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A set of Matlab functions have been created to allow the exploration of the usefulness of setting geometric SAT into non-Euclidean geometry.  Three major models are represented: (1) the Poincare half-plane (PH), (2) the Poincare disk (PD), and (3) the Beltrami-Klein disk (BK).  For more information on these formulations, see Appendixes A, B and C, respectively (taken from Wikipedia).
The Poincare Half-Plane (H)
Since the goal is to represent n-dimensional polytopes which represent the feasible region for a SAT solution, it is necessary to represent these in non-Euclidean spaces.  Examples are given in 2D for illustration purposes.  Consider the knowledge base with the single clause: . Then in regular Euclidean space, the feasible region (after chopping the (0,1) vertex) will be the triangle [(0,0), (1,0), (1,1)] (see Figure 1).
[image: ]
Figure 1. Feasible Region for KB with Clause .
Converting this to the Poincare half-plane model requires deciding how the unit square will be represented.  The most straightforward is to use the same points: (0,0), (1,0), (1,1), (0,1); however, the points on the x-axis are not in H, and this poses some problems.  Figure 2 shows how the unit square transforms into H. 
[image: ]
Figure 2. (left) Unit Square in Poincare Half-Plane. (right) Feasible Region for KB with Clause  (cutting plane shown in red).
The left side plot is achieved as follows; first get the sides of the unit square:
seg1 = NON_PH_seg_pts([0,0],[1,0]);
seg2 = NON_PH_seg_pts([1,0],[1,1]);
seg3 = NON_PH_seg_pts([1,1],[0,1]);
seg4 = NON_PH_seg_pts([0,1],[0,0]);
Then plot them:
NON_plot_PH_pts([seg1;seg2;seg3;seg4],1,'k.');
The right side is found by first finding the cutting line, then plotting the three remaining segments:
seg8 = NON_PH_seg_pts([1,1],[0,0]);
NON_plot_PH_pts([seg1;seg2],1,'k.');
NON_plot_PH_pts(seg8,1,'r.');
Note that the area of the resulting triangle is , so that the area of the unit square in H is not 1!


The Poincare Disk (D)
The unit square represented by [(0,0),(0.5,0),(0.5,0.5),(0,0.5)] is shown on the left side of Figure 3, while the same feasible region is shown on the right side of the figure.
[image: ]
Figure 3. (left) Unit Square in Poincare Disk. (right) Feasible Region for KB with Clause  (cutting plane shown in red).
This is produced as follows; for the left side:
seg1 = NON_PD_seg_pts([0,0],[0.5,0]);
seg2 = NON_PD_seg_pts([0.5,0],[0.5,0.5]);
seg3 = NON_PD_seg_pts([0.5,0.5],[0,0.5]);
seg4 = NON_PD_seg_pts([0,0.5],[0,0]);
NON_plot_PD_pts([seg1;seg2;seg3;seg4],1,'k.');
The figure on the right:
seg5 = NON_PD_seg_pts([0.5,0.5],[0,0]);
NON_plot_PD_pts([seg1;seg2],1,'k.');
>> NON_plot_PD_pts(seg5,1,'r.');

Converting Points between Representations
Sometimes it is convenient to change representation; therefore, we have provided functions to convert as follows:
· NON_H2D:   Poincare half-plane to Poincare disk
· NON_D2H:   Poincare disk to Poincare half-plane
· NON_H2K:   Poincare half-plane to Beltrami-Klein
· NON_K2H:   Beltrami-Klein to Poincare half-plane
· NON_D2K:   Poincare disk to Beltrami-Klein
· NON_K2D:   Beltrami-Klein to Poincare disk
Note that all of these take on complex number input and produce one complex number output.
Distance Between Points
Functions have been provided to compute the distance between points:
· NON_norm_PD:   Poincare norm
· NON_norm_PH:   Poincare norm
· NON_norm_BK:   Beltrami-Klein norm
Possible Representation of the Hypercube in n-D
A possible representation of the hypercube in n-D is to project the corners of the unit cube (centered a 0 and scaled to circumscribe the unit sphere) onto the unit hypersphere in D. Figure 4 shows this for 2D; note that the corners of the square are ideal points (see Appendix D), and not in D.
[image: ]
Figure 4. A projection of the Circumscribed Hypercube onto the Unit Sphere.  In this case, the corners are not in D, but rather are ideal points on the circle boundary.
This makes a shape that is geometrically similar to the square, but note that its area is .  Figure 4 is produced by:
NON_H2circumcribedinPD;   % files in PSSAT/non_Euclidean/develop
27 June 2023
Development over last few weeks is in PSSAT/non_Euclidean/ with prefix NE_ (see Non-Euclidean-Matlab-Functions.pdf and NE_Function_Dependencies.pdf).
Results testing Euclidean circle intersection (NE_test_int_E2_2circles):
[image: ]
Results testing great circle intersection angles (NE_test_angle_2circles):
[image: ]
Inversion:
Given a circle  with center  and radius , then  and  are symmetrical with respect to  if:
(1)  are collinear with  outside of 
(2) 
If  is inside  and let  be perpendicular to  and  contains ,
then the intersection of the tangent line to  at and line  is .
From equation (2) we have the symmetrical point:

