 
and 8 = q. 

Another nonconvex LCP also belongs to Q. 

Example 9,3 

M={I o 1 )* a n d 9 = ( : 0 ' 
o 

T is nonempty since x = (3; 1) is an interior feasible point; Σ+ is empty 
since x\ - X2 > 1, x\ - πι > 0, x2 - π2 > 0, x\ - a?2 - 1 + π\ + 2π2 > 0 and 
2x\ - 1 - 7Γι > 0 imply 

T T 

ar a — q π 
= xT(Mx + g) - ς τ π 
= #i (#i — #2) + 2x\x2 ~ #1 — a?2 -H 7Γι -h 7Γ2 
= xf + x\x2 - 2a?i - x2 + 1 + (a?i - a?2 — 1 + πι + 2π2) + (a?2 — ^2) 
> x\ + aJia?2 — 2xi - a?2 -f 1 
= (aJi-l)2-f-ar2(a;i - 1) > 0. 

As a by-product, we have 

gc{{M,q):\S(M,q)\>l), 

where 5(M, 9) represents the solution set of the LCP and \S(M} q)\ denotes 
the number of solutions. In fact, any LCP (M, q) with 7(M, g, e) > 0 
belongs to {(M,q) : \S(M,q)\ > 1}. Furthermore, if y(M,q,e) > 0 for all 
q € 7£n, then Af € Q, a matrix class where the LCP (M, g) has at least one 
solution for all q € Tln. How to calculate 7(M,g,c) or a lower bound for 
y(M, g, c) in polynomial time is a further research topic. 

9.2.3 P-matrix LCP 

A class of problems, called P-matrix LCP, have a smaller lower bound on 
the condition number. 
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Definition 9.1 A matrix M is aP matrix if and only if its every principal 
submatrix has a positive determinant 

Proposition 9.17 Let p > 2n + y/2n. Then, for M being a P-matrix and 
any q € Tln, 

7(M,(/,e) > min{n0(M)/|A(M)|,l}, 

where A(M) is the least eigenvalue of(M+MT)/2, αηάθ(Μ) is the positive 
P-matrix number of MT, i.e., 

Thus, the P-matrix LCP can be solved in 

O ^ m a x j - ^ l J l o g U / e ) ) 

iterations and each iteration solves a system of linear equations in at most 
0(nz) arithmetic operations. This bound indicates that the algorithm is 
a polynomial-time algorithm if \λ\/θ is bounded above by a polynomial in 
log(l/e) and n. 

It has been shown that ||p*||2 > 1 if M is positive semi-definite (that is, 
if A > 0). Thus, in this section we assume that A < 0. We also fix 

p = 2n + y/2n. (9.19) 

We first prove the following lemma: 

Lemma 9.18 
(a + b)2 + (a + c)2 > a2 - 26c. 

Proof. 

(a + 6)2 + (a + c)2 = 2a2+2a(ft + c) + ft2 + c2 

= a2 - 25c + a2 + 2a(b + c) + (ft + c)2 

= a 2 - 2 6 c + (a + 6 + c)2 > a2 - 2fcc. 

D 

Now, we have the following lemma: 

Lemma 9.19 Given any (xk,$k) €]Γ, letpk be the scaled gradient projec-
tion computed from (9.13) and (9.14)» Then, 

l|pfcll2>min{g,l}. 
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Proof. Let S = ** + Μτπ, 2 = xk - π and á = (¡B*)T5 + (s*)T£. Then, it 
is obvious that if S J< 0 or £ γ 0, then 

IIP*II2 > i . (9.20) 

Therefore, we assume that s > 0 and £ > 0 in the rest of the proof. Note 
that from Lemma 9.14 

and 
Δ = Δ* + xTS + π τ Μ τ π > Δ* + πτΜτπ. 

Thus, if 
_,τ ηΔ* 

- η + ρ 
then from (9.19) 

l W > ( Í ! ^ ^ - l ) a í t o > l . (9.21) 

Otherwise, we have 

λ|Μ|2 < π τ Μ τ π < - — , 

i.e., 

w * * ö ^ 5 P T (9·22) 

Since M is a P-matrix, there exists an index j such that π;·(Μ
τπ);· > 

0||π||3 > 0. Using Lemma 9.18 and (9.22), we have 

U/H2 

> (=$fi^-J-i)" + a- )^r i (J^-) , (^)* 

> [ψχ^-ί)2
 + 2ψΧ^. (9.23) 
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K 

then again 

otherwise, 

|λ| * *' 

IIP*II2 > ( ^ * M ) 2 +1 > i; 0-24) Δ* 

since the quadratic term of (9.23) yields the minimum at 

n + p k * _ i _ ** 
Δ* χί8ί~ι |λ| ' 

Prom (9.20), (9.21), (9.24) and (9.25), we have the desired result. 

D 

The result leads to the following theorem: 

Theorem 9.20 Let ^(a?°,e°) < 0(n logn) and M be a P-matrix. Then, 
the potential reduction algorithm terminates at (xk)Tsk < c in 

0(n2 max{|A|/(<9n),l}log(l/e)) 

iterations and each iteration uses at most 0(n3) arithmetic operations. 

Finally, we consider a very broad class of LCPs that contain some dif-
ficult problems. 

Definition 9.2 A matrix M is row-sufficient if and only if for every vector 
ξ, diag(i)MT£ < 0 implies diag(£)MT£ = 0. A matrix M is column-
sufficient if and only if MT is row-sufficient. A matrix M is a sufficient 
matrix if and only if it is both row- and column-sufficient 

Note that the class of row-sufficient matrices contains some popular matri-
ces such as PSD and P matrices. 

Proposition 9·21 Let p > 0 and be fixed. Then, for M being a row-
o 

sufficient matrix and {{x,s) GJ": ip(x,e) < i¡P} being bounded, 

y{M,q,e)>0. 
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O 

Proof. It is easy to show that for any (x, a) €f, 

Moreover, for all (x, s) efi, xTs > c and ψ(χ, s) < ψ°, 

1p° > ψ{χ,8) 
n 

= (n + p)log(xTa) - J ^ bgto'j) 
¿=i 

= {p + 1) log(xTs) + (n - 1) log{xTs) - ] £ logice,·) - log(awi) 
> {p + l) log(xT«) + (n - 1) log(a;T8 - XM) 

-^logiXjSj) -\0g{Xi8i) 

> (p + l) log(xTe) + (n - 1 ) log(n - 1) - logfcsi) 

> -(p + 1) log(l/c) + (n - 1) log(n - 1) - \og(xi8i), 

where i 6 {1,2,. . . ,«}. Thus, 

login«,) > -(/> + 1) log(l/e) + (n - 1) log(n - 1) - φ°, 
0 

that is, XiSi is bounded away from zero for every i. Since {(x,s) €F: 
ψ(χ, s) < ψ0} is bounded, there must exist a positive number e, independent 
of (x,e), suchthat 

Xi > t and a» > e, t = l,2, . . . , n 
o 

for all (x9 s) such that xT8 > c, ^fa»*) < V> and (a?, *) €T- Therefore, 

7(M,g,e) 

= inf {\\g(x, s)\\2
H : x r s > c, ψ(χ, s) < \¡P and (x, s) ET} 

> inf{\\g{x, «)||# : x > ee, β > ce, ^(x, *) < Vo and (x, a) € J7} 
> 0. 

The last inequality holds since the infimum is taken in a compact set where 
\\g(x, s)\\2

H is always positive. 

D 

Since the condition number is bounded away from 0, the potential al-
gorithm will solve row-sufficient matrix LCPs. 
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9.3 Generalized Linear Complementarity 
Problem 

In this section we consider a generalized linear complementarity problem: 

(GLCP) minimize xTa 
s.t. Ax + Bs + Cz = g, (ar, Ä, #) > 0. 

Let J* denote the feasible set. It is evident that a solution, with xTs = 0, 
to the GLCP may not exist even when the problem is feasible. However, 
a finite stationary or KKT point of the GLCP, which is defined as a point 
satisfying the first order optimality conditions of (GLCP), must exist, since 
the objective function is quadratic and bounded from below so that it has 
a finite minimum. 

More precisely, a KKT point, (£, £, z) € F, of the GLCP is represented 
by 

aTx + xT8 < STx + $T8 for all (a;, s, z) € T. 

In other words, (£, 5, z) is a minimal solution for the related linear program 

minimize STx + £Ts 
s.t. Ax + Bs + Cz = g, 

(z,s,*) >0, 

where its dual is 
maximize qTn 

s.t. δ - ΛΤ7Γ > 0, 
x - ΒΓπ > 0, 
-C7T7r > 0. 

Thus, (£, 5, f) 6 .F is a KKT point if and only if there exists feTlm such 
that 

S-ATTt>0, χ-Βτπ>0 and - CTTT > 0, 

and 

xT(§-AT7t)=0, ST(2-BTn) = 0 and zT(-CTn) = 0. 

We see that finding such a KKT point itself is a GLCP. We also note that 
a solution to the GLCP, (a:*, s*, ¿r*), can be viewed as a special KKT point 
with or = 0. 

The concept of the fully polynomial-time approximation scheme (FP-
TAS) was introduced in combinatorial optimization. Given an instance of 
an optimization problem and an e > 0, it returns an e-approximate solution 
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within a time period bounded by a polynomial both in the length of the in-
stance and 1/e. For some combinatorial optimization problems, the theory 
of JVP-completeness can be applied to prove not only that they cannot be 
solved exactly by polynomial-time algorithms (unless P = NP), but also 
that they do not have e-approximate algorithms, for various ranges of e, 
again unless P = NP. Furthermore, approximation algorithms are widely 
used and accepted in practice. 

In this paper, we develop a fully polynomial-time approximation scheme 
for generating an e-KKT point of the GLCP—a point (á, J,á) 6 T and 
π € 7lm with 

S->lT7r>0, x-BTit>0 and -C T 7r>0 , (9.26) 

and 
xT{a - Αττ) + iT(x - 1?Γπ) + zT{-C?it) < ^ 

X T8 " 

In other words, (£, S, z, it) is feasible and the sum of the complementary 
slackness vectors (or the primal-dual objective gap) relative to the (primal) 
objective value is less than e. Thus, the algorithm is actually a polynomial 
approximation algorithm for solving a class of GLCPs in which every KKT 
point is a solution. This class includes the LCP with the row-sufficient 
matrix. 

We assume at this moment that 
o 

Assumption 9.5 The interior of T, F= {(x,s,z) € T : x > 0, $ > 
0 and z > 0} is nonempty, and an interior point, {x°,sQ^z°) of T, is 
available; 

and 

Assumption 9.6 Each component of z is bounded by R in the feasible set 
T. 

Both assumptions will be removed later, so that the results should hold for 
general cases. 

9.3.1 Potential reduction algorithm 

Let p>n + d and define the potential function 

n n d 

ψ(χ, a, z) := (n + p) log(xTa) - Jj log(^) - £log(*,·) - Σ 1οΦ>) 
¡t=\ ¿=1 j=l 
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to associate with a feasible point (x, a, z) eJF. Using the arithmetic-geometric 
mean inequality, we have 

d 

ρ\θζ{χΤ8) - ^ l o g f o ) < φ(χ,8,ζ) -nlog(n) < φ{χ,8,ζ). 

On the other hand, 5^=ι log(z¿) < dlogR from the boundedness assump-
tion. Thus, 

φ(ζ,«,z) < nlogn - dlogß + plogc = * xTs < e. (9.28) 

The basic idea of the potential reduction algorithm works as follows. 
Given an interior point (x°,8°}z°) €.F, we generate a sequence of inte-

o 

rior feasible solutions {xk,8k,zk} €JF and {π*} G Tlm with the following 
property: Unless 

sk - ATnk > 0; xk - BTirk > 0; -(7τπ* > 0 

and 
(xk)T(8k - ΛΤ7Γ*) + (**)T(s* - Βτττ*) + (zk)T(-CTnk) 

(xk)Tsk 

< (2n + d + Λ/2Π + d)/(n + p), 

we always have 
φ(χ^ι

18
Μ

1ζ
Μ) < ^(s*,**,z*) - 0(1/(η + />)). 

Thus, if we choose n + p = (2n + d -f- >/2n + d)/e, the algorithm requires at 
most (n + p)2(log(l/e) + logÄ) iterations, which is a polynomial in 1/e, to 
generate either a solution or an e-KKT point of the GLCP. Note that each 
iteration involves 0(n3) arithmetic operations. 

There are many ways to achieve a potential reduction. We again use 
the scaled gradient projection method. The gradient vectors Χ7φχ and νφ8 

are identical to those in the preceding section, and the one with respect to 
z is 

νφζ = -Z-*e, 
where Δ = xTs. Now, we solve the following linear program subject to an 
ellipsoidal constraint at the fcth iteration: 

maximize ντφχι*άχ + V7^*** + V 7 ^ * * 
s.t. A 4 + Bd9 + Cdz = 0, 

IK**)-1*«* + IKS*)"1*!!2 + IK**)-1*!!2 < <*2 < i. 
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and denote by dx, d, and dz its minimal solutions. Then, we have 

where pk is the projection of the scaled gradient vector 

(VTtx>Xk, VTtl>,kSk, ντφζ>Ζ") 

onto the null space of the scaled constraint matrix (AXk,BSk,CZk), i.e., 

P~ = | Pi 
ξ \ ( %?Xk{sk - ATnk) - e \ 
4 = # S * ( x * - B T 7 r f c ) - e , 

7Γ = 
Δ* 

(ÄÄTyxÄ(VTil>x>Xk, VTV.*5*, VT^Zkf, 
« + /» 
¿ = (¿X*,AS*,CZ*), and Δ* = («*)τβ*. 

Let a;*+1 = xk + dx, sk+i = sk + d, and z*+1 = zk + dz. Then, similar 
to inequality (9.15) (also see Exercise 9.4), we have 

1>(xk+1,ak+\zk+*)- j>{xk,8k,zk) < -a||p*|| + y (n + P + TZz) · 

Therefore, choosing a as in (9.16), we have 

(9.29) 
In practice, the step-size a can be determined by a line search along the 
direction pk to minimize the potential function. 

9.3.2 Complexity analysis 
We further study ||p*|| by introducing the following lemma. 

Lemma 9.22 The scaled gradient projection \\pk\\ < 1 implies 

* * - Λ Τ Τ Γ * > 0 ; xk-BTnk>0; -CTnk > 0, 

and 
2n + d - y/2n + d Ah x 2n + d + y/2n + d A k Δ* < Δ < Δ*, 

n+p n+p 
where h = {xk)T(sk - ATnk) + {sk)T{xk - Βτπ") + (z*)T(-CT7r*). 
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Proof. The proof is by contradiction. It is obvious that if sk - ATirk ?■ 0 
or x* - BTnk > 0 or -C^V* γ 0, then 

IIP*II > lb*lloo > i . 

On the other hand, we have 

ΙΙΡΊΙ 
*l|2 

„_.„ / Xk(8k - Ατπ") \ 
= ( ^ ) 2 ! ! Sk(xk-B*nk) -

- "(2n + d)A*e e" 

A e l l 2 I II ( η + ρ ) Δ c ell2 

(Note that the dimension of e is 2n + d here.) Hence, the following must 
be true: 

(<i^M°<2"+'i><1· 
that is, 

2n + d - V5ñT3 A * , 2n + d + y/2n + d A Λ 

1 Δ* < Δ < Δ*. 
n + p n+p 

D 
Now we can prove the following theorem. For simplicity, we assume 

that φ(χ°,80,ζ°) < O(nlogn). 

