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1 Billiards in a circle with trajectories

circumscribing a triangle

Takeo Noda and Shin-ichi Yasutomi

November 9, 2021

Abstract

We consider a bar billiards problem for a triangle in the unit cir-
cle. For the point on the unit circle, we construct a line from it in
a counterclockwise direction tangent to the triangle, and examine a
map corresponding to the point of intersection with the circle. For
the rotation number ρ of this map, we give 1

3 ≤ ρ <
1
2 and necessary

and sufficient conditions for ρ = 1
3 , which is related to an ellipse. We

give an application to elementary geometry.

1 Introduction

Let S1 be the unit circle and C be a circle lying inside S1. For v ∈ S1,
there exist two points u1, u2 ∈ S1 such that the segment vui is tangent to
C for i = 1, 2, and u1 is closer to v in a counterclockwise direction than u2.
Then, the map f : v → u1 is a homeomorphism on S1. A trajectory related
to (fn(v)(= vn) for n = 0, 1, 2, . . . (see Figure 1(a)) has fascinated many
researchers, since the finding of Poncelet porism (cf. [4],[8]). Even though
the rotation number is rational, Poncelet porism states that f is conjugated
to the rotation. In a generalized situation, Mozgawa [6] considered such a
billiard problem and obtained a theorem similar to Poncelet porism by using
two ovals instead of circles. Mozgawa et al. [2], [6] called such a billiard
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problem a bar billiard. Cima et al. [3] considered a bar billiard problem,
where the unit circle is placed inside the the curve {x2m+y2m = 2}, m ∈ Z>0,
and showed the rotation number is 1

4
and the map associated with the billiard

problem is not conjugated to a rotation except for m = 1. In this study, we
analyze a bar billiard problem, in which a triangle, rather than an oval, is
put inside the unit circle (see Figure 1(b)). We provide certain conditions to
ensure that the rotation number is 1

3
. When the rotation number is 1

3
, we

also show the dynamics of the unit circle. The dynamics are not conjugate
to a rotation. If the distance between one vertex and the line connecting the
other two vertices of a triangle within the unit circle is larger than or equal to
a certain length, then the rotation number attributed with the bar billiard
is 1

3
, where the distance between two points is the distance related to the

Beltrami–Klein model. For P,Q in the unit circle, the set of R such that the
rotation number related to the bar billiard with △PQR is 1

3
is on or outside

the circumference of an ellipse (see Figure 2). As an example of application
to elementary geometry, we show that wherever an equilateral triangle with
a circumradius of 1

2
or larger than 1

2
is put within the unit circle, there is a

triangle inscribed in the unit circle and circumscribing the triangle.
The paper is organized as follows. In Section 2, in the Poincaré hyperbolic

disk, we discuss the conditions that for a given triangle there exists a triangle
inscribed in the unit circle and circumscribing this triangle in the hyperbolic
sense. In Section 3, we translate the results in Section 2 to the Beltrami–Klein
model. Section 4 examines the rotation numbers associated with the bar
billiards and the dynamics of the unit circle. In Section 5, we show how this
can be applied to elementary geometry.

2 Hyperbolic Disk

Let DP denote the Poincaré hyperbolic disk {(x, y) ∈ R2 | x2 + y2 < 1}
and the metric ds2 = 4

dx2 + dy2

(1− x2 − y2)2
. d(P,Q) is defined as the hyperbolic

distance for P,Q ∈ DP , i.e.,

d(P,Q) := arccosh

(

1 +
2|P −Q|2

(1− |P |2)(1− |Q|2)

)

,

where | · | is the Euclidean norm. For example, see [1],[5].
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Figure 1: Trajectories circumscribing a circle or a triangle.

P

Q

Figure 2: Ellipse associated with a point of rotation number 1
3
.
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For P,Q ∈ DP , we define

∆(P,Q) := log

(

ed(P,Q) + 1

ed(P,Q) − 1

)

(= log (coth(
d(P,Q)

2
))).

Theorem 2.1. Let △PQR be a triangle in DP . Let m ∈ Z≥0 be the number
of triangles inscribed in S1 and circumscribing △PQR. Let h be the length
of the vertical line from R to PQ. Then,

m =











0 if h < ∆(P,Q),

1 if h = ∆(P,Q),

2 if h > ∆(P,Q).

Proof. Now we consider DP and S1 to be the sets in C; i.e., DP = {z ∈
C | |z| < 1} and S1 = {z ∈ C | |z| = 1}. Let H be the upper half plane
{z ∈ C | the imaginary part of z is positive}. Let f : DP → H be the
map f(z) := iz+i

1−z
for z ∈ DP . Then, it is known that f is an isometry

from DP to H with the metric ds2 = dx2+dy2

y2
. For z1, z2 ∈ H , we denote

d′′(z1, z2) by the distance from z1 to z2 related to the metric ds. We see
that SL(2,R) is an isometry group of H and it acts transitively on the set
{(z1, z2) ∈ H2 | d′′(z1, z2) = c}, where c can be any positive constant. As
a result, g ∈ SL(2,R) exists such that g(f(P )) = i and g(f(Q)) is on the
imaginary axis. Let ki = g(f(Q)) and we assume k > 1 without loss of
generality. Since P,Q, and R are not on any line in DP , g(f(R)) is not
on the imaginary axis. We may assume that the real part of g(f(R)) is
positive without loss of generality. Let u + vi = g(f(R)) with u, v > 0. In
hyperbolic geometry, a line in H is a semicircle that intersects the real axis
perpendicularly. We consider the circle C1 with the center s and −t, ki ∈ C1

for s, t ∈ R with t > 0. Then, we have

s2 + k2 = (s+ t)2,

which implies s = k2−t2

2t
. Therefore, 2s+ t = k2

t
is on C1. Similarly, the circle

C2 whose center is on the real axis and through −t and i has the point 1
t
. Let

C3 be the circle whose center is on the real axis and which passes through 1
t

and k2

t
. The following is the condition u+ vi ∈ C3:

(

u− 1 + k2

2t

)2

+ v2 =

(

k2 − 1

2t

)2

,
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which implies

(u2 + v2)t2 − (k2 + 1)ut+ k2 = 0. (2.1)

The discriminant of formula (2.1) for t is

D = (k2 + 1)2u2 − 4k2(u2 + v2).

