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Introduction

Water, water, everywhere,
Nor any drop to drink

Samuel Taylor Coleridge

Clustering is perhaps the most important tool in the arsenal of the ex-
ploratory data scientist. It's certainly the most important unsupervised learn-
ing framework. On the research side too, clustering is invariably one of the
five most popular topics for papers in data science and machine learning.

And yet, clustering is often portrayed as a collection of tricks, or algo-
rithms. Run k-means on this data set, or a single linkage on that one. If
you're feeling fancy, use spectral clustering, or even an ensemble method.
What the traditional discourse on clustering lacks is a collection of deeper
insights that might help guide how we think about clustering a data set.

We believe those insights exist. And this book is our attempt to make
them explicit. In our view, clustering is more than just a collection of tools.
It is a systematic way to think about how data is represented, and how
it should be organized. Different ways to cluster data represent different
intuitions on what the shape of the data is, or should be. And becoming
proficient in clustering is about understanding those intuitions and how
they naturally lead to different formulations of a clustering problem.

This book is about a conceptual understanding of clustering. Rather than
being exhaustive (a wholly impossible task!), we wish to isolate the concep-
tual directions that describe the space of ideas in clustering, so that the reader
is then empowered to mix and match them as she sees fit.

Befitting our backgrounds, this book also attempts to bridge the divide
between the applied and theoretical perspectives on clustering. We will not
seek out the algorithm that trims the last log factor in a running time, and
nor will we explore every heuristic that appears to be effective. Rather,
we will make explicit the connections between theory and practice, showing
how theoretical intuition can guide (and is guided by) the design of practical
methods.

This is a work in progress. Comment are greatly appreciated.












Partition Clustering

Divide et Impera

Julius Caesar

2.1 Metric Spaces

In its most general form, clustering is the following problem: given objects
X1,...,X, from some set X, place them in groups so that all objects in a
group are in some way related to each other. Every particular instance of
clustering we will encounter in this book merely specifies what these notions
mean.

Let us start with the meaning of “related”. The easiest way to say that
two objects are related is to define a distance between them: objects that are
close to each other are then considered related, and objects that are far away
are not. Such a distance should satisfy some natural properties. First, the
distance of an object to itself should be zero because every object is most
closely related to itself. A slightly less natural, but equally desirable, prop-
erty is that it shouldn’t matter which direction the distance is measured in".
And finally, a critical property that a useful distance measure must satisfy
is the “shortcuts are good” rule: it should always be shorter to measure dis-
tance directly from x to y rather than going through an intermediate point
z. A distance function satisfying these properties is called a distance metric.

Definition 2.1 (Distance Metric). A function d : X x X — R" is said to be a
distance metric if it satisfies:

Reflexivity d(x,y) =0& x =y
Symmetry d(x,y) = d(y,x)
Triangle Inequality Vx,y,z € X,d(x,y) < d(x,z) +d(z,y)

The set X of objects together with the distance metric 4 is called a metric
space, denoted by (X, d).

"While a city map with one-way streets doesn’t satisfy this property, it turns out that
such asymmetric problems are significantly harder to solve. See Section ?? for more details.

7



8 CHAPTER 2. PARTITION CLUSTERING

Examples.

e X =R",d(x,y) = /it (x;i — yi)* describes Euclidean space.
e X =R",d(x,y) =Y~ |xi — yi| describes the Manhattan distance.

e X = X* is the set of finite length strings over an alphabet X, d(x,y) is
the edit distance between the strings.

e X = G(V,E) is a graph on n vertices. d(x,y) is the length of the
shortest path between x and y.

Defining a metric on a space is a choice: the same space can admit dif-
ferent metrics depending on the application, and the different metrics will
result in different clusterings of the data.

2.2 From Distances To Clusterings

Given a distance between objects, we can define the quality of a group of
objects—the degree to which they are all related. For a set of points C =
{Xl, - ,xk}, let
A(C) = d(x,
(©) . (x,y)

denote its diameter. Intuitively, a cluster is good if it has small diameter.

Now that we have a notion of quality for a cluster, we’d like to define a
similar notion for a clustering. To start with, we should define a clustering
itself. This is a well known combinatorial object called a partition.

Definition 2.2 (Partition). A partition of a set X of size k is a collection of sets
I(X) ={Cy,Cy, ..., Cr} such that

o C;C Xforalli
e C; and C; are disjoint for all i, j
o The C; cover X: Ui-‘lei =X

Now we can talk about the cost® of a partition. Using the above def-
inition of the cost of a cluster in terms of its diameter, we can define the

2People use cost and quality interchangeably to quantify a clustering. Typically, the cost
is something that you want to make smaller, and the quality is something that you want to
make bigger. It usually doesn’t matter which way you think about it as long as you optimize
in the right direction.
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cost of a partition of X as the maximum diameter of any set in the parti-
tion: Cost(IT) = max; A(C;). This brings us to our first concrete clustering
problem.

Problem 2.1 (k-partition). Given a metric space (X,d), find a partition T1(X) of
size k that minimizes Cost(IT).

Fixing k: the problem of model selection. At this point, you might wonder
why we require that a partition have size k. Consider what happens if we
drop this requirement. Then the trivial solution IT = {{x1}, {x2},..., {xn}}
has cost, Cost(IT) = 0, and is therefore optimal. However, this solution is
useless as an actual clustering of the data.

This is an example of a general problem in statistics and learning called
model selection. Here our “model” is the number of clusters in the final
partition. If we allow too many clusters, we overfit the data to the model,
preventing us from generalizing to new data. If we allow too few, we get
a poor quality fit of the data to the model, and our result may be quite
inaccurate. We'll have much to say on the topic in Chapter 12.

Cluster Representatives. It is extremely useful to have a single point that
represents all of the points in a single cluster. This point canbe used in lieu
of the data as a compression mechanism, or it can be used as an exemplar to
describe the class concisely. Most (though not all) clustering algorithms will,
in addition to the partition, produce a collection of cluster representatives
or centers, one for each cluster.

Should the cluster representatives belong to the set X ? As with most
things, it depends. Suppose X is a set of brain scans and the goal of clus-
tering is to identify key patterns of variations. Then a cluster representative
will necessarily be one of the input scans. On the other hand, if X is a collec-
tion of documents represented as sets of words and the goal of clustering is
to determine collection of words that capture different topics, then the best
representative for a topic cluster might be an entirely new “document”.

In our discussion of clustering, we will distinguish two cases. The first is
when the set of points X is all we know about the data. In this case, cluster
centers will obviously be drawn from X. In the second case, X is drawn from
a larger set U (the universe), and here cluster centers will always belong to
U, but may or may not belong to X.

Partitions versus Centers: the Voronoi property Fix a partition IT of X
and let C be a cluster in this partition. Instead of defining the cost of
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C as its diameter A(C), we can define the cost of C as its radius: r(C) =
min,cc maXyec d(x,y). The center of C is then the point that realizes r(C):

¢ = argminmaxd(x,c).
ceC xeC
We can now define our clustering problem as a search for good cluster
centers.

Problem 2.2 (k-center). Given a metric space (X,d), find centers ey, ..., cp € X
such that max; minycx d(x, ¢;) is minimized.

Effectively, we are searching for a partition in which the maximum radius
of a cluster is minimized. Recovering the partition I1 associated with this
clustering is also easy: assign a point to cluster C; if the closest center to it
is c;. This follows by observing that assigning the point to any other cluster
can never decrease the overall cost of the partition.

This rule is sufficiently general that it even has its own name: the Voronoi
property. A clustering problem admits the Voronoi property if each point is
always assigned to its closest cluster center. This property makes it very easy
to assign a new point to a cluster: merely find its nearest neighbor among
the centers. It also induces a partition of the underlying space: the “region
of influence” of ¢; consists of all points x such that d(x,c;) < d(x,c;),j #i°.

2.3 Finding a Good Partition

Our new formulation of the clustering problem has one major advantage.
Instead of searching over the space of partitions I1(X), we can search over
subsets of X of size k. So how do we find these centers ?

To gain some intuition, consider the case when k = 2 and we simply
want to divide the points into two groups. One thing that is clear is that
the two points that are furthest away from each other should be placed in
different groups. Otherwise the radius of the partition containing both of
these points will be at least A(X)/2, which is as good as not dividing the
points into two groups at all!

We can use the same logic when reasoning about the more general case.
Suppose we have already selected some number of cluster centers, which
point should we select as a center next? Define the cost of the partial solution
C = {cl,cz,...,cj} as the maximum distance between any point and its
nearest center:

3This is merely the Voronoi diagram of the cluster centers.
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Cost(C) = max min d(x, c;).
xeX 1<i<j

Given a precise definition of Cost, we can now compare the quality of
different clusterings, and reason about the best one. The optimum solution
to the k-center problem is the one that minimizes the cost above. This cost
is always determined by a pair of points, a cluster center ¢ € C and a data
point £ € X, so that Cost(C) = d(%,¢). The only way to reduce the cost of
the overall clustering is to select a point closer than ¢ to £ as a cluster center
as selecting any other point will not reduce the cost of the overall clustering.
A sure way to do this is to add £ itself as a center!

