Efficient Threshold Monitoring for Distributed Probabilistic Data

Mingwang Tang, Feifei Li, Jeff M. Phillips, Jeffrey Jestes
Distributed threshold monitoring (DTM) problem:

\[H \sum_{i=1}^{3} x_i > 240 \]

\[
\begin{array}{ccc}
 c_1 & c_2 & c_3 \\
 t_1 & 70 & 80 & 75 \\
 t_2 & 70 & 90 & 90 \\
 \vdots & \vdots & \vdots & \vdots \\
 t_T & 70 & 80 & 70 \\
\end{array}
\]
Distributed threshold monitoring (DTM) problem:

\[H \]

225 > 240?

\[c_1 \] \[c_2 \] \[c_3 \]

\begin{array}{ccc}
\text{\(t_1 \)} & 70 & 80 & 75 \\
\text{\(t_2 \)} & 70 & 90 & 90 \\
\vdots & \vdots & \vdots & \vdots \\
\text{\(t_T \)} & 70 & 80 & 70 \\
\end{array}
Distributed threshold monitoring (DTM) problem:

\[H = 250 > 240? \]

\[
\begin{array}{ccc}
\hat{c}_1 & \hat{c}_2 & \hat{c}_3 \\
\end{array}
\]

\[
\begin{array}{ccc}
t_1 & 70 & 80 & 75 \\
t_2 & 70 & 90 & 90 \\
t_T & 70 & 80 & 70 \\
\end{array}
\]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem for deterministic data.
Distributed threshold monitoring (DTM) problem:

- $H > 240$?
- $t_1: 70, 80, 75$
- $t_2: 70, 90, 90$
- $t_T: 70, 80, 70$
- c_1, c_2, c_3
Distributed threshold monitoring (DTM) problem:

\[
H > 240? \\
\]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem \((\sum_{i=1}^{g} x_i \leq T)\) for deterministic data.

Distributed threshold monitoring (DTM) problem:

\[H \sum_{i=1}^{3} x_i > 240 \]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem \((\sum_{i=1}^{g} x_i \leq T)\) for deterministic data.

Distributed threshold monitoring (DTM) problem:

\[H \quad \sum_{i=1}^{3} x_i > 240 \]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem \((\sum_{i=1}^{g} x_i \leq T)\) for deterministic data.

Distributed threshold monitoring (DTM) problem:

\[H \quad \sum_{i=1}^{3} x_i > 240 \]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem \((\sum_{i=1}^{g} x_i \leq T)\) for deterministic data.

Distributed threshold monitoring (DTM) problem:

\[H \quad \sum_{i=1}^{3} x_i > 240 \]

\[c_1 \quad 80 \quad c_2 \quad 80 \quad c_3 \quad 80 \]

\[\land \quad ? \quad \land \quad ? \quad \land \quad ? \]

\[
\begin{array}{ccc}
t_1 & 70 & 80 & 75 \\
t_2 & 70 & 90 & 90 \\
\vdots & \vdots & \vdots & \vdots \\
t_T & 70 & 80 & 70 \\
\end{array}
\]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (\(\sum_{i=1}^{g} x_i \leq T \)) for deterministic data.

Distributed threshold monitoring (DTM) problem:

\[H \quad \sum_{i=1}^{3} x_i > 240 \]

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (\(\sum_{i=1}^{g} x_i \leq T \)) for deterministic data.

New challenge in the DTM problem: uncertainty naturally exist in distributed data

- data integration produces fuzzy matches
- noisy sensor readings
New challenge in the DTM problem: uncertainty naturally exist in distributed data
- data integration produces fuzzy matches
- noisy sensor readings

The Shipboard Automated Meteorological and Oceanographic System (SAMOS)
- Attribute-level uncertain model (with a single attribute score)