We recall the definition of m as the number of C3, which includes u + vi.
Since D = ((k2 − 1)u− 2kv)((k2 − 1)u+ 2kv) and u, v > 0, we have

m =































0 if v >

(

k2 − 1

2k

)

u,

1 if v =

(

k2 − 1

2k

)

u,

2 if v <

(

k2 − 1

2k

)

u.

(2.2)

We denote the set {x+ yi ∈ H | y =

(

k2 − 1

2k

)

x} by L. Let θ ∈ (0, π/2) be

the angle between the imaginary axis and L. We will calculate the length d
of a vertical line from each point of L to the imaginary axis in the hyperbolic
sense. Let x + iy ∈ L with r =

√

x2 + y2. Then, the length of the curve
r sinw + ir cosw(0 ≤ w ≤ θ) is

d =

∫ θ

0

dw

cosw
= log

(

1 + tan(θ/2)

1− tan(θ/2)

)

. (2.3)

We remark that d depends only on θ. On the other hand, from the fact that

tan θ =
2k

k2 − 1
we see that θ = π−2 arctan k. Therefore, from (2.3), we have

d = log

(

k + 1

k − 1

)

. (2.4)

The distance between i and ki is
∫ k

1

dy

y
= log k. (2.5)

From (2.4) and (2.5), we have

d = ∆(P,Q). (2.6)

Similarly, we can consider the case of u < 0. The theorem is derived from
(2.2) and (2.6).
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The h in Theorem 2.1 is calculated by hyperbolic trigonometry as follows.

Proposition 2.2. Let △PQR be a triangle in DP . Let h be the length of
the vertical line from R down to the line PQ. Then,

h = arcsinh

(

√

(− cosh(α− γ) + cosh b)(cosh(α+ γ) + cosh β)

sinh γ

)

,

where α = d(Q,R), β = d(R,P ) and γ = d(P,Q).

Proof. Through the hyperbolic law of cosines [1], we see

cosQ =
coshα cosh γ − cosh β

sinhα sinh γ
. (2.7)

Through the law of right-angled triangles [1], we see

sinh h = sinhα sinQ. (2.8)

From (2.7) and (2.8), we have the proposition.

In the proof of Theorem 2.1, we obtain the set containing the points R
with m = 1. As a result, we may express Theorem 2.1 geometrically as
follows.

Theorem 2.3. Let P,Q,R ∈ DP be different from each other. Let T1, T2 ∈
S1 be two points at infinity which intersect the hyperbolic line PQ. Let C1, C2

be two arcs in DP intersecting S1 at T1, T2 with angle 2 arctan(ed(P,Q))−π/2.
Let Θ be the inner region bounded by C1, C2, T1 and T2. The definition of
m ∈ Z is the same as that of Theorem 2.1. Then,

m =











0 if R ∈ Θ,

1 if R ∈ C1 ∪ C2,

2 if R ∈ (clΘ)c.

See Figure 3.

Proof. We recall the proof of Theorem 2.1. In the case of u < 0, L′ is defined
as {x+ yi ∈ H | y = −k2−1

2k
x}. We define Θ′ as the inner region bounded by

L, L′ and 0, i.e.,

Θ′ := {x+ yi ∈ H | |y| >
(

k2 − 1

2k

)

|x|}.

6



T1
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T3
P

Q
C1C2

Figure 3: Two circular arcs C1 and C2.

Then, we have

m =











0 if g(f(R)) ∈ Θ′,

1 if g(f(R)) ∈ L ∪ L′,

2 if g(f(R)) ∈ (clΘ′)c.

(2.9)

At 0 and∞, the angle between L and the imaginary axis is 2 arctan(ed(P,Q))−
π/2. The same is true for L′. The theorem is derived from (2.9) and the
preceding facts.

The arcs will be discussed in greater depth in Proposition 2.4, as they are
required in the following chapter.

Proposition 2.4. Let P,Q ∈ DP be different from each other. Let T1, T2 ∈
S1(= R/Z) be two points at infinity, which intersect the hyperbolic line PQ
with T1 − T2 ∈ (0, 1/2] mod 1. Let T3 ∈ S1(= R/Z) be the point such that
T1+ T2 = 2T3 mod 1 and T3−T2 ∈ (0, 1/2] mod 1. Let C1, C2 be two arcs in
DP intersecting S1 at T1, T2 with angle 2 arctan(ed(P,Q)) − π/2 such that C1

is closer to T3 than C2. Then, the center of C1 is

e2d(P,Q) − 1

u(e2d(P,Q) − 1)− 2ed(P,Q)
√
1− u2

T3,

and the center of C2 is

e2d(P,Q) − 1

u(e2d(P,Q) − 1) + 2ed(P,Q)
√
1− u2

T3,

7



O

T1

B C AuT3

Figure 4: Points A, B, C.

where u is the length between the origin and the straight line T1T2 in the sense
of the Euclidean norm.