Thus we have our first algorithm for the k-center problem:

Algorithm 2.1 FURTHESTPOINT

Select ¢y arbitrarily from X.
C«+ {Cl}.
fori=2,...,kdo
¢j < argmax, min.cc d(x,¢).
C+Cu {Cl’}
return C

Evaluating the algorithm. How do we reason about the quality of this
algorithm ? One measure of quality is the running time: the lower the better.
FURTHESTPOINT can be implemented by doing O(#) distance computations
every iteration, leading to an O(nk) overall running time.

But of course it is easy to find very fast clustering algorithms: just pick k
random points! We need to instead measure how the solution produced by
the algorithm stacks up against the optimal solution.

Consider the cost of the solution as the algorithm proceeds. When we
pick the first point arbitrarily, the cost Cost({c1}), is no more than the di-
ameter A(X). As we pick more and more points this cost never increases.
Let Cost; denote the cost after selecting i centers. Then A(X) > Cost; >
Costy... > Costy. The key to the analysis lies in showing that the points
we select are far away from each other. In particular, when we select the
it" center ¢; it must be at least Cost; | away from any previously selected
points.

Let us suppose that we run the algorithm for k 41 steps. By the above
argument the k 4 1 centers selected are at least Cost apart form each other.
By the pigeonhole principle any solution that uses k clusters would have to
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put two of these points in the same group. The radius of that group must be
at least Costy /2. Therefore we have an algorithm that gives a solution with
cost Cost, and we have shown that any solution has cost at least Costy/2.
Therefore, the solution we produce is always at most twice the optimal cost.

It is worth taking a step back and remarking on this fact. Although
finding the optimum solution is computationally hard (the problem is NP-
complete), the simple algorithm above always produces a solution within a
factor of two of the optimum. We call such an algorithm a 2-approximation
algorithm.

We will see the notion of approximation algorithms throughout the book.
More generally,

Definition 2.3 (Approximation Algorithms). An algorithm is a c-approximation
algorithm if the solution it produces is always within a factor of ¢ of the optimum.

It seems both miraculous and a little shocking that such a simple al-
gorithm can be proven to have reasonable quality. Unfortunately it turns
out that we can’t do any better: improving the approximation ratio beyond
a factor of 2 is NP-hard, and is therefore as hard as solving the problem
exactly.

2.4 Finding Robust Partitions

Our first foray into clustering algorithms has been quite satisfying. We de-
fined an intuitive way to measure the quality of a clustering, and presented
an algorithm that computes a high-quality solution efficiently. But a high-
quality solution is not the same thing as a meaningful solution, and the
k-center-based clustering formulation has some important weaknesses.

Consider the two 2-clusterings depicted in Figure 2.1. It should be clear
that in the first clustering, one center is forced to move far away from its
natural location in order to reduce the cost created by a single point. This
is a problem because now the cluster has become much larger than it really
needs to be.

The problem is that the k-center objective is very sensitive and changing
the location of a single point can dramatically change both the cost and the
structure of the optimal solution. While this sensitivity makes for simple
and nearly optimal algorithms, it means that a few stray points can artifi-
cially distort the location of centers and reduce the qualitative utility of the
solution. Such points are called outliers and represent a difficult problem for
any clustering algorithm.
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(a) No outliers (b) With an outlier

Figure 2.1: The single black outlier forces the clustering to allocate a single
cluster for it in order to minimize the maximum radius

There are two ways to deal with this problem. One approach is to explic-
itly acknowledge that outliers exist and design algorithms that are allowed
to ignore a few points if they seem to affect the clustering disproportion-
ately. We will see more of this approach in Chapter 18. A second approach
is to design a cost function that is less sensitive to outliers, and that is the
approach we take next.

Robust estimators and the median

Statisticians have a name for estimators that can resist corruption by outliers:
they are called robust estimators. For our purposes, it suffices to consider an
intuitive definition of robustness: in order for the cluster center to change
drastically, many points must be corrupted.

There is a very well known entity that satisfies this property: the median
of a set of numbers. Given a set of numbers x; < x» < ... < x,, the median
is the middle point (in case 1 is even it lies between the two middle points).
While a few outliers will change the median, to increase it to beyond x;,
would require an addition of at least # numbers above x;,.

While the median is less sensitive to outliers on the line, the concept of
a median doesn’t generalize to even two dimensions, let alone an arbitrary
metric space. There is no general way to “sort” points and take the middle
element. However, there is an alternate way of defining the median that
does generalize to a metric space, it is the point that minimizes the average
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distance between it and all of the points. Note this is in contrast to the center,
which minimizes the maximum distance between it and all of the points.

Theorem 2.1. Let X = {x1,...,x,} be a set of points on the line. Then the median
m of X satisfies

n
- in) d(x;
m argr)g]lgl; (x;,x)

Proor SkercH: Consider any point x € R and assume it has k points of
X to its left and n — k points of X to its right. Imagine moving x a tiny
amount ¢ to the right. Its distance to all points on the right will decrease
by ¢, and its distance to all points on its left will increase by 4. The distance
between any two numbers on the line is the absolute difference between the
two, therefore the net decrease in distance will be §(n —k — k) = é(n — 2k).
Therefore, as long as k < n/2, moving to the right will decrease the overall
sum of distances. A similar argument holds for moving to the left. Thus,
the place where the sum of distances is minimized is when x has the same
number of points on both sides, which means that it’s the median. O

Thus we can generalize the concept of a median to general metric spaces:

Definition 2.4 (Medoid). Given a set of points x1, ..., X, in a metric space (X, d),
the medoid m is defined as

n
m = arg rxrg)r(l Y d(xi, x)
-1

With this definition of a cluster representative in hand, we can now de-
fine the k-median objective.

Definition 2.5 (k-median). Given a metric space (X,d), find a set of medoids
mi, ..., My such that

k
Y mind(x, m;)
xeX =1

1s minimized.

Algorithms for k-median

It may be tempting to simply re-use the FURTHESTPOINT algorithm for the
k-median problem. However, it is easy to construct examples where this
approach will be far from optimal. This is exactly what we expect to see. In
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a sense, k-median solutions are required to trade-off the radius of a cluster
with the robustness of the solution, and it would be surprising if an algo-
rithm ignoring robustness would perform well on this objective.

We thus turn to a different class of algorithms, those that slowly change
the optimal solution while decreasing the cost and searching for a (nearly)
optimal set of medians.

Local Search A simple approach for solving the k-median problem is to
keep trying new points as medoids and keeping the best solution so far. A
brute force search would be too costly—there are O(n*) possible candidates
for the set of medoids and trying them all is computationally infeasible.
Instead we proceed by only changing one medoid at a time. More precisely,
we fix k — 1 of the medoids, and try swapping the k" medoid with one of
the unassigned points. If the cost of the solution decreases significantly, we
keep it, otherwise, we try a different pair to swap.

Algorithm 2.2 LocAL SEARCH

Start with medoids M = {mjy,my, ..., my} chosen arbitrarily from X.
repeat
change < false
for xe€ X,me Mdo
M = M\ {m} U {x}
if Cost(M') < (1 —€)Cost(M) then
M < M/, change < true
until !change
return M

Notice that in the algorithm, we don’t make a change if the new medoid
reduces the cost (Cost(M’) < Cost(M)) by an infinitesimal amount. Rather,
(setting the parameter € = 0.01 for example), we only switch if the new
medoid reduces the cost to at most 99% of the previous cost. This minor
modification ensures that the algorithm terminates after polynomially many
iterations, and moreover that the final solution will be within a factor of five
of optimal.

The proof is non-trivial and is too difficult to reproduce here. It also
shows that one can further improve the algorithm by swapping multiple
medoids at a time. For example, if we swap pairs of medoids, the algorithm
converges to a 4-approximation, and more generally, swapping p medoids
leads to a 3 + 2/p-approximate solution. However, doing so increases the
running time per iteration from O(k?n?) to O(k*nP*1).






Clustering in vector spaces and k-means

It is no mean pleasure to be seated
in the mean

Antonio, The Merchant of Venice

General metrics like the ones we saw in Chapter 2 typically come from
a similarity function between pairs of elements. But what if you have more
information about the points, such as numerical features ? There is a general
principle of clustering: more structure on the data can lead you to more
targeted algorithms that will probably work better. Resist the urge to be too
general !

In many clustering problems we encounter, the objects we are clustering
have numerical features. For example, when clustering a group of people,
we may consider their height, their weight, and so on. In this case, it makes
sense to talk about an average height or weight. Formally, we say that these
items lie in a vector space.

Definition 3.1 (Vector Space). A vector space consists of points that we are al-
lowed to add and subtract, as well as multiply by a number. For example, if we
consider the space of pairs of numbers (x,y), we can

add them: (x,y) + (¥, ¥') = (x+y,x' +v')
scale them: c(x,y) = (cx, cy)

Vector spaces provide a useful representation for numerical features be-
cause it is possible to combine multiple features them while retaining the
vector space properties, simply by concatenating the features together. For
example, we can augment the dataset with a person’s age, also represented
as a numerical feature, simply by adding it as an additional dimension.

