3D Computer Vision
Introduction

Tom Henderson
CS 6320 S2014
tch@cs.utah.edu

Acknowledgements: slides from Guido Gerig (Utah) & Marc Pollefeys, UNC Chapel Hill)
Administration

- **Classes:** M & W, 1:25-2:45
 Room WEB L126
- **Instructor:** Tom Henderson
 (tch@cs.Utah.edu)
- **TA:** Anshul Joshi
 (anshuljoshi.utah@gmail.com)
- **Prerequisites:** CS 6640 ImProc or equiv
- **Textbook:** “Computer Vision: A Modern Approach” by Forsyth & Ponce
Administrivia

- Textbook:
 “Computer Vision: A Modern Approach” by Forsyth & Ponce

Version 1 Version 2e 2012

- The Version 1 is sufficient for this course, but you can also buy the new updated version.
- Electronic version: http://www.coursesmart.com/IR/5316068/9780132571074?___hdv=6.8
Prerequisites

- **General Prerequisites:**
 - Data structures
 - A good working knowledge of MATLAB programming (or willingness and time to pick it up quickly!)
 - Linear algebra
 - Vector calculus

- Assignments include theoretical paper questions and programming tasks (ideally Matlab or C++).
- Image Processing CS 6640 (or equivalent).
- Students who do not have background in signal processing / image processing: Eventually possible to follow class, but requires significant special effort to learn some basic procedures necessary to solve practical computer problems.
The grading distribution will be as follows:

- Project: 30%
- Problems: 50%
- In-Class: 20%
 (Quizzes and Participation)

You are expected to make a good effort on all assignments and in-class discussion based on a careful reading of the assigned material.
Assignments

- **Project**: This is an individual research project written up as a paper.
- **Problems**:
 - Matlab functions: require verification
 - Labs: require Lab Report
- **Quizzes**: In-class
 - Evaluation:
 - ‘+’ convincing answers
 - ‘0’ not convincing but not a disaster
 - ‘-‘ convincing ignorance
Other Resources

- Cvonline: http://homepages.inf.ed.ac.uk/rbf/CVonline/
- A first point of contact for explanations of different image related concepts and techniques. CVonline currently has about 2000 topics, 1600 of which have content.
- See list of other relevant books in syllabus.
Goal and objectives

• To introduce the fundamental problems of computer vision.

• To introduce the main concepts and techniques used to solve those.

• To enable participants to implement solutions for reasonably complex problems.

• To enable the student to make sense of the literature of computer vision.
CV: What is the problem?

Image Formation: From World to Image
- Camera model (optics & geometry): From points in 3D scene to points on 2D image.
- Photometry: From lights and surfaces in scene to intensity (brightness) and color in image.

Vision: From Image to (Knowledge of the) World
- Reconstruct scene (world model) from images.
- Extract sufficient information for detection/control task.
CV: A Hard Problem

- Under-constrained inverse problem – 3D world from 2D image.
- Images are noisy – shadows, reflections, focus, (ego-)motion blur – and noise is hard to model.
- Appearances – shape, size, color – of objects change with pose and lighting conditions.
- Image understanding requires cognitive ability (“AI-complete”).
- Robotics & Control: massive data rate, real-time requirements.
What is Computer Vision?

- Automatic understanding of images and video
 - Computing properties of the 3D world from visual data (*measurement*)
 - Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities. (*perception and interpretation*)
Vision and graphics

Inverse problems: analysis and synthesis.
Related disciplines

- Artificial intelligence
- Machine learning
- Cognitive science
- Graphics
- Image processing
- Algorithms
- Computer vision
Object recognition (in mobile phones)

• This is becoming real:
 – **Lincoln** Microsoft Research
 – **Point & Find**, Nokia
 – SnapTell.com (now amazon)
Smart cars

- **Mobileye**
 - Vision systems currently in high-end BMW, GM, Volvo models
 - By 2010: 70% of car manufacturers.
 - [Video demo](#)
 - [YouTube, TestMovie](#)

Slide content courtesy of Amnon Shashua
Modeling 3D Structure from Pictures or 3D Sensors
Modeling ctd.
Main topics

- **Shape (and motion) recovery**
 “What is the 3D shape of what I see?”
- **Segmentation**
 “What belongs together?”
- **Tracking**
 “Where does something go?”
- **Recognition**
 “What is it that I see?”
Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who’s doing what)
 - movie post-processing
 - CAM (computer-aided manufacturing)
 - Robot navigation
 - face finding
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision
Clothing

- Scan a person, custom-fit clothing
Forensics
3D urban modeling

drive by modeling in Baltimore
Image from Microsoft's Virtual Earth
(see also: Google Earth)
Industrial inspection

- Verify specifications
- Compare measured model with CAD
Scanning industrial sites

as-build 3D model of off-shore oil platform
Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.