Theorem 9.23 For any given 0 < e < 1, let n + p = (2n + d4V2n + d)/e. 
Then, under Assumptions 9.5 and 9.6, the potential reduction algorithm 
terminates in at most 0((n + p)2 log(l/e) + (n + /9)dlogiZ) iterations. The 
algorithm generates an e-KKT point {xk^sk^zk) € T and wk G Km of the 
GLCP, either 

(xk)Tsk < e 

or 
sk - ATwk > 0; xk - BTnk > 0; -C^TT* > 0 

and 

(tt*)r(g* - ATnk) + (¿*)T(s* - BTnk) + (^fc)r(-C,T7rfc) 
(a.*)Tefc < € · 
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Proof. The proof directly follows Lemma 9.22. If ||p*|| > 1 for all ife, then 
from (9.29) 

^(«*+1
f**+1,jf*+1) -il>(xk,8k,zk) < - 0 ( l / ( n + p)). 

Therefore, in at most 0({n + p)2 log(l/c) + (n + p)d\ogR) iterations 

xl>{xkj sk,zk) < ploge - dlogJ£ + nlogn, 

and, from (9.28) 
(xkfsk < e. 

As we mentioned before, in this case (xk,sk, zk) is a special stationary point 
with π = 0. Otherwise, we have ||p*|| < 1 for some * < 0({n+p)2 log(l/c)+ 
(n + p)d\ogR). This implies the relations (9.26) and (9.27) from Lemma 
9.22. 

D 

Theorem 9.23 indicates that the potential reduction algorithm is a fully 
polynomial-time approximation scheme for computing an c-approximate 
KKT point of the GLCP. In the following, we present a sufficient condi-
tion to show that a solution to the GLCP always exists, and the potential 
reduction algorithm solves it in polynomial time under the assumptions. 
Moreover, we have 

Theorem 9.24 Let BAT be negative semi-definite. Furthermore, let p = 
n + d + y/2n + d. Then, the potential reduction algorithm generates a solu-
tion to the GLCP in 0((2n + d)2 log(l/c) + (2n + d)dlogR) iterations. 

Proof. Basically, we show that Hp*H > 1 for all k if BAT is negative semi-
definite and p>n + d + y/2n + d. We prove it by contradiction. Suppose 
||p*|| < 1, then 

sk-ATnk>0 xk-BTnk>0 and - Cf1^ > 0. 

Thus, 
(xk-BTnk)T(sk-ATwk)>0, 

that is 

(xk)Tsk - (xk)TATick - {sk)TBTirk + (wk)TBATnk > 0. 

Also note 
-(zk)TCTwk > 0. 
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Combining the above two inequalities, we have 

(zfc)T*fe - (xk)TATnk - (**)τΒτπ* - ^fC^n" > -{nk)TBATnk > 0 

or 

Δ = (xk)T(8k-AT*k) + (sk)T(xk-BTTrk) + (zk)T(-CTirk) 
= (xk)Tsk + (xk)T8k - (xk)TAT*k - (β*)τΒτπ* - (Z*)TCT7T* 

> (**)Τ** = Δ*. 

From (9.30), we have 

^ ( ( C T i - 1 ) ' 1 2 " ^ 1 · 
which is a contradiction. 

D 

Clearly, the result for the LCP with positive semi-definite matrix is a 
special application of Theorem 9.24. 

9.3.3 Further discussions 
We now remove Assumptions 9.5 and 9.6 that were used in the above the-
orems and show that our main results remain valid. Note first that the 
z-boundedness assumption is automatically unnecessary for LCP. 

We now remove the assumption of availability of the initial point. We 
apply the linear programming Phase I procedure to find a feasible solution 
for the system 

(A,B,C)u=:q and u > 0. 

In polynomial time, an interior-point algorithm either declares that the 
system is infeasible, or generates a max-feasible solution ft. Thus, we have 
detected those variables that must be zero in every feasible solutions of 
(GLCP) (in this case, the feasible region has empty interior). Then, we 
eliminate those variables from the system. For example, if x\ is zero in 
every feasible solution of (GLCP), we can eliminate X\ and then move 8\ 
into z\ if both x\ and s\ are zero in every feasible solution, we can eliminate 
both of them. Thus, we will have a reduced system where the feasible region 
has a nonempty interior, and a feasible solution is at hand. 

Hence, Theorems 9.23 and 9.24 hold without the assumption. It has 
been shown that every KKT point of the LCP with a row-sufficient matrix 
is a solution of the LCP. Therefore, we have Corollary 9.25. 



310 CHAPTER 9. NONCONVEX OPTIMIZATION 

Corollary 9*25 The potential reduction algorithm is a fully polynomial-
time approximation scheme for generating an ¿-approximate stationary point 
of the LCP with row-sufficient matrices, where every KKT point is a solu-
tion of the LCP. 

We give three examples of the GLCP and try to illustrate the conver-
gence behavior of the algorithm. These experiments are very preliminary. 

Example 9.4 

/ 0 1 10 \ 
A = 0 1 1 ] , B = - / , C = 0, and q = e. 

\ 0 0 2 / 

The starting point is x° = (2; 2; 2). The algorithm consistently generates 
the solution to the LCP, x* = (0; 0.5; 0.5) and s* = (4.5; 0;0). In this 
example, A is a so called PQ matrix, and it is indefinite. 

Example 9.5 

/ 0 1 10 \ 
¿ = [ 0 0 1 I , B = -J, C = 0, and q = e. 

\ 0 0 2 / 

The starting point is again x° = (2; 2; 2). The algorithm consistently 
generates a KKT point of the LCP, 2 = (0;α;1), $ = (9 + a;0;l) and 
fr = (0; - 3 ; 1) for some a > 0. Note that there is no solution to the GLCP 
in this example. 

Example 9.6 

/ 0 1 10 \ / 1 
¿ = 0 0 1 , B = -J, C = 0, and g = 1 

\ 0 0 0 / \ - 1 

The starting point is again x° = (2; 2; 2). The algorithm consistently 
generates a KKT point of the LCP, x = (0;α;1), 5 = (9 + <*;0;1) and 
7f = (0; - 1 ; 1) for some a > 0. Again, there is no solution to the GLCP in 
this example. 

9.4 Indefinite Quadratic Programming 

Consider the quadratic programming (QP) problem and its dual (QD) in 
Section 1.3.6. Denote by T¿ the (dual) feasible set {(x,2M) : ATy + s — 
Qx = c, x,s> 0}. Fbr simplicity we assume that A has full row-rank. 
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If Q is positive semi-definite in the null space of A> meaning that 
H := NTQN is positive semi-definite where N € K*x(n~m) is an orthonor-
mal basis spanning the null space of A, then (QP) is a convex optimization 
problem and it can be solved as a monotone linear complementarity prob-
lem. The algorithm presented in this section handles general QP problems: 
convex or nonconvex. For the simplicity of our analysis, throughout this 
section we let (QP) be a non-convex problem, e.g., Q have at least one 
negative eigenvalue in the null space of A. Then, (QP) becomes a hard 
problem, an NP-complete problem. 

No time complexity bounds have been developed for various QP meth-
ods. (Of course, an enumerative search approach will solve (QP) but it 
possesses an exponential time bound.) These algorithms generally gen-
erate a sequence of points that converges to a stationary or KKT point 
associated with (QP), which satisfies 

xT8 = 0, x € jFp, and (a;, j/, s) € Τ&. 

For any x € Tp and (a:,y, s) € Td, the quantity xTs = q(x) - d(x,y) is the 
complementarity gap. 

Here we assume that the feasible set, Tv, of (QP) has a strictly positive 
feasible solution. For any given (A, b), to see if Tv possesses a strictly posi-
tive feasible solution can be solved as a single linear program in polynomial 
time, so that the above assumption is without of loss of any generality. We 
make an additional assumption that the feasible region is bounded. With 
this assumption (QP) has a minimizer and a maximizer. Let ¿ and z be 
their minimal and maximal objective values, respectively. 

An e-minimal solution or e-minimizer, c € (0,1), for (QP) is defined as 
an x e Tp such that: l 

z — z, "*" 

Similarly, we define an e-KKT solution for (QP) as an (x, y, s) such that 
x € Tv, (a:,y,s) € Td% and 

xTs = q(z)-d(x,y) < ^ 
z — z. z — z. ~~ 

Note that the minimizer of (QP) is a special KKT point such that q(x) = 
d(s,y)=£. 

In this section we extend the potential reduction techniques described 
earlier to compute an c-KKT point in 0((^-log^-f n4logn)(log-£ + logn)) 

1Vavaeis [451] discussed the importance to have the term (2 - ¿) in the criterion for 
continuous optimization. 
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arithmetic operations. We also show that Q is positive semi-definite in the 
null space of the active set at the limit of this point, indicating that the 
limit satisfies the second-order necessary condition to be a local minimal 
solution. The result is the first approximation algorithm whose running 
time is almost linear in *, which was an open question in the area of 
nonlinear optimization complexity. 

9.4.1 Potential reduction algorithm 

The potential function used to solve (QP) is 

n 
V(x) = Pn+p(x, z) := (n + p) log(q(x) - z) - ]£log(*¿), 

¿=i 

where 0 < x € ^>, parameter p > 0, and z < ¿. Unlike solving LP, here z 
is unchanged during the iterative process. 

Starting from a point 0 < x° € Tv, the potential reduction algorithm 
will generate a sequence of {xk} € Tp such that ^(a:**1) < V(xk). For 
simplicity and convenience, we assume x° = e, and x° is the analytic center 
of Tp. Our results hold even if x° is replaced by an approximate center. 
Therefore, this assumption is also without loss of generality. 

To determine how much the potential function must be reduced to gen-
erate an c-KKT point, recall from Chapter 2 that x° is the analytic center 
of J>, 

F, D Sin := [x € Tv : \\{X«Y\x - *°)|| < 1} . 
Tv C £oui:={x€?p: \\(X°rl(x-x°)\\<n}. ^ól) 

In other words, Tp is inscribed by ellipsoid &n and outscribed by ellipsoid 
¿out. The two ellipsoids are concentric, where the ratio of their radii is n. 

Thus, for any x € Tv 

n 
] T log(4/*¿) > -nlog(n + 1). (9.32) 
¿=i 

Note that if 

(n + p) log(g(a?*) - z) - (n + p) log(g(ar°) - z) < (n + p) loge 

or 
n 

V{xk) - 7>(x°) < (n + p) logc + £log(*J/a£) (9.33) 
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we must have 

q{xk) -2. < <?(**) - * < g(sfc) - * < c 

2 - 2 - g(x°) - 2 - q(x°) - z ~ ' 

which implies that a;* is an e-minimizer and, thereby, an e-KKT point. 
from relations (9.32) and (9.33), xk becomes an e-minimizer as soon as 

V{xk) - V(x°) < (n + p) loge - nlog(n + 1). (9.34) 

Given 0 < x 6 JFP, let Δ = q(x) - z and let d» € M{A), be a vector 
such that x+ := x + d« > O. Then 

(n + p) log(q{x+) -z)-(n + p) log(g(x) - z) 

= (n + p) log f Δ + |djQd, + (Qa: + c)Tdx J - (n + p) log Δ 

= (n + p) log f 1 + (±dlQdx + (Qx + c ) 7 ^ ) / Δ ) 

< ^{jdlQdx + (Qx + c)Td,y 

On the other hand, if ||*-1</χ|| < a < 1 then 

- ¿ l o g « ) + ¿ 1 0 6 ^ ) < -eTX-idm + ^Ls.m 

Thus, if | | Χ ~ ^ | | < a < 1 then 3+ = x + 4 > 0 and 

P(x+) - Vix) 

a2 

- W^T) ■ ( 9 · 3 5 ) 

lb achieve a potential reduction, we minimize a quadratic function sub-
ject to an ellipsoid constraint. We solve the following problem at the Arth 
iteration: 

minimize ^Qdx + {Qxk + c - fyx^efd* 

s.t. Adx = 0, 

||(Χ*)-ι<*.ΙΡ<α?. 
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Let 

Q* = XkQXk, c* = XkQxk+Xkc—^— e, Ak = AXk, and dt. = (X*)"1^ 
n + p 

Then the above problem becomes 

(BQP) minimize ^ K ) := $(d!x)
TQkdx + (c*)T< 

s.t. ¿*tfx = 0, 

Kll2<a2· 
Let Nk € iZnx(n~m) be an orthonormal basis spanning the null space of 
Ak, where (Nk)TNk = J, and let Hk = (Nk)TQkNk € *(*-»>*(»-«> ^ 
#* = (JV*)Tc* € Än""m. Then «ζ = JV*t; for some υ € Rn~~m and problem 
(BQF) can be rewritten as 

(BHP) minimize \vTHkv + (gk)Tv 

s.t. IMI < a2. 

This is the so-called ball-constrained quadratic problem in Section 1.5.5. 
We assume that, for now, this problem can be solved efficiently (we will 
establish this fact later). 

The solution d'x of problem (BQP) satisfies the following necessary and 
sufficient conditions: 

(Q* + /i*JK-(4*)Ty(M*) = -c* for some 2/(μ*), 
Akdíx = 0, 

μ* > max{0,-A*}, (9.36) 

and II4II = a, 

or, equivalently, the solution v of (BHP) satisfies the following necessary 
and sufficient conditions: 

(Hk + ßkI)v = -£*, 
μ» > max{0,-A*}, ( 9 3 ? ) 

and ||t/|| = a, 

where A* = A(Hk), and λ(Η) denotes the least eigenvalue of matrix JET. 
Since Q is not positive semi-definite in the null space of A and xk is strictly 
positive, we must have A* < 0 (Exercise 9.8). 
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Let 
β(μ*) = Q(xk + da) + c- Ατν(μ1') and 

p* = Qkd'x + c* - {Α*)τν{μ»)) = Χ*8{μ") - ¿ £ e . i9·3**) 

Then, 

μ' = ||ρ*||/α, d'x = - ^ (9.39) 

and 

•ML) = | K ) T Q V , + (c*)^x 

= (e4)T(Q*4 + c * ) - | K ) r Q V x 

= (4)T«?*4 + c* - μ*) W ) ) - \(dXQkd', 

= -aVfc-|«)TQ*4 

= - a V - \vT(Nk)TQkNk{Nk)Tv 

= - a V + y|A*| 

< - £ ^ = - 2 0 . (9.40) 

This implies that 

Thus, not only we have xk+x := xk + dx >0 but also, from (9.35), 

n*k+l) - V{xk) < -f 2¿Vl l + 2 ^ J · (9.41) 

Here we see that if 
n + p fc n + ptt ku ^ 3 
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and if a is chosen around 1/4, then 

V{xk+l)-V(xk)<-^. 

Therefore, according to the implication of (9.34) we have 

Theorem 9.26 Let μ* and a = 1/4 be in condition (9.36). Then, if 
22¡|j¡£a/i* = ^¡?||pfc|| > f for all k, the algorithm returns an t-minimizer of 
(QP) in 0{(n -f p) log \ + nlogn) iterations. 

