suresh at cs utah edu
Ph: 801 581 8233
Room 3404, School of Computing
50 S. Central Campus Drive,
Salt Lake City, UT 84112.
Protocols for Learning Classifiers on Distributed Data
Monday December 12th 2011, 2:53 pm
Filed under: Papers

[author]Hal Daumé, Jeff M. Phillips, Avishek Saha and Suresh Venkatasubramanian[/author]
In the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.


We consider the problem of learning classifiers for labeled data that has been distributed across several nodes. Our goal is to find a single classifier, with small approximation error, across all datasets while minimizing the communication between nodes. This setting models real-world communication bottlenecks in the processing of massive distributed datasets. We present several very general sampling-based solutions as well as some two-way protocols which have a provable exponential speed-up over any one-way protocol. We focus on core problems for noiseless data distributed across two or more nodes. The techniques we introduce are reminiscent of active learning, but rather than actively probing labels, nodes actively communicate with each other, each node simultaneously learning the important data from another node.

Links: PDF (this is the submitted version, not the final accepted version)


No Comments so far

Leave a comment
Line and paragraph breaks automatic, e-mail address never displayed, HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>