Given the vertexes of a polygon, the polygon resulting from their inversion through one of the polygon’s sides produces a tiling of the Poincare Disk if repeated ad infinitum.   Inverting the 30-40-50 triangle yields the triangle to the right in the figure below.  Results of tiling PD with a regular pentagon (NE_inversion_experiment1):
[image: ]
[image: ]
Results of tiling PD with 45-degree angle regular triangle (NE_inversion_experiment2):
[image: ]
10 July 2023
The tangent angle between spheres ( and ( is given by:

Then the sphere to achieve a chop is found by making a direction vector with 0 values for coordinates with no literal in the clause, a -1 for atoms and a 1 for negated atoms.  Set the radius and solve for the distance between centers using the equation above and place the center at that distance along the direction vector.  Here are example 2D and 3D chops.
[image: ][image: ]
Figure.  (left) cutting edge for clause ~a1.  (right) Cutting face for clause ~a1.

Developments: Yesterday, we considered the mapping of the hypercube onto a binary tree in the Poincare disk:
[image: ]
Thinking that sub-hypercubes would map to contiguous parts of the circle boundary.  It’s not the case, and therefore, loses the desired projective nature.
Also, revisited MVE; this remains a possible option in that the negative results are questionable: they may be due to numerical issues.  In order to better understand this, a more careful study of ellipsoid equations is required (from https://tcg.mae.cornell.edu/pubs/Pope_FDA_08.pdf, “Alorithms for Ellipsoids, S. Pope, Cornell, 2008).
Let  be an ellipsoid centered at  with  an orthogonal matrix with columns providing the axes of the ellipse and  a diagonal matrix with diagonal elements, , where  is the length of the semi-axis and  are the eigenvalues of:

The principal axes of  are the ellipsoid axes and the eigenvalues of  are the .  We have:






Let , where  is an arbitrary orthogonal matrix; then:



Finally, if  is factored as , where  is lower diagonal and  is orthogonal, then :



The E matrix returned by the ipm4mve code does not match any of these. Given ellipse  with ,  (as does ) scales the volume of the hypersphere.

11 July 2023
Got chops in 2D to work; equations are:


Let [+-s,…,+-s] be the coordinates of the projected hypercube corners onto ; then let  be one of these vectors (say framing the x-axis).  Then let  be the unit vector in the x direction.  Then

This means:

, 

 Modus Ponens:
[image: ]










Right edge, left edge and bottom edge:
[image: ]
3D chop for KB(1).clauses = [1] (corners are blue circles):[image: ]
21 July 2023
How to create a triangle in the PD from 3 given angles:
Note that given a PD distance, a point that distance from the PD origin and at angle theta and expressed in Euclidean coordinates can be found as follows:
1. Convert PD distance (d) to Euclidean distance (r):    r = tanh(d/2)
2. Euclidean point is r*[cos(theta),sin(theta)]
Also, given the 3 angles of a PD triangle with no right angle, the lengths of the sides are:
 and similarly for the other sides.
Then, let one vertex A = [0,0] (i.e., PD origin); let C = [Eb,0], where Eb is Euclidean distance for b; let , where is the Euclidean distance for c, and [, ] is the unit vector in direction alpha.  Then Angle AB-AC is alpha, AB-BC is beta, and AC-CB is gamma.
Here is a simple example of a 30-40-50 degree triangle:
[image: ]
Figure 10. A 30-40-50 degree Triangle.
Matlab function is: NE_3angles2triangle(30*pi/180,40*pi/180,50*pi/180);
31 July 2023
Ellipse info:
Given  (  parameters), the implicit coefficient representation is:
                 
                 
                                   
Equation of ellipse:       
Given A,B,C,D,E,F, the geometric parameters are found as:





Using Foci,  and ,  , where  is the length of the major semi-axis.
Question: Do points on PD ellipse share the above foci definition?  Using PD dist for |P|.
Given geometric parameters, the affine transformation is:
, U = principal axes (for 2D, these are from ),  is length of axis.




