Scalable Histograms on Larger Probabilistic Data

Mingwang Tang and Feifei Li

September 24, 2014
Introduction

New Challenges

- Large scale data size
- Distributed data sources
- Uncertainty

Data synopsis on large probabilistic data

- Scalable histograms on large probabilistic data
V-optimal histogram: Given a frequency vector $\vec{v} = \{v_1, \ldots, v_n\}$, where v_i is the frequency of item i in $[n]$, a space budget B, it seeks to minimize the SSE error:

$$\min \left\{ \sum_{k=1}^{B} \sum_{i=s_k}^{e_k} (v_i - \hat{b}_k)^2 \right\}$$

Optimal B-bucket histogram takes $O(Bn^2)$ time.
Probabilistic database \mathcal{D} on domain $[n] = \{1, \ldots, n\}$

- $\mathcal{D} = \{g_1, g_2, \ldots, g_n\}$ where

$$g_i = \{(g_i(W), \Pr(W))| W \in \mathcal{W}\} \quad (2)$$
Probabilistic database D on domain $[n] = \{1, \ldots, n\}$

$D = \{g_1, g_2, \ldots, g_n\}$ where

$$g_i = \{(g_i(W), \Pr(W)) | W \in \mathcal{W}\}$$ \hspace{1cm} (2)
\[g_i = \{(g_i(W), \Pr(W)) | W \in \mathcal{W}\} \]

Tuple Model

- Each tuple \(t_j = \langle (t_{j1}, p_{j1}), \ldots, (t_{j\ell_j}, p_{j\ell_j}) \rangle \). Each \(t_{jk} \) is drawn from \([n]\) for \(k \in [1, \ell_j] \).
- \(1 - \sum_{k=1}^{\ell_j} p_{jk} \) specify the possibility that \(t_j \) generates no item.

\(t_1 \)	\(\{(1, 0.2), (3, 0.3), (7, 0.2)\} \)		
\(t_2 \)	\(\{(3, 0.3), (5, 0.1), (9, 0.4)\} \)		
\(t_3 \)	\(\{(3, 0.5), (10, 0.4), (13, 0.1)\} \)		
\(\cdots \)	\(\cdots \)		
\(t_{	\tau	} \)	\(\cdots \)
\[g_i = \{(g_i(W), \Pr(W)) | W \in W\} \]

Tuple Model

- Each tuple \(t_j = \langle (t_{j1}, p_{j1}), \ldots, (t_{j\ell_j}, p_{j\ell_j}) \rangle \). Each \(t_{jk} \) is drawn from \([n]\) for \(k \in [1, \ell_j] \).
- \(1 - \sum_{k=1}^{\ell_j} p_{jk} \) specify the possibility that \(t_j \) generates no item.

<table>
<thead>
<tr>
<th>(t_1)</th>
<th>({(1, 0.2), (3, 0.3), (7, 0.2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_2)</td>
<td>({(3, 0.3), (5, 0.1), (9, 0.4)})</td>
</tr>
<tr>
<td>(t_3)</td>
<td>({(3, 0.5), (10, 0.4), (13, 0.1)})</td>
</tr>
</tbody>
</table>
| \(
\) | \(\cdot \) |
| \(\vdots \) | \(\cdot \) |
| \(t_{|\tau|} \) | \(\cdot \) |
\[g_i = \{(g_i(W), \Pr(W)) \mid W \in \mathcal{W}\} \]

Value Model

- Each tuple \(t_j = \langle j : f_j = ((f_{j1}, p_{j1}), \ldots, (f_{j\ell_j}, p_{j\ell_j})) \rangle \), \(j \) is drawn from \([n]\).
- \(\Pr(f_j = 0) = 1 - \sum_{k=1}^{\ell_j} p_{jk} \)

\(t_1 \)	\(\{ < 1, (50, 0.2), (7, 0.1), (14, 0.2) > \} \)
\(t_2 \)	\(\{ < 2, (6, 0.4), (7, 0.3), (15, 0.3) > \} \)
\(t_3 \)	\(\{ < 3, (10, 0.3), (15, 0.2), (20, 0.5) > \} \)
\(\cdots \)	\(\cdots \)
\(t_n \)	\(\cdots \)
\[g_i = \{(g_i(W), \Pr(W)) | W \in \mathcal{W}\} \]