In contrast to numerical features, when working with categorical fea-
tures, such as gender, it does not make sense to talk about averages. Rather
we must choose one from a finite list of possibilities. Such a dataset is not
typically represented as a vector space.

When working with vector spaces, we have a a natural way of represent-
ing the center of a cluster, namely the average point, p:

1
[J/:EZXZ'.

x;eC
17
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As we will see this natural representation gives rise to simple and effi-
cient clustering algorithms.

3.1 k-Means Algorithm

The ability to easily define centers leads to a very simple algorithm for clus-
tering points into k groups. As in Chapter 2, let X = {xq,x2,...,X,} de-
note the set of points. Our goal is to partition these points into k clusters,
C1,Cy, ..., Ck.

Given a set of initial cluster centers (See Section 3.3), the algorithm re-
peats the following two steps:

i) Assign each point to its nearest cluster center.
ii) Recompute each cluster center as the mean of all of the points assigned

to it.

This approach is known as Lloyd’s method or, more simply, k-means. We
give the formal pseudocode description below and show its execution on a
simple example in Figure 3.1.

Algorithm 3.1 k-MEANS

Select cy, ¢, . . . , €, distinct points from X.
repeat
for each point x; € X do
Assign x; to cluster C; that minimizes d(x;, c;)
for Each cluster C; do
setc; = &1 Dyec®
until cluster centers don’t change
return Ci,Cy,...,Cy.

As with any algorithm we must ask two questions about Lloyd’s method—
how fast is it, and how good is the answer?

3.2 Running Time Analysis

The algorithm above is simple and natural. It repeatedly assigns each point
to its nearest cluster center, and then recomputes the center as the mean of
the points assigned to it. The second step changes the location of the centers,
and may lead to some points no longer being assigned to their closest center.
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not change

Figure 3.1: The execution of k-MEANS on an example with 9 points and 3
clusters.

While the algorithm is simple, it is not clear whether it always finishes or if
it might get stuck in an infinite loop.

One way to prove that the algorithm terminates is to find an objective
function that improves with every step. What could be a viable candidate?
We saw in the last chapter that for a set of points on a line, it is the median
that minimizes the sum of distances from the point to the nearest center.
Since this method computes the mean rather than the median, and the two
may be quite different, a different objective function must be in play.

The question we are asking then, is for what objective functions is select-
ing the mean the right thing to do? Put another way, what are the functions
g(+,+) such that

Yixi . o
== = argmin lZg(xl,c)

It turns out that there is a very large class of functions that satisfy this
equation. They are called Bregman divergences and encompass many familiar
metrics, including the KL-divergence and the Itakura-Saito distance. In ad-
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dition, this class contains a special distance function that we’re very familiar
with: the squared Euclidean distance.
Therefore:

Yix

it : 12
n —armind i =l

In other words, the mean of a set of points is the point that minimizes
the sum of squared distances between it and all of the points in the set. This
leads us to a natural candidate for an objective function, ¢, for the algorithm.

Definition 3.2 (k-means objective). Given a set of points X in Euclidean space
find a set of centers C = {c1,...,cx} such that:

$(X,C) = ¥ min|x — ¢ |
xex Gi€C
is minimized.

Armed with this objective function, also called a cost function, we can
argue that the k-MEANSs algorithm always terminates. Consider what hap-
pens to the objective in every step. When we recompute the centers given an
assignment of points to a cluster, we decrease the objective, since the mean
always minimizes the sum of squared distances to the center. Furthermore,
whenever we reassign a point to a closer center, we decrease the objective
as well. Therefore, while the algorithm is running, the total objective value
keeps on decreasing. This implies that the algorithm never cycles: we can
never see the same set of cluster centers twice, since that would imply that
the objective increased at some point. As there are a finite number of pos-
sible assignments of points to centers, the algorithm is bound to eventually
terminate.

“Eventually” sounds like a very weak guarantee, and indeed, there are
specific configurations on which k-MEANS may take exponential time to con-
verge, even when all of the points lie in two dimensions. However, these
lower bound constructions are extremely brittle, and in practice the algo-
rithm almost always converges after a few dozen iterations. This fact can be
proved rigorously, by showing that the running time is polynomial if the ini-
tial points come from noisy observations, but this so-called smoothed analysis
is beyond the focus of this book.

The k-MEANS algorithm is a local search method, like others we saw in
Section 2.4 for the k-median problem. Since it monotonically decreases the
cost function, ¢, we can always stop the algorithm early without running it
to completion if time is of the essence.
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3.3 Initialization and Approximation Guarantees

The k-MEANS algorithm always converges to a solution. How good is this
solution? We saw other local search methods converge to approximately
optimal clusterings. But this is an exception. Most local search algorithms
do not converge to approximately optimal solutions. The k-MEANS algorithm
can result in highly suboptimal clusterings.

Before we talk about the quality of approximation, we must talk about
how we initialize the algorithm. A common, but naive, approach is to initial-
ize randomly, selecting k random points from the dataset and using them as
the initial set of k centers. After all, for the k-median algorithm, the initializa-
tion did not matter—the local search always converged to an approximately
optimal solution.

However with k-MEANS this turns out to be a very poor thing to do. Con-
sider a point set in one dimension, consisting of k groups of points located
far apart from each other, shown in Figure 3.2. A randomized initialization
is very likely to miss some of these groups, and place multiple points in
others. Because of the nature of the k-MEANS algorithm, it cannot “unbreak”
these bad decisions, and will terminate with some of the groups of points
split into multiple clusters, and other groups merged together. Locally such
an assignment is optimal: each point is assigned to its closest center, and
each center is the mean of all of the points assigned to it; however it is easy
to see that this clustering is far from optimal.

OO 00 0 Qo0 o Q

09 000 00 o 0 o2
0
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Figure 3.2: An example dataset where random initialization works poorly
for k-MEeaNs. Even though there are four well separated clusters, the locally
optimum solution merges two of these together.

The question is whether there is a simple initialization that does better.



22 CHAPTER 3. CLUSTERING IN VECTOR SPACES AND k-MEANS

Intuitively we want to initialize the algorithm with well-separated centers—
the problem shown in Figure 3.2 stems from the fact that some of the initial
centers are located very close together. One approach is to first find a nearly
optimal k-center solution using the FURTHESTPOINT algorithm and use that
to initialize or seed the k-MEANS algorithm.

However, this approach is overly sensitive to outliers and may result in
initial seed clusterings that converge to bad solutions .

What we are looking for is for a method that lies between these two
extremes. On the one hand, selecting points randomly is problematic, as we
may choose points too close together. On the other, we should only consider
far away points as candidate centers if there are many points in the vicinity,
rather than giving weight to a single outlier.

There are many ways to convert this intuition into an algorithm. There
is a method that balances these two objectives and still employs random
sampling, albeit from a distribution biased towards far away points.

The method, known as k-MEANS++ selects one center at a time. It picks
the first center uniformly at random from all of the data points. Then it
computes a biased distribution from which to sample the next center. Recall
the value of the objective function in Definition 3.2:

X) = in |[x — c||2
#(CX) = X minx 3

xeX

A single point x € X contributes

Cost(x,C) = min ||x — c||3
ceC

to the objective. For each point x;, let p; = Cost(x;,C)/¢(X,C) represent
the contribution of x; to the overall cost. The values (p1,p2,...,pn) form
a probability distribution: each p; is non-negative, and }_; p; = 1. Now to
select a center, the method samples from this probability distribution. That
is, it picks x; as the next cluster center with probability p;. Once the next
center is selected, the value of the objective function changes, as does the
distribution p (because C has changed). The algorithm computes this new
distribution p and once again samples from it. This process repeats till the
algorithm has k centers to initialize Lloyd’s algorithm.

The intuition behind this approach is that it seeks out far-away points
as initial centers, but in a more relaxed way (because of the randomness)
than the FURTHESTPOINT algorithm might work. The proof showing that
this tradeoff is correct is quite involved, but we give the highlight of the
analysis here.
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Algorithm 3.2 k-MEANS++

Select ¢; randomly from X and let C = {c1 }.
for j =2to k do
for Each point x; € X do
Let Cost(x;) = min}_} [|x; — ¢[|.
Let ¢ = Y. cx Cost(x;).
Sample a random point y € X, selecting each x; with probability pro-
portional to Cost(x;)/¢.
Letc; = y,and C = CU {¢;}.
Invoke Algorithm 3.1 on C.

Analysis of k-means++

Consider the optimal k-centers, C* = {c],..., ¢}, and let X]’f be the points
assigned to center j in the optimum solution, that is

k
X ={xeX:|x—c|| <minfx=cf}

The analysis proceeds in two steps. First we show that whenever we
select a center from some X7 it is a good approximation for all points in X
Second, we argue that during the course of the algorithm we select points
from almost all optimum clusters.

First suppose that we are trying to find the optimum center for a single
cluster. We know that selecting the mean is the best thing to do, but what
happens when we select one of the input points at random. How bad is this
algorithm?

Let X be the set of points. The cost of using a specific center c is:

Cost(X, {c}) = Z l|x — cH%

xeX

If we select the center at random, then each x € X has an equal proba-
bility of being selected, namely 1/|x|. The expected cost is then:

1
= Y llx—cl3
Lk

In exercises , we show that:

S Y =2 r e,
x|

ceX xeX xeX
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where c* is the optimum center (the mean). Therefore, in expectation, pick-
ing a random center serves as a 2-approximation to all of the points in the
cluster.