The question is what can we say if ^#||p*ll < f at some k. The 
next section will show how to calculate a suitable z such that using p = 
2n {n+y/n) _ n gUarantees that x*+1 must be an e-KKT point whenever 
¿2^ ||p* || < 1. Thus, the number of total iterations to generate an e-minimal 
or c-KKT solution is bounded by 0(*- log* 4- nlogn). The algorithm can 
be simply stated as follows: 

Algorithm 9.3 Letn + p = 2n2(n + y/n)/e, a = 1/4, z <£, and x° be an 
approximate analytic center of Tv. Set k := 0. 

While ψαμ* = ^ | | p * | | < f in (9.36) or g $ 5 f < e do 

1. Solve (BQP). 

2. Letxk+l =xk+Xkd'x. 

3. Let k := k + 1 and return to Step 1. 

9.4.2 Generating an 6-KKT point 
We first illustrate how to compute a suitable lower bound, z, for the (QP) 
minimal value z, A z can be generated by solving, again, a ball-constrained 
problem: 

minimize q{x) - q(x°) = \(x - x°)TQ(x - x°) + (Qx° + c)T(x - a;0) 

s.t. A(x - x°) = 0, 
x € Sin-

Let x be the minimizer. Then, according to Exercise 9.10 and relation 
(9.31), i.e., the ratio of the radii of the inscribing and circumscribing ellip-
soids to Tp is 1/n, we have 

q{x0)-q{&)>±(q{x°)-¿). 
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Thus, we can assign 

x := q(x°) -n2(q(x°) -*(*)) . (9.42) 

Note that an approximate x, say q(x°) - q(x) > (q{x°) - g(£))/l.l, would 
establish a lower bound * := q(x°) - l.ln2(g(a:0) - g(a;)). This bound is 
perfectly acceptable for establishing our complexity result as well. 

We now back to the case that ^ | | p f c | | < f. Actually we shall address 
a weaker case that ^j?||p*|| < 1, that is, 

\\ϊ+£χ>,{μ*)-β\\<1. 

First, we must have 

β(μ*) = Q(xk +dx) + c- ATyfak) = Qxk+l + c - Ατν{μΗ) > 0. 

Furthermore, 

||!££χ>.(μ')-«ΙΙ> 

~ \ nAk ) 

Hence, ^\\pk\\ < 1 implies 

n-y/ñ {xk)Ts{ßk) n + y/ñ 
η + ρ ~" Δ* """ η + ρ " 

Moreover, 

(ζ*+1)τ*(μ*) = (χ*)Τ(Χ*)-1Χ*+1β(μ*) 
< \\{Xk)-*Xk+l\\{xk)Tstf) 
< (1 + α)(**)τβ(μ») < 2(χ*)Γβ(μ*). 

Therefore, we have 

( ^ ' f i p i ' ) _ (χ*+1)Γ8(μ*) 2(n + yft) c 
q(xk) — z Δ* — n + / j — n2 
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or 
( s* + 1 ) r * ( / i* ) t 

q(x") - q(x°) + nHq(x°) - q(x)) ~ n* ' 

Consequently, if q{xk) > q(x°) then 

(a;fc+1)ra(/ifc) c 
n2(g(ar*) - q(x)) ~ n*5 

otherwise 

n2(9(*°) - «(*)) "3 ' 

Both of them imply that 

(χ»+ψ8(μ><) 
2-q(x) ~t 

since q{x°) < z and q(xk) < z, which further implies that 

since q(x) > a. That is, a:*+1 is an £-KKT point for (QP). To summarize, 
we have 

Theorem 9.27 Let z and p be chosen as above and let a < 1 in condition 
(9.36). Then, μ*\\ά'χ\\ = ||p*|| < £¿ implies that xk+l := xk + Xkdx is an 
e-KKT point for (QP). 

9.4.3 Solving the ball-constrained QP problem 
We now analyze solving (BQP), or (BHP) equivalently, in each iteration 
of the algorithm. It may be impossible to solve them exactly, but we can 
efficiently solve them approximately to guarantee both Theorems 9.26 and 
9.27 hold. We give a complexity bound on obtaining such a sufficient solu-
tion. 

Consider the necessary and sufficient conditions (9.36) or (9.37). It has 
been shown that μ* is unique in these conditions and (see Exercise 9.9) 

γμ" < -\(d'x)
TQ% - (c*)T<C 
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Note that 

< 9(*V?(**+1) + ylMIIKII 

= q(xk)-q{xk+l)+q{xk)~Zyfa* 

V 2ny/n{n + y/τϊ)) 

Let 

Δ* 1 + 

R := A + / - Λ /-Λ - (9-43) 
a2 any/n(n + 0*) 

Then 

0 < μ* < Rk := ΑΔ*, 

where Ä* is a computable upper bound at each iteration. Note that for 
a = 1/4, e < 1 and n > 1, R < 34. 

Fbr any given μ, denote solutions of the top linear equations by <ϊχ(μ) in 
conditions (9.36) and υ(μ) in conditions (9.37). It can be also shown that 
||dj.(/i)|| = ||ν(μ)|| is a decreasing function for any μ > |λ*|. Besides, for any 
given μ we can check to see if μ > \Xk | by checking the definiteness of matrix 
Hk + μΐ, which can be solved as a LDLT decomposition. These facts lead 
to a bisection method to search for the root of ||βζ.(μ)|| = ||υ(μ)|| = a while 
μ € [|A*|,Ä*] C [0,Rh]. Obviously, for a given e' € (0,1), a μ, such that 
0 < μ ~ μ* < e', can be obtained in log(Rk/e') = log(ÄAfc/c') bisection 
steps, and the cost of each step is 0(nz) arithmetic operations. 

The remaining question is what e' would be sufficient to carry out our 
main algorithm: we generate an xk+l such that either the potential function 
is decreased by a constant or xfc+1 is an e-KKT point. We discuss the 
condition of c' in two cases: Case (A) of ||p*|| < *&-, i.e., the KKT point 
or termination case; and Case (B) of otherwise. 
(A) The KKT point case. 

Let us consider the termination iteration where 

ΙΙΡΊΙ < 4(n + p) 
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From relation (9.39) we see 

0 < μ* < 
4(n + p)a ' 

Let the right endpoint of the interval generated by the bisection search be 
denoted as μ. If we require μ such that 

,.fc Δ* 

then 

Also note IftOOII < 

U N ^ i - / i I 

μ* <μ< 

a since μ > μ*. 

\\iuf(ii\\\ < 

" 4(n + p)a ' 

A* 
(n + p)a ' 

This leads to that 

IM < — . 

and, from Theorem 9.27,3+ := sfc 4-Χ*<ίχ{μ) > 0 must be an e-KKT point. 
Thus, noticing the choice of p and a = 1/4, in this case we can choose 

Δ* 
c' < —TT=—7=r (9.44) 

~ 2n2(n + v^) 

to meet the requirement. 
(B) The non-KKT point case. 

Now let us consider the non-KKT point iteration, i.e., 

HP*II> 3 Δ * 4(n + p) 

In this iteration from (9.39) and (9.40) we have 

* ^ 3Δ* , * . ku 3Δ*α 
A(n + p)a , v *v^ " ~ 8(n + p) ' 

Thus, if we could generate a dCx such that 

9 K ) - 9 K ( M ) ) < 2 4 ( ^ 7 ) ^ - 6 - - " Γ 

and 

Kll<«, 

(9.45) 
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then 
>(j\< <*ΙΙΡ*ΙΙ «ΙΙΡΊΙ _ <ΦΊΙ 1<"*>- 2 ' 6 " 3 

which implies that 

and we would still have xk + Xkd'x > 0 and, from (9.35) and a = 1/4, 

7>(**+*^J-P(**)<-ij. 

In other words, (ζ. is an acceptable approximation to <4(/**) t o reduce the 
potential function by a constant. 

We analyze the complexity bounds to compute such an approximation. 
Again, let the right endpoint of the interval generated by the bisection 
search be denoted as μ. Then, μ > μ*. If μ = μ*, then we get an exact 
solution. Thus, we assume μ > μΗ > |λ*|. We consider two sub-cases, the 
one (B.l) of μ* > |λ*| + 5e' and the opposite case (B.2) of μ* < |λ*| + 5c'. 
(B.l) . In this case, we have 

¿i*>|A*|+5c'. 

Note that 

\Κ{μ")\?-¥Λμ)\? 

= υτ(μ*)(Γ - {Hk + μ*/)(#* + μΙ)-*{Η* + μ*/))υ(μ*) 
= «τ(μ*) (2(μ - μ"){Η" + μΐ)"1 - (μ - μ*)2(#* + μ/)"2) ν(μ*) 

< \W*m ^ _ | λ · | ) ( (μ - |Α» | ) ) ^ 

« |hrfn»)|pf »fr-V) (A*-M*)a ϊ 
|λ*|) ((μ-Μ») + (μ*-|λ*|))^ 

_ , ( μ - μ * ) 2 + 2(μ-μ*)(μ*-|Α*|) 
((μ-μ*) + (μ*-|λ*|))2 

0 V ((μ_^) + (μ*-|λ*|))^ 

- α V ((μ-μ*) + 5€')ν· 
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In 0(log(A*/e')) bisection steps, we have μ - μ* < e'. Then, 

ΙΚ(μ*)ΙΙ2- |Κ(Μ)ΙΙ2<^· 

On the other hand, 

= ±υ{μ)τΗ*υ(μ) + {9")Τν{μ) - \vfrk)THkv<j¿) - ( / ) W ) 

= \(Η"υ(μ) + 9")τ(ν(μ) - ν(μ")) + \(Η"ν(μ") + / )Γ(«(μ) - ν(μ")) 

= -\μν{μ)Τ{ν{μ) - ν(μ")) - \μ^{μ")Ί\ν(μ) - ν(μ")) 

= -±(μ - μ")ν{μ)τ{ν{μ) - υ{μ»)) - ±μ*(||«(/ι)||2 - ||υ(/**)||2) 

^ , 2 llttV 

< ^ 3 + - τ Γ - · 
Thus, if we impose the condition 

72~4(n + p) - 72 ' 
t V < 1 3Δ^α < oV 

then (9.45) holds, i.e., 

and <ζ(μ) will be an acceptable approximation to <4(μ*). Note that choos-
ing 

'*4w£,/g) ( 9 · 4 6 ) 

will meet the condition, due to the selection of p and a. 
(B.2). In this case, we have 

/i*<|A*| + 5e#. 

Thus, in 0(log(Rk/e')) bisection steps, we have μ-μ* < c' so that μ-|λ*| < 
6c'. However, unlike Case (B.l) we find <ζ>(μ) (or ν(μ)) is not a sufficient 
approximation to <Ιχ(μ

Η) (or ν(μ*)). When we observe this fact, we do the 
following computation. 

Let qk, \\qk\\ = 1, be an eigenvector corresponding the A*, the least 
eigenvalue of matrix Hk. Then, one of the unit vector e¿, j = 1,..., n — m, 
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must have \ejqk\ > l/y/n - m. (In fact, we can use any unit vector q to 
replace e¿ as long as qTqk > l/y/n - m.) Now solve for y from 

(# * + μ/)2/ = β, 

and let 
v = ν{μ) + ¿y, 

where <S is chosen such that ||υ|| = α. Note we have 

(lT* + M/)ü = -e* + fcj, 

and in the computation of υ(μ) and y, matrix Hk -f μΐ only needs to be 
factorized once. 

We have that 
M * VÍT=ñ¿-|A·!) 

and 
1*1 < 2α(μ - \Xk\)Vn - m < 2a(6c')Vn - m . 

Let ίζ = ΛΓ*υ. Then, we have 

<,Χ)-9Χ(μ*)) 

= |«Tíffet; + (gk)Tv - \v^k)THkvijik) - ( f f * ) W ) 

= \{Hkv + gk)T(v - ν(μ")) + \(Hkvfak) + gk)T(v - v(jik)) 

= ¿(JST't; + gk - δβ;)τ(υ - ν(μ")) + \&e]{v - υ{μ")) 

-|A(/**)T(«-»(/)) 

= ~\μνΤ(ν - ν(μ")) + ±6ef(v - tifo*)) - £ A f o * » - t>fo*)) 

= - | fo t , + μΜμ*))Γ(« - tifo*)) + \sej(v - ufo*)) 

= - | ( μ - / ) f T ( v - *>fo*)) + \sej{v - tifo*)) 

< do? + 2(6e')a3V«:r^ . 

Thus, if we impose the condition 

e'a3 + 12e'a2vE"^ < ^ß^-r , 
- 24(n + p) 
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then (9.45) holds, i.e., 

and dx must be an acceptable approximate to ά'χ(μ
Η). Note that choosing 

- 52n2(n + y/n)y/n - m ' 

will meet the condition, due to the selection of p and a. 
Comparing (9.44), (9.46), and (9.47), we choose 

eA* 

(9.47) 

52n2(n + y/n)y/n - m ' 

will meet the conditions for all three cases. Hence, our bisection method 
will terminate in at most 0(log(A/e) + logn) steps, where constant R < 
34 is defined by (9.43), and it either finds an e-KKT point in Case A of 
the termination iteration, or calculates a sufficient approximation ά'χ(μ) in 
Case (B.l) of the non-termination iteration, or spends additional 0((n — 
m)3) arithmetic operations to generate a sufficient approximation d'x in 
Case (B.2) of the non-termination iteration. Thus, the running time of the 
bisection method in each iteration is bounded by 0(n3(log(l/c) + logn)) 
arithmetic operations. To summarize: 

Theorem 9.28 The total running time of the potential reduction algorithm 
is bounded by 

O 11 — log- +n4logn) flog- + lognj J 

arithmetic operations. 

One comment is about z} the lower bound for ¿, used in our algorithm. 
If we somehow know £ (we probably do in solving many combinatorial 
optimization problems), then we can choose n + p = 2(n + y/n)/e and 
reduce the overall complexity bound by a factor n2. 

Finally, when c -> 0, we must have μΗ -> 0, so that |λ*| -> 0. At the 
limit, A* represent the least eigenvalue of Q in the null space of all active 
constraints: Ax = b plus Xj = 0 for every j that z$ -* 0. This implies that 
Q is positive semi-definite in the null space of all active constraints of the 
limit. This is the second order necessary condition for the limit being a 
local minimal solution. 
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9.5 Approximating Quadratic Programming 
In this section we consider approximating the global minimizer of the fol-
lowing QP problem with certain quadratic constraints: 

£(Q) := minimize q(x) := xTQx 
8·*· Σ£=ι aiáx] = &*> t = 1, . . . , m, 

—e < x < e, 

where symmetric matrix Q 6 Λ4η, A = {a^·} € fcmxn and 6 e 7lm are 
given and e e 7£n is, again, the vector of all ones. We assume that the 
problem is feasible and denote by &(Q) its global minimizer. 

Normally, there is a linear term in the objective function: 

q(x) = xTQx + cTx. 

However, the problem can be homogenized as 

minimize xTQx +1 · cTx 
s.t. Σ"= 1 cup) -bu i = 1, . . . , m, 

- e < a: < e, - 1 < ¿ < 1 

by adding a scalar variable L There always is an optimal solution (j£,i) for 
this problem in which t = 1 or i = —1. If 1 = 1, then JE is also optimal for 
the original problem; if í = - 1 , then -& is optimal for the original problem. 
Thus, without loss of generality, we can assume q(x) = xTQx throughout 
this section. 