<table>
<thead>
<tr>
<th>tuples</th>
<th>attribute score</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>$X_1 = {(v_{1,1}, p_{1,1}), (v_{1,2}, p_{1,2})... (v_{1,b_1}, p_{1,b_1})}$</td>
</tr>
<tr>
<td>d_2</td>
<td>$X_2 = {(v_{2,1}, p_{2,1}), (v_{2,2}, p_{2,2})... (v_{2,b_2}, p_{2,b_2})}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>d_t</td>
<td>$X_t = {(v_{t,1}, p_{t,1}), (v_{t,2}, p_{t,2})... (v_{t,b_t}, p_{t,b_t})}$</td>
</tr>
</tbody>
</table>
Distributed probabilistic threshold monitoring (DPTM):

\[H \prod \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta? \]

\[
\begin{align*}
 &c_1 \quad c_2 \quad \ldots \quad c_g \\
 &t_1 \quad X_{1,1} \quad X_{2,1} \quad \ldots \quad X_{g,1} \\
 &t_2 \quad X_{1,2} \quad X_{2,2} \quad \ldots \quad X_{g,2} \\
 &\vdots \quad \vdots \quad \vdots \quad \ldots \quad \vdots \\
 &t_T \quad X_{1,T} \quad X_{2,T} \quad \ldots \quad X_{g,T}
\end{align*}
\]
Distributed probabilistic threshold monitoring (DPTM):

\[H \quad \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta ? \]

\begin{align*}
& t_1 \quad X_{1,1} \quad X_{2,1} \quad X_{g,1} \\
& t_2 \quad X_{1,2} \quad X_{2,2} \quad X_{g,2} \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& t_T \quad X_{1,T} \quad X_{2,T} \quad X_{g,T}
\end{align*}
Distributed probabilistic threshold monitoring (DPTM):

\[H \quad \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta ? \]

\[t_1 \quad X_{1,1} \quad X_{2,1} \quad X_{g,1} \]
\[t_2 \quad X_{1,2} \quad X_{2,2} \quad X_{g,2} \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]
\[t_T \quad X_{1,T} \quad X_{2,T} \quad X_{g,T} \]
Distributed probabilistic threshold monitoring (DPTM):

\[H | \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta ? \]

\[
\begin{array}{ccc}
 c_1 &
 c_2 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
 t_1 & X_{1,1} & X_{2,1} & X_{g,1} \\
 t_2 & X_{1,2} & X_{2,2} & X_{g,2} \\
 \vdots & \vdots & \vdots & \vdots \\
 t_T & X_{1,T} & X_{2,T} & X_{g,T} \\
\end{array}
\]
Our Approach

Exact Methods:

- Computing \(\Pr[Y > \gamma] \) exactly is expensive in terms of both communication \((O(gT)) \) and computation \((O(n^g T)) \).
Our Approach

- **Exact Methods:**
 - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
 - Incorporates pruning techniques.
Our Approach

- **Exact Methods:**
 - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
 - Incorporates pruning techniques.

The diagram illustrates the decision-making process based on the value of H. The deterministic data derived from X_i's is indicated, with specific variables t_1, t_2, \ldots, t_T for different time points.
Our Approach

- **Exact Methods:**
 - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
 - Incorporates pruning techniques.
 - Combine the adaptive threshold algorithm for deterministic data when it's applicable.

```
Pr[Y > \gamma] < upperbound < \delta ?
Pr[Y > \gamma] > lowerbound > \delta ?
```