It seems then, that randomly selecting centers is a good thing to do.
Where does this logic break down? Consider what happens when the opti-
mum solution one cluster has many more points than in the others. In this
case, if we sample two points at random, it is likely that both of them will
come from the same optimum cluster, leaving one cluster untouched. This
is precisely the situation that we saw in Figure 3.2.

We can fix this issue by biasing our selection to points that are far away
from the currently selected cluster, just like k-MEANS++, however then the
centers are not selected uniformly at random from a cluster, and therefore
may no longer lead to a 2-approximation.

To analyze what happens during the execution of k-MEANS++, suppose
we have already selected centers ¢y, ¢z, ..., ¢j, and are now selecting center
¢j+1- Let X be the optimum cluster that ¢; 1 belongs to.

The cost of using {c1,¢ca, ..., c]-+1} to cover all of the points in X is then:

j+1
Cost(X, {c1,¢2, .., ¢js1}) = ), min lx —c/||5.
xeX T

We break the minimum term into two, to isolate exactly the improvement
from adding cj, -

]
Cost(X, {c1,¢c2, .. .,Cj41}) = Z min [r?j? |x — col|3, ||x — c]-+1||%}
xeX -

= Y min [D*(x), | — ¢ 3],

xeX
where )
j
Dz(x) = Cost({x}, {c1,c2, .. .,cj) = 1}1_1{1 l|x — Cf”%.

The probability of selecting the specific c;, 1 is not the same for all points
in X. Rather, it is:

D?(cj+1)
ZXEX D2(x)
Therefore, the expected cost is:
D2(0j+1>
T e & min | DX(x), [lx — ¢ 3 (3.1)
Ciy1€X Lrex D?(x) x;( [ ]
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To make sense of this expected cost, we will expand the Dz(c]-H) term.
By the triangle inequality for any point x,

j
min f[¢js1 — cell2 < minflx —cell2 + e — xll2,

Since we are considering squared distances, we must use the relaxed triangle
inequality:

e —el2 <2 ST Dllesss — x|
I?ZI?HC]H cellz < I?ZI?HX cella + 2l cj1 — x|z
D?(cjy1) < 2D*(x) +2[|cje1 — x[[3

Since this inequality holds for all x € X, we can sum it across all of the
points, and then divide by |X|:

D C]-‘rl ’X| Z D2 ‘X| Z ||C]+1 XH%

xeX xeX

In the last equation the first term is independent of ¢; 4, rather it gives more
weight to points in clusters that are poorly covered by the current solution,
formalizing the intuition behind the method.

Now let’s plug this bound into the expect cost we computed in Equation
3.1. The total expected cost is :

DZ(C]‘+1)
Uy in [D2(x), | — e |12
cj+1€x2x€XD2(x) x;( [ e 2}

= Z (]X| Z \X| Z ”C]+1 x||§> erXlDz(x) Z min [D2(x),Hx—c]-+1H§].

Ci+1€X xeX xeX xeX

If we distribute the sum, the first term is:
2 Yeex D*(x) Y mi [ 2 2
= Y min [DX(x), k=P £ ¥ ¥ Srlli—cal?
cji+1€X ’X‘ ExeX Dz(x) xeX cir1€XxeX ’X|

Similarly, the second term is:

2 Yyex chH — XH% . ) )
cjge:x |X’ erX D2(x) Z [ + } Z Z ]X\ j+

xeX cir1€XxeX

— %
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Summing these two bounds together we get:

1
4'@ Z Z||X—Cj+1”2r

Cj+1€X xeX

which is exactly four times the cost of sampling uniformly at random from
the cluster, which we know to be 2-approximate! Therefore even with this bi-
ased sampling in expectation, the selected center serves as a 8-approximation
to all of the points in the optimum cluster.

To complete the proof we must argue that we select centers from all
optimum clusters. The formal proof is by double induction, and is rather
tedious. In the end, we can show that in expectation the set of clusters pro-
duces by k-MEANS++ forms an O(log k) approximation to the optimum solu-
tion (See end of chapter notes). This is far better than a simple randomized
assignment, which offered no performance guarantees, and the difference
is often borne out in practice with k-MEANS++ leading to clusterings with
significantly lower cost.

3.4 *Beyond Squared Distances

The objective of minimizing the sum of squared distances is a very specific
one, but we can extend the analysis of the k-MEANS and k-MEANS++ algo-
rithms to other metrics, such as the k-MEDIAN and KL-DIVERGENCE.

First, suppose our objective function used /-th powers, instead of squares,

¢¢(C) = ) min [lx — 5.

xeX ceC

If we set £ = 1 we recover the k-median objective. Is there a single algorithm
that performs well for all /2 We can generalize the k=MEANS++ seeding
method to this setting, so that after selecting the first center uniformly at
random, it selects centers 2 through k with probability proportional to D’

Theorem 3.1. The generalized k-MEANS++ algorithm gives an O(2¢ log k) approx-
imationto ¢y.

Although we get a good approximation after the seeding step, we can no
longer run the k-Means local search method to improve the solution, since
the optimum center for a cluster no longer lies at the mean of the points.
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Bregman Divergences

Instead of looking for other local search algorithm, we focus on functions
where the mean is the optimal center for a single cluster. While we may not
have a good initialization procedure for such functions, we know that the
k-MEANSs algorithm will at least converge to some local optimum.

The sum of squared distances is not the only function for which this
property holds. The same is true for a large family of functions known as
Bregman Divergences. Formally, let F be a convex and differentiable function.
For two points u and v we can define the Bregman divergence, Dr as

Dp(u,v) = F(u) — F(v) — (VF(v),u —v),

where (s, t) represents the dot product between vectors s and t. For example,
when F is the squared distance function, F(x) = | x||3, then

Dr(u,0) = ||ull3 — |[v]13 — (20,u — v) = ||u]| —2(u,0) + 0]|3 = [u =2l

i.e. the squared Euclidean distance.

Except for the squared Euclidean distance, Bregman divergences are not
symmetric That is, the distance from u to v may be very different than that
from v to u. A classic example is the Kullback-Leibler divergence, which
measures the relative entropy between probability distributions. Suppose
that P and Q are discrete distributions over k items, then

k ,
Dxi(P,Q) = ) pilog %
i=1 i

It is easy to see that this distance is not symmetric. We can however verify
that it is a Bregman divergence, with F(x) =Y, x(i) (log x(i) — 1).

The k-means algorithm for Euclidean metrics is really just a special case
of clustering under Bregman divergences. Specifically, let F be a convex
function, and Dr the induced Bregman divergence. For a point set X, and a
set of clusters C, consider the objective function,

¢r(X,C) = ) _ minDg(x,c)
xex ¢€C

Then the k-MEANS algorithm under Dr is defined as given in Algo-
rithm 3.3.

We can use the same logic as before to argue that BREGMAN k-MEANS will
reduce the potential ¢r at every step, and thus is guaranteed to converge to
a local minimum. Unfortunately, unlike with the k-MEANs algorithm, there
are no known initialization methods that will guarantee an approximately
optimal solution.
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Algorithm 3.3 BREGMAN K-MEANS

Select ¢y, ¢, . .., ¢k as distinct points from X.
repeat
for each point x; € X do
Assign x; to cluster C; that minimizes Dr(x;,¢;)
for each cluster C; do
set ¢c; = \ClT\ YiecX
until cluster centers don’t change
return Cy,Cy,...,Cy.




Hierarchical Clustering

Mind the gap

London Underground

All of the clustering algorithms we have seen so far have a parameter k
denoting the desired number of clusters. Sometimes we know that we want
to partition the data into a specific number of groups (to load onto machines,
or because we know something about the data). But more often than not,
since clustering is an exploratory mechanism, we don’t really know what the
right value of k is.

There are two ways to address this problem:

(a) Figure out the “right” k for a problem. This is a complicated matter,
and will be the topic of Chapter 12.

(b) Not choose: give a compact universal representation which encodes
the clustering for every value of k.

This latter formulation takes us into the world of hierarchical clustering, which
we discuss in this Chapter.

4.1 The message is in the gaps

To formulate a clustering problem we have used a simple recipe. First, we
defined some measure of distance between points. Second, we constructed
a notion of the quality of a cluster using the defined distance. Finally, we
used this notion of quality to define the quality of a partition into clusters,
and search for a single partition of high quality. The particular way in which
we define these notions gives us different kinds of clustering problems with
different assumptions on what constitutes a clustering.

Hierarchical clustering represents a fundamentally different perspective
on what a clustering is. Rather than search for a single clustering that cap-
tures the structure we are looking for, we instead search for a collection
of clusterings that captures successively finer partitions of the data. While
each clustering is represented as a single point in this collection, it is the
entire ensemble of clusterings together that constitutes the answer. It is the
sequence of merges of points into bigger and bigger clusters that tells us
where structure lies in the data, rather than any individual snapshot.