The function q(x) has a global maximizer over the bounded feasible 
set as well. Let q := —¿(—Q) and g := g(Q) denote their maximal and 
minimal objective values, respectively. We now present a "fast" algorithm 
to compute a 4/7-approximate minimizer, that is, to compute a feasible i , 
such that 

9.5.1 Positive semi-definite relaxation 

The algorithm for approximating the QP minimizer is to solve a positive 
semi-definite programming relaxation problem: 

g(Q) := minimize Q · X 
s.t. Ai · X = bi, i = 1, . . . , m, (9.48) 

d(X) < e, X y 0. 



326 CHAPTER 9. NONCONVEX OPTIMIZATION 

Here, A% = diag(oi), a» = (a« , . . . , a*n), and unknown X € Mn is a sym-
metric matrix. Furthermore, d(X) is a vector containing the diagonal com-
ponents ofX. Note that d(X) < e can be written as /¿•Jf < l , j = l , . . . ,n , 
where /,· is the all-zero matrix except the ith diagonal component equal to 
1. 

The dual of the relaxation is 

g(Q) = maximize eTz + bTy 
s.t. QhD{z) + Y^iViAu *<0, 

(9.49) 

where D(z) is the diagonal matrix such that d(D(z)) = z € 7ln. Note that 
the relaxation is feasible and its dual has an interior feasible point so that 
there is no duality gap between the primal and dual. Denote by 2L{Q) and 
(yJÍQ)il(Q)) an optimal solution pair for the primal (9.48) and dual (9.49). 
For simplicity, in what follows we let z = z(Q) and J£ = 2C(Q)· 

We have the following relations between the QP problem and its relax-
ation: 

Proposition 9.29 Let g := g(Q), q := -g(-Q), £ := £(Q), p := -£( -Q) , 
(&*) = (-]£(-Q),-£(-Q)). Then, 

i) q is the maximal objective value of xTQx in the feasible set of the QP 
problem; 

ii) p = eTz + bTy and it is the maximal objective value of Q · X in the 
feasible set of the relaxation, and D(z) + Y%LX y%Ai - Q y 0; 

iü) 

£ < £ < Í < P-

Proof. The first and second statements are straightforward to verify. Let 
X = £ZTe Mn. Then X 10, d{X) < e, 

n 

Ai · X = £ T J4¿£ = ]T^a*¿(%)2 = 6», i = 1,. . . ,m, 
i=i 

and <? · X = £ τ ( & = q{$) = ¿(Q). Thus, we have g(Q) > £(<?), or £ < g. 
Similarly, we can prove g(-Q) > £(-{?), or p > ξ. 

Since 2L is positive semi-definite, there is a matrix factorization J£ = 
(ill > · · · >Un) € ^Λ Χ Τ\ i-e·» 3Lj is the jth column of H, such that J£ = J£TZ. 
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Then, after obtaining 2t and J£, we generate a random vector u uniformly 
distributed on the unit sphere in Kn and assign 

x=Ra(ZTu), (9.50) 

where 
22 = diag(||ii,||, ·. -, I M ) = diag(v^ñ' · · ·»vSD< 

and, for any i 6 R", σ{χ) 6 Tln is the vector whose jth component is 
sign(xi): 

. / v Í 1 if it > 0 
sign^·) = | _ j o t h ^ w ¡ s e 

It is easily see that £ is a feasible point for the QP problem and we will 
show later that its expected objective value, Euq(x), satisfies 

Euq(x)-g 7Γ 4 
« - £ ~ 2 - 7 ' 

That is, á is a 4/7-approximate minimizer for the QP problem expectantly. 
One can generate u repeatedly and choose the best x in the process. Thus, 
we will almost surely generate a x that is a 4/7-approximate minimizer. 

9.5.2 Approximation analysis 
First, we present a lemma which will be only used in our analysis. 

Lemma 9.30 Let u be uniformly distributed on the unit sphere in 7ln. 
Then, 

£(Q)= minimize Eu{a{VTu)TDQDa{VTu)) 
s.t. Ai · (VTV) = 6¿, i = l , . . . ,m, 

IN|<1, ¿ = l,...,n, 

where 
D = diag(||t;1||,...,|K||). 

Proof. Since, for any feasible V, Da(VTu) is a feasible point for the QP 
problem, we have 

£(Q) < Ett(a(VTu)TDQDa{VTu)). 

On the other hand, for any fixed u with ||u|| = 1, we have 

En{c{VTu)TDQDc{yTu)) = ¿ ¿ ?«|MIIM|E«(*(^«Mt;JU)). 

(9.51) 
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Let us choose t>,· = -jarX.,» = 1, . . . , n. Note that V is feasible for the above 
problem. Then 

Thus, 

which implies that for this particular feasible V 

q(Q) = q(x) = Eu(a(VTu)TDQDa(VTu)). 

These two relations give the desired result. 

D 

For any function of one variable f{t) and X € 7ln x n , let f[X] € Knxn 

be the matrix with the components f(%ij)· We have the next technical 
lemma whose proof is an exercise. 

Lemma 9.31 Let X t 0 and d(X) < 1. Then axcsin[X] t X. 

Now we are ready to prove the following theorem, where we use "in-
fimum" to replace "minimum," since for simplicity we require X to be 
positive definite in our subsequent analysis. 
Theorem 0.32 

g(Q) = infimum \Q · (D a r c s i n p - 1 ^ - 1 ] ! * ) 
s.L Ai · X = 6i, i = 1,. . . ,m, 

d{X) < e, X y 0, 

D = diag(V3cn,. -., \ / 3 ^ ) . 

Proof. For any X = F T F x 0, d(X) < e, we have 

Eu(a{vTu)a(vJu)) = 1 - 2Pr{a(vfu) φ a(vju)} 

We have the following relation: 2 

\ INI INI J * vIMIINI/ 
2 Lemma 1.2 of Goemans and Williamson [141]. 
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as illustrated in Figure 9.2. Then, noting arcsin(i) + arccos(i) = f we have 

Eu(<r(vTuMvJu)) « ¿arcsin ( ¡ j ^ g ^ ) , 

and using equality (9.51) we further have 

Eu(a(VTu)TDQDa(VTu)) = ¿ ¿ g ^ i M ^ 

= -Q*{D arcsinííT ̂ Í T *]D). 
7Γ 

Finally, Lemma 9.30 gives us the desired result. 

Vj/llVjII 

Figure 9.2. Illustration of the product σ( |^ | ) · ^ ( f ^ ) on the 2-
dimensional unit circle. As the unit vector u is uniformly generated along 
the circle, the product is either 1 or - 1 . 

Theorem 9.32 and Lemma 9.31 lead to our main result: 

Theorem 9.33 We have 

i) 

P-g>-(p-E). 
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H) 

111) 

2 

P-l>q-g>—j^-(p-E)· 

Proof. We prove (i). Recall I = -¿(-Q) > 0, jj = -y(-Q), p" = 
-fi(-Q) = eT2 + 6T5, and D(z) + ΣΖι && - Q h 0. Thus, for any 
X >- 0, d(X) < e and D - diag(v/xn*,..., yé^T), from Theorem 9.32 

fi-fuei 
< Q-^arcsinp-'XD-1]!)) 

( m m \ 

Q - D{z) - £fcAi + £(z) + £fc¿< · (Darcsinfi)-1^!)-1]/?) 
<=1 fel / 

= ( Q - D{z) - ¿ f c A ) · (Parcsmfir1*!»-1^) 

+ (¿K*) + ¿ M i ) · (ParcsinlD-1^!)-1]!») 

< (Q - D{z) - ¿ y ^ j j · {DD-'XD-'D) 

+ (D(Z) + ¿ » ( A j · (Darcsinjir1*!)-1^) 

m 

(since Q - D(z) - 5 3 g ^ X 0 and aicdnlD^XD-1] >; D^XD"1.) 
<=i 

= (Q-.D(*)-¿;M<)·* 

+ Í D{z) + ¿ M < j . (Darcsinp-^I»-1]!?) 

= g . X - í i 3 ( * ) + ¿ S , A , U J r 
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+ [DM + ¿ » Í A J · {D&rcsmlD^XD-^D) 

= Q*X-zTd(X)-'£/giard(X) 
» = 1 

m 
+zTd(Daxcsm[D-1XD-1]D) + ^f tafdiDarcs int ir^ir 1 ] /? ) 

= Q.X-zTd(X)-fb + zTqd(X))+yTfy) 

(since diParcsmlD-1^!»-1]^) = ~d(X) and afd(X) = 6<) 

< Q.X + (^-l)(2Te + yTb) 

(since 0 < d(A") < e and £ > 0) 

= Q . X + ( f - l ) j 5 . 

Let X y 0 converge to 2L> then Q · X -> £ and we prove (i). 
Replacing Q with - Q proves (ii) in the theorem. 
Adding the first two inequalities gives (iii) of the theorem. 

The result indicates that the positive semi-definite relaxation value p—£ 
is a constant approximation of q - <j. Similarly, the following corollary can 
be devised: 

Corollary 9.34 LetX = VTV y 0, d(X) < e, A^X = h (i = 1, . . . ,m;, 
D = diag(<v/ijir,..., ^Xnn)t oná í = ^ (V^u) where u with \\u\\ = l i s 
a random vector uniformly distributed on the unit sphere. Moreover, let 
XyO-+2L. Then, 

Urn Eu(q(*)) = Um |<2 · (D arcsin[ir'XÍT ̂ D) < | 2 + (1 - | ) J . 

Finally, we have the following theorem: 

Theorem 9.35 Let x be randomly generated from 2C- Then 

* * W - * < £ - ! < 4/7. 
9 -£ ~2 
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Proof. Since 

P>Q>-P+{1--)P>(1--)P + -P>i>p, 

we have, from Corollary 9.34, 

E»g(*)-g < jg + ( l - * ) g - g 

(l"f)(P-£) 
f(P-£) 

A 2 le 

D 

9.6 Notes 

In this chapter we have extended a potential reduction algorithm to solv-
ing the fractional programming problem, general linear complementarity 
problem, and quadratic programming problem. 

For the NEG problem, see Gale [130], Kemeny, Morgenstern and Thomp-
son [220], Jagannathan and Schaible[197], and Robinson [363]. A recent 
description of the problem can be found in Schrijver [373], and Tan and 
Freund [399]. It is easy to show that Assumption 9.3 implies Assumption 
9.4; see Theorem 2 of Robinson [363]. 

The method described here is based on the paper of Ye [474]. Similar 
methods for the fractional programming over polyhedral and nonpolyhedral 
cones were developed by Boyd and Ghaoui [71], Freund and Jarre [121,120], 
Nesterov and Nemirovskii [328], and Nemirovskii [320]. 

The LCP potential algorithm described in this chapter is due to Kojima, 
Megiddo and Ye [228]. Other algorithms can be found in Kojima, Mizuno 
and Noma [229] and Noma [333]. The description of £ is technically similar 
to Eaves' class and Garcia's class. These two classes and some others have 
been extensively studied; see Cottle, Pang and Stone [91]. Since every KKT 
point of the LCP with a row-sufficient matrix is a solution (Cottle et al. 
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[91]), the algorithm is actually a polynomial approximation algorithm for 
solving the class of LCPs with row-sufficient matrices. 

We have shown that the algorithm is a fully polynomial-time approxi-
mation scheme for computing an e-approximate stationary or KKT point, 
which itself is a (nonconvex) linear complementarity problem. (The con-
cept of the fully polynomial-time approximation scheme (FPTAS) was in-
troduced in combinatorial optimization; for example, see Papadimitriou 
and Steiglitz [337].) The result is the first approximation algorithm, whose 
running time is almost linear in *, which was an open question in the area 
of nonlinear optimization complexity; see Vavasis [450]. We would also 
like to mention that algorithms, similar to the one described in this paper, 
have actually been used in practice, and they seem to work very well (e.g., 
Kamarth, Karmarkar, Ramakrishnan, and Resende [213, 214]). 

If (QP) is a convex optimization problem, then it can be solved in 
polynomial time, e.g., see Vavasis [450] and references therein. If Q have 
at least one negative eigenvalue in the null space of A, then (QP) becomes 
a hard problem-an NP-complete problem ([131], [338], [368], and [450]). 
Some proposed algorithms for solving general QP problems include the 
principal pivoting method of Lemke-Cottle-Dantzig (e.g., [90]), the active-
set method (e.g., [138]), the interior-point algorithm (e.g., [213, 214] and 
[469]), and other special-case methods (e.g., [309] and [338]). Other interior-
point methods for nonconvex optimization can be found in Bonnans and 
Bouhtou [68] and Pardalos and Ye [469, 478]. 

Even finding a local minimum and checking the existence of a KKT 
point are NP-complete problems (see, e.g., Murty and Kabadi [311], Horst, 
Pardalos and Thoai [187], Johnson, Papadimitriou and Yannakakis [209], 
and Pardalos and Jha [339]). Finding even an e-minimal or c-KKT point 
are hard problems. Bellare and Rogaway [49] showed that there exists a 
constant, say, }, such that no polynomial-time algorithm exists to com-
pute an ^-minimal solution for (QP), unless P = NP. Vavasis [451] and 
Ye [469] developed a polynomial-time algorithm to compute an (1 - ^ ) -
minimal solution. Using a steepest-descent-type method, Vavasis [450] also 
proved an arithmetic operation upper bound, 0(n3(^f)2), for computing an 
e-KKT point of a box-constrained QP problem, where R is a fixed number 
depending on the problem data. Other results can be found in Fu, Luo and 
Ye [127] and Pardalos and Rosen [338]. 

Now consider (BQP), or (BHP) equivalently. First, a brief history of 
this problem. There is a class of nonlinear programming algorithms called 
model trust region methods. In these algorithms, a quadratic function 
is used as an approximate model of the true objective function around 
the current iterate. The next step is to minimize the model function. In 
general, however, the model is expected to be accurate or trusted only in 
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a neighborhood of the current iterate. Accordingly, the quadratic model is 
minimized in a 2-norm neighborhood, which is a ball, around the current 
iterate. 

The model-trust region problem, (BQP), is due to Levenberg [243] and 
Marquardt [263]. These authors considered only the case when Qk is pos-
itive definite. Moré [308] proposed an algorithm with a convergence proof 
for this case. Gay [132] and Sorenson [387] proposed algorithms for the gen-
eral case, also see Dennis and Schnäble [96]. These algorithms work very 
well in practice, but no complexity result was established for this problem 
then. 