Convert between PD and Euclidean distance:


Given a point in the PD, and a tangent direction at the point, find orthogonal circle through the point.
[image: ]

Solution:




To find a point along a certain direction from a given point, find the tangent circle; generate sample points on the circle and find closest point to desired distance (NE_pt_tan_dist.m).
Translation of point z in PD:  by -b (NE_PD_trans.m):
     zp = (z-b)./(-conj(b).*z+1);

Rotation of point z about b by theta:

     zp = exp(i*theta)*(z-b)./(-conj(b).*z+1);

Clause to hypersphere algorithm:
Given clause: , convert to 
:

Let 
Obtain a chop point by substituting -1 for 0 in , if any:    
Obtain a non-chopped neighbor by switching a non-zero chop_pt element:  
Obtain projection point by sliding along  edge connecting chop_pt to nei_pt by percentage amount : 
Get projection point on boundary of PD: 
Then, 
Note that the center of the hypersphere may flip sides to allow orthogonality; if so, the radius is represented with a minus sign, meaning that the feasible side of the hypersphere is its interior (usually it is the exterior of the hypersphere).
Example 1:
[image: ]
Example 2:
[image: ]

14 August 2023
Problems:
(1) Find an initial feasible point (using rand search now)
(2) Determine max distance of any point in feasible region of unsatisfiable NCF sentence
a. Consider intersection of n hyperspheres (pick vertex and n-1 neighbors)
16 August 2023
Formulate Barrier Method as Force Field problem (p. 567, Boyd & Vandenberghe, 2004); for each conjunct constraint:

and projection constraint encoded as:

Here, we simply pick a point in the feasible region, form the sum of the forces, then move some amount in the sum of the forces direction (if that leaves the feasible region, then step distance is cut in half iteratively until next point is in the feasible region).  Here’s a 2D example (only solution is (1,1) truth assignment):
[image: ]
  is the distance of  from the constraint circle.  


The general Barrier Method is (p. 569, Boyd & Vandenberghe, 2004):
Given 
repeat
1. Centering Step
Compute  by minimizing  subject to  starting at .
2. Update 
3. Stepping Criterion: quit if 
4. Increase t: 
17 August 2023
The logarithmic barrier (potential) function:

The function to be minimized:

The distance functions:

where  is the center and  the radius of the  hypersphere.
Then a  force field model is defined in terms of forces generated by the minimization function (an impulse to move in a certain direction) and the repulsive force of the constraint surfaces.


For the hypersphere setting, these are given as follows:

    


·      

Issues:
1. Error estimate for analytic center (vs. actual atom probabilities)
2. Find , where  is Euclidean distance from the origin.
3. Find initial point in feasible region (min t s.t. Ax>=(1-t)b, t>=0  initial t =0
4. Plot force field with and without impulse from minimization function
5. Methods to move
a. Interior Point Method
b. Bounce (follow f to wall; bounce off in normal direction; repeat)

28 August 2023
Intersection n-D line (l(t) = P0 + t(Q0-P0)) and hypersphere (C,r):
  Move C to origin so that x(1)^2 + x(2)^2 + … + x(n)^2 = r^2
  Move P0 and Q0 to origin: P = P0 – C;  Q = Q0 – C
Then we have:
    (P(1)+t(Q(1)-P(1))^2 + … + (P(n)+t(Q(n)-P(n))^2 – r^2 = 0
· [sum(Q(i)-P(i))^2]*t^2 + [2sum(P(i)(Q(i)-P(i)))]t + [sum(P(i)^2)-r^2] = 0
Solve t1 and t2 from quadradic formula:
   If t1 or t2 complex, no intersection 
   elseif t1 == t2, then 1 point intersection    ip = P0 + t(Q0-P0)
   else  2 points of intersection    ip1 = P0 + t(Q0-P0)   ip2 = P0 + t(Q0-P0)







31 August 2023
Maximal distance from origin of points in feasible region for CNF sentence which chops each vertex individually. See: ANZIAM J. 59(2017), 271–279,  doi:10.1017/S1446181117000372, “A NOTE ON COMPUTING THE INTERSECTION OF SPHERES IN Rn,”  D. S. MAIOLI)1, C. LAVOR1 and D. S. GONC¸ ALVES.
This paper shows that the intersection of n hyperspheres whose centers are affinely independent is either empty, 1 point, or 2 points.