29



30 CHAPTER 4. HIERARCHICAL CLUSTERING

Consider the example data set shown in Figure 4.1. On the left, we see
what the data looks like at one level of resolution. On the right, we see what
happens when we zoom into one of the clusters. In the perspective from
afar, the data appears to admit three clusters; as we move closer, one cluster
resolves itself into three more clusters.

Figure 4.1: Multiple views of a single data set

Which of the two perspectives is the “right” one ? A distance-based
clustering problem of the kind we saw in the last chapter will carefully
evaluate the cost of each of these partitions, and decide on one of them as
the “better” answer. A hierarchical clustering algorithm will (or should)
declare both to be valid answers, but at different scales.

It is this view from multiple scales that often gives hierarchical clustering
the sobriquet multi-scale clustering. Multi-scale analysis in general is based
on the idea that data admits different structure at different scales, and a true
representation of the data must capture all of these scales, rather than one
of them. Multi-scale analysis is particularly effective in exploratory settings
where we might not know the right perspective on the data; it is therefore
not surprising that hierarchical clustering is one of the most popular meth-
ods for clustering.

4.2 Representation

A clustering is a partition of the input X into clusters Cy,...,Ci. A hierar-
chical clustering is a rooted tree that represents a collection of partitions of
X. Each node v of the tree is associated with a subset S(v) C X, with the
following properties:

e The root r is associated with X: S(r) = X

e If v is a child of u, then S(v) C S(u)
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e If a node u has children vy, vy,...v,, then {S(v1),S(v2),...,S5(vm)}
forms a partition of S(u).

Figure 4.2 illustrates what the data from Figure 4.1 might look like as a
hierarchical clustering.

Figure 4.2: Representation of a hierarchical clustering

Each level of the tree represents a single clustering of X, and deeper
levels represent a finer partition of the data, equivalent to using a larger
value of k. What is also interesting about this representation is that a valid
clustering need not merely be a single level. In fact, any collection of nodes
v1,02,...,0; of the tree such that

e no two v; have an ancestor-descendant relationship
e any path from the root r to a leaf intersects exactly one of the v;

will yield a partition S(vy), S(v2),...S5(vx) of X. We think of such a set as a
cut of the tree, in that it “cuts” the root off from the leaves. For example, Fig-
ure 4.3 illustrates how the 5-clustering described earlier can be represented
in terms of such a cut.

Figure 4.3: An illustration of a cut in a hierarchical clustering

4.3 Algorithms

There are two primary strategies for constructing a hierarchical clustering:
a top-down approach and a bottom-up approach.
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Divisive Hierarchical Clustering

The top-down approach is often called divisive hierarchical clustering (DHC).
We split our set of points into a few parts, and recursively find a clustering of
each part. The union of the resulting clusterings yields the desired answer.
While divisive clustering lends itself to a simple recursive formulation, it is
not obvious how one might split the point set without knowing more about
the structure of the input. Of course, we already have strategies to split our
set of points into a few parts: it is just a regular clustering algorithm of the
kind we saw in the previous chapters. So given any standard k-clustering
algorithm, we have the following algorithm for DHC.

Algorithm 4.1 Divisive hierarchical clustering (DHC)

Input: X, root node r.
Set S(r) = X
if | X| < k then
return r.
Partition X into k pieces Cj, ..., Cr using any k-clustering algorithm
Fix nodes v1, vy, ..., 0. Set S(v;) = C;. Set r as the parent of each v;.
Recursively call DHC on each (v;, C;)
Return the tree rooted at r, and all S(v).

Figure 4.4 illustrates the process of running Algorithm 4.1 and the re-
sulting clustering tree.

Figure 4.4: An illustration of DHC
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Agglomerative Clustering

In the bottom-up view, we begin with all items in separate clusters and
repeatedly select two clusters for merging. This method is called hierarchical
agglomerative clustering (HAC). To define a bottom-up merge, we need
some way to prioritize the merge operations: which clusters do we merge in
the next step?

Intuitively, we want to first merge clusters that are very close to each
other. This captures the idea of a hierarchical clustering as “zooming out”
from the individual points. Assuming we have some way to measure dis-
tance between clusters, then the algorithm for HAC is straightforward:

Algorithm 4.2 Template for Hierarchical Agglomerative Clustering algo-
rithm
S {(x{x}) [x € X}
C=S§
while |C| > 1 do
Find (v,C), (v/,C’) in C that are closest.
Create node r and cluster C = CUC'. Set S(r) = C.
Assign r as the parents of v and v'.
Insert (r,C) and remove (v,C) and (v/,C’) from C. Insert (r,C) into S.

In a metric space, the distance between a pair of points is well defined,
but what about the distance between two clusters ? There are many ways
we could imagine defining the distance between two clusters, and each of
these methods gives rise to a slightly different clustering.

Single Link. We can define the distance between two clusters C and C’
as the distance between the closest pair of points, one in C, one in C”:
minyccecr d(x,y). This is the most common method for doing HAC, and
is also reminiscent of the k-center method we talked about in Section 2.3.
The single-link method is optimistic. Suppose x, x" are the closest pair of
points in C, C’ respectively. Imagine constructing a graph on the points by
adding an edge between x, x’ when we merge C, C". Then at any point in the
algorithm, the clusters consist of connected components in this graph. The
assumption is that any two points that are connected should be in the same
cluster. The resulting algorithm resembles Kruskal’s algorithm for the min-
imum spanning tree closely; in fact if you were to run Kruskal’s algorithm
on the input and terminate it when there were k connected components left,
you’d have a k-clustering that could be produced by single-link HAC.
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One of the reasons single-link HAC is popular is because it is content
to make local decisions to connect points together in a single cluster. This
is particularly useful when clusters might be connected but don’t have a
canonical shape like a ball, as in Figure 4.5. In such a scenario, the pure
distance-based methods we saw in Chapter 2 would fail because they're
trying to carve space into balls. But HAC will not because it doesn’t care
about the shape of the cluster, merely its topology.

Figure 4.5: An example where single-link HAC can separate the blue points
from the red points.

Complete-link. The single-link strategy, by virtue of being aggressive, can
also chain clusters together when it shouldn’t. The complete-link strategy is
an attempt to fix this by defining the distance between two clusters as the
distance between furthest away points, maxyccyecr d(x,y). This prevents a
transitive chain reaction from starting: two clusters are deemed to be close
only if all their points are close to each other, rather than relying on just two
points being close.

Average-link. A compromise between the two strategies above is the average-
link approach: the distance between two clusters is the average distance be-
tween pairs of points, or ﬁ Yrecyec d(x,Y)

Centroids. The three methods above can be defined in a generic metric
space. If instead we have points in a vector space endowed with a met-
ric, a natural way to define the distance between two clusters is to measure
the distance between the centroids of the clusters. This is equivalent to the
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average-link strategy when all points lie in a Euclidean space and the aver-
age is taken over the squares of the Euclidean distances between points.

4.4 Visualizing Hierarchical clusterings: Dendrograms

A hierarchical clustering has much more information in it than a mere par-
tition. The tree structure is an important information channel and is what
makes hierarchical clusterings so effective in an exploratory environment.

We can visualize trees in many ways. treevis.net, the definitive source
for tree visualizations, lists two hundred and ninety two tree visualization
methods’. But one of the most appealing ways to visualize hierarchical
clusterings is the dendrogram (literally, “tree drawing”).

Think again of the hierarchical clustering as a movie that starts with all
points in their own clusters and ends with all points in a single cluster. As
time progresses, clusters move towards each other at constant speed and
merge. The dendrogram is a two-dimensional representation of this movie
with points laid out along the x-axis and time measured along the y-axis.

I

Figure 4.6: Dendrogram for the data in Figure 4.1

l

The dendogram is visually appealing because it does two things: first, it
depicts the tree of merges, permuting the nodes so that there are no cross-
ings. Second, and more importantly, it uses the lengths of edges as a visual
marker to indicate the "time of merge’ for clusters. If we think of starting
at time o and merging clusters, then a cluster that sticks around for a long
time will have a tall edge connecting it to its parent, in comparison with a
cluster that gets merged quickly.

*As of 17 September, 2016.
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4.5 How good is hierarchical clustering?

Hierarchical clusterings are a compromise between getting the single best
clustering for some fixed value of k and providing a collection of solutions
for different values of k that have nice relationships to each other. How
much is is lost in this compromise?

Suppose we take a particular hierarchical clustering and run the process
of merging clusters bottom-up like a movie. We start off with all points
in their own cluster. Call this clustering C,. As the movie progresses, two
points merge into a new cluster. Now we have n —1 clusters: call this
clustering C,—1. Continuing this process, we end with all points in a single
cluster C; = X and a sequence of clusterings C,,Cy—1,. .., C1.

The clustering Ci has k clusters. How does the cost of this clustering
compare to the cost of the best clustering on k clusters, for any particular
cost function ? And if we compare these two costs for all values of k, what
is the worst possible situation we can encounter ?

The Bad News

It turns out that there is both good news and bad news when it comes to
analyzing hierarchical clusterings. We begin with the bad. The result, due to
Dasgupta and Long, combines known properties of the single-link method
with new observations about complete-link and average-linkage methods.