A simple polynomial bisection method was proposed by Ye [469] and 
Vavasis and Zippel [453]. Recently, Rendl and Wolkowicz [357] showed that 
(BQP) can be reformulated as a positive-semidefinite problem, which is a 
convex nonlinear problem. There are polynomial interior-point algorithms 
(see Nesterov and Nemirovskii [327]) to compute an d'x such that q'(d'x) -
q(d'mfak)) < e' in 0(n3 log(Ä*/e')) arithmetic operations. This will also 
establish an 

O 11 — log- + n4 logn J ( l o g - + logn J 1 

arithmetic operation bound for our algorithm. 
In addition, Ye [473] developed a Newton-type method for solving (BQP) 

and established an arithmetic operation bound 0(n3 \og(log(Rk/e'))) to 
yield a μ such that 0 < μ - μ* < έ. The method can be adapted into our 
each iteration. We first find an approximate ¡i to the absolute value of the 
least eigenvalue |λ*| and an approximate eigenvector q to the true qk> such 
that 0 < ¡Á — |λ*| < e' and qTqk > 1/y/n — m. This approximation can be 
done in 0(log(log(J?*/e'))) arithmetic operations. Then, we will use q to 
replace e¿ in Case (B.2) of the non-termination iteration (i.e., ||i>(¿t)|| < a) 
to enhance V{JÁ) and generate a desired approximation. Otherwise, we know 
μΗ > ¡A and, using the method in Ye [473], we will generate a μ € (/£,Ä*) 
such that |μ-μ*| < e' in 0(n3 log(log(Ä*/c'))) arithmetic operations. This 
shall establish an 

O (( — log - 4- n4 logn J log Í log- -f logn J J 

arithmetic operation bound for our algorithm. 
Most recently, there have been several remarkable results on approx-

imating specific quadratic problems using positive semi-definite program-
ming. Goemans and Williamson [141] proved an approximation result for 
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the Maxcut problem where e < 1 - 0.878. Nesterov [323] extended their 
result to approximating a boolean QP problem 

maximize q(x) = xTQx 

Subject to \XJ\ = 1, j = 1,.. . ,n, 

where e < 4/7. 
The positive semi-definite relaxation was first proposed by Lovász and 

Shrijver [247]; also see recent papers by Fujie and Kojima [128] and Poli-
jak, Rendl and Wolkowicz [342]. The material on approximating quadratic 
programming in Section 9.5 is a further generalization of these results. The 
approximated problem has many applications in combinatorial optimiza-
tion; see, e.g., Gibbons, Hearn and Pardalos [137]. 

9.7 Exercises 

9.1 Show that Assumption 9.3 implies Assumption 9.4. 

9.2 Prove Lemma 9.6. 

9.3 Prove Proposition 9.5. 

9.4 Prove in Sections 9.2.1 and 9.3.1 
1. 

^ < K^-*HC8*)-*I < KM-1**+ **>-*<# . 
X1 8 2 

2. 

(n + p) log((x*+1)T«*+1) - (n + p) log((xfc)Te*) 

< ^ ( ( · * ) Γ 4 . + («*)'*)+ ^ ^ . 

3. Inequalities (9.17) and (9.29). 

o 

9.5 For any x, s €ft!j:, prove that 

H{x, s) = 2/ - {XMT - S){S2 + MX2MT)~l{MX - 5) 

is positive semi-definite. 
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9.6 Prove Proposition 9.13. 

o 

9.7 In Proposition 9.21 show that for any (a:,«) €.F 

ll*(*,«>o. 
9.8 // Q is not positive semi-definite in the null space of A, prove that 

DQD is not positive semi-definite in the null space of AD for any positive 
diagonal matrix D. 

9.9 Prove that μ* is unique in (9.37) and 

^k<-\vTHkv-(gk)Tv, 

which implies 

γμ" < -\&)TQkd!x - (c*)T<C 

9.10 (Theorem 4 of [469]) Given r > 0 and let d(r) be the minimizerfor 

minimize q(d) := \dTQd + cTd 

s.t. Ad = 0, 

l|d||2<r2. 

Then, forO<r<R 

q(0)-q(d(r))>£(q(0)-qm)))> 

9.11 Given &, the exact global minimal objective value of a QP problem, 
develop an approximation algorithm for finding an KKT point of the prob-
lem and analyze its complexity. 

9.12 Let X tO and d(X) < 1. Then axcsm[X] t X-



Chapter 10 

Implementation Issues 

It is common to have a gap between a theoretical algorithm and its prac-
tical implementation: the theoretical algorithm makes sure that it works 
for all instances and never fails, while the practical implementation empha-
sizes average performance and uses many ad-hoc "tricks." In this chapter 
we discuss several effective implementation techniques frequently used in 
interior-point linear programming software, such as the presolver process, 
the sparse linear system solver, the high-order predictor-corrector method, 
the homogeneous and self-dual method, and the optimal basis finder. Our 
goal is to provide additional theoretical justification for using these tech-
niques and to explain their practical effectiveness. 

10.1 Presolver 

One way to eliminate data error and to improve solution efficiency in solving 
linear programs is called the "presolver"—a preliminary process to check 
the data set (A, 6, c) in order to detect inconsistency and to remove redun-
dancy. This process could reduce the size of the problem as well, because 
users of many LP problems likely introduce superfluous variables and re-
dundant constraints for simplicity and convenience in model formulation. 

In general, detecting all inconsistency and redundancy in an LP problem 
is computationally intractable. Therefore all presolvers use an arsenal of 
simple inspection techniques. These techniques are applied repeatedly until 
the problem cannot be reduced any further. Below, we briefly present the 
most common inspection procedures. 
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• Remove empty or all-zero rows and columns. 

• Eliminate a fixed variable, the variable has a fixed value, from the 
problem by substitution. 

• Remove duplicate constraints. Two constraints are said to be dupli-
cate if they are identical up to a scalar multiplier. One of the duplicate 
constraints is removed from the problem. 

Remove duplicate columns. Two columns are said to be duplicate if 
they are identical up to a scalar multiplier. (They make duplicate 
constraints in the dual.) 

• Remove linearly dependent constraints. The presence of linearly de-
pendent rows in A may lead to serious numerical problems in an 
interior-point methods, since it implies a rank deficiency in the New-
ton equation system. 

• Remove a singleton row (only one non-zero coefficient in the row) 
by construction of a simple variable bound. For example, if the ith 
constraint is in the form anx\ < &*f we can convert it to x\ < bi/an 
or x\ > bi/an, depending on the sign of an, 

• Remove a free and singleton column (only one non-zero coefficient 
in the column and the associated variable is free). For example, let 
free variable x\ appears only in the ith constraint. Then, x\ and the 
ith constraint can be eliminated, while the optimal value of x\ can 
be recovered from the ith constraint by substitution of the optimal 
solution of the remaining LP problem. 

A nonnegative but unbounded variable, say, 0 < x\ < +oo in single-
ton column 1, can be used to generate a bound on dual variables j/¿. 
Namely, 

anVi <ci. 

This inequality can be used, depending on the sign of an, to produce 
a lower or upper bound on j/¿. 

• Determine lower and upper limits for every constraint and detect 
infeasibility. For example, consider the t'th (inequality) constraint 

3 
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and let each variable Xj lie on [0, tij]. Then compute 

ki = 5 ^ ay**, < 0 and to = ] T ayu¿ > 0. (10.1) 

Thus, we must have 

i 

If to < to* then the tth constraint is redundant and can be removed. 
If hi > bj, then the problem is infeasible. If ¿¿ = &¿, the i constraint 
becomes equality and will force all involved variables take values at 
their appropriate bounds. 

The same technique can be applied to each of the dual constraints. 

• Add implicit bound to a free primal variable. Fbr example, suppose 
the tth constraint is 

i 
where an > 0, x\ is a free variable, and all other variables Xj lie on 
[0,u,·]. Then 

and 

*i < I to - J2 *ijui 1 Mi 
\ {¿#1: tt<i<0} / 

«i > I to- Σ ανηΛ Mi 
\ 0#1: a<;>0} / 

The same technique can be applied to a dual free variable. 

• Improve the sparsity of A, i.e., reduce the non-zero elements in A. 
We could look for a nonsingular matrix Af € 7£mxm such that the 
matrix MA is as sparse as possible. Primal constraints can in such 
case be replaced with equivalent 

M Ax = Mb, (10.3) 

which may be more suitable for an interior-point solver. Exact solu-
tion of this sparsity problem is an NP-complete problem but efficient 
heuristics usually produce satisfactory non-zero reduction in A. 
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The application of the above presolver techniques often results in im-
pressive size-reduction of an initial LP formulation. Thus, it is our hope 
that the reduced problem obtained after the presolver can be solved faster. 
Once a solution is found, it could be used to recover a complete primal 
and dual solution to the original LP problem. This phase is called the 
postsolver. 

10.2 Linear System Solver 
The major work in a single iteration of all interior-point algorithms is to 
solve a set of linear equations, such as (4.17). It can be reduced to the 
so-called KKT system: 

(V f )U)=(0· ™ 
The diagonal matrix D varies in different interior-point methods. Most 

general purpose codes use direct methods to solve the KKT system. Two 
competitive direct methods are: the normal equation approach and the 
augmented system approach. The former works with a smaller positive def-
inite matrix, and the latter requires factorization of a symmetric indefinite 
matrix. They all use variants of the symmetric triangular LAJLT decom-
position, where £ is a lower triangular matrix and Λ is a block diagonal 
matrix with blocks of dimension 1 or 2. (The QR decomposition of A uses 
an orthogonal transformation and guarantees high accuracy, but it cannot 
be used in practice due to its costly operations.) 

10.2.1 Solving normal equation 
The normal equation approach further reduces (10.4) to the normal equa-
tion: 

(AD2AT)dy = b - AD2c. (10.5) 

An advantage of this approach is that it works with a positive definite 
matrix AD2AT if A has full row rank. Thus the Choleski decomposition 
of this matrix exists for any D and numerical stability is assured in the 
pivoting process. Moreover, the sparsity pattern in the decomposition is 
independent of the value of D and hence it is invariant in all iterations. 
Consequently, once a good sparsity preserving pivoting order is chosen, it 
can be used throughout the entire iterative process. This argument has 
been used to justify the application of the normal equations approach in 
very first interior-point method implementation. 
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The success of the Choleski factorization depends on a pivoting order for 
preserving sparsity in the Choleski factor L. Its goal is to find a permutation 
matrix P such that the factor of PAD2 AFP7 is as sparse as possible. 
In practice, heuristics are used to find such a permutation or ordering. 
(Finding an optimal permutation is an NP-complete problem.) After an 
ordering is found, the data structure and indirect index addressing of L 
are setup. This is referred to as the symbolic phase because no numerical 
computation is involved. 

Two heuristic orderings, minimum degree and the minimum local fill-in, 
are particularly useful in implementing interior-point algorithms. They are 
both "local" or myopic, i.e. they select a pivot only from a set of currently 
best candidates. 

Minimum degree ordering 

Assume that, in the fcth step of the Gaussian elimination, the tth column of 
the Schur complement contains d* non-zero entries and its diagonal element 
becomes a pivot. The fcth step of the elimination requires thus 

i, = ( l / 2 ) ( * - l ) * , (10.6) 

floating-point operations or flops to be executed. 
In what follows, keep in your mind the fact that the decomposed matrix 

AD2AT is positive definite so the pivot choice can be limited to the diagonal 
elements. In fact, only this choice preserves symmetry. 

Note that if the tth diagonal element becomes a pivot, i¿ evaluates 
flops and gives an overestimate of the fill-ins, the new non-zeros created 
in the Schur complement, which can result from the current elimination 
step. Thus, the "best" pivot at step fc, in terms of the number of flops 
required to complete the fcth elimination step, is the one that minimizes 
di among all diagonal elements in the Schur complement. Interpreting the 
elimination process as the corresponding incidence graph elimination, one 
can see that this strategy chooses a node (diagonal element) in the graph 
which has the minimum degree (d¿). This is how the strategy is named. 
This ordering procedure can be implemented efficiently both in terms of 
time speed and storage requirement. 

There is also an approximate minimum degree ordering available. The 
method is faster while generates the same quality ordering. 

Minimum local fill-in ordering 

In general, U of (10.6) considerably overestimates the number of fill-ins in 
the fcth step of the Gaussian elimination, because it does not take into 
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account the fact that in many positions of the predicted fill-ins, non-zero 
entries already exist. It is possible that another pivot candidate, although 
may not minimize d», would produce least fill-ins in the remaining Schur 
complement. The minimum local fill-in ordering chooses such a pivot. Gen-
erally, the minimum local fill-in procedure produces an ordering resulting 
in a sparser factorization but at a higher cost, because it chooses the pivot 
that produces the minimum number of fill-ins among all remaining pivot 
candidates. 

Pros and cons 

Solving the normal equation is proved to be a reliable approach to solutions 
of most practical linear programs. However, it suffers two drawbacks. First, 
the normal equation behaves badly whenever a primal linear program con-
tains free variables. In order to transform such a problem to the standard 
form, a free variable is usually replaced with the difference of two nonneg-
ative variables: x = a:+ — x~. Interior-point algorithms typically generate 
iterates in which both x~*~ and x~ converge to oo, although their difference 
is kept relatively close to the optimal value of x. This results in a serious 
ill-condition in the normal matrix and a loss of accuracy in solving (10.5). 
A remedy used in many implementations is to prevent excessive growth of 
x* and x" by enforcing bounds on x+ and x". 

Second, a more serious drawback of the normal equation approach is 
that it looses sparsity from the presence of dense columns in A. The reason 
is that a single dense column in A with p non-zero elements creates a 
complete dense submatrix of size px pin AD2AT after a symmetric row 
and column permutation. Special care has to be taken in this case. 

Assume that 
A = (As, AD)% (10.7) 

where As € fcmxn-k is sparse and Ap € Tlmxk is dense. Then, we need to 
treat AD separately. The most popular way in solving the normal equation 
employs the Schur complement mechanism. It is based on separating the 
normal matrix 

AD2AT = AsD\Al + ADD%AT
D, (10.8) 

into the presumably sparse part AsD%A% and the significantly denser sym-
metric rank-fc matrix Ar>D%Aj). A Choleski decomposition is computed 
for the sparse part and the dense rank-fc matrix is then updated by the 
Sherman-Morrison-Woodbury formula (see Exercise 1.1). 

This method is not guaranteed to work correctly because the sparse 
part may be rank deficient, since As may not have full row rank. When-
ever this happens, the Choleski decomposition of AsD%A]¡ does not exist 
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and the Sherman-Morrison-Woodbury update is not well defined. There-
fore in a practical implementation diagonal elements are selectively added 
to AsD%Ä% to make the decomposition exist. We observe that the rank 
deficiency of AsD%A% cannot exceed fc, the number of dense columns. This 
method usually works in satisfaction for a small number of dense columns. 

This is how we do it. If unacceptably small pivots are encountered 
during the Choleski decomposition of AsD%A^^ we add a "regularizing" 
diagonal term to each of them. Consequently, instead of computing the de-
composition of AsD\Ä^y we compute the decomposition of another matrix 
AsD%A% + σΕΕτ> where positive number σ is a regularizing term and E 
is a matrix built from unit columns where each non-zero appears in the row 
corresponding to regularized pivots, that is, 

LALT = AsD%AT
s + σΕΕτ. (10.9) 

L is used as a stable "working basis9' in the Sherman-Morrison-Woodbury 
update of the Schur complement to compute 

(AD2AT)-1 = (LALT + {ADD2
DAl - σΕΕτ))~\ 

In many cases, choosing σ = 1 seems sufficient. 
Summing up, it is possible to overcome the dense column difficulty 

arisen in the normal equation approach. But there remains a question 
to decide which columns should be treated as dense ones. A naive selec-
tion rule, which is based on counting the number of non-zero elements in 
a column, does not necessarily identify all the "troubling" columns—the 
columns make the decomposition dense. This motivated researchers to di-
rectly solve the augmented system of the Newton equation (10.4), which 
allows more freedom in selecting pivots. 

10.2.2 Solving augmented system 
The augmented system approach is a well understood technique to solve a 
least-squares problem. It applies a factorization to a symmetric indefinite 
matrix 

(10.10) "*-(7 f )■ 
where Λ is an indefinite block diagonal matrix where each block is either 
1 x 1 or 2 x 2. 