Proof. We put k = ed(P,Q).Let A = aT3 be the center of C1 where a ∈ R. See
Figure 4. Let θ be arccosu. We assume that a > 0. Let B be the intersection
of line OT3 and the line vertical to line AT1 that passes through T1. Let C be
the intersection of line OT3 and the line vertical to the line OT1 that passes
through T1. Since ∠BT1C = 2 arctan(k) − π/2 and ∠T1OA = θ, we have
∠OAT1 = 2 arctan k − π/2 − θ. Therefore, AT1 =

√
1− u2/ sin(2 arctan k −

π/2− θ), which implies

a = u+

√
1− u2

tan(2 arctan k − π/2− θ)

=
k2 − 1

u(k2 − 1)− 2k
√
1− u2

.

For the case of a < 0 we have the same formula. We can prove the formula
for C2 in the same manner.

3 Beltrami-Klein Disk

In this section, we interpret the theorems as geometric properties in the Eu-
clidean plane through the Beltrami-Klein disk model(for example, see [1],[5]).
Let ∆ be the disk {(x, y) ∈ R

2 | x2 + y2 < 1}. We define G : DP → D by for
(x, y) ∈ DP

G(x, y) :=

(

2x

1 + x2 + y2
,

2y

1 + x2 + y2

)

.
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P

Q

v1

v2

Figure 5: d′(P,Q).

Then, the inverse map of G is given by for (x, y) ∈ D

G−1(x, y) =

(

x

1 +
√

1− x2 − y2
,

y

1 +
√

1− x2 − y2

)

. (3.1)

G is naturally extended to the boundary of DP . D is a hyperbolic geometric
model that is isomorphic to DP via the map G and it is called the Bel-
trami–Klein model. A line of D in the hyperbolic sense is known to be a
straight line segment with endpoints at the boundary of D. For P,Q ∈ D,
we define d′(P,Q) as

d′(P,Q) := d(G−1(P ), G−1(Q)).

We remark that d′(P,Q) is defined more simply using points at infinity. Let
v1, v2 ∈ S1 be two points at infinity which intersect the hyperbolic line PQ
(see Figure 5). Then, d′(P,Q) is given by

1

2

∣

∣

∣

∣

log

( |v1Q||v2P |
|v1P ||v2Q|

)
∣

∣

∣

∣

.

For P,Q ∈ D we define ∆′(P,Q) as

∆′(P,Q) := ∆(G−1(P ), G−1(Q)).

We define δ(P,Q,R) as the minimum of d′(R, S), where S are points on the
line PQ. From Proposition 2.2 δ(P,Q,R) is given by

arcsinh

(

√

(− cosh(α− γ) + cosh b)(cosh(α + γ) + cosh β)

sinh γ

)

,

9



where α = d′(Q,R), β = d′(R,P ) and γ = d′(P,Q).
From Theorem 2.1 and Proposition 2.2, we have

Theorem 3.1. Let △PQR be a triangle in D. Let m ∈ Z≥0 be the number
of triangles inscribed in S1 and circumscribing △PQR. Then,

m =











0 if δ(P,Q,R) < ∆′(P,Q),

1 if δ(P,Q,R) = ∆′(P,Q),

2 if δ(P,Q,R) > ∆′(P,Q).

We give an example.

Example 3.1. Let P = (−1
4
,
√
3
4
), Q = (−1

4
,−

√
3
4
), R = (1

2
, 0), and S =

(−1
4
, 0). We set v1 = (−1

4
,
√
15
4
), v2 = (−1

4
,−

√
15
4
), v3 = (1, 0), and v4 =

(−1, 0), which are points at infinity. Then, △PQR is an equilateral triangle
in D. See Figure 6. Then,

d′(P,Q) =
1

2
log

|v1Q||Pv2|
|v2Q||Pv1|

= log

√
5 + 1√
5− 1

,

∆′(P,Q) = log
ed

′(P,Q) + 1

ed′(P,Q) − 1
= log

√
5.

Conversely, we have

δ(P,Q,R) = d′(R, S) =
1

2
log

|v3S||Rv4|
|v4S||Rv3|

= log
√
5.

Therefore, m (defined in Theorem 3.1) is 1.

Theorem 3.1 shows that the relationship between the values of δ(P,Q,R)
and ∆′(P,Q) is the same as that between δ(R,P,Q) and ∆′(R,P ), and that
between δ(Q,R, P ) and ∆′(Q,R). We define ω(R,P,Q) as

ω(R,P,Q) :=
δ(P,Q,R) + δ(R,P,Q) + δ(Q,R, P )

∆′(P,Q) + ∆′(R,P ) + ∆′(Q,R)
.

Immediately from Theorem 3.1, we have

Proposition 3.2. Let △PQR be a triangle in D. Let m ∈ Z≥0 be the number
of triangles, which are inscribed in S1 and circumscribe △PQR. Then,

m =











0 if ω(P,Q,R) < 1,

1 if ω(P,Q,R) = 1,

2 if ω(P,Q,R) > 1.
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Figure 6: △PQR in Example3.1.

From Theorem 2.3 and Proposition 2.4, we have

Theorem 3.3. Let △PQR be a triangle in D. Let T1, T2 ∈ S1(= R/Z) be
two points at infinity, which intersect the hyperbolic line PQ with T1 − T2 ∈
(0, 1/2] mod 1. Let T3, T4 ∈ S1(= R/Z) be the points such that T1 + T2 =
2T3 mod 1, T3 − T2 ∈ (0, 1/2] mod 1, and T4 = T3 +

1
4
mod 1. Let (x1, x2)

′

be the coordinates using the base {T3, T4}. Let u be the x1 coordinate of P .
We define a ∈ R as

e2d
′(P,Q) − 1

u(e2d′(P,Q) − 1)− 2ed′(P,Q)
√
1− u2

.