Let I_Dn be the feasible region for the unsatisfiable CNF sentence with n variables that chops each vertex individually; the I_Dn is the largest feasible region of any unsatisfiable sentence.  The most distant point from the origin can be found as the intersection of n hyperspheres representing chops of the PD feaisble region: 
  1) the hypersphere chopping the vertex representing all true assignments 
  2) the hypersphere chopping the vertex representing the first n-1 variables true and the last false 
  3) the hyperspheres defining the feasible region boundary from the first n-2 axes. 

E.g.: 2D:   this is the intersection of the [1,1] and [1,-1] circles 
        3D:    this is the intersection of the [1,1,1] [1,1,-1] and face [1,0,0] chops. 
        ... 
        5D:    this is the intersection of the [1,1,1,1,1], [1,1,1,1,-1], [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0] chops.
See function: NE_D_max.m
1 September 2023
Analytic Center:
Found by function: NE_analytic center.m (uses gradient descent on sum of constraint forces (repel from constraint surfaces)
7 September 2023
1. So long as there is no 1-literal clause in the KB, then no chop removes the origin; i.e., the origin is always in the feasible region.
2. In the case of the hypercube, the max distance from the center of H_n for any feasible region arising from an unsatisfiable KB is sqrt(n-2)/2; i.e., goes to infinity in the limit.  Likewise, this distance in the Poincare Disk goes to 1 (i.e., infinity) in the limit.  At the moment this distance is determined by intersecting n hyperspheres.
2 October 2023
For Euclidean  with no face constraints (using CS_compare_face_no_face.m):
· Max coordinate value = 
· Max distance from center = 
With face constraints:
· Max coordinate value = 1
· Max distance from center = 
Values for n = 3:10

         0         0         0         0
         0         0         0         0
    1.0000    0.8660    1.0000    0.5000
    1.5000    2.0000    1.0000    0.7071
    2.0000    3.3541    1.0000    0.8660
    2.5000    4.8990    1.0000    1.0000
    3.0000    6.6144    1.0000    1.1180
    3.5000    8.4853    1.0000    1.2247
    4.0000   10.5000    1.0000    1.3229
    4.5000   12.6491    1.0000    1.4142
13 October 2023
Another take:
	N
	Max pt dist
	Max in x-dir
	Max coord val

	3
	0.4005
	0.3178
	0.3288

	4
	0.5465
	0.2679
	0.3182

	5
	0.6001
	0.2361
	0.3030

	6
	0.6307
	0.2134
	0.2750



Which means that a max coord threshold of 0.33 can be used to make a decision.
Ideas:
1. Every solution vertex in feasible region has at least one face constraint hypersphere through it.
2. Any feasible region vertex created with only hp intersections is not a solution vertex
3. If path points get closer to only hp’s, then quit
4. If path follows an hs, then:
a. Project the last few points onto the hs
b. Determine the 1D geodesic curve for these points (on the hs surface)
c. Check whether its intersection with the unit disk is a solution vertex
5. If forces are symmetric about some (basis?) axis, then move to one side along that axis.
4b Method. To determine the geodesic curve, just linearly extend the last 2 (k?) points and project back to the hs surface.  Continue until the projected point is not a feasible point.








Appendix A: Poincare Half-Plane
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Appendix B: Poincare Disk
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Appendix B: Beltrami-Klein Disk
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From Wikipedia, the free encyclopedia

In non-Euclidean geometry, the Poincaré half-plane model is the
upper half-plane, denoted below as H = {(z,y) | y > 0;z,y € R},
together with a metric, the Poincaré metric, that makes it a model of
two-dimensional hyperbolic geometry.

Equivalently the Poincaré half-plane model is sometimes described as

a complex plane where the imaginary part (the y coordinate

mentioned above) is positive.

The Poincaré half-plane model is named after Henri Poincareé, but it Parallel rays in Poincare half-plane model of hyperbolic &7
originated with Eugenio Beltrami who used it, along with the Klein geometry

model and the Poincaré disk model, to show that hyperbolic geometry

was equiconsistent with Euclidean geometry.