Value Model

- Each tuple \(t_j = \langle j : f_j = ((f_{j1}, p_{j1}), \ldots, (f_{j\ell_j}, p_{j\ell_j})) \rangle \), \(j \) is drawn from \([n]\).
- \(\Pr(f_j = 0) = 1 - \sum_{k=1}^{\ell_j} p_{jk} \)

| \(t_j \) | \{ <1, (50, 0.2), (7, 0.1), (14, 0.2) > \} | \{ <2, (6, 0.4), (7, 0.3), (15, 0.3) > \} | \{ <3, (10, 0.3), (15, 0.2), (20, 0.5) > \} | \(\cdots \) | \(\cdots \) |
|---|---|---|---|---|
| \(t_1 \) | \{ <1, (50, 0.2), (7, 0.1), (14, 0.2) > \} | \| \| |
| \(t_2 \) | \{ <2, (6, 0.4), (7, 0.3), (15, 0.3) > \} | \| \| |
| \(t_3 \) | \{ <3, (10, 0.3), (15, 0.2), (20, 0.5) > \} | \| \| |
| \(\cdots \) | \| \| |
| \(t_n \) | \| \| |
Histograms on Probabilistic data

Possible world semantic

- g_i: frequency of item i becomes random variable across possible worlds

Expectation based histogram

$$\mathcal{H}(n, B) = \min \{ \mathbb{E}_\mathcal{W} \left[\sum_{k=1}^{B} \sum_{j=s_k}^{e_k} (g_j - \hat{b}_k)^2 \right] \}.$$

- [ICDE09] G. Cormode et al., Histograms and wavelets on probabilistic data, ICDE 2009
- [VLDB09] G. Cormode et al., Probabilistic histograms for probabilistic data, VLDB 2009
The optimal B bucket histogram takes $O(Bn^2)$ time.

[TKDE10] shows that the minimal error of a bucket $b = (s, e, \hat{b})$ is:

$$SSE(b, \hat{b}) = \sum_{i=s}^{e} E_{\mathcal{W}}[g_i^2] - \frac{1}{e - s + 1} E_{\mathcal{W}}[\sum_{i=s}^{e} g_i]^2. \quad (3)$$

by setting $\hat{b} = \frac{1}{e - s + 1} E_{\mathcal{W}} [\sum_{i=s}^{e} g_i]$.

Based on two precomputed arrays (A, B), $SSE(b, \hat{b})$ can be computed in constant time.

[TKDE10] G. Cormode et al., Histograms and wavelets on probabilistic data, TKDE 2010
Pmerge method based on partition and merge principle

- **Partition phase**: partition the domain n into m sub-domain of equal size and compute the local optimal B buckets for each sub-domain.
- **Merge phase**: merge mB input buckets from the partition phase into B buckets.

![Diagram showing partition and bucket distribution](attachment://diagram.png)
Pmerge Method

Pmerge method based on partition and merge principle

- **Partition phase:** partition the domain \(n \) into \(m \) sub-domain of equal size and compute the local optimal \(B \) buckets for each sub-domain.
- **Merge phase:** merge \(mB \) input buckets from the partition phase into \(B \) buckets.
Pmerge Method

Pmerge method based on partition and merge principle

- **Partition phase:** partition the domain n into m sub-domain of equal size and compute the local optimal B buckets for each sub-domain.
- **Merge phase:** merge mB input buckets from the partition phase into B buckets.

![Diagram showing partition and merge process](image)
Pmerge Method

Pmerge method based on partition and merge principle

- **Partition phase:** partition the domain n into m sub-domain of equal size and compute the local optimal B buckets for each sub-domain.
- **Merge phase:** merge mB input buckets from the partition phase into B buckets.
Recursive Merging Method

- **PMERGE method:**
 - Approximation quality: PMERGE produces a $\sqrt{10}$ approximation in $O(N + Bn^2/m + B^3m^2)$ time.

- **Recursive merging (RPMERGE):**
 - Partition $[n]$ into m^ℓ subdomains, producing Bm^ℓ.
 - Using ℓ iterations and each iteration reduce the domain size by a factor of m.
 - Takes $O(N + B \frac{n^2}{m^\ell} + B^3 \sum_{i=1}^{\ell} m^{(i+1)})$ time and the RPMERGE method gives a $10^{\frac{\ell}{2}}$ approximation of the optimal B-buckets histogram found by OptHist.

- In practice, PMERGE and RPMERGE always provide close to optimal approximation quality as shown in our experiments.
• Partition phase in the distributed environment

Probabilistic Database \mathcal{D}

τ_1

τ_ℓ

τ_β

m sub-domains

Communication cost

• Computing A_k, B_k arrays in the partition phase
 • Tuple model: $O(\beta n)$ bytes.
 • Value model: $O(n)$ bytes.