Let E be the ellipse defined by

{(x1, x2)′ |
(x1 − C)2

A2
+
x22
B2

= 1},

where

A :=
|au− 1|

√
a2 − 2ua+ 1

(u2 + 1)a2 − 2au+ 1

(

=
2k(k2 + 1)(1− u2)

(k2 − 2ku+ 1)(k2 + 2ku+ 1)

)

,

B :=

√
a2 − 2ua+ 1

√

(u2 + 1)a2 − 2au+ 1

(

=
(k2 + 1)

√
1− u2

√

(k2 − 2ku+ 1)(k2 + 2ku+ 1)

)

,

C :=
a2u

(u2 + 1)a2 − 2au+ 1

(

=
(k2 − 1)2u

(k2 − 2ku+ 1)(k2 + 2ku+ 1)

)

,

11
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T3

P

Q

Figure 7: Ellipse E.

where k := ed
′(P,Q). See Figure 7. Then, E is included in D ∪ S1 and is

tangent to S1 at T1 and T2. Let Φ be the inner region bounded by E. The
definition of m ∈ Z is the same as that of Theorem 3.1. Then,

m =











0 if R ∈ Φ,

1 if R ∈ E,

2 if R ∈ (clΦ)c.

Proof. For simplicity, we assume that P = (u, p), Q = (u, q), where 0 ≤ u <
1, p > q. First, we show that a circle with a center on the x-axis maps to an
ellipse with a center on the x-axis by the map G. We define circle C(r, b) by
{(x, y) | (x− b)2 + y2 = r2}. The map G is extended to the map Ḡ from R2

to D ∪ S1 using the same formula (3.1). Then, using simple calculations, Ḡ
bijectively maps C(r, b) to the ellipse E(r, b) defined by

(x− C ′)2

A′2 +
y2

B′2 = 1,

where

A′ :=
2r(1 + r2 − b2)

((r − b)2 + 1)((r + b)2 + 1)
,

B′ :=
2r

√

(r − b)2 + 1
√

(r + b)2 + 1
,

C ′ :=
2b(1− r2 + b2)

((r − b)2 + 1)((r + b)2 + 1)
.

12



For V1, V2 ∈ C(r, b), we denote arc(V1V2) by the arc of C(r, b) that goes
counterclockwise from V1 to V2. For V1, V2 ∈ E(r, b), we denote arc′(V1V2)
by the arc of E(r, b) that goes counterclockwise from V1 to V2. We suppose
that C(r, b) intersects S1 at T1 = (u,

√
1− u2), T2 = (u,−

√
1− u2). Then,

we have r2 = 1+b2−2bu, C(r, 0) = S1, and C(r, 1
u
) is a line in the hyperbolic

sense. We suppose n 6= 0, 1
u
. Then, we have

1) arc(T2T1) is mapped to arc′(T2T1) by Ḡ if b >
1

u
or b < 0, and arc(T1T2)

is mapped to arc′(T1T2) by Ḡ if 0 < b <
1

u
, where for the case of u = 0

we set
1

u
:= ∞.

2) Furthermore, we suppose that C(r′, b′) intersects S1 at T1, T2, and b
′ =

b

2bu− 1
. Then, E(r, b) = E(r′, b′).

The proofs of 1) and 2) are left to the reader. Theorem 2.3, Proposition
2.4, 1), and 2) can be used to prove the theorem. In Proposition 2.4, we set
G−1(P ) (resp., G−1(Q)) as P (resp., Q). C1 in Proposition 2.4, is the arc
of C(

√

(a− u)2 + 1− u2, a), and C2 is the arc of C(
√

(a′ − u)2 + 1− u2, a′),
where a′ := a/(2au − 1). As a result of 1) and 2), we have completed the
proof.

In Theorem 3.3 let P = (u, p)′ and Q = (u, q)′. we have

d′(P,Q) =
1

2

∣

∣

∣

∣

log

(

(p+
√
1− u2)(−q +

√
1− u2)

(q +
√
1− u2)(−p+

√
1− u2)

)
∣

∣

∣

∣

.

Then, the ellipse E in Theorem 3.3 is given by

Proposition 3.4.

{(x1, x2)′ |
(x1 − C)2

A2
+
x22
B2

= 1},

13
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Figure 8: Ellipse as envelope.

where

A :=

√

(p2 + u2 − 1)(q2 + u2 − 1)(pq + u2 − 1)2

(p2(q2 + u2)− 2pq + (q2 − 2)u2 + u4 + 1)2
,

B :=

√

(pq + u2 − 1)2

p2(q2 + u2)− 2pq + (q2 − 2)u2 + u4 + 1
,

C :=
u(p− q)2

p2(q2 + u2)− 2pq + (q2 − 2)u2 + u4 + 1
.

Remark 3.1. Proposition 3.4 can also be demonstrated without the use of
hyperbolic geometry. Given two points P = (u, p), Q = (u, q) in D, let us
characterize the region RP,Q ⊂ D such that for all R ∈ RP,Q there exists
a triangle △u1u2u3 inscribed in S1 and circumscribing △PQR. If △u1u2u3
exists, we can infer that u1 = (cos θ, sin θ) and u1u2, u1u3 include P,Q. Then,
R lies on the open segment σθ := u2u3, and, for any point R′ ∈ σθ, △u1u2u3
circumscribes △PQR′. Thus, σθ ⊂ RP,Q and therefore, RP,Q =

⋃

θ∈[0,2π] σθ.
As RP,Q is a union of segments, its boundary component in D is the envelope
of the family of those segments (see Figure 8).