This model is conformal which means that the angles measured at a point are the same in the model as they are in the actual
hyperbolic plane.

The Cayley transform provides an isometry between the half-plane model and the Poincaré disk model.

This model can be generalized to model an n + 1 dimensional hyperbolic space by replacing the real number x by a vector in
an n dimensional Euclidean vector space.




image22.jpeg
Metric [edit]
The metric of the model on the half-plane, {(z,y) | y > 0}, is:
(dz)® + (dy)®

(@ ==

where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric
tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-
circles whose centers are on the x-axis) and straight vertical rays perpendicular to the x-axis.

Distance calculation [edit]

Ifp1 = (z1,31) andps = (z,y») are two points in the half-plane
y > 0andp, = (x1,—y1) is the reflection of p; across the x-axis
into the lower half plane, the distance between the two points under
the hyperbolic-plane metric is:

llp2 = pul
dist(py,p2) = 2 arsinh ——
) 2/
= sartan 22710
lp2 = Bl
S

o2l e pl”,

200
where [[p2 — p1|| = /(22 — #1)% + (¥2 — 91)? is the Euclidean

distance between points p; and py, arsinhz = In (z + /2% + 1)
is the inverse hyperbolic sine, and

artanhz = £ In((1 + 2)/(1 — @) is the inverse hyperbolic
tangent. This 2 arsinh formula can be thought of as coming from the

(o)

(=0

The distance between two points in the half-plane &
model can be computed in terms of Euclidean distances in
an isosceles trapezoid formed by the points and their
reflection across the x-axis: a "side length” s, a "diagonal”
d, and two "heights” k1 and hy. It is the logarithm

dist(py. p2) = log((s + d)¥/hyh)
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chord length in the Minkowski metric between points in the
hyperboloid model, chord(py, p2) = 2sinh £ dist(p1,pa),
analogous to finding arclength on a sphere in terms of chord length.
This 2 artanh formula can be thought of as coming from Euclidean
distance in the Poincaré disk mode! with one point at the origin,
analogous to finding arclength on the sphere by taking a
stereographic projection centered on one point and measuring the
Euclidean distance in the plane from the origin to the other point.

If the two points p; and py are on a hyperbolic line (Euclidean half-
circle) which intersects the x-axis at the ideal points py = (z,0) and
ps = (x3,0), the distance fromp; top, is:

llp2 — pollllpr — psll

dist(p1,p2) = ‘111
Ipr = pollllp2 — w3l

Cf. Cross-ratio.

Some special cases can be simplified. Two points with the same =
coordinate:(]

In &2

e [Inyz) —In(y:)] -

dist((z,y1), (z,32)) =

Two points with the same y coordinate:

Jz2 — 1|

dist((z1,9), {z2,9)) = 2arsinh .

(5 0) (x5, 0)

Distance between two points can alternately be
computed using ratios of Euclidean distances to the ideal
points at the ends of the hyperbolic line.

s
i) edle f’scu/du

=]

(x, + rsin g, rcos ¢)

(5.0)

Distance from the apex of a semicircle to another point
onitis the inverse Gudermannian function of the central
angle.

One point (z;,7) at the apex of the semicircle (z — 1)? + y* = r?, and another point at a central angle of ¢.

dist((x1,7), (z1 & 7sin ¢, 7 cos ¢)) = 2artanh (tan 3¢) = gd ' ¢,

&a
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where gd’1 is the inverse Gudermannian function, and artanhz = £ In

2 is the inverse hyperbolic tangent.

1-z

Special points and curves [edi]
« Ideal points (points at infinity) in the Poincaré half-plane model are of two kinds:
« the points on the x-axis, and
« one imaginary point at y = oo which is the ideal point to which all lines orthogonal to the x-axis converge.
« Straight lines, geodesics (the shortest path between the points contained within it) are modeled by either:
« half-circles whose origin is on the x-axis
« straight vertical rays orthogonal to the x-axis
« A circle (curves equidistant from a central point) with center (z, y) and radius 7 is modeled by:
acircle with center (z, y cosh(r)) and radius y sinh(r)
« A hypercycle (a curve equidistant from a straight line, its axis) is modeled by either:

 a circular arc which intersects the x-axis at the same two ideal points as the half-circle which models its axis but at an
acute or obtuse angle

« a straight line which intersects the x-axis at the same point as the vertical line which models its axis, but at an acute o
obtuse angle.