In contrast to solving the normal equation in which the sparsity or-
dering and the numerical factorization are separated, the factorization of 
(10.10) is computed dynamically. In other words, the choice of a pivot is 
concerned with both sparsity and stability of the triangular factor L. Thus, 
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the factorization of the augmented system is at least as stable as that of 
the normal equation. Moreover, due to greater freedom in the choice of 
a pivot order, the augmented system factorization may produce a signifi-
cantly sparser factor than that of the normal equation. Indeed the latter 
is actually a special case of (10.10) in which the first n pivots are chosen 
solely from D2, regardless their stability and sparsity outcome. 

The stable property of solving the augmented system has motivated 
many researchers to incorporate this approach into their implementation. 
There are other advantages for this approach, such as easy handling of free 
variables and dense columns, and its effortless extension to solving convex 
quadratic programming problems. 

However, efficiency of the augmented system approach depends highly 
on keeping a consistent pivot ordering. One should avoid reordering pivots 
on every iteration and try to use the current pivot order in subsequent 
iterations as much as possible. The order is only updated occasionally 
when the KKT system has changed considerably. 

One specific pivoting rule is again detecting "dense" columns in A and 
pivoting early those diagonal elements oiD~2 which are not associated with 
the dense columns. One can set a density threshold to partition A into the 
sparse and dense parts as in (10.7). 

A fixed threshold value approach works well only in a case when dense 
columns are easily identifiable, i.e., when the number of non-zero in each of 
them exceeds significantly the average number of entries in sparse columns. 
Whenever more complicated sparsity structure appears in -A, a more so-
phisticated heuristic is needed. 

Instead of the simple column partition (10.7), one may consider more 
complicated sparsity structure and the following partition of A: 

Here An is supposed sparse and is assumed to create a sparse normal matrix 
Aii^u, A\2 is a small set of "troubling" columns (either dense columns or 
columns associated with free variables), and (A21 A22) represents a set of 
"troubling" rows. 

Once the partition (10.11) is determined, (10.4) becomes 

D? 

An 
Mi 

-2 A¥ D2 Ai2 

Au 
A22 

*¥\ A22 I 

) 

/ d » i \ 
dx3 _ k 

\*n) 

( £i 
02 

h u 
The structure of this system shows immediately which block, such as D 
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can be inexpensively pivoted out, and which block, such as Ό2
2

Λ should be 
pivoted lately. 

The elimination of Df2 causes very limited fill-ins and reduces the KKT 
system to 

D2 Al2 A22 \ 
Al2 -AnDÍAZ -Auí>M2i l· (10-12) 
An -Λ21Ι?Μίι ~Á2iD*Al ) 

The elimination of D2
2 should be delayed after all attractive pivot candi-

dates from AuDfA^ and AnDfÄJÜi blocks are exploited. 

10.2.3 Numerical phase 

So far we have extensively discussed the symbolic phase—the pivoting rule 
and pivoting order. Now we turn our attention to the numerical phase of 
a sparse symmetric system solver. This is a well developed area both in 
theory and in computational practice. Here we demonstrate several imple-
mentation techniques of the numerical factorization phase in the normal 
equation approach. These methods could be applied to the general sym-
metric decomposition of the augmented system as well. 

Let M = AD2AT and consider its Choleski factorization LALT = M, 
where £ is a lower triangular matrix and A is a diagonal matrix. The basic 
formulae for computing the column j of JL, denoted by L.j> and the pivot 
Ajj are: 

Λπ = Afn, 

Λ,, = Μ , , - Σ & ^ i > 2 , <10·13) 
L.i = Tfcfa-EÍZ^kkL^L,) j>2. 

Several methods have been developed to compute the factorization. They 
all exploit sparsity of the matrix but use different storage techniques in 
computations. These calculations can be organized either by rows or by 
columns. During the row-Choleski factorization the rows of the Choleski 
factor L are computed one by one. 

The commonly used factorization is the co/umn-Choleski factorization 
in which the columns of L are computed one by one as in (10.13). Its 
efficient implementations can be found, for example, in the Yale Sparse 
Matrix Package and Waterloo SPARSPAK. This method is also called left-
looking factorization, because the computation of column Lj follows the 
left-to-right order. Its implementation uses dynamic linked lists to look at 
all "left" columns when computing the current pivot and column, and a 
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double precision work array to accumulate the column modifications and 
to resolve the non-zero matching between different columns. 

Another commonly used approach is the submatrix-Cholestí factoriza-
tion, also referred to as the right-looking factorization. In this approach, 
once a column L,j has been computed, we immediately update its contri-
butions to all subsequent columns, i.e. to all columns on its right side using 
(10.13). In this method the matching of non-zero during the process is not 
trivial, but several solutions have been found. Interest in this method has 
been increased in the past few years because of its ability to better exploit 
high performance architecture and memory hierarchy. 

We now present several numerical "tricks" that work very well in interior-
point methods. These techniques all based on using matrix-vector oper-
ations in a "dense" mode (assuming matrices and vectors are complete 
dense) to reduce the overhead computation and book-keeping map in a 
sparse mode using indirect index addressing and sophisticated memory ref-
erencing. 

Figure 10*1. Illustration of dense sub-factors in a Choleski factorization. 

Dense window 

The most straightforward improvement of the factorization is exploitation 
of a dense window. In practice, some triangular sub-factors become com-
pletely dense near the end of the Choleski factorization; see Figure 10.1. 
Therefore, we can treat these blocks complete dense and use dense matrix 
factorization, even though there may still be some zeros in this block. This 
is called a dense window. In doing so we avoid the overhead of sparse 
computation, such as indirect index addressing and memory referencing. 



10.2. LINEAR SYSTEM SOLVER 347 

It might also be beneficial to treat some almost-dense columns complete 
dense and to include them in a dense window. 

Supernode 

It is often observed that several columns in L tend to have the same sparsity 
pattern below the diagonal. Such a block of columns is called a supernode 
and it can be treated as a dense submatrix. The supernode name comes 
from the elimination graph representation of the Choleski decomposition, 
because these nodes (columns) more-or-less share the same set of adjacent 
nodes and they can be grouped as a single "super" node (share the same 
addressing), as illustrated below: 

Supernode Type 1 Supernode Type 2 

* * 
* * * 

1 * * * * 

* * * * 
\ * * * * / 

/ * \ 

* 1 
* 

* * * * 

* * * * 
V* * * * / 

Both types of supernodes can be exploited in a similar manner within the 
numerical factorization. Similar to the dense window technique, the use of 
supernodes increases the portion of matrix-vector operations in the dense 
mode, and thereby saves on indirect addressing and memory referencing. 
Specifically, the following operations take advantage of supernodes: 

• When column j is a member of a supernode, the operation of com-
puting Ltj and other columns of the supernode are done in the dense 
mode. 

• When column j is not a member of a supernode but it has a sum-
mation term from a set of columns that belong to a supernode, a 
temporary work array is used to accumulate the sum from the whole 
supernode in the dense mode before the term is added to L,j. 

Sometime it is even beneficial to treat some zeros as non-zeros in L to 
create supernodes. The introduction of zeros does not necessarily lead to 
an increase in the memory allocation. This is due to the fact that only 
indexes of the last column in a supernode are booked, so there is a saving 
in index addressing. 
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Cache memory 

Computers has a memory hierarchy consisting a slow and large main mem-
ory and a fast and small cache memory. Computation will be more efficient 
if memory references are stored in the cache memory so they can be fetched 
faster. Thus, it is advisable to set an upper bound on the number of non-
zeros in each supernode to such that they can be all stored in the cache 
memory during the dense mode matrix-vector operations. One should leave 
5 percent of the cache memory for overhead. 

Of course, such partition of large supernodes leads to more overhead 
computation. An advise is to also impose a lower bound on the size of 
supernodes since the extra work in constructing the work array may not 
pay off if the size of the supernode is too small. 

Block Choleski factorization 

Another possibility is to partition L into smaller, presumably dense blocks. 
For example, try to divide L into block diagonal dense submatrices. This 
technique is very effective in some cases, because a typical Choleski factor 
contains many such blocks, the largest of which is usually the dense window 
located at the bottom of L. Consider the following matrix: 

with an additional simplifying assumption that the blocks Ln and X22 of 
L are dense matrices. The Choleski factorization of this matrix can be 
computed in the following steps: 

1. FactorizeLnAnLfj = M n . 

2. Compute L21 = M2i{L^)T. 

3. Compute M22 = M22 — 1*ιΑιιΙ$ν 

4. Factorize 1^22^22 = ^22· 

The advantage of this procedure is that steps 1 and 4 can be performed in 
the dense mode. 

Loop unrolling 

Dense mode computation can be further specialized to exploit a loop un-
rolling technique. Let a be the target column, b the source column, an 
a the multiplier kept in a single register. Then the steps performed fr 
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computer to execute the transformation a f - o + a-5 can be written as 
follows: 

1. Read a(i) from the memory. 

2. Read b(i) from the memory. 

3. Compute a(i) + a · b(i). 

4. Store the result in the memory. 

Consequently, three memory references in steps 1, 2, and 4 are associated 
with only one arithmetic multiplication in step 3. 

During a typical inner loop of the factorization, several multiple columns 
are added to a single column; see (10.13). This opens a possibility to un-
roll the loop over the multiple column transformation. Let a be the target 
column, 6, c, d, e, / and g the source columns, and a( l ) , . . . , a(6) their mul-
tipliers kept in a single register. A loop rolling technique to compute 

o 4 - o + α(1)δ + a(2)c + a(3)d + a(4)e + a(5)f + a(6)g 

is to execute the above procedure 6 times and uses total 18 memory ref-
erences and 6 multiplications. However, a 6-step loop unrolling technique 
consists of first reading o, b, c, d, e, / , g, then performing 6 multiplications, 
and finally storing new a. This execution needs only eight memory refer-
ences. Hence, 10 memory references have been saved compared with the 
loop rolling execution. The loop unrolling technique generally makes con-
siderable time savings on many different computer architectures; 

10.2.4 Iterative method 

An alternative to solve the KKT system (10.4) or the normal equation 
(10.5) is the iterative method, e.g., the conjugate gradient method. This 
method automatically exploits the sparse structure of the system because it 
neither uses nor stores any inverse matrix. Its effectiveness highly depends 
on the selection of an appropriate and simple preconditioner. In solving 
general linear programs the iterative method seems not competitive with 
the direct method, but it becomes highly successful in solving special LP 
problems such as network-flow problems. 

Consider the network-flow problem, where A matrix is the node-arc 
incidence matrix for a network with m + 1 nodes and n arcs (For ease of 
notation, an arbitrary row in A is assumed to have been deleted so that A 
has full row rank m). Let A = (AB, AN) where AB is a basis of A. Then, 

AD*AT = (ABD%AT
B + AND%AT

N). 
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If the diagonal components of DB are all greater than or equal to the 
diagonal components of DN> then we expect that ABD%A*B becomes a 
dominate block and it is a good estimation of AD2AT. The following 
theorem indicates "why", whose proof is derived from Exercise 10.1. 

Theorem 10.1 Choose π so that An contains a basis of A and Da > Djj 
for all i € π and j # π. Then, 

(2ms +1 ) / £ (AitDlAl)-\AD'lAT)(AvDl^)-A fc / . 

Thus, ABD\ALQ is a reasonable preconditions for AD2AT, where B 
is a basis of π. Note that AB can be reordered as a triangular matrix 
so that the Choleski factor of ABD%A% is AB itself after a permutation. 
Furthermore, B can be found by the maximum-spanning tree algorithm 
where Djj is the weight of arc j . This algorithm is very cost-effective. 

10.3 High-Order Method 

If a direct approach is used to solve the KKT system, in each iteration a 
matrix factorization (10.4) or (10.5) is computed and followed by several 
backsolve steps. The factorization phase, 0(n*) operations for a dense 
matrix, consumes the major amount of work, and the backsolve phase, at 
most 0(n2) operations, is usually significantly easier in theory as well as in 
practice. An obvious idea, known from different applications of the Newton 
method, is to reuse the factorization in several subsequent iterations or, 
equivalently, to repeat several backsolves to generate a better next iterate. 
We call such an approach a high-order method. The goal is to reduce the 
total number of interior point iterations and therefore the total number of 
factorizations as well. 

10.3.1 High-order predictor-corrector method 
The second-order predictor-corrector strategy has two components: one is 
an adaptive choice of the barrier parameter 7 and the other is the com-
putation of a sort of second-order approximation to the central path. For 
simplicity we illustrate the algorithm with a feasible starting point. 

The first step of the predictor-corrector strategy is to compute the pre-
dictor direction of the predictor-corrector algorithm in Section 4.5.1. Recall 
that the predictor direction solves the Newton equation system (4.17) for 
7 = 0 and is denoted with dP := d(xfc,e*,0). It is easy to show that if a 
step of size Θ is taken along this direction, then the complementarity gap 
is reduced by the factor (1 — Θ). Therefore, the larger step can be made, 
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the more progress can be achieved. On the other hand, if the step-size in 
this direction is small, then the current point is probably too close to the 
boundary. In this case the barrier parameter should not be reduced too 
much in order to move a way from boundary like the corrector step. 

Thus, it is reasonable to use this possible complementarity gap reduction 
in the predictor step to adjust the new barrier parameter 7. After the 
predictor direction is computed, the maximum step-sizes θρ and 0¿ along 
this direction in the primal and dual spaces are determined to preserve 
nonnegativity of (a(0p), s(0<j)). The possible new complementarity gap 

ημ+ := (x + 0p<Px)
T(s + Θάάξ). 

Then, the barrier parameter is chosen using the heuristic 

for a constant η 6 (0,1). We could come back to compute the actual 
direction d(xk,8k,y) from (4.17) where 7 is given above. But we like to 
do more, which is the second component of the second-order predictor-
corrector method. 

Note that we ideally want to compute a direction such that the next 
iterate is perfectly centered for 7/4*, i.e., 

(X* + Dx)(8*+d,) = 7M*e. 

The above system can be rewritten as 

Skdz + Xkd8 = -Xk8k + 7μ*β - Dxda. (10.15) 

Observe that in the "first-order" direction d = d(a;*,s*,7) in equation 
(4.17), we have ignored the second order term Dxd9 on the right-hand side 
and it becomes the residual error. This needs to be corrected: Instead of 
setting the second order term equal to zero, we would approximate Dxd8 

on the right-hand side using the available predictor direction D*d£. The 
actual direction d is then computed from system (10.15) with parameter 
7 chosen through (10.14). (Again, the matrix of the system is already 
factorized and it is "free" now.) We finally choose the next iterate 

(χ"+1,8^) = (χ(9ρ),8(§ά))€Λί-(η) 

for η close to 1. 
We should note here that the second-order predictor-corrector method 

basically tries to approximate the second-order Taylor expansion of the 
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central path. A single iteration of the method needs two solves of the same 
large but sparse linear system for two different right hand sides. The benefit 
of the method is, we obtain a good estimate for the barrier parameter 7 and 
a second-order approximation to the central path. Indeed computational 
practice shows that the additional solve cost of this method is more than 
offset by a reduction in the total number of iterations (factorizations). 