Let us now directly deduce the envelope equation. The segment σθ is
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contained within the line described by the following equation:

F (x, y, θ) :=
(

(u2 + 1− pq) cos θ + (p+ q)u sin θ − 2u
)

x

+
(

(p+ q)u cos θ + (1 + pq − u2) sin θ − p− q
)

y

− 2u cos θ − (p+ q) sin θ + pq + u2 + 1

= 0

By eliminating the variable θ from F (x, y, θ) = 0 and ∂
∂θ
F (x, y, θ) = 0, we

obtain the same equation of ellipse as in Proposition 3.4.

4 Rotation Number

Let △PQR be a triangle in D. For v ∈ S1, there exist two points v1, v2 ∈ S1

such that the segment vvi is tangent to △PQR for i = 1, 2. We may assume
that v1 is closer to v in a counterclockwise direction than v2. We define the
transformation ψ△PQR on S1 as the mapping v to v1. Let π : R → S1 be the
projection

π(x) := x− ⌊x⌋, for x ∈ R,

where ⌊x⌋ is an integral part of x. Let ψ△PQR be the lift with ψ△PQR(0) ∈
(0, 1). Since ψ△PQR is a homeomorphism of S1, we consider the rotation
number of ψ△PQR, which is denoted by ρ(ψ△PQR), where for example see [7]
for rotation numbers.

In this section we show that △PQR is rather large, the rotation number
is 1/3, and we consider the trajectory (ψ△PQR)

n(v) for n = 0, 1, 2, . . ..
We require a lemma.

Lemma 4.1. Let △PQR be a triangle in D. Let v1, v2 ∈ S1 be points at
infinity, which are intersection points with the line PQ and S1. We suppose
v1 is closer to P than Q and ψ△PQR(v1) = v2. Then, if v′1 ∈ π−1(v1),

ψ△PQR

3
(v′1) > v′1 + 1.

Proof. We assume {P,Q,R} are in counterclockwise order without loss of
generality. Let v3, v4 ∈ S1 be points at infinity that intersect the line QR
and S1, and v3 is closer to Q than R. See Figure 9. Let v′1 ∈ π−1(v1). Let
v′2 ∈ π−1(v2) with ψ△PQR(v

′
1) = v′2. Let v′3 ∈ π−1(v3) and v′4 ∈ π−1(v4)

such that v′3 < v′2 < v′3 + 1 and ψ△PQR(v
′
3) = v′4. Because v′3 < v′2, we see
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Q

P

R

v1

v2

v3

v4

Figure 9: vi (i = 1, . . . , 4).

ψ△PQR(v
′
3) < ψ△PQR(v

′
2). Therefore, we have ψ△PQR(v

′
4) < (ψ△PQR)

3(v′1).
Clearly, ψ△PQR(v

′
4) > v′1 + 1, which implies ψ△PQR(v

′
1)

3 > v′1 + 1.

Theorem 4.2. Let △PQR be a triangle in D. Then,
1

2
> ρ(ψ△PQR) >

1

3
if

δ(P,Q,R) < ∆′(P,Q) and ρ(ψ△PQR) =
1

3
if δ(P,Q,R) ≥ ∆′(P,Q).

Proof. First, we suppose δ(P,Q,R) < ∆′(P,Q). We suppose that there exists

v′ ∈ R such that ψ△PQR

3
(v′) ≤ v′ + 1. From Lemma 4.1, there exists v′′ ∈ R

such that ψ△PQR

3
(v′′) > v′′+1. Since ψ△PQR is continuous, there exists v ∈ R

such that ψ△PQR

3
(v) = v+1, which contradicts Theorem 3.1. Therefore, we

see that for any v ∈ R ψ△PQR

3
(v) > v+1. Let ǫ := minv∈R(ψ△PQR

3
(v)−v−1).

Then, we have

ρ(ψ△PQR) = lim
n→∞

ψ△PQR

n
(0)

n
≥ 1

3
+
ǫ

3
>

1

3
.

Clearly, for any v ∈ R ψ△PQR

2
(v) < 1, which follows ρ(ψ△PQR) < 1/2.

Next, we suppose δ(P,Q,R) ≥ ∆′(P,Q). From Theorem 3.1, there exists
v1 ∈ S1 such that ψ3

△PQR(v1) = v1. Therefore, we have ρ(ψ△PQR) = 1/3.

For the case of ρ(ψ△PQR) = 1/3, we evaluate the dynamics on S1 via the
transformation ψ△PQR. For u, v ∈ S1, we denote arc(uv) by the arc of S1

that moves counterclockwise from u to v. The following lemma is required.
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Lemma 4.3. Let △PQR be a triangle in D with δ(P,Q,R) > ∆′(P,Q).

Then, there exists w ∈ S1 such that if w′ ∈ π−1(w), ψ△PQR

3
(w′) < w′ + 1.

Proof. We take a point A in the inner region of △PQR. We consider a
similarity transformation Sλ for λ ∈ R defined as for X ∈ R2

Sλ(X) := λ(X − A) + A.

It is not difficult to see that

lim
λ→0+

∆′(Sλ(P ),Sλ(Q)) = ∞,

lim
λ→0+

δ(Sλ(P ),Sλ(Q),Sλ(R)) = 0.

Because the aforementioned formulas for λ are continuous with respect to λ,
there exists λ′ with 0 < λ′ < 1 such that

δ(Sλ′(P ),Sλ′(Q),Sλ′(R)) = ∆′(Sλ(P ),Sλ(Q)).