« A horocycle (a curve whose normals all converge asymptotically in the same direction, its center) is modeled by either:

« a circle tangent to the x-axis (but excluding the ideal point of intersection, which is its center)
« aline parallel to the x-axis, in this case the center is the ideal point at y = oo.

Euclidean synopsis [edit]
A Euclidean circle with center (z., y.) and radius r, represents:

« when the circle is completely inside the halfplane a hyperbolic circle with center

(ze, ¥ - r?)
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and radius
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« when the circle is completely inside the halfplane and touches the boundary a horocycle centered around the ideal point
(e,0)

« when the circle intersects the boundary orthogonal (y. = 0) a hyperbolic line
« when the circle intersects the boundary non- orthogonal a hypercycle.

Compass and straightedge constructions [edi]
See also: Compass and straightedge constructions

Here is how one can use compass and straightedge constructions in the model to achieve the effect of the basic constructions in
the hyperbolic plane.l?] For example, how to construct the half-circle in the Euclidean half-plane which models a line on the
hyperbolic plane through two given points.

Creating the line through two existing points |[edit]

Draw the line segment between the two points. Construct the perpendicular bisector of the line segment. Find its intersection
with the x-axis. Draw the circle around the intersection which passes through the given points. Erase the part which is on or
below the x-axis.

Or in the special case where the two given points lie on a vertical line, draw that vertical line through the two points and erase
the part which is on or below the x-axis.
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From Wikipedia, the free encyclopedia

In geometry, the Poincaré disk model, also called the conformal disk
model, is a model of 2-dimensional hyperbolic geometry in which all points
are inside the unit disk, and straight lines are either circular arcs contained
within the disk that are orthogonal to the unit circle or diameters of the unit
circle.

The group of orientation preserving isometries of the disk model is given by
the projective special unitary group PSU(1,1), the quotient of the special
unitary group SU(1,1) by its center {Z, —I}.

Along with the Klein model and the Poincaré half-space model, it was
proposed by Eugenio Beltrami who used these models to show that
hyperbolic geometry was equiconsistent with Euclidean geometry. It is
named after Henri Poincaré, because his rediscovery of this representation

fourteen years later became better known than the original work of

i1
Beltrami. Poincaré disk with hyperbolic parallel lines &

The Poincaré ball model is the similar model for 3 or n-dimensional
hyperbolic geometry in which the points of the geometry are in the

n-dimensional unit ball. ‘
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Lines [edit]

Hyperbolic straight lines consist of all arcs of Euclidean circles contained within the
disk that are orthogonal to the boundary of the disk, plus all diameters of the disk.

‘Compass and straightedge construction [ edit]

The unique hyperbolic line through two points P and @ not on a diameter of the
boundary circle can be constructed by:

« let P’ be the inversion in the boundary circle of point P

o let Q' be the inversion in the boundary circle of point Q

« let M be the midpoint of segment PP’

« let N be the midpoint of segment QQ’

« Draw line m through M perpendicular to segment PP’

« Draw line n through N perpendicular to segment QQ"

« let C be where line n and line n intersect.

« Draw circle ¢ with center C' and going through P (and Q).

« The part of circle c that is inside the disk is the hyperbolic line.

If P and Q are on a diameter of the boundary circle that diameter is the hyperbolic line.
Another way is:

« let M be the midpoint of segment PQ

« Draw line m through M perpendicular to segment PQ

« let P’ be the inversion in the boundary circle of point P

« let N be the midpoint of segment PP’

« Draw line n through N perpendicular to segment PP’

« let C' be where line m and line n intersect.

» Draw circle ¢ with center C' and going through P (and Q).

« The part of circle ¢ that is inside the disk is the hyperbolic line.

&

Poincaré disk with 3 ultraparallel
(hyperbolic) straight lines

&a
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Distance |edit]

Distances in this model are Cayley—Klein metrics. Given two distinct points p and q inside the disk, the unique hyperbolic line
connecting them intersects the boundary at two ideal points, @ and b, label them so that the points are, in order, a, p, g, b and
lag| > |ap| and |pb| > |gbl.

The hyperbolic distance between p and q is then

|ag| |pb|
d(p,q) =In———.
|ap| |qb]

The vertical bars indicate Euclidean length of the line segment connecting the points between them in the model (not along the
circle arc), In is the natural logarithm.