Why not use even higher-order Taylor expansions? Indeed, in solving 
many large scale linear programs where the factorization is extremely ex-
pensive and the need to save on the number of factorizations becomes more 
important, a high-order predictor-corrector method is beneficial. We will 
explain the method in the next section. 

10.3.2 Analysis of a high-order method 
Now we would like to provide some theoretical justification for using the 
techniques involved in the high-order method. 

One theoretical support of the method is already seen in Section 5.1, 
where we showed that A(Xk+l)2AT only differs slightly from A(Xk)2AT, 
and it is sufficient to inverse a matrix AD2AT to generate next iterate 
where D is still close to Xk. This justifies that the normal matrix could be 
used repeatedly. 

Another support relates to the neighborhoods used in the high-order 
method. Among all existing path-following (infeasible or feasible) LP al-
gorithms, the theoretical iteration complexity of small-neighborhood (Λ/2) 
algorithms is 0{y/ñL)¡ and the complexity of wide-neighborhood (Moo or 
M^) algorithms is at least 0(nL). In contrast, wide-neighborhood algo-
rithms outperform small-neighborhood ones by a big margin in practice. It 
seems that smaller neighborhoods generally restrict all iterates moved by a 
short step and they might be too conservative for solving real LP problems. 

To support using the wide-neighborhood and high-order Taylor expan-
sions, we present a r-order Taylor expansion primal-dual path-following al-
gorithm that is based on M^(ß) where ß is any fixed constant in (0,1). We 
show that its iteration complexity is Oin^L) where r € [1, n]. Again, each 
iteration uses 0(n3) arithmetic operations. Note that if we let r = 0(n), 
then this iteration bound is asymptotical 0(y/ñL) as n increases. 

Algorithm 10.1 Given (x°,8°) € Μ^(η) with η € (0,1), and integer r > 
1 and 7 6 (0,1). Set k := 0. 

While (xk)Tsk > c do; 

1. First-order step: Solve for the first order direction dl·1) := d(xk, sfc, 7) 
from (4.17). 
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A <&» 
-AT <#> 

and 

xHy+sxé» = 

3. Compute the largest 0* so that 

= 0, 
-dP = o, 

-E&DÍWl 

2. High-order steps: For j — 2 ,3, . . . , r, solve for the jth order direction 
from 

Λ An _ r, 
(10.16) 

(10.17) 

yW = !Λ + Σ;=Ι(') '4°, 
*(0) = ^ + Σ ^ ι Ο ^ . 

«a» in λί^{η) for Θ € [0,0*]. Ie< 

(y**1,**"»,**-») := (y(0*),x(0*))S(Ö*)). 

4. Let k := & + 1 and reittrn ¿o Step 1. 

Note that for r = 1, Algorithm 10.1 is identical to the wide-neighborhood 
algorithm in Section 4.5.2. Fbr r = 2, it is close to the second-order 
predictor-corrector strategy described earlier; see Exercise 10.2. 

In general, the step-size selection involves locating roots for each of n+1 
polynomials with degree 2r, which with specified error is in the complexity 
class NC and can be solved efficiently in theory. In practice, we need to 
locate only an approximate step-size. (Even for the case r = 1, one will 
never obtain the exact ak since it is generally irrational.) 

We will have a lower bound for 0k: 

Qk > con** 
(n + 1) 2 ^ ' 

where 

Thus, we need only to compute an approximate step-size, 0, such that 

Or(0),*(0))€JV-(>/), 

and 
ek_s<Mlconst< fc 

- n + 1 -
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that is, Θ will be at least a fraction, .999, of the exact step-size 0fc, and it 
approaches above 0* as n -» oo. 

We may compute such an approximate step-size using the bisection 
method. We know that the step-size must be in 

I const 1 1 
[(n + l ^ ' l - T j ' 

Obviously, the total number of operations of this process is of order nr(logn). 
Even when r — n} the cost, n2(logn), is well below n3. 

We now present the main complexity result. 

Theorem 10.2 Given any initial point in λί^{η) for any constant η € 
(0,1), Algorithm 10.1, with any constant 0 < 7 < 1, will terminate in 
0 ( n ^ log((x°)Ts°/t)) iterations, where r e [l,n], and each iteration uses 
0(n3) arithmetic operations. 

As we can see that if r = n and n increases, the iteration complexity of 
the algorithm tends to 0(\/nlog((a?°)Te°/c)) asymptotically. Furthermore, 
a popular choice for 7 in practice is not a constant but 7 = 0(l /n). Inter-
estingly, the asymptotical iteration complexity of the algorithm for such a 
choice of 7 is still 0(y/ñlog((x°)T s° /t)). More precisely, we have 

A number of implications and points can be drawn from the main result: 

• The high-order Taylor expansion method, where iterative points move 
along a high-order polynomial curve, has been used in practice and 
partially analyzed in theory. The main result indicates that the use 
of this method also significantly improves the worst-case iteration 
complexity. The result provides a further theoretical base for using 
this approach. 

• The order r of Taylor expansion has a diminishing role in improving 
the worst-case complexity result. Thus, we probably expect only the 
first few order steps really make a difference in algorithm performance. 
This seems what is observed in practice. 

• The result also provides a justification for using the wider neighbor-
hood Λ/^, coupled with a high-order method. The theoretical com-
plexity based on wider neighborhoods is not much worse than that 
based on smaller neighborhoods. We hope this is a significant step to 
bridge the gap between theory and practice. 

• The result also indicates how insensitive of the value of 7, the center-
ing weight, is in high-order power-series methods. Virtually, 7 can be 
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set to any positive number if iterative points move along a high-order 
polynomial curve. This implies that the method has a sufficient self-
centering function even 7 is close to 0. Note that, when 7 = 0, the 
algorithm becomes the pure Newton method for the LP optimality 
condition. 

10.4 Homogeneous and Self-Dual Method 

In Section 5.3 we described a homogeneous and self-dual method to solve 
(LP) and (LD) simultaneously. Rrom the implementation point of view, 
each iteration of the method solves the linear system (5.14) and (5.15). 

It can be shown that (Exercise 10.4) 

d$ = 7 - 1. 

Then eliminating d8 and d«, we face the KKT system of linear equations: 

Xkc 

( ημ*β - Xksk \ 
0 

7μ* — rkKk 

\ 0 

Thus, the dimension of the system is increased only by 1 over the case 
when strictly feasible points for both (LP) and (LD) are known and used 
for starting primal-dual interior-point algorithms. (It seems that the benefit 
of knowing a starting interior point is not great.) 

All implementation techniques discussed earlier for feasible-starting in-
terior point algorithms can be used in the homogeneous and self-dual method. 
Fbr example, If the second-order predictor-corrector scheme is used, it 
means that we have 3 solves instead of 2 for each factorization. Again, 
the additional solve cost is still more than offset by a reduction in the total 
number of iterations (factorizations), and all favorable features discussed 
in Section 5.3 of the method are retained. 

It is also possible to take different step-sizes to update x and s. In doing 
so special attention should be paid to update r since it couples both the 
primal and dual. 
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10.5 Optimal-Basis Identifier 
Contrary to the simplex algorithm an interior-point algorithm never gener-
ates the exact optimal solution during its iterative process; instead it gen-
erates an infinite sequence converging towards an optimal solution. Thus, 
the algorithm discussed produces an approximate optimal basic solution 
only if the optimal solution is unique (which is very rare in practice). In 
fact, in the case that either multiple primal or dual solutions exist, the 
sequence converges to the analytic center of the optimal face as discussed 
before. Therefore, an important problem is to generate an optimal basic so-
lution from of interior-point algorithms, which is desirable in solving many 
practical problems. 

It can be shown that if a pair of exact primal and dual solutions is 
known, then an optimal basic solution can be produced in strongly polyno-
mial time using a simplified a pivoting or simplex method. We now discuss 
a algorithm which combines the termination scheme in Section 5.2 and the 
pivoting method to produce an optimal basic solution. 

Consider solving (LP). It is well-known that any optimal solution 
(a?*, y*,z*) must satisfy the complementarity slackness condition x¿z¿ = O 
for each j . Moreover, it is known from Theorem 1.14 that there exists a 
strictly complementary solution that satisfies Xj + zj > 0 for each j , and 
the complementarity partition (P*, Z*) is unique. The pair (P*, Z*), where 
Z = {1 , . . . , n} \ P for any index set P, determines an optimal partition. 

Recall that {B,N) denote a partition of the variables into basic and 
non-basic variables. (B,N) is an optimal basis, if B is non-singular and 

a?a=i4¿16>0; XN = 0 

and 

y = AßTcB] SB = CB-ABy = 0; sN = cN - A%y > 0. 

10.5.1 A pivoting algorithm 
Given a complementary solution pair, a pivoting algorithm can construct 
an optimal basis in less than n pivoting steps. Below we shall discuss 
the algorithm and its implementation. For convenience we assume that a 
set of artificial variables has been added to the problem (LP). Let V = 
{n + 1 , . . . , n + m} denote the set of artificial variables; naturally, we must 
have xy = 0 in any optimal solution. Furthermore, we assume that a 
strictly complementary solution is known. Hence, we assume that: 

• We know the complementarity partition (P*, Z*) and V C Z*. 
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• We know an optimal primal solution x* such that Ax* = 6, x*z+ = 0 
and a:J,* > 0. 

• We know an optimal dual solution (j/*,e*) such that ATy* -f s* = 
c, ê *x v > 0 and sj,· = 0. 

The algorithm consists of a primal and a dual phase. We start with a 
description of the primal phase. 

Let {B,N) be any partition of the variables of the problem (LP) into 
basic and non-basic parts. Let 

xB := Aß1 (b - Nx*N) = x% > 0. 

Here solution x*B is called a super-basic solution since some of non-basic 
variables x*N may not be zero, and variables of x*N that are not zero are 
called super-non-basic variables. For each of super-non-basic variables, the 
primal phase is to either move it to zero or pivot it into basis B using the 
simplex (pivoting) step. The resulting basis will be primal optimal, because 
it is feasible and it is still complementary with respect to the dual optimal 
solution (y*,e*). Each moving or pivoting step reduces the number of 
super-non-basic variables at least by one. Since the number of super-non-
basic variables cannot exceed |P*|, the primal phase terminates after at 
most \P*\ steps. 

Now we will formally state the primal phase. 

Algorithm 10.2 

1. Choose a basis B and let x = x*. 
2. Whileß jeP*\B: Xj φ 0) 
3. Use a primal ratio test to move variable Xj to zero if we 

can keep A^{b — Νχ^) > 0, or pivot it into the basis. 
4. Update xy or (2?, N) and x. 
5. end while 
6. B is a primal optimal basis. 

It is always possible to choose an initial basis B in Step 1. One possible 
choice is B = V, the set of artificial variables. Algorithm 10.2 can be 
viewed as a simplified version of the primal simplex method, because there 
is no pricing step in selecting an incoming variable and those incoming 
candidates are predetermined from Xp.. 

The dual phase of the algorithm is similar to the primal phase because, 
in this case, a super-basic dual solution is known, which means that some of 
the reduced costs of 8*B might not be zero. Similarly to the primal phase, 
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those non-zero reduced costs in s*B can either be moved to zero or the 
corresponding primal variable has to be pivoted out of basis B. The dual 
phase can be stated as follows: 

Algorithm 10.3 

1. Choose a basis B and lety = y*% 8 = c — ATy. 
2. While(3 jeZ'HBiSj^ 0) 
3. Use the dual ratio test to move variable Sj to zero if we 

can keep CN + NTB~T($B - CB) > 0, or pivot it out of the basis. 
4. Update (y,s)or(B,N)and(y,s). 
5. end while 
6. B is a dual optimal basis. 

If the initial basis B of the dual phase is primal optimal, i.e, x*B := B~lb > 
0 and x*z* = 0, then it remains primal optimal throughout all steps of 
Algorithm 10.3 because x*N = 0 and all pivots are primal degenerate. Once 
Algorithm 10.3 terminates, the final basis is both primal and dual feasible 
and hence optimal. Algorithm 10.3 can be viewed as a simplified version of 
the dual simplex method, because there is no pricing step in selecting an 
outgoing variable and those outgoing candidates are predetermined from 
s*z+. Furthermore, the number of moves or pivots in the dual phase cannot 
exceed \Z*\. 

In summary, Algorithms 10.2 and 10.3 generate an optimal basis after 
at most n moving or pivoting steps. In practice, the total number of steps 
is dependent on the level of primal and dual degeneracy of the problem. 

10.5.2 Theoretical and computational issues 

The algorithm presented in the previous subsection assumes that an ex-
act optimal solution is known. This assumption is never met in practice, 
because the primal-dual algorithm only generates a sequence of solutions 
converging towards an optimal solution. Furthermore, due to the finite pre-
cision of computations, the solution returned by an interior-point algorithm 
is neither exactly feasible nor exactly complementary. 

Let {xk
1y

k
1z

k) be the iterate generated by an algorithm on iteration 
k and (P*, Zk) be a guess of the complementarity partition generated on 
iteration k. Now define the following perturbed problem: 

minimize (ck)Tx s.t. Ax = bk; x > 0, (10.18) 

where 

bk=Pkxk
ph] c** = ( P * ) V and c|> = (/»)Tyk + zk

zh. 
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Assume that variables in (10.18) are reordered such that x = (xpk, XZH ) 
then the vector (a?, y, s) = ((Xph, 0), yk, (0, z^h)) is a strictly complementary 
solution to (10.18). Moreover, if xk converges towards an optimal primal 
solution and Pk converges towards P*, then bk converges towards 6 and, 
similarly, ck converges towards c. Therefore the two problems (LP) and 
(10.18) will eventually become close and share some same optimal bases 
according to Exercises 10.3 and the following theorem. 

Theorem 10.3 Let B be an optimal basis for LP{A^bk^ck). Then, there 
is 0 < t < oo such that B must be also an optimal basis for the original 
LP(A,b,c) when (xk)Tsk < V~l. Furthermore, if LP(A,b,c) has rational 
data, thent<0(L). 

This advocates for an application of the above basis identification pro-
cedure to the perturbed problem (10.18), since an optimal complementary 
solution to problem (10.18) is known, and it will be an optimal basis for 
(LP) when problem (10.18 is near (LP). 

An important practical issue is how to select Pk that equals to the 
complementarity partition P*. A trivial one is 

Pk = {j : x) > z)}. (10.19) 

A more practically effective choice is 

Pk = {) ■ \d*Í\lxki < \d4\/s% (10.20) 

where {d*,d*) is the primal-dual predictor direction. These quantities are 
scaling invariant. It uses the relative variable change to indicate the optimal 
partition. This indicator is justified by the theory of Section 7.2, where they 
converges to 1 for,; € P* and to 0 otherwise. 

Another question is the choice of the right time to start the pivoting 
procedure. According to Theorem 10.3 the generated basis can only be 
expected to be the correct optimal basis of (LP) if the interior point solution 
is almost optimal and Pk is a good guess for P*. A reasonable and practical 
criterion is the moment when fast (quadratic) convergence of the primal-
dual gap μ* to zero occurs, which is also consistent to the theory of Section 
7.2. 