Lemma 4.1 (Dasgupta and Long [2005]). A single-link-based k-clustering can
be a factor of k worse than the best k-clustering for the k-center objective function.
For complete-link and average-link, the corresponding factor can be as bad as log k.

The result for single link is easy to explain: we describe here the con-
struction given by Dasgupta and Long. The proof rests on exploiting the
fact that single-link HAC operates locally and therefore cannot see poten-
tially better clusterings coming from merging more distant clusters.

Let {x1,...,x,} be a set of points on the line, and let the distance between
xjand xj;1 be 1 — je, for some tiny 0 < € < 1/n. As j increases, the distance
between adjacent points gets closer and closer.

It is easy to see that single-linkage will start by merging x,,_1 and x,, and
then will continue by merging the rightmost remaining point into this clus-
ter. At the point when k clusters remain, these k clusters will be the points
X1, %2, ... X¢_1 and the supercluster {xy, ...x,}. The radius of this superclus-
teris )7 (1 —je)/2 which is at least (n —k —€(3)) /2. If we set € to be some
small number that is less than 1/(3), then the radius of this supercluster is
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Figure 4.7: A bad example for single-link hierarchical clustering

more than (n —k —1)/2, and therefore the cost of the k-center clustering
is at least (n —k —1)/2. However, by grouping the points in equal sized
consecutive intervals we see that the optimal k-clustering has cost roughly
n/2k: merely . The gap between the two costs is at least (1 —k — 1)k/n,
which approaches k (for n > k). For complete linkage and average-linkage
the construction is slightly more complicated, and yields a (weaker) log k
bound .

This is not good news. It says that as we increase the number of clusters,
the hierarchical clustering provided by any of the standard agglomerative

methods will deteriorate in quality compared to the best clustering for any
fixed k.

The Good News

It turns out that with a little bit of care, it is possible to produce a hierarchical
clustering that does compare well with the best possible k-clustering for any
k. We will develop this algorithm slowly via a series of refinements.

There is a trivial way to obtain a set of clusterings that are good for all
k: merely compute the best k-clustering of the points for all values of k.
Unfortunately, there might be no way to organize this set of clusterings into
a single hierarchy. In particular, the set of cluster centers for some fixed k
might not be a subset of the set of centers for some k' < k (see Exercise ).

This suggests another idea. Recall the FURTHESTPOINT algorithm (Algo-
rithm 2.1) from Section 2.3. It works by constructing a sequence of centers
€1,¢2,... with the property that the first k centers yield a 2-approximation
for k-center clustering, for all k. Let the centers of the desired k-clustering
consist of ¢y, . . ., ¢k, with all of the remaining points assigned to their nearest
centers. This ensures that the centers can be organized hierarchically.

Unfortunately, even this does not yield a hierarchical clustering, because
once a point is “promoted” to being a cluster center, it might “steal” a point
away from another cluster.
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1‘ 2 @

Figure 4.8: FURTHESTPOINT picks the points in the numbered order. When 3
is promoted, 4 changes its assignment from 1 to 3.

Can we somehow retain the main idea of the clustering algorithm, and
yet insist on a hierarchical solution? Let us reexamine the FURTHESTPOINT
algorithm. At the jth step, we have centers C = ¢y,...,¢;, and we find a
point x such that min.cc d(x, c;) is maximized. This point x then becomes
the new center c;;1. Suppose that some center c,, ¢ < i is the center closest
to x. We define the parent 7t(c;) = ¢,. The graph consisting of the points P
and the edges (x, 7t(x)) is a tree T (because each point other than the first
has exactly one parent).

4
Figure 4.9: Example of the parent structure

Number all the points in the order in which FURTHESTPOINT adds them
to C. If we delete the edge (2, 71(2)) from T, we get two connected compo-
nents in the tree. If we then delete (3,77(3)), we get three components. In
other words, deleting the k — 1 edges (2, (2)), (3, 7(3)),..., (k, (k)) yields
a clustering with k components. Furthermore, all of these clusterings form
a hierarchy because each new cluster is formed by splitting one of the pre-
vious clusters.
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However, by insisting on a hierarchical solution we have lost the approx-
imation guarantees. The clusters formed this way can connect points that
are quite far from each other .

The key insight of Dasgupta and Long [2005] is that the idea of a parent
function is not limited to the parents produced by FURTHESTPOINT. Indeed,
all we need to ensure a hierarchical structure is

e An ordering of the points from 1 to n
e A parent function 7t : [n] — [n] such that 77(i) < i.

at which point deleting the edges (2, 71(2)), (3, (3)), ..., (k, 7t(k)) will give
us the desired k-clustering.

Let us return to the FURTHESTPOINT parent function 7r. As we noted,
it doesn’t necessarily yield a good hierarchical clustering but it does have
valuable information. Let R; = d(i, 7(i)) be the distance from a point to
the place where it attaches to the tree. The key property of the centers
produced by this algorithm is that the value Ry is a good approximation
to the optimal clustering of the points into k clusters. We will divide the
points into levels based on the value of R;. Set R* = R, and set Ly = {1}.
We know that R* is a good estimate of the cost of clustering the points using
the (single) center in Ly.

Now consider all of the points whose attachments to the tree are suf-
ficiently large: set L; = {i | R*/2 < R; < R*}. Intuitively, these are all
points that are quite far from their parents, and should be split off in a more
refined clustering. In a similar manner, let L, = {i | R*/4 < R; < R*/2},
and continue to define L3, Ly, .... By construction, every point of the input
must be within distance R*/2/ of LyU Ly U - - - U L;. Define the level £(j) of a
node to be the set L; that it belongs to.

We can now construct a modified parent function 7t’. Consider any point
iin L;. Rather than attaching it to its closest neighbor in {1,2,...,i — 1}, we
attach it to its closest neighbor in L;_; and define 77’ as the resulting parent
function. By induction, the distance from i to its closest neighbor in L; 1 is
at most R* /2/~1. More generally, under 77’,the distance of any point i to its
parent is at most R*/2/() -1,

Consider a k-center clustering obtained by deleting the edges (2, 7'(2)),
(3,7'(3)),...,(k 7t (k)). Under the original parent function 71, Ryyq = d(k+
1, m(k+1)) is a 2-approximation of the true clustering cost. In order to show
that the resulting clustering is good, we must show that the distance of any
remaining point from its cluster center is close to Ry1.
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Consider any point i. Under 77/, it has a chain of parents i — iy —
i1 ... — i back to some center i;. By the triangle inequality therefore,

o R* R* R*
Ali,ir) < 2001 T -1 Tt i1

Because each 77’ points to a node in a previous level, £(i) > £(ip) > ... >
((i;_1). Therefore, d(i,i;) is at most 2R* /2¢(-1)=1 But we know that Ry,q >
R/2-1), and so we conclude that the distance from any point to its nearest
cluster center is at most 4Ry, 1.

Theorem 4.1. Let Cy,Cy,...,Cxk be a k-clustering computed by deleting edges
from the tree induced by the parent function 7t'. Then the cost of this clustering is
at most 8 times the cost of the optimal k-center clustering.

We can improve the analysis even further by optimizing the distances
between successive levels. Instead of choosing R* = R; and defining a range
between R* and R*/2, choose R* = &R, and define the range between R*
and R*/p. By setting B = e, Euler’s constant, and « = 8°, where s is chosen
uniformly at random between [0, 1]. In this case the expected quality of the
algorithm improves from 8 to 2e ~ 5.44.

This algorithm gives us a hierarchy that supplies good k-center cluster-
ings. But what about if we wanted a hierarchy of k-median clusterings? The
recipe we used asks for three ingredients:

e An algorithm that can produce a sequence of centers cy,cy,... such
that the set cy, . . ., ¢k is a good clustering for all k.

e An initial parent function 7t that establishes baseline for cluster costs.

e A way to construct a parent function 77’ such that the lengths of chains
from points to their cluster center are bounded.



Visualizing High Dimensional Data

Always project

With apologies to E. M. Forster

Thus far, we have avoided discussing how we actually visualize cluster-
ings. Obviously, when our data lies in a two- or three-dimensional space, it
is easy to plot the points and use color-coding to visualize clusters, but we
cannot do this if we have clusters in (say) ten-dimensional space.

If we believe that clustering is a powerful exploratory tool, then this is a
problem. If I can’t visualize the results of clustering, then it will be difficult
to validate the computation, or easily determine where outliers might be
lurking, or even understand the shape of the clusters.

So the (high) dimensionality of data makes it difficult to look at clus-
terings. But high dimensionality is a problem in many other ways. Most
importantly, data in high dimensions suffers from “the curse of dimensional-
ity”. This is a poetic way of observing that most computations involving
geometry take time exponential in the dimension. This is a serious prob-
lem considering that a typical data set one might wish to cluster might have
millions of points that lie in a hundred-dimensional space.

There are other problems that manifest themselves in high dimensions.
While we won’t be able to go into this in any detail (), data might lie in
an ambient high dimensional space, but actually only populate a lower-
dimensional subspace. For example, we might have objects that are de-
scribed by three coordinates, but actually all lie on a straight line. This in-
trinsic dimensionality of the data is smaller, but we cannot exploit it because
we cannot “see” this structure in the ambient space.