Another way to calculate the hyperbolic distance between two points is

2lpgl’|r’ )
— logl*)

(Irf* = lopl*)(Ir

where |op| and |og] are the distances of p respective g to the centre of the disk, |pg] the distance between p and g, |r| the
radius of the boundary circle of the disk and arcosh is the inverse hyperbolic function of hyperbolic cosine.

arcosh (1 +
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When the disk used is the open unit disk and one of the points is the origin and the Euclidean distance between the points is r
then the hyperbolic distance is:

m(”r) = 2artanhr

where artanh is the inverse hyperbolic function of the hyperbolic tangent.

When the disk used is the open unit disk and point ' = (r', §) lies between the origin and point z = (r, ) (i.e. the two points
are on the same radius, have the same polar angle and 1 > 7 > 7' > 0), their hyperbolic distance is

1+r 1-7 ,
In ; = 2(artanhr — .
(A2 227) st - st

This reduces to the previous formula if ' = 0.
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Circles |[edit]

A circle (the set of all points in a plane that are at a given distance from a given point, its center) is a circle completely inside the
disk not touching or intersecting its boundary. The hyperbolic center of the circle in the model does not in general correspond to
the Euclidean center of the circle, but they are on the same radius of the boundary circle.

Hypercycles [edit]

A hypercycle (the set of all points in a plane that are on one side and at a given distance from a given line, its axis) is a
Euclidean circle arc or chord of the boundary circle that intersects the boundary circle at a positive but non-right angle. Its axis is
the hyperbolic line that shares the same two ideal points. This is also known as an equidistant curve.

Horocycles [edit]

A horocycle (a curve whose normal or perpendicular geodesics all converge asymptotically in the same
directionlrther explanation needed]) ig g circle inside the disk that touches the boundary circle of the disk. The point where it

touches the boundary circle is not part of the horocycle. It is an ideal point and is the hyperbolic center of the horocycle.
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Euclidean synopsis [edit]
A Euclidean circle:

« that is completely inside the disk is a hyperbolic circle.
(When the center of the disk is not inside the circle, the Euclidean center is always closer to the center of the disk than what
the hyperbolic center is, i.e. t. < tj holds.)
« that is inside the disk and touches the boundary is a horocycle;
« that intersects the boundary orthogonally is a hyperbolic line; and
« that intersects the boundary non-orthogonally is a hypercycle.
A Euclidean chord of the boundary circle:

« that goes through the center is a hyperbolic line; and
« that does not go through the center is a hypercycle.
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Metric and curvature [edit]

If v and v are two vectors in real n-dimensional vector space R” with the usual
Euclidean norm, both of which have norm less than 1, then we may define an isometric
invariant by

flw—
(1= Jul®) (@ = Jlo]?) *
where ||-|| denotes the usual Euclidean norm. Then the distance function is
d(u,v) = arcosh(1 + §(u,v))
5(u,0)

O(u,v) =2

= 2arsinh

Poincaré ‘ball' model view of the
b lu— ol + V/TulPTel* —2u-v + 1' hyperbolic regular icosahedral

- TP =T honeycomb, {3,5,3}

&a

=21

Such a distance function is defined for any two vectors of norm less than one, and
makes the set of such vectors into a metric space which is a model of hyperbolic space of constant curvature -1. The model has
the conformal property that the angle between two intersecting curves in hyperbolic space is the same as the angle in the model.

The associated metric tensor of the Poincaré disk model is given by!®!
X da} 4 dx|*

1w 2 (1 2\

(-Xial)"  (1=IxlP)

where the x; are the Cartesian coordinates of the ambient Euclidean space. The geodesics of the disk model are circles
perpendicular to the boundary sphere ™.

ds’
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An orthonormal frame with respect to this Riemannian metric is given by
1 d

E,:—(lf\x\z) )

2 Oz’

with dual coframe of 1-forms

-
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Relation to the Klein disk model |[edit]

The Klein disk model (also known as the Beltrami—Klein model) and the Poincaré
disk model are both models that project the whole hyperbolic plane in a disk. The
two models are related through a projection on or from the hemisphere model. The
Klein disk model is an orthographic projection to the hemisphere model while the
Poincareé disk model is a stereographic projection.