NASA’S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.
NASA’s Mars Spirit Rover

http://www.robocup.org/
Architecture

Survey
Stability analysis
Plan renovations
Architecture

Survey
Stability analysis
Plan renovations
Cultural heritage

Stanford’s Digital Michelangelo

Digital archive
Art historic studies
IBM’s pieta project
Photometric stereo + structured light

more info:
Archaeology

accuracy ~1/500 from DV video
(i.e. 140kb jpegs 576x720)
Visual Cues: Stereo and Motion
Disparity map from Stereo

\[I(x,y) \]

\[D(x,y) = (x + D(x,y), y) \]

\[I'(x',y') \]
Dynamic Programming (Ohta and Kanade, 1985)

Optical flow

What do pixels move?
Optical flow
Results
Active Vision: Structured Light
Active Vision: Structured Light
Binary Coding

Example: 7 binary patterns proposed by Posdamer & Altschuler

Codeword of this pixel: 1010010 identifies the corresponding pattern stripe

Projected over time
“Cheap and smart” Solution

Example: Bouguet and Perona, ICCV’98
Structured Light Using a Rotating Table
James Clark, 3D CV F2009
Structured Light
Anuja Sharma, Abishek Kumar
Structured Light
Anuja Sharma, Abhishek Kumar
Range Sensor Data Processing to get 3D Shapes
Input Data: Depth Maps

Range Image (left) and gray level image (right)
3D Shape Cues: Shape from Silhouettes
3D Shape from Silhouettes
3D shape from silhouettes: Two Mirrors and uncalibrated camera

Forbes et al., ICCV2005
Christine Xu, Computer Vision Student Project
3D shape from silhouettes

Build 3D model

Visualize 3D model from arbitrary viewing angles
Example

- Compute visual hull with silhouette images from multiple calibrated cameras
- Compute Silhouette Image
- Volumetric visual hull computation
- Display the result
Shape from Shading
Photometric Stereo
Christopher Bireley

Bandage Dog

Imaging Setup
Preprocessing

- Remove background to isolate dog
- Filter with NL Means
Photometric Stereo
Christopher Bireley

Albedo image
Surface Normals
3D mesh
Results – Lord Buddha Images – Pre-Processed Images
Guozhen Fan and Aman Shah
Object Tracking
Object Tracking: Using Deformable Models in Vision
Object Tracking: Using Deformable Models in Vision: II

Unifying Boundary and Region-based information for Geodesic Active Tracking
Object Tracking III
Computer Vision Systems
Webcam Based Virtual Whiteboard
Jon Bronson James Fishbaugh

- Blackboards came first
- Whiteboards eventually followed
- Virtual Whiteboards are coming

Basic Idea:
- Write on any surface
- Use no ink/chalk
- Store all information to disk
Webcam Based Virtual Whiteboard
Jon Bronson James Fishbaugh
Real-Time 3D Glowstick Detection
Computer Vision Project 2009
Andrei Ostanin

Detecting the 3D position of glowsticks in real-time using two cameras.
Realtime Glowstick Detection
Andrei Ostanin

- Capture the 3D position of glowsticks in real-time using two webcams
- Environment dark enough that glowsticks are easily segmented out
- Prefer speed over correctness
Student Project: Playing Chess, Recognition and Simulation

• Track individual chess pieces
• Maintain state of board
• Graphically represent state changes and state
• D. Allen, D. McLaurin UNC
• Major ideas:
 – 3D from stereo
 – detect and describe changes
 – Use world knowledge (chess)
Calibration, Rendering & Replay

Movie
Goal and objectives

From Snapshots, a 3-D View
NYT, August 21, 2008, Personal Tech

Stuart Goldenberg
Next class: Image Formation
Chapter 1: Cameras

• Please find pdf copies of Chapters 1&2, Forsyth&Ponce, on the website.
• Purchase the course book on your own.

Assignment:

• Read Chapter 1: Cameras, Lenses and Sensors: See Course [home page]