5.1 Principal Component Analysis

Points in high dimensions are hard to visualize and manipulate. We would
like to reduce the dimensionality of the data. But wouldn’t we lose useful
information in doing so?

Imagine a set of points (depicted in Figure 5.1) in two dimensions that
capture some noisy linear relationship between two variables. The idea be-
hind principal component analysis (PCA) is to transform the data so that the
relationship can be easily identified. In other words, we’d like to transform
the data so that the picture looks more like Figure 5.2. The advantage of do-
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Figure 5.1: Directions of variance

Figure 5.2: Directions of variance: figure rotated and scaled from Figure 5.1

ing this is two-fold. Firstly, we've identified the key dimension that carries
the signal in the data, and secondly we’ve made the different dimensions
independent of each other — essentially decorrelating the dimensions. This
first aspect is important because it allows us to find a good approximation
to the actual noisy representation; the second is important because with in-
dependent features we actually have a better geometric representation of the
data in a Euclidean space.

In order to do this, PCA starts with a simple idea: find the direction
along which there is maximum variation in the data. Intuitively, this is the
direction that holds most information about the data. In Figure 5.1, this is
the line marked in blue. Let us now formalize this idea.

We are given points X = {x1,...,x,} C R?. We will treat each point x;
as a d x 1 vector x;, and the set X as a d X n matrix X. Let p = %in be the
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centroid of X. Fix a direction u, where ||u|| = 1. The projection of any point
x along u can be written as x " u, and so we wish to find a direction u such

that
V(e u—pTw)?

is maximized. Note that by subtracting the centroid p from each point x
we are computing a translation-invariant quantity that does not depend on
where the points are—if we did not do this we could record an artificially
high variance with points that just happen to be far from the origin.

Another way to think about this is that without loss of generality we can
set p1 = 0 by translating X. We can also express the (scalar) quantity (z " u)?
as the vector norm ||z " ul||?. Noting that we can write ||v||*>as v " v, our goal
is now to compute

max ZuTmim? u
w [fuf|=1

We can further simplify this expression by noting that the d x d matrix
LY x;z] = L.XXT is a constant, called the covariance matrix. Denoting it
by C, and dropping the constant n — 1 that doesn’t affect the optimization,
the expression we obtain is

max u' Cu
wjul[=1

But this is one definition of the eigenvector of C with the largest eigen-
value!"

Denote this by u; and let the corresponding eigenvalue be A;. If we
project the points onto w4, the “coordinate” of each point is the projection

T

ﬁmi ui.

Of course we would like an embedding of the points into more than one
dimension. Since C is symmetric, we can express it in the form

C=UAU'

where A = diag(A1, Ay, ..., Ay) is the diagonal matrix of the eigenvalues of

C in decreasing order and U = (uq, uy, ..., uy) is the (orthonormal) matrix

of eigenvectors. As before, the j coordinate of a point z in this embedding
1

is the projection ﬁijuf' More compactly, let X = A~1/2U] X, where Uy, =

(w1, ug,...,u;). Then Uy represents the principal components of X, and X is
the k-dimensional representation of X. We summarize the entire procedure
in Algorithm 5.1.

IThis is a consequence of the fact that C is symmetric, which allows us to apply the
well-known min-max (or variational) theorem from linear algebra. .
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Algorithm 5.1 Principal Component Analysis
Input: X = {x,x),...,2,} C R Integer 1 < k < d.

p=1iya

for all i do {Center points}
Ti<—Ti—

C«+ ixxT’

(uj, Aj) < top k eigenvalues and eigenvectors of C.
A diag(/\l, /\2, . ,/\k)

IN-Ik = (ul,’le,. . .,'u,k)

X+ ATV2UlX

The resulting set of points X is “maximally informative”, but we can say
even more about how it preserves the structure of X. Consider the n x n
similarity matrix associated with X:

S=X'X
i.e where each entry S;; = =/ x;. Then it is not hard to show that

X = i X'X-§
arg  min | I

where ||A||r = Y aizj is the Frobenius norm of a matrix®. In other words,

X preserves the similarities among points of X the best among all possible
k-dimensional representations of X.

We set out two goals for a dimensionality reduction procedure. The first
was to identify the key dimensions that capture signal in the data. The sec-
ond was to “decorrelate” the data by ensuring that individual dimensions
of the resulting data representation were orthogonal. It can easily be shown
(see the Exercises) that if the covariance matrix of the resulting point set X is
diagonal, which means that we have decorrelated all the variables success-
fully.

Computational Issues and the SVD

Computing the principal components of a set of points is straightforward,
involving computing the eigenvectors of the covariance matrix C. However,
C is a d x d matrix that must be explicitly computed, and if d is large, this

2The Frobenius norm of a matrix is the matrix equivalent of the ¢, norm of a vector.
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could be very expensive. An easier way to compute the desired projection
is to use the singular value decomposition of X.
Any d x n matrix X of rank r admits a representation in the form

X=Uzv'
where
e X is an r X r diagonal matrix of singular values
e Uis ad x r orthonormal matrix of left singular vectors
e Vis an n x r orthonormal matrix of right singular vectors.

We can then write XXT = UZ2U'. Comparing this to C, we can see
that the projection vectors we need are precisely the first k left singular
vectors Uy of the singular value decomposition. Moreover, the resulting
matrix X = ZVkT.

5.2 Multidimensional scaling

PCA starts with a set of points in a Euclidean space and projects them down
a lower dimensional space that (approximately) preserves the structure of
the set. But what if we don’t even have that starting set?

Consider the setting of Chapter 2. Data is presented to us as points in a
metric space and so all we have is a matrix of distances between points. We
now have two problems. First, we need a way to embed the points in some
Euclidean space (of any dimension) in a way that distances between points
are approximately preserved. Second, we need to find a way to represent
these points in a low dimensional space for easy visualization.

The second task is easy: after all, that’s exactly what PCA is for. But
what about the first task? This is where multidimensional scaling (MDS)
comes in. It allows us to create a realization of a matrix of distances as the
distances between points.

To understand the difficulty of doing this, let us consider a simple ex-
ample. Suppose we are given the following distance matrix between three
points

)

Il
[ )
s R Y
I RS
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It is easy to see that this can be realized by three points that form an equilat-
eral triangle of unit side length. But suppose we now add another point that
is equidistance from all of these, resulting in the following distance matrix

0111
1 011
D_1101
1110

Now it is a little harder, and some thought will convince you that there is no
way to embed these points in the plane so that all distances are maintained
exactly 3. In general, an arbitrary metric will not embed nicely in a Euclidean
space, and so we need to consider approximate forms of representation.

The approach that MDS takes is that it does not actually try to preserve
distances when doing an embedding. Rather, it does the following three
things:

(a) It constructs a similarity matrix from the original set of distances

(b) It then finds an explicit set of points whose inner products match this
similarity matrix as closely as possible, via a PCA-like approach.

Let the input n x n distance matrix be D. MDS starts by assuming that
these distances come from some Euclidean space. In other words, it assumes
that there exists some set of points X = {@3, xy, ..., x,} such that

Dij = ||z — ]|
Notice that such a representation is not unique: we can add any vector v to

all the points and obtain the same distance matrix. So we will assume that
this set of points is centered at the origin:

Z,’.Ei =0
Our goal is now to recover the x; from the D;;. As it turns out, this is not
that easy. Rather, we’ll ask for something more modest: that we can recover
the matrix of similarities S = X' X, where each entry S;; = (z] z;).
Expanding D;;,
2 2
Dj; = ||z — ;|
2 2
= [laill” + ll;]1” = 2(2i, 2))
= (i, z;) + (zj, xj) — 2(x;, x;j)
=S5;+ S]']' — ZSij

3 If we go one dimension higher, this becomes easy.
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Our goal is to express S;; as a function of DZZJ To this end, let us introduce
the notation a. 2y a;j and the notation a;,. £ Zj a;j. Similarly, we will use

A
a.. = Zi Z] al‘]‘.

Y 0% = D% = Y il + [y — 2, ;)
] ]

= nllal? + ¥ a2 - 24, Y )
]

]
= nlla* + )3 el
]
=nS; + Z HCCJHZ
j

because }_; z; = 0. A similar calculation yields

D.ZI]« = Z H:L‘1H2 + 1’15]']'
i

and a further summation yields

D% =2n) |l
1

We can now write

There is a convenient matrix representation of this expression. Let
1
H=1--11"
n

Post-multiplying a matrix M by H has the effect of replacing each element

by its value less the average of its row. Pre-multiplying does the same thing

. Dz . .
for columns. Noting that —+ is merely the row average of the matrix of
D%,
squared distance values (and —“ is the column average), we can rewrite S

more compactly as
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S— —‘up®@H
2

where D) is the matrix of squared distance values DZZJ 4

Now that we have a similarity-based representation S of the input dis-
tances, our goal is find a collection of n points in k dimensions whose sim-
ilarity matrix is as close to S as possible. Let the k x n matrix Y represent
these points. Then

Y =argmin || Y'Y - S||f

Using the same technique as in Section 5.1, the desired Y is given by:
Y = x12v,

where S = VEZV and as usual V; denotes the first k columns of V assuming
that all eigenvalues in X are sorted in descending order.