deterministic data derived based X_i's

t_1 \quad X_{1,1} \quad X_{2,1} \quad X_{g,1}
t_2 \quad X_{1,2} \quad X_{2,2} \quad X_{g,2}
\vdots \quad \vdots \quad \vdots \quad \vdots
t_T \quad X_{1,T} \quad X_{2,T} \quad X_{g,T}
```
Our Approach

- **Exact Methods:**
  - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
  - Incorporates pruning techniques.
  - Combine the adaptive threshold algorithm for deterministic data when it’s applicable.

- **Approximate Methods:**
  - Replace the exact computation of $\Pr[Y > \gamma]$ using sampling method (but with the same monitoring instance).
Outline

1. Introduction and Motivation
2. Exact Methods
3. Approximate Methods
4. Experiments
5. Conclusion
Markov’s inequality: $\Pr[Y > \gamma] \leq \frac{\mathbb{E}(Y)}{\gamma}$
Baseline method (Madaptive)

- Markov’s inequality: \( \Pr[Y > \gamma] \leq \frac{\mathbb{E}(Y)}{\gamma} \)
Baseline method (Madaptive)

- Markov’s inequality: $\Pr[Y > \gamma] \leq \frac{E(Y)}{\gamma} < \delta$?

\[
H \quad \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta?
\]

$$t \quad X_1 \quad X_2 \cdots X_g$$
Markov’s inequality: $\Pr[Y > \gamma] \leq \frac{E(Y)}{\gamma} < \delta \? \rightarrow ture (no \ alarm)$
Markov’s inequality: $\Pr[Y > \gamma] \leq \frac{E(Y)}{\gamma} < \delta \quad \rightarrow \text{ture (no alarm)}$
Markov’s inequality: $\Pr[Y > \gamma] \leq \frac{E(Y)}{\gamma} < \delta \Rightarrow ture$ (no alarm)
Baseline method (Madaptive)

- Markov's inequality: $\Pr[Y > \gamma] \leq \frac{E(Y)}{\gamma} < \delta \implies \text{true (no alarm)}$

- $E(Y) = \sum_{i=1}^{g} E(X_i) < (\gamma \delta) \text{? constant}$

- $E(X_1) \quad E(X_2) \quad E(X_g)$

- $t \quad X_1 \quad X_2 \quad \ldots \quad X_g$

- Leverage on the adaptive thresholds algorithm for deterministic data
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $E(X_i)$ and $\text{Var}(X_i)$
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbb{E}(X_i)$ and $\text{Var}(X_i)$

$$H \quad \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta ?$$

$c_1 \quad c_2 \quad \ldots \quad c_g$

$t \quad X_1 \quad X_2 \quad \ldots \quad X_g$
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $E(X_i)$ and $\text{Var}(X_i)$

\[ H \quad \Pr[Y > \gamma] \leq \frac{\text{Var}(Y)}{\text{Var}(Y) + (\gamma - E(Y))^2} \leq \delta ? \]

\[ E(X_1) \quad E(X_2) \quad \cdots \quad E(X_g) \]
\[ \text{Var}(X_1) \quad \text{Var}(X_2) \cdots \quad \text{Var}(X_g) \]
\[ t \quad X_1 \quad X_2 \quad \cdots \quad X_g \]
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $E(X_i)$ and $\text{Var}(X_i)$

$$H \quad \Pr[Y > \gamma] > 1 - \frac{\text{Var}(Y)}{\text{Var}(Y) + (E(Y) - \gamma)^2} \geq \delta$$

![Diagram](image-url)
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $E(X_i)$ and $\text{Var}(X_i)$
- Chernoff bound using the moment generating function
  - $M(\beta) = E(e^{\beta Y})$, $M_i(\beta) = E(e^{\beta X_i})$ for any $\beta \in \mathbb{R}$
  - $M(\beta) = \prod_{i=1}^{g} M_i(\beta)$
Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbb{E}(X_i)$ and $\text{Var}(X_i)$
- Chernoff bound using the moment generating function
  - $M(\beta) = \mathbb{E}(e^{\beta Y})$, $M_i(\beta) = \mathbb{E}(e^{\beta X_i})$ for any $\beta \in \mathbb{R}$
  - $M(\beta) = \prod_{i=1}^{g} M_i(\beta)$
- $\beta_1 > 0$, Chernoff gives an upper bound
- $\beta_2 < 0$, Chernoff gives a lower bound

$$
Pr[Y > \gamma] \leq e^{-\beta_1 \gamma M(\beta_1)} \leq \delta \ ?
$$

$$
Pr[Y > \gamma] > 1 - e^{-\beta_2 \gamma M(\beta_2)} \geq \delta \ ?
$$

$$
\begin{array}{cccc}
  H & Pr[Y > \gamma] \leq e^{-\beta_1 \gamma M(\beta_1)} \leq \delta \ ? \\
  & Pr[Y > \gamma] > 1 - e^{-\beta_2 \gamma M(\beta_2)} \geq \delta \ ? \\
\end{array}
$$

\[c_1 \xrightarrow{M_1(\beta_1)} c_2 \xrightarrow{M_2(\beta_1)} \cdots \xrightarrow{M_g(\beta_1)} c_g\]