We set P ′ = Sλ′(P ), Q′ = Sλ′(Q), and R′ = Sλ′(R). Then, from Theorem
3.1, there exists u ∈ S1 such that ψ3

△P ′Q′R′(u) = u and ψ△P ′Q′R′(u) 6= u. Let
w′ ∈ π−1(u). Then, because triangle △P ′Q′R′ is included in △PQR, we see

ψ△PQR

3
(w′) < ψ△P ′Q′R′

3
(w′) = w′ + 1.

Theorem 4.4. Let △PQR be a triangle in D and ρ(ψ△PQR) = 1/3.

(1) Case of δ(P,Q,R) = ∆′(P,Q).
There exists u1 ∈ S1 such that ψ3

△PQR(u1) = u1. We set ui :=

ψi−1
△PQR(u1) for i = 2, 3. We set I1 := arc(u3u1)\{u3} and Ij :=

arc(uj−1uj)\{uj−1} for j = 2, 3. Then, for v ∈ Ij for 1 ≤ j ≤ 3
{ψ3n

△PQR(v)}n=1,2,... converges to uj as n→ ∞. See Figure 10.

(2) Case of δ(P,Q,R) > ∆′(P,Q).
There exists u1 ∈ S1 such that ψ3

△PQR(u1) = u1 and there exists w ∈
S1 with v 6= ui (i = 1, 2, 3) for which limn→∞ ψ3n

△PQR(w) = u1. We

set ui := ψi−1
△PQR(u1) for i = 2, 3. We set I1 := arc(u3u1)\{u3} and

Ij := arc(uj−1uj)\{uj−1} for j = 2, 3. There exists v1( 6= u2) ∈ I2 such
that ψ3

△PQR(v1) = v1. We set vi := ψi−1
△PQR(v1) for i = 2, 3. We set

I ′1 := arc(v3v1)\{v3, v1} and I ′j := arc(vj−1vj)\{vj−1, vj} for j = 2, 3.
Then, for v ∈ I ′j for 1 ≤ j ≤ 3 {ψ3n

△PQR(v)}n=1,2,... converges to uj as
n→ ∞. See Figure 11.
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Figure 10: (1) ψ3
△PQR.

v1
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u3

Figure 11: (2) ψ3
△PQR.
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Proof. First, we consider (1). We suppose δ(P,Q,R) = ∆′(P,Q). From The-
orem 3.1, there exists u1 ∈ S1 such that ψ3

△PQR(u1) = u1 and ψ△PQR(v1) 6=
v1. We define u2, u3 and Ij j = 1, 2, 3 as in the theorem. Because ψ△PQR is
a homeomorphism of S1, we see that ψ△PQR(I3) = I1 and ψ△PQR(Ij) = Ij+1

for j = 1, 2. According to Lemma 4.1, there exists v′ ∈ R such that

ψ△PQR

3
(v′) > v′ + 1. Considering π(v′), π(ψ△PQR(v

′)), π(ψ△PQR

2
(v′)), we

see that there exists v′′ ∈ R such that π(v′′) ∈ I1 and

ψ△PQR

3
(v′′) > v′′ + 1. (4.1)

Let u ∈ I1 and u 6= u1. Let u′ ∈ π−1(u). We suppose that ψ△PQR

3
(u′) ≤

u′ + 1. Then, from (4.1), there exists v ∈ R such that ψ△PQR

3
(v) = v +

1, π(v) ∈ I1 and π(v) 6= v1, which contradicts Theorem 3.1. Therefore,

ψ△PQR

3
(u′) > u′ + 1. Hence, there exists w ∈ I1 ∪ {u1} such that

lim
n→∞

ψ3n
△PQR(u) = w.

Then, we have ψ3n
△PQR(w) = w, which yields w = u1 from Theorem 3.1.

Other cases can be proved in the same way.
Next, we consider (2). We suppose δ(P,Q,R) > ∆′(P,Q). From Theorem

3.1 there exist b1, c1 ∈ S1 such that ψ3
△PQR(b1) = b1, ψ

3
△PQR(c1) = c1 and

∪i=1,2,3{ψi−1
△PQR(b1)}

⋂

∪i=1,2,3{ψi−1
△PQR(c1)} = ∅.

We set bi := ψi−1
△PQR(b1) for i = 2, 3. We assume that c1 ∈ arc(b1b2) without

loss of generality. Similarly as in the proof of (1), there exists v′ ∈ arc(b1b2)

such that for v′′ ∈ π−1(v′) ψ△PQR

3
(v′′) > v′′ + 1. From Lemma 4.3, there

exists w ∈ arc(b1b2) such that for w′ ∈ π−1(w), ψ△PQR

3
(w′) < w′ + 1.

First, we suppose w ∈ arc(b1c1). If there exists v ∈ int(arc(b1c1)) such that

ψ△PQR

3
(v′) ≥ v′ +1 for v′ ∈ π−1(v), then we have the same contradiction as

in the proof of (1). As a result, for any v ∈ int(arc(b1c1)) we see ψ△PQR

3
(v′) <

v′+1 for v′ ∈ π−1(v). Then, as in the proof of (1), for every v ∈ int(arc(b1c1))

lim
n→∞

ψ3n
△PQR(v) = b1.

Similarly, we have for every v ∈ int(arc(c1b2))

lim
n→∞

ψ3n
△PQR(v) = b2.
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Now, we put u1 := b1 and v1 := c1 and set u2, u3, v2, v3, and Ij, I
′
j for j =

1, 2, 3 as the theorem. Then, we have the theorem. Next, we assume w ∈
arc(c1b2). Similarly, for any v ∈ int(arc(c1b2))

lim
n→∞

ψ3n
△PQR(v) = c1,

and for every v ∈ int(arc(b1c1))

lim
n→∞

ψ3n
△PQR(v) = c1.