An advantage of the Klein disk model is that lines in this model are Euclidean
straight chords. A disadvantage is that the Klein disk model is not conformal
(circles and angles are distorted).

When projecting the same lines in both models on one disk both lines go through
the same two ideal points. (the ideal points remain on the same spot) also the pole
of the chord in the Klein disk model is the center of the circle that contains the arc
in the Poincaré disk model.

. 7 i s 2 2y i
A point (x,y) in the Poincaré disk model maps to ( Trra? | Tt ) in the

Klein model.

A point (x,y) in the Klein model maps to (

Hy-Hyperboloid
K ~Klein Disk
He-Hemisphere
P Poincare Disk

Ha-Half Plane

the Poincaré disk model (line P), and
their relations with the other models
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For ideal points z* + y2 = 1 and the formulas become = = z , y = y so the points are fixed.

If u is a vector of norm less than one representing a point of the Poincaré disk model, then the corresponding point of the Klein
disk model is given by:

2u

T

Conversely, from a vector s of norm less than one representing a point of the Beltrami—Klein model, the corresponding point of
the Poincaré disk model is given by:
s 1-vI=s-35)s

u= =

1+/1-5-3s 5.8
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Relation to the Poincaré half-plane model |[edit]
See also: Cayley transform § Complex homography

The Poincaré disk model and the Poincaré half-plane model are both named after Henri Poincare.
If u is a complex number of norm less than one representing a point of the Poincaré disk model, then the corresponding point of

the half-plane model is given by the inverse of the Cayley transform:

u+i
fu+1’

s=

2z
2241y

A point (x,y) in the disk model maps to (

2z
224 (1)

A point (x,y) in the halfplane model maps to (
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Beltrami—Klein model

Article  Talk

From Wikipedia, the free encyclopedia

In geometry, the Beltrami—Klein model, also called the projective model, Klein
disk model, and the Cayley—Klein model, is a model of hyperbolic geometry in
which points are represented by the points in the interior of the unit disk (or
n-dimensional unit ball) and lines are represented by the chords, straight line
segments with ideal endpoints on the boundary sphere.

The Beltrami-Klein model is named after the Italian geometer Eugenio Beltrami
and the German Felix Klein while "Cayley" in Cayley—Klein model refers to the
English geometer Arthur Cayley.

The Beltrami—Klein model is analogous to the gnomonic projection of spherical
geometry, in that geodesics (great circles in spherical geometry) are mapped to
straight lines.

This model is not conformal, meaning that angles and circles are distorted,
whereas the Poincaré disk model preserves these.

In this model, lines and segments are straight Euclidean segments, whereas in the
Poincare disk model, lines are arcs that meet the boundary orthogonally.

Xp 8 languages v

Read Edit View history Tools v

il

Many hyperbolic lines through point P not &7
intersecting line a in the Beltrami Kiein
model
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Distance formula edit]
The distance function for the Beltrami—Klein model is a Cayley—Klein mefric. Given two distinct points p and q in the open unit
ball, the unique straight line connecting them intersects the boundary at two ideal points, a and b, label them so that the points
are, in order, &, p, q, band |aq| > |ap| and |pb| > |qb]|.

- . 1, lagl Ipb|
The hyperbolic distance between p and q s then: d(p,¢) = = In ———

2 |apl |gb|

The vertical bars indicate Euclidean distances between the points in the model, In is the natural logarithm and the factor of one
half is needed to give the model the standard curvature of -1.
‘When one of the points is the origin and Euclidean distance between the points is r then the hyperbolic distance is:
1 ( 1+r

—In
2 Lot

) = st

where artanh is the inverse hyperbolic function of the hyperbolic tangent.
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The Klein disk model [edit]

In two dimensions the Beltrami—Klein model is called the Klein disk model. Itis a disk =
and the inside of the disk is a model of the entire hyperbolic plane. Lines in this model
are represented by chords of the boundary circle (also called the absolute). The points 3 o —

on the boundary circle are called ideal points; although well defined, they do not §
belong to the hyperbolic plane. Neither do points outside the disk, which are sometimes
called ultra ideal points.

The model is not conformal, meaning that angles are distorted, and circles on the ‘\ -
hyperbolic plane are in general not circular in the model. Only circles that have their

centre at the centre of the boundary circle are not distorted. All other circles are

distorted, as are horocycles and hypercycles

Lines in the projective model of the &7
Properties [edit] hyperbolic plane
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