10.6 Notes 

The use of a presolver is an old but effective idea, see for example, Brearley 
et al. [73]; its role was acknowledged in many simplex algorithm optimiz-
ers. The simplex method for LP works with sparse submatrices of A (bases) 
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[395] while any interior-point algorithm needs an inversion of a considerably 
denser matrix AAT. Consequently, the potential savings resulting from an 
initial problem reduction may be larger in interior-point implementations. 
This is the reason why the presolve analysis has recently enjoyed great 
attention [5, 255, 15, 157, 14, 58, 258, 394]. An additional important mo-
tivation is that large-scale LP problems are solved routinely nowadays and 
the amount of redundancy is increasing with the size of the problem. 

When discussing the disadvantages of the normal equations approach 
in Section 10.2.1, we have mentioned the negative consequences of splitting 
free variables. Sometimes it is possible to generate a finite explicit bound 
on a free variable [157] and avoid the need of splitting it. Subramanian 
et al. [393] and Andersen [14] report that in some cases the computational 
saving from removing the linearly dependent constraints are significant. 

Exact solution of the sparsiiy problem of Section 10.1 is an NP-complete 
problem ([80]) but efficient heuristics [5, 80,157] usually produce satisfac-
tory non-zero reductions in A. The algorithm of [157], for example, looks 
for such a row of A that has a sparsity pattern being the subset of the spar-
sity pattern of other rows and uses it to pivot out non-zero elements from 
other rows. Also, the postsolver analysis has been discussed extensively in 
[15]. 

Most general purpose interior-point codes use the direct method [102] 
to solve the KKT system. Two competitive direct methods are: the normal 
equation approach [33, 34] and the augmented system approach. The for-
mer works with a smaller positive definite matrix, and the latter requires 
factorization of a symmetric indefinite matrix. 

The normal equation approach was used among very first "professional" 
interior-point implementations [5, 218, 269]. The success of their applica-
tion of the Choleski factorization relies on the quality of a pivoting order for 
preserving sparsity [102, 134]. To find an optimal order or permutation is 
an NP-complete problem [464]). Two effective heuristics described in this 
book, the minimum degree and the minimum local ßl-in order rules, are 
due to Duff [102] and George and Liu [134, 135]. In the minimum-degree 
order 1% is actually the Markowitz merit function applied to a symmetric 
matrix [262]. For details, the reader is referred to an excellent summary 
in [135]. Another efficient technique to determine the pivot order has been 
proposed in Mészáros [283]. The remedy to the rank deficiency arising in 
the Schur complement mechanism is due to Andersen [20]. His approach 
employs an old technique due to Stewart [388]. 

The augmented system approach is an old and well understood tech-
nique to solve a least squares problem [33, 34, 61, 102]. It consists in the 
application of the Bunch-Parlett [74] factorization to the symmetric indef-
inite matrix. Mehrotra's augmented system implementation [119, 277], for 
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example, is based on the Bunch-Parlett factorization [74] and on the use of 
the generalized Markowitz [262] count of type (10.6) for 2 x 2 pivots. Maros 
and Mészáros [264] give a detailed analysis of this issue as well. The stable 
condition of the augmented system approach motivated many researchers 
to incorporate it into their LP codes; see [103, 119, 264, 434, 447]. Other 
advantages include easy handling of free variables and dense columns, and 
a straightforward extension to solving convex quadratic programming prob-
lems [447, 277, 77]. 

In the numerical factorization, George and Liu [134] demonstrate how 
the Choleski factorization can be organized either by rows or by columns. 
Several enhancements can be found in [134, 245] and [102, 365]. The Yale 
Sparse Matrix Package is due to [107] and the Waterloo SPARSPAK Pack-
age is due to [134]. 

Lustig et al. [256] explored the supernode in their implementation. 
The effect of the supernodal method is highly hardware-dependent and 
several results can be found in the literature: the efficiency of the supern-
odal decomposition on the shared-memory multiprocessors is discussed by 
Esmond and Peyton [332], the exploitation of the cache memory on high-
performance workstations is studied by Rothberg and Gupta [365] in the 
framework of the right-looking factorization, while the case of the left-
looking factorization is investigated by Mészáros [282]. 

The iterative becomes highly successful in solving special LP problems, 
such as network-flow problems; see [212, 362, 346]. Theorem 10.1 is proved 
by Kaliski [212]. 

The first high-order method was incorporated into a dual affine-scaling 
method of AT&T's Korbx system [218]. An efficient high-order method 
was proposed by Mehrotra; his second-order predictor-corrector strategy 
[276] was incorporated in almost all primal-dual interior-point implemen-
tations. As shown in Mehrotra [278], the improvement from using orders 
higher than 2 seems very limited. Recently, Gondzio [156] has proposed a 
new way to exploit higher order information in a primal-dual algorithm and 
shown considerable improvement in solving large-scale problems. His ap-
proach applies multiple centrality corrections and combines their use with 
a choice of reasonable, well-centered targets that are supposed to be easier 
to reach than perfectly centered (but usually unreachable) analytic centers. 
The idea to use targets that are not analytic centers comes from Jansen, 
Roos, Iferlaky and Vial [200]. They define a sequence of traceable weighted 
analytic centers, called targets, that go from an arbitrary interior point 
to a point close to the central path. The algorithm follows these targets 
and continuously (although very slowly) improves the centrality of subse-
quent iterates. The targets are defined in the space of the complementarity 
products. 
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Another high-order approach, due to Domich et al. [101] uses three 
independent directions and solves an auxiliary linear program in a three 
dimensional subspace to find a search direction. The method of Sonnevend 
et al. [386] uses subspaces spanned by directions generated by higher order 
derivatives of the feasible central path, or earlier computed points of it as 
a predictor step. This is later followed by one (or more) centering steps to 
take the next iterate sufficiently close to the central path. Hung and Ye [194] 
has studied theoretically higher order predictor-corrector techniques, incor-
porated them in the homogeneous self-dual algorithm, and proved Theorem 
10.2. 

The fact of Exercise 10.4 was proved by Xu et al. [461], who also first 
implemented the homogeneous and self-dual algorithm and presented fa-
vorable computational results in solving both feasible and infeasible LP 
problems. Extensive implementation results were recently given by Ander-
sen and Andersen [16]. They even discussed how the solution resulted from 
the homogeneous and self-dual model can be used in diagnosing the cause 
of infeasibility. 

Recovering an optimal basis from a near-optimal solution is necessary 
in solving integer programming problems. We would also like to note that 
there are LP applications in which an optimal interior-point solution is 
preferable; see, e.g., Christiansen and Kortanek [87] and Greenberg [167]. 

Bixby and Lustig solve the basis-recovering problem using a Big-M ver-
sion of Megiddo's procedure [272]. Their procedure drives both complemen-
tarity and feasibility to zero. Andersen and Ye [17] propose an alternative 
solution to this problem, which is the perturbed problem construction de-
scribed in this book. For a discussion of linear algebra issues related to 
implementing the simplex or pivoting algorithm we refer the reader to the 
papers [60, 17]. 

There are some open implementation issues. In many practical appli-
cations of linear programming, a sequence of closely related problems is 
solved, such as in branch and bound algorithms for integer programming 
an in column generation (cutting planes) methods. Obviously when two 
closely related problems are solved the previous optimal solution should 
be and could be used to solve the new problem faster. In the context of 
the simplex algorithm this aim is achieved by starting from the previous 
optimal basic solution, which is called the "warm-start." In the context 
of interior-point methods, an effective warm start procedure is difficult to 
find. Some hope comes from a particular application demonstrated in [146]. 
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10.7 Exercises 
10*1 Let A be the node-arc incidence matrix with m + 1 nodes and n arcs 

(For ease of notation, an arbitrary row in A is assumed to have been deleted 
so that A has full row rank m), and let D be an n xn positive diagonal 
matrix. Choose π so that Απ contains a basis of A and Da > β > Djj for 
all ten and j # π. Then, 

λ{ΑπΌΐΑΐ) > ßm~2 

and 
\{AD2AT - A«DlAl) < 2ßm. 

10.2 In Algorithm 10.1, let 

Ax = **+*-** = Σ ; = 1 ( 0 * ) > < # \ 

As = sk+l-sk = E i - i (** ) J ^ } · 

Show that (Ax, As, Ay) satisfy 

1. 

XkAs + SkAx = 0*(7/z*e - Xksk) - ¿(0*)> [J^D^d^ ) . 

(xk)TAs + («*)τΔζ = $k(y - l)(xk)Tsk, 

AxTAs = 0. 

5. 

/**+1 = [1-0*(1-7)]μ*. 

10.3 Let B bean optimal basis for LP(A,bk,ck) of Section 10.5.2. There 
there is a positive number ζ(Α, 6, c) > 0 such that when \\bk - 6|| < ζ(Α, 6, c) 
and ||c* - c | | < C(A,t>,c), i? w also an optimal basis for LP(A,b,c), i.e., 
both solutions XB of BxB = b and s = c - j4Ty, ti/ftene J5Tj/ = CB, are 
nonnegative. 

10.4 Jn solving system of equations (5.14) and (5.15) of Section 5.3, 
shown that 

d0 = 7 - 1. 
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positive semi-definite programming, 

325 
positive semi-definite programming 

(PSP), 24, 247 
postsolver, 340 
potential function, 49, 81, 114, 

304 
#(*,Ω),49 
BW, »I 
β(|/,Ω),49 

potential reduction algorithm, 120, 
126, 141, 150, 232, 247, 
292, 312 

potential reduction theorem, 123, 
251 

ßn+p(2/,S,*),69 
Pn+p(JC,z),69 
Pq, 129 
\\Pq\\, 181 

ll^ilL- 181 

^ , 7 
:<, 7, 25, 331 
predictor direction, 350, 359 
predictor step, 131,165,181,186, 

214, 219, 224 
predictor-corrector, 350 
predictor-corrector algorithm, 131, 

165, 181, 213, 218 
presolver, 337 
primal Newton procedure, 95 
primal potential function, 60, 63, 

95, 233 
primal-dual affine scaling algorithm, 

225 
primal-dual algorithm, 126, 141 
primal-dual Newton procedure, 102, 
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103, 286 
primal-dual Newton's method, 268 
primal-dual potential algorithm, 

103 
primal-dual potential function, 62, 

66, 69, 77, 121,125, 292 
probabilistic bound, 179 
projection, 17,151,155,166, 250, 

293 
projection matrix, 17 
projection scheme, 199 
projection theorem, 16 
projective transformation, 97 

inverse transformation, 97 
proper subset, 278 
proximity to analytic center, 81 

η(χ,β), 83 
fiáis), 82 
*(*) , 83 
P M . 82 
JK*)> 83 
s{x), 83 
x(s), 82 
»(*), 83 

PSD matrix, 295 
pseudo-inverse, 17 
pseudo-polynomial algorithm, 30 
ψ{χ, a), 67, 83 
V>n(x,s), 62 
^n+„(X,S),69 
ψη+ρ(χ,8), 66,68 
PSP 

.M£, 246 
Λίη, 246 
M?, 246 
potential reduction algorithm, 

252 
primal potential function, 247 
primal-dual algorithm, 254 
primal-dual potential function, 

247 
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scaling matrix 17, 254 
purification, 152 

Q, 298 
Q-norm, 7 
IMIQ. 7, 31 
quadratic convergence, 33,89,95, 

103, 211, 217, 359 
quadratic equation, 135 
quadratic programming, 310,325, 

344 
dual problem, 22 

quadratic programming (QP), 22 
quartic equation, 219 
quasi Newton method, 37 

ft, 5 
ft+, 5 
Af+, 257 
r-order method, 352 
random algorithm, 179, 206 
random perturbation, 153 
random problem, 179 
random subspace U1182 
random subspace U1,182 
rank-one update, 148 
ray, 159 
real number model, 30, 39, 147 
real root, 86 
recursive algorithm, 232 
redundant constraints, 337 
redundant inequality, 49 
relaxation, 325 
residual, 43 
residual error, 351 

π+, 5 

ftn, 5 

rotationally-symmetric distribution, 
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row-sufficient matrix, 301, 310 

S++, 257 
scaled gradient, 292, 305 
scaled Lipschitz condition, 256,270 
scaled projection, 83 
Schur complement, 35, 341, 342 
second order condition, 324 
second-order method, 350 
self-central path, 165 
self-complementary partition, 197, 

199 
self-complementary solution, 161, 

202 
self-dual, 159 
self-dual cone, 9 
self-duality, 160 
semi-infinite problem, 238 
sensitivity analysis, 153 
separating hyperplane, 43, 242 
separating hyperplane theorem, 11 
separating oracle, 237 
sequential, 152 
set, 8 

boundary of Ω, 8 
bounded set, 8 
Π, 8 
closed set, 8 
Ω, 8 
compact set, 8 
convex hull, 8 
convex set, 8 
U, 8 
€ , 8 
ft,8 
* ,8 
open set, 8 

Sherman-Morrison-Woodbury for-
mula, 39, 342 

σ(·), 327 
Σ+(Αί,?),296 
sign(-), 327 
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simplex, 45, 50 
simplex method, 2, 38,147, 356 
simultaneously feasible and opti-

mal, 159 
singleton column, 338 
singleton row, 338 
size-based complexity, 29 
skew-symmetric matrix, 160, 164 
slack variable, 19, 21, 49 
solution set Sp, 15 
«So, 51 
sparse matrix, 341 
sparse mode, 346 
sparsity, 339 
standard Gauss distribution, 189 
standard Gaussian matrix, 193 
standard normal distribution, 182 
standard normal variable iV(0,1), 

184 
stationary point, 303 
step-size, 36, 120,133, 165, 306 
strict complementarity, 218 
strict complementarity partition, 

21, 72,153,157,214, 220 
strict complementarity theorem, 

20 
strictly complementary solution, 

153 
strictly self-complementary solu-

tion, 197 
strong duality theorem, 19 
strong duality theorem in PSP, 26 
strongly infeasible, 263 
strongly polynomial algorithm, 30 
strongly polynomial time, 356 
subgradient, 237 
subsequence, 110, 264 
y, 7, 25, 328 
t, 7, 244, 326 
super-basic solution, 357 
super-non-basic variable, 357 
superfluous variables, 337 
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superlinear convergence, 34, 211, 
218 

supernode, 347 
support, 20, 153 
symbolic phase, 341 
symmetric indefinite matrix, 343 

r, 160 
Taylor expansion, 351, 352 
Taylor expansion theorem, 14 
termination, 147, 152, 166, 187, 

197, 319 
the conjugate gradient, 34 
the dual simplex method, 358 
the primal simplex method, 357 
the steepest descent, 31 
Todd's degenerate model, 196,202 
topological interior, 50 
trace, 6, 25, 248 
translation of hyperplanes, 53,110 
transpose operation, 5 
triangle inequality, 128 
triangular matrix, 350 
trust region method, 38 
trust region procedure, 38 
Turing machine model, 29 

uniformly distributed, 183, 327 
unit sphere, 183, 327 
upper-triangular matrix U, 35 

weak duality theorem, 19 
weak duality theorem in PSP, 25 
Weierstrass theorem, 12 

wide-neighborhood algorithm, 134, 
181 

wider neighborhood, 129 
worst-case complexity, 29 

Χ , β 
£,188 
ξ μ , Μ , ΐ 5 3 
art, 203 
&(Λ,Μ,153 
ξ ρ μ , Μ , ΐ 5 3 
{**}§°, 7 

ζ\ 188 

vector function, 13 
vertex, 2 
volume of a convex body, 76 
volumetric center, 75 
volumetric potential function, 175 
von Neumann economic growth prob-

lem (NEG), 277 
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