\[c_1 \xrightarrow{M_1(\beta_2)} c_2 \xrightarrow{M_2(\beta_2)} \cdots \xrightarrow{M_g(\beta_2)} c_g\]

$t \ X_1 \ X_2 \ \cdots \ X_g$
Improved Adaptive Method (Iadaptive)

- \[ \sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma, \text{ (monitoring instance } J_1) \].
- \[ \sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1 - \delta) + \beta_2 \gamma, \text{ (monitoring instance } J_2) \].

Practical considerations

- Use the adaptive thresholds algorithm.
- Get a tight upper bound (lower bound).

Approaches

- Fix the values of \( \beta_1 \) and \( \beta_2 \) in each period of \( k \) time instance.
- Reset the optimal values of \( \beta_1 \) and \( \beta_2 \) periodically.
- Periodically decide which monitoring instance to run.
\[ \sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma, \text{ (monitoring instance } J_1) \].

\[ \sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1 - \delta) + \beta_2 \gamma, \text{ (monitoring instance } J_2) \].

Practical considerations
  - Use the adaptive thresholds algorithm
  - Get a tight upper bound (lower bound)
Improved Adaptive Method (Iadaptive)

\[ \sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma, \text{ (monitoring instance } J_1 \text{).} \]

\[ \sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1 - \delta) + \beta_2 \gamma, \text{ (monitoring instance } J_2 \text{).} \]

Practical considerations
- Use the adaptive thresholds algorithm
- Get a tight upper bound (lower bound)

Approaches
- Fix the values of \( \beta_1 \) and \( \beta_2 \) in each period of \( k \) time instance.
- Reset the optimal values of \( \beta_1 \) and \( \beta_2 \) periodically.
- $\sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma$, (monitoring instance $J_1$).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1 - \delta) + \beta_2 \gamma$, (monitoring instance $J_2$).

Practical considerations
- Use the adaptive thresholds algorithm
- Get a tight upper bound (lower bound)
- Running $J_1$ and $J_2$ together is communication expensive.

Approaches
- Fix the values of $\beta_1$ and $\beta_2$ in each period of $k$ time instance.
- Reset the optimal values of $\beta_1$ and $\beta_2$ periodically.
Improved Adaptive Method (Iadaptive)

\[ \sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma, \text{ (monitoring instance } J_1) \].

\[ \sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1 - \delta) + \beta_2 \gamma, \text{ (monitoring instance } J_2) \].

Practical considerations
- Use the adaptive thresholds algorithm
- Get a tight upper bound (lower bound)
- Running \( J_1 \) and \( J_2 \) together is communication expensive.

Approaches
- Fix the values of \( \beta_1 \) and \( \beta_2 \) in each period of \( k \) time instance.
- Reset the optimal values of \( \beta_1 \) and \( \beta_2 \) periodically.
- Periodically decides which monitoring instance to run
1 Introduction and Motivation

2 Exact Methods

3 Approximate Methods

4 Experiments

5 Conclusion
Our Approach

- **Exact Methods:**
  - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
  - Incorporates pruning techniques.
  - Combine the adaptive threshold algorithm for deterministic data when it’s applicable.

- **Approximate Methods:**
Our Approach

- **Exact Methods:**
  - Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
  - Incorporates pruning techniques.
  - Combine the adaptive threshold algorithm for deterministic data when it’s applicable.

- **Approximate Methods:**
  - We use $\epsilon$-Sampling methods to estimate the condition when monitoring instances fail to make a decision.
Our Approach

**Exact Methods:**
- Computing $\Pr[Y > \gamma]$ exactly is expensive in terms of both communication ($O(gT)$) and computation ($O(n^g T)$).
- Incorporates pruning techniques.