We put u1 := c1 and v1 := b2 and set u2, u3, v2, v3, and Ij, I
′
j for j = 1, 2, 3 as

the theorem. Then, we have the theorem.

5 Application

As we have seen in earlier chapters, the relationship between rotation num-
bers and the hyperbolic geometric structure when the rotation number is
minimized is examined. We would want to talk about whether these proper-
ties hold valid for congruent triangle transformations in Euclidean space.

Theorem 5.1. Let △PQR be a triangle in D. Then, there exists a triangle
△P ′Q′R′ in D such that △P ′Q′R′ is similar to △PQR and for arbitrary
triangle △ABC ⊂ D which is congruent to △P ′Q′R′, ρ(ψ△ABC) =

1
3
. Here,

similarity and congruence are in the sense of Euclidean geometry.

Proof. First, we suppose that △PQR is an obtuse triangle or right triangle.
We may assume ∠R ≥ π/2. We set P1 = (0, 1) and P2 = (0,−1). It is
not difficult to find P3 = (x1, x2) ∈ D ∪ S1 such that △P1P2P3 is similar to
△PQR. We assume x1 > 0 without loss of generality. We take a look at
similarity transformation Sλ for λ ∈ R defined as for X ∈ R2

Sλ(X) := λX.

We take K > 0 such that for any k ≥ K

4k(k2 + 1)

(k − 1)4
<
x1
4
. (5.1)

We take

ǫ = min{x
2
1

32
,
1

4K
}. (5.2)
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Let λ = 1 − ǫ. Let P ′
i = Sλ(P

′
i ) for i = 1, 2, 3. Let us demonstrate that

△P ′
1P

′
2P

′
3 is as specified in the theorem. We note that when considering a

congruent transformation to △P ′
1P

′
2P

′
3 in D, we just need to consider transla-

tion, not rotation or symmetry transformations by symmetry. For τ1, τ2 ∈ R2

we define the translation Pτ1,τ2 as for (x, y) ∈ R2 Pτ1,τ2(x, y) := (x+τ1, y+τ2).
We define the set U ⊂ D as

U := {(τ1, τ2) ∈ R
2 | Pτ1,τ2(△P ′

1P
′
2P

′
3) ⊂ D}.

Then, we see

U ⊂ {(τ1, τ2) ∈ R
2 | Pτ1,τ2(P

′
1P

′
2) ⊂ D} ⊂ (−

√
2ǫ,

√
2ǫ)× (−ǫ, ǫ). (5.3)

Let (τ ′1, τ
′
2) ∈ U . We set Vi := Pτ ′

1
,τ ′

2
(Pi) for i = 1, 2, 3. From the facts that

|τ ′2| < ǫ, (τ ′1, τ
′
2) ∈ U , and (5.2), we get

d′(V1, V2)

=
1

2
log

(

(1− ǫ+ τ ′2 +
√

1− (τ ′1)
2)(1− ǫ− τ ′2 +

√

1− (τ ′1)
2)

(−1 + ǫ− τ ′2 +
√

1− (τ ′1)
2)(−1 + ǫ+ τ ′2 +

√

1− (τ ′1)
2)

)

>
1

2
log

(1− 2ǫ)2

(2ǫ)2
> log

1

4ǫ
.

We set k′ := ed
′(V1,V2). Then, we have

k′ >
1

4ǫ
. (5.4)

Let E be the ellipse defined for V1, V2 in Theorem 3.3; i.e., if A,B, and C
are as defined in Theorem 3.3, we have

E = {(x, y) | (x− C)2

A2
+
y2

B2
= 1}.

In particular, A is as follows:

A :=
2k′(k′2 + 1)(1− τ ′21 )

(k′2 − 2k′τ ′1 + 1)(k′2 + 2k′τ ′1 + 1)
. (5.5)

Consider Φ to be the inner region enclosed by E. Since (τ ′1, 0) is in Φ, Φ is
included in the set {(x, y) | |x−τ ′1| < 2A} denoted by Φ′. Let us demonstrate
V3 /∈ Φ′. From (5.1), (5.2), (5.4), and (5.5) we have

2A <
4k′(k′2 + 1)

(k′ − 1)4
<
x1
4
. (5.6)
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We recall V3 = Pτ ′
1
,τ ′

2
(P ′

3) = ((1 − ǫ)x1 + τ ′1, (1 − ǫ)x2 + τ ′2). From (5.2) and
(5.6), we have

(1− ǫ)x1 >
31

32
x1 > 2A,

which implies V3 /∈ Φ′. Therefore, from Theorem 3.3, we see ρ(ψ△V1V2V3
) = 1

3
.

Next, we assume that △PQR is an acute triangle. Then, there is △P1P2P3,
which is inscribed in S1 and is similar to △PQR. We can assume that P1P2

is parallel to the y-axis. We can provide comparable proof in this case as we
did in the previous ones. We leave the proof to the reader.

If △PQR is similar to △P ′Q′R′, we denote by △PQR ∼ △P ′Q′R′. For
a triangle △PQR in R

2, we define κ(△PQR) as its circumradius if △PQR
is an acute triangle, and κ(△PQR) as half of the length of the largest side
of △PQR if △PQR is an obtuse triangle or right triangle.

For a triangle △PQR in R2, we define µ(△PQR) as the infimum of
κ(△P ′Q′R′) such that

(1) △P ′Q′R′ ⊂ D,

(2) △P ′Q′R′ ∼ △PQR,

(3) for any△P ′′Q′′R′′ ⊂ D which is congruent to△P ′Q′R′, ρ(ψ△P ′′Q′′R′′) =
1
3
.

µ(△PQR) is well defined from Theorem 5.1. Furthermore, we have

Proposition 5.2. Let △PQR be a triangle in R2. Then, 0 < µ(△PQR) <
1.