• $O(Bm)$ bytes in the merge phase for both models.
- Partition phase in the distributed environment

\[h(i) = \left\lceil \frac{i}{\left\lceil \frac{n}{m} \right\rceil} \right\rceil \]

Communication cost

- Computing \(A_k, B_k \) arrays in the partition phase
 - Tuple model: \(O(\beta n) \) bytes.
 - Value model: \(O(n) \) bytes.
- \(O(Bm) \) bytes in the merge phase for both models.
Partition phase in the distributed environment

Probabilistic Database \mathcal{D}

\[h(i) = \left\lceil \frac{i}{\lceil n/m \rceil} \right\rceil \]

Communication cost

- Computing A_k, B_k arrays in the partition phase
 - Tuple model: $O(\beta n)$ bytes.
 - Value model: $O(n)$ bytes.
- $O(Bm)$ bytes in the merge phase for both models.
Pmerge Based on Sampling

Sampling A, B arrays in the partition phase

$$A_k[j] = \sum_{i=1}^{i} E[f_j^2], \quad B_k[j] = \sum_{i=1}^{j} E[f_i]$$

Estimate A_k, B_k arrays using quantile sampling

$$E[f_i] \quad 2 \quad 3 \quad 5 \quad 9 \quad \cdots$$

item: 1 2 3 4 ...
Sampling A, B arrays in the partition phase

\[
A_k[j] = \sum_{i=1}^{i} E[f_i^2], \quad B_k[j] = \sum_{i=1}^{j} E[f_i]
\]

Estimate A_k, B_k arrays using quantile sampling

<table>
<thead>
<tr>
<th>$E[f_i]$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>item:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>
Sampling A, B arrays in the partition phase

\[
A_k[j] = \sum_{i=1}^{i} E[f_i^2], \quad B_k[j] = \sum_{i=1}^{j} E[f_i]
\]

Estimate A_k, B_k arrays using quantile sampling

$E[f_i]$:

\[
\begin{array}{cccccc}
3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

item: 1 2 3 4 ...
Sampling A, B arrays in the partition phase

\[A_k[j] = \sum_{i=1}^{i} E[f_i^2], \quad B_k[j] = \sum_{i=1}^{j} E[f_i] \]

Estimate A_k, B_k arrays using quantile sampling

\[p = \min\{\Theta(\frac{\sqrt{\beta}}{\epsilon N}), \Theta(\frac{1}{\epsilon^2 N})\} \]

\[
\begin{array}{cccc}
3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{cccc}
E[f_i] & 2 & 3 & 5 & 9 & \cdots \\
\end{array}
\]

item: 1 2 3 4 ...
Tuple model A, B arrays

- Estimate $F_2 = \sum_{i=s_k}^j \left(\sum_{\ell=1}^\beta E_{W,\ell}[g_i] \right)^2$ using AMS Sketch techniques and binary decomposition of domain $[s_k, e_k]$.

(a) binary decomposition

\[F_2 = M_k'' \]

(b) local Q-AMS

AMS

\[E_{W,\ell}[g_{\alpha_k,1}] \]

\[E_{W,\ell}[g_{\alpha_k,\frac{1}{\epsilon}-1}] \]
1 Optimal B-buckets Histograms

2 Approximate Histograms

3 Pmerge Based on Sampling

4 Experiments
Generate tuple model and the value model dataset using the client id field of 1998 WorldCup dataset and atmospheric measurements from the SAMOS project.

The default experimental parameters:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>number of buckets</td>
<td>400</td>
</tr>
<tr>
<td>n</td>
<td>domain size</td>
<td>100k (600k)</td>
</tr>
<tr>
<td>ℓ</td>
<td>depth of recursions</td>
<td>2</td>
</tr>
</tbody>
</table>
Running time:

- n: domain size

Figure: Tuple Model

Figure: Value Model
Approximation Ratio:

- n: domain size

Figure: Tuple Model

Figure: Value Model
Running time on large scale probabilistic data

- n: domain size

Figure: Tuple Model

Figure: Value Model
Conclusion

- Novel approximation methods for constructing scalable histograms on large probabilistic data.
- The quality of the approximate histograms are almost as good as the optimal histogram in practice.
- Extended the techniques to distributed and parallel settings to further improve scalability.

Future work

- extend our study to probabilistic histograms with pdf bucket representatives and handle histogram of other error metrics
Thank You

Q and A