- Combine the adaptive threshold algorithm for deterministic data when it’s applicable.

**Approximate Methods:**
- We use $\epsilon$-Sampling methods to estimate the condition when monitoring instances fail to make a decision.
- Replace the exact computation using sampling based method (but with the same monitoring instance): we get MadaptiveS, ImprovedS, IadaptiveS.
Random Distributed $\varepsilon$-Sample (RD$\varepsilon$S)

- $H$ asks for a random sample $x_i$ from each client according to the distribution of $X_i$
- $\Pr[\tilde{Y} = \sum_{i=1}^{g} x_i > \gamma]$ is an unbiased estimate of $\Pr[Y > \gamma]$
- Repeating this sampling $\kappa = O\left(\frac{1}{\varepsilon^2} \ln \frac{1}{\phi}\right)$ times.
- $\Pr[|\Pr[\tilde{Y} > \gamma] - \Pr[Y > \gamma]| \leq \varepsilon] \geq 1 - \phi$ using $O\left(\frac{g}{\varepsilon^2} \ln \frac{1}{\phi}\right)$ bytes.
Using $\kappa = O\left(\frac{g}{\epsilon}\right)$ evenly spaced sample points from each $X_i$. 
Deterministic Distributed $\varepsilon$-Sample (DD$\varepsilon$S)

- Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each $X_i$.
- $\int_{x=x_j}^{x_{j+1}} \Pr[X_i = x] dx = \frac{\varepsilon}{g}$
Deterministic Distributed $\varepsilon$-Sample (DD$\varepsilon$S)

- Using $\kappa = O\left(\frac{g}{\varepsilon}\right)$ evenly spaced sample points from each $X_i$.
- \[
\int_{x=x_j}^{x_{j+1}} \Pr[X_i = x] dx = \frac{\varepsilon}{g}
\]
- The evaluation space $\Pr[\tilde{Y} > \gamma]$ is in $O(\kappa g)$

\[
\begin{align*}
  c_1 : & \quad S_1 \{x_{1,1}, x_{1,2}, \ldots, x_{1,\kappa}\} \\
  c_2 : & \quad S_2 \{x_{2,1}, x_{2,2}, \ldots, x_{2,\kappa}\} \\
  & \quad \vdots \quad \vdots \\
  c_g : & \quad S_g \{x_{g,1}, x_{g,2}, \ldots, x_{g,\kappa}\}
\end{align*}
\]
Deterministic Distributed $\varepsilon$-Sample (DD$\varepsilon$S)

- Using $\kappa = O\left(\frac{g}{\varepsilon}\right)$ evenly spaced sample points from each $X_i$.
- $\int_{x=x_j}^{x_{j+1}} \Pr[Xi = x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[\tilde{Y} > \gamma]$ is in $O(\kappa^g)$

$c_1 : S_1\{x_{1,1}, x_{1,2}, \ldots, x_{1,\kappa}\}$
$c_2 : S_2\{x_{2,1}, x_{2,2}, \ldots, x_{2,\kappa}\}$
\[ \cdots \]
$c_g : S_g\{x_{g,1}, x_{g,2}, \ldots, x_{g,\kappa}\}$
Deterministic Distributed $\varepsilon$-Sample (DD$\varepsilon$S)

- Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each $X_i$.
- $\int_{x=x_j}^{x_{j+1}} \Pr[X_i = x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[\tilde{Y} > \gamma]$ is in $O(\kappa g)$
- In practice, $O(\kappa^m)$ (e.g., $m = 2$) random selected evaluations.

$$c_1 : S_1 \{x_{1,1}, x_{1,2}, \ldots, x_{1,\kappa}\}$$
$$c_2 : S_2 \{x_{2,1}, x_{2,2}, \ldots, x_{2,\kappa}\}$$
$$\vdots$$
$$\vdots$$
$$\vdots$$
$$c_g : S_g \{x_{g,1}, x_{g,2}, \ldots, x_{g,\kappa}\}$$
Deterministic Distributed \(\varepsilon\)-Sample (\(\text{DD}\varepsilon\text{S}\))

- Using \(\kappa = O\left(\frac{g}{\varepsilon}\right)\) evenly spaced sample points from each \(X_i\).
- \(\int_{x=x_j}^{x_{j+1}} \Pr[X_i = x]dx = \frac{\varepsilon}{g}\)

- The evaluation space \(\Pr[\tilde{Y} > \gamma]\) is in \(O(\kappa^g)\)

- In practice, \(O(\kappa^m)\) (e.g., \(m = 2\)) random selected evaluations.

\[
\begin{align*}
&c_1 : S_1\{x_{1,1}, x_{1,2}, \ldots, x_{1,\kappa}\} \\
&c_2 : S_2\{x_{2,1}, x_{2,2}, \ldots, x_{2,\kappa}\} \\
&\quad \quad \frac{55}{76}
\end{align*}
\]

- \(\text{DD}\varepsilon\text{S}\) gives \(|\Pr[\tilde{Y} > \gamma] - \Pr[Y > \gamma]| \leq \varepsilon\) with probability 1 in \(O(g^2/\varepsilon)\) bytes.
A randomized improvement of \textit{DDES (\(\alpha\text{DDES}\))}

\[
\int_{x=x_{i,j}}^{x_{i,j+1}} Pr[X_i = x] dx = \alpha
\]
A randomized improvement of $\text{DD}\varepsilon S$ ($\alpha\text{DD}\varepsilon S$)

- $\int_{x=x_{i,j}}^{x_{i,j+1}} Pr[X_i = x] dx = \alpha$