Proof. For any △P ′Q′R′ ⊂ D, we see κ(△P ′Q′R′) < 1, which implies
µ(△PQR) < 1. Let △P ′Q′R′ ⊂ D be similar to △PQR. For λ ∈ R,
we define the similarity transformation Sλ as for X ∈ R2

Sλ(X) := λX.

It is not difficult to see that

lim
λ→0

δ(Sλ(P
′),Sλ(Q

′),Sλ(R
′)) = 0,

lim
λ→0

∆′(Sλ(P
′),Sλ(Q

′)) = ∞.

Therefore, from Theorem 3.1, there exists λ′ > 0 such that for every λ with
0 < λ < λ′ ρ(ψ△Sλ(P ′))Sλ(Q′))Sλ(R′))) >

1
3
, which follows 0 < µ(△PQR).
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Figure 12: Points in the proof of Proposition 5.3.

We have not yet established the method to compute µ(△PQR). We give
an example.

Proposition 5.3. Let △PQR be an equilateral triangle in R2. Then, µ(△PQR) =
1
2
.

Proof. We put P = (−1
4
,
√
3
4
), Q = (−1

4
,−

√
3
4
), R = (1

2
, 0), and S = (−1

4
, 0).

Then, △PQR is an equilateral triangle and ρ(ψ△PQR) = 1
3
as seen in Ex-

ample 3.1. First, we consider Pτ1,0(△PQR) for τ1 ∈ R. We note that

Pτ1,0(△PQR) ⊂ D implies −
√
13−1
4

< τ1 < 1
2
. We set P ′ = Pτ1,0(P ),

Q′ = Qτ1,0(Q), R
′ = Pτ1,0(R), and S ′ = Pτ1,0(S) for −

√
13−1
4

< τ1 < 1
2

(see Figure 12). Let u = −1
4
+ τ1. Then, P ′ = (u,

√
3
4
), Q′ = (u,−

√
3
4
),

R′ = (u + 3
4
, 0), and S ′ = (u, 0). We note −

√
13
4
< u < 1

4
. Furthermore, we

put v1 = (u,
√
1− u2), v2 = (u,−

√
1− u2), v3 = (1, 0), and v4 = (−1, 0).

Then, we have

d′(P ′, Q′) = log

√
1− u2 +

√
3/4√

1− u2 −
√
3/4

,

∆′(P ′, Q′) = log
ed

′(P,Q) + 1

ed′(P,Q) − 1

= log

√
1− u2 +

√
3/4√

1− u2 −
√
3/4

+ 1

√
1− u2 +

√
3/4√

1− u2 −
√
3/4

− 1

= log
4
√
1− u2√
3

.
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Since δ(P ′, Q′, R′) = d′(R′, S ′), we have

δ(P ′, Q′, R′) =
1

2
log

(u+ 7/4) · (1− u)

(1/4− u) · (u+ 1)
.

We see

(u+ 7/4) · (1− u)

(1/4− u) · (u+ 1)
−
(

4
√
1− u2√
3

)2

=
(1− u)(4u+ 1)2(4u+ 5)

3(u+ 1)(1− 4u)
≥ 0,

where the equality holds if and only if u = −1
4
. Therefore, we see

δ(P ′, Q′, R′) ≥ ∆′(P ′, Q′), (5.7)

where the equality holds if and only if △P ′Q′R′ = △PQR. Therefore,
ρ(ψ△P ′Q′R′) = 1

3
. Next, let us consider a translation parallel to the y-axis;

i.e., we consider P ′
0,τ2(△P ′Q′R′) for τ2 ∈ R. We note that we only con-

sider the case of τ2 > 0 by symmetry. Therefore, we suppose τ2 > 0 and
we have 0 < τ2 <

√
1− u2 −

√
3
4
. We set P ′′ = P0,τ2(P

′), Q′′ = P0,τ2(Q
′),

R′′ = P0,τ2(R
′), and S ′′ = P0,τ2(S

′).
Then, we have

d′(P ′′, Q′′) =
1

2
log

(
√
1− u2 +

√
3/4 + τ2)(

√
1− u2 +

√
3/4− τ2)

(
√
1− u2 −

√
3/4 + τ2)(

√
1− u2 −

√
3/4− τ2)

. (5.8)

In general, if A > B > x > 0 for A,B, x ∈ R, we have (A+x)(A−x)
(B+x)(B−x)

> A2

B2 .

Therefore, from (5.8), we have d′(P ′′, Q′′) > d′(P ′, Q′), which implies

∆′(P ′′, Q′′) < ∆′(P ′, Q′). (5.9)

Let E (resp., E ′) be the ellipse related to P ′, Q′(resp., P ′′, Q′′) in Theorem
3.3. Let Φ (resp., Φ′) denote the inner region bounded by E (resp., E ′). We
can see from (5.7) that R′ is not included in Φ. Because E is an ellipse with
its center in the x-axis and one of its axes parallel to the y-axis, we obtain
Φ ⊂ {(x, y) ∈ R2 | x < u+ 3

4
}. From the fact that line P ′Q′ is equal to line

P ′′Q′′ and (5.9), we have Φ′ ⊂ Φ. Therefore, R′′ = (u+ 3
4
, τ2) is not included

in Φ′. Therefore, ρ(ψ△P ′′Q′′R′′) = 1
3
. Thus, we show that the rotation number

of ψ△PQR is invariant under translation, which means that it is invariant
under congruent transformations by symmetry. It is observable that if we
reduce △PQR even slightly closer to the origin, the related rotation number
is > 1

3
. As a result, the proof is complete.
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