- Computes $x_\alpha$ where the integral of $pdf$ first reaches $\alpha$
A randomized improvement of DD$\varepsilon$S ($\alpha$DD$\varepsilon$S)

- $\int_{x=x_i,j}^{x_{i,j+1}} Pr[X_i = x]dx = \alpha$
- Computes $x_\alpha$ where the integral of $pdf$ first reaches $\alpha$
- Chooses the smallest sample point at random (within $x_\alpha$).

\[\int_{x=x_i,j}^{x_{i,j+1}} Pr[X_i = x]dx = \alpha\]
Computes $x_\alpha$ where the integral of $pdf$ first reaches $\alpha$
Chooses the smallest sample point at random (within $x_\alpha$).
A randomized improvement of $\text{DD}\varepsilon S (\alpha \text{DD}\varepsilon S)$

- $\int_{x=x_{i,j}}^{x_{i,j+1}} Pr[X_i = x] dx = \alpha$
- Computes $x_\alpha$ where the integral of pdf first reaches $\alpha$
- Chooses the smallest sample point at random (within $x_\alpha$).
A randomized improvement of \( \text{DD}\varepsilon S (\alpha\text{DD}\varepsilon S) \)

- \( \int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x]dx = \alpha \)
- Computes \( x_\alpha \) where the integral of pdf first reaches \( \alpha \)
- Chooses the smallest sample point at random (within \( x_\alpha \)).

\[ \Pr[| \Pr[\tilde{Y} > \gamma] - \Pr[Y > \gamma]| \leq \varepsilon] > 1 - \phi \text{ in } O\left(\frac{g}{\varepsilon} \sqrt{2g \ln \frac{2}{\phi}}\right) \text{ bytes.} \]
Experiment setup

- A Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of memory. GMP library are used in calculating $M_i(\beta)$.
- Server-to-client using broadcast and client-to-server using unicast.
- Data sets:
  - Real datasets (11.8 million records in the Wecoma research vessels) from the SAMOS project.
  - Each record contain four measurements: wind direction (WD), wind speed (WS), sound speed (SS), and temperature (TEM), which leads to four single probabilistic attribute datasets.
  - Group the records every $\tau$ consecutive seconds and represent it using a pdf.
The default experimental parameters:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau$</td>
<td>grouping interval</td>
<td>300</td>
</tr>
<tr>
<td>$T$</td>
<td>number of time instances</td>
<td>3932</td>
</tr>
<tr>
<td>$g$</td>
<td>number of clients</td>
<td>10</td>
</tr>
<tr>
<td>$\delta$</td>
<td>probability threshold</td>
<td>0.7</td>
</tr>
<tr>
<td>$\gamma$</td>
<td>score threshold</td>
<td>30% alarms (230.g for WD)</td>
</tr>
<tr>
<td>$\kappa$</td>
<td>sample size per client</td>
<td>30</td>
</tr>
</tbody>
</table>
Response time:

- $\gamma$: score threshold

![Graph showing response time vs $\gamma$ for Madaptive, Improved, and Iadaptive models]
\( \gamma \): score threshold

![Graph showing communication metrics: number of messages and number of bytes vs. score threshold (\( \gamma \)).](image)
\( \kappa \): number of samples
$\kappa$: number of samples
Performance of all methods

- Madaptive, MadaptiveS
- Improved, ImprovedS
- Iadaptive, IadaptiveS

Number of messages

WD  WS  SS  TEM

4 / 6 / 8 / 10
Performance of all methods

<table>
<thead>
<tr>
<th>Method</th>
<th>WD</th>
<th>WS</th>
<th>SS</th>
<th>TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madaptive</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MadaptiveS</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Improved</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>ImprovedS</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Iadaptive</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>IadaptiveS</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
Performance of all methods

- WD
- WS
- SS
- TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS
Future work:

- Other aggregation constraints (e.g., max) beside sum constraint.
- Extend our study to the hierarchical model that is often used in a sensor network.
- Handle the case when data from different sites are correlated.
Thank You

Q and A