Notice that in order to compute £/, it must be the case that S is positive
semidefinite. This is guaranteed to be true by construction if the original dis-
tances were Euclidean. However, in general this might not be true, in which
case S might have negative eigenvalues. In this case, the typical practice is
to take as many eigenvectors as needed that correspond to positive eigen-
values.

5.3 Nonlinear embeddings and t-SNE*

MDS and PCA are linear operators. In each case, we take a linear transforma-
tion of the input (distances or points) in order to find the desired structure.
If the inherent structure of the points is not linear, these methods will not
work.

Consider a set of points that lie on a spiral centered at the origin. While
these points lie in an underlying one-dimensional curve, no linear embed-
ding will be able to lay them out on a straight line or even identify the
lower-dimensional structure.

There are a variety of non-linear dimensionality reduction tools that start
with a collection of points and attempt to find a low-dimensional repre-
sentation. Intuitively, all of these methods assume that the points lie on a
low-dimensional surface (a manifold and attempt to find a “stretched-out”
representation of these manifold.

4We use this notation to distinguish the matrix from D?, which would denote normal
matrix multiplication.
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2

Figure 5.3: A two-dimensional spiral

One such method is called t-stochastic neighbor embedding (t-SNE) 2.
It bears a strong resemblance to the linear methods we’ve seen thus far, in
that it proceeds by constructing a similarity matrix associated with the input
points and then attempts to find a set of points in a lower-dimensional space
that has the same similarity structure.

The challenge with all such methods is determining this similarity. The
proximity of two points in a Euclidean space might have no bearing on their
similarity on the underlying surface (see Figure 5.4).

. Manifold
\ .
} distance
!

Euclidean .~
distance

Figure 5.4: Why Euclidean distance and manifold distance are unrelated

We need more information on how points might be related to each other.
In t-SNE, this is done by assuming that each point is the center of a prob-
ability distribution. Let the input points be x1,...,x, € R?. The similarity
between x; and x; can then be estimated by asking how likely it is that a x;
could be drawn from a distribution centered at x;. Let p;(y) be a probabil-
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ity distribution with mean at x;, relative to the other points. This quantity be
written as

pi(x))
Yk Pi(xk)
To make this symmetric, we can ask the same question the other way around,
obtaining the quantity p, ;. Taking a normalized®> average, we set

770 i=j

Pjli =

li*

The matrix P = (p;;) is the associated similarity matrix for the points. As-
sume that the desired low-dimensional representation consists of the points
Yi,---Yn € R*. We can similarly associate a probability distribution q; with
each y;, and construct a similarity matrix Q = g;; as before.

We would like the two matrices to be close to each other. We can think
of the pj; as probabilities in a joint distribution: indeed, } ;;p;; = 1. One
way to compare two probability distributions is to use the Kullback-Leibler
divergence:

p .
(P, Q) =Y pijlog —~
i qij
And so the problem of nonlinear dimensionality reduction reduces to the
following minimization:
. Pij
min i log —
Yiriyn ; P08 dij
for which local minima can be found via gradient descent as long as we have
closed-form expressions for the p;, g;.
And what of these p;,q;? The distribution p; is typically set to be an
isotropic Gaussian:

M= x|

5—)
i

pi(x) o exp(

In the original paper on stochastic neighbor embeddings?, the g; were also
set to be Gaussians. However, these provided an unsuitable fit for the data®
and in t-SNE, a heavy-tailed Cauchy (or Student’s t-) distribution is used
instead:

5The division by # is a technical detail that ensures that each quantity is sufficiently
large, and is not important for the development of the basic framework.
6See the discussion in ?.
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Graph Clustering

Let it flow, let it flow, let it flow.

In the clustering problems we considered thus far, the distance (or simi-
larity) between two objects is supplied directly as part of the problem state-
ment. But suppose you would like to cluster friends into friend groups—
some are family, some of people you grew up with, others are colleagues
at work, and so on. What distance function should you use? You can, of
course, try to define a notion of distance between a pair of friends, and then
attempt to use one of the clustering objectives we’ve already discussed.

But this ignores an important consideration: that the distance is some-
thing that should emerge from the relationships between entities, rather than
being imposed externally. In other words, the data here is naturally repre-
sented as nodes in a graph, with an edge capturing a specific relationship
(for example, friendship) between nodes. In fact, when we talk of a social
network, whether it be from Facebook, Twitter, or LinkedlIn, this is the graph
we are referring to.

Our goal is now to define a notion of a cluster on a graph where an
edge represents some notion of proximity. One approach is to say that two
friends, Alice and Dean are in the same cluster if there is a chain of pairwise
relationships (i.e a path) between them. That is if Alice is friends with Bob,
and Bob is friends with Charlotte, and Charlotte is friends with Dean, then
we will put Alice and Dean into the same cluster.

-
-
- -
- .
|~
-
- .
-
o

Figure 6.1: Example of a connected component as a cluster

Recall that a connected component of a graph is a (maximal) set of vertices
that all have paths to each other. In effect then, defining a cluster in terms
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of chains means that each connected component of a graph is a cluster.

As it turns out, while this clustering objective is natural, it is not very
useful. Large social graphs tends to have giant connected components that
don’t really represent a common set of interests. Moreover, friendships are
not usually transitive: Alice and Bob might both be friends with Charlotte,
but might not know each other. Placing all three of them in a single clus-
ter would then not be meaningful *. Indeed, research suggests that social
networks like Facebook have single digit average diameters.

Suppose we tried a more conservative strategy to define clusters. Let us
require that for a set of nodes to form a cluster, all of them should have direct
relationships with each other. Translating this to the language of graphs, we
are requiring that the set of nodes that form a clustering induce a clique (a
fully connected set of vertices).

C/

Figure 6.2: Example of a clique as a cluster

Of course we have now swung from being overly liberal in the definition
of a cluster to being overly conservative. Most clusters that we would find
in a typical graph under this definition would be very small, because even
missing one edge could render a cluster invalid.

While neither of the two notions above appear to characterize a cluster
in a graph very well, they do capture important aspects of a good cluster.
Clusters based on connected components capture the idea of completeness
— that everyone has the chance to be part of a cluster. Clusters based on
cliques embody the idea of cohesion — that a cluster should be internally
more well-connected than the rest of the graph.

To define a single objective we need to balance cohesion and complete-
ness. We first define it for a single cluster. Let G = (V,E) be a graph, with

We note in passing that relationships are also not necessarily symmetric: consider for
example the relationship “A follows B on Twitter”. We can model asymmetric relationships
with directed edges in a graph, but defining natural clusters becomes much harder.
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nodes V and edges E. Suppose we have identified a group of people, S C V
as forming a natural friend cluster. For technical reasons, assume that the
group comprises less than half the graph i.e that |S| < |V|/2. We define the
cost of the cluster S as:

{(ij) € Elies,jev\sy

?5) =" e Bl e 5y

Examining ¢(S) closer, we see that the numerator counts the number of
friend relationships where one friend is inside the group, S, and the other
outside the group. On the other hand, the denominator counts the total
number of friendship relationships by those inside the group. Thus a com-
plete cluster will have a small numerator and a cohesive cluster will have a
large denominator, which together reduce ¢(S).

There are many ways to convert this intuition into a formal clustering ob-
jective. For example, we might wish to find a partition Cy, G, ..., Cy where
max; ¢(C;) is minimized. Or we might fix a threshold A and require that for
all clusters C;,¢(C;) < A. While these problems are intractable in general,
they lend themselves to a natural “peeling” strategy:

(a) Find a subset S with minimum ¢(S)

(b) Remove (“peel off”) the elements of S from V and repeat.

This greedy heuristic reduces the general problem of finding a high qual-
ity clustering to finding a high-quality cluster. It also reveals a fascinating
connection to random walks which we explore next.

Random Walks

A brute force approach to finding a cluster with small ¢(S) would be to try
all possible subsets S of V. Since there are 2| such subsets, this approach
does not scale. Instead, let us determine what properties might yield a
cluster with low ¢(S).

Consider the following process. We start at some node v € V in the
graph. We look at all of the edges incident on the node, choose one of them
uniformly at random, and follow it to some node u. At the next time step
we repeat the process at u. This process is known as a random walk in the
graph.

Suppose we start a random walk inside a set S with high ¢(S). Since the
number of edges leaving S is large (compared to the total number of edges
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inside S) the random walk is likely to leave S, a phenomonen we refer to as
escaping S. On the other hand, if we start a random walk inside a set S with
low ¢(S) then the random walk is likely to stay inside the set. The quantity
¢ is often referred to as the conductance®—when ¢(S) is small, a random
walk that enters S has a hard time escaping, therefore S has low conductance.
On the other hand when ¢(S) is large, we say that S has high conductance.
See for example, the sets in Figure 6.3.

High N
conductance Low
conductance

Figure 6.3: An example of high and low conductance subsets in a graph

We can make the argument above even more precise. Suppose we pick
some set S C V with conductance ¢(S). We first pick a node v € S with
probability proportional to its degree, d,, and then start a random walk from
v. Then the probability that this random walk has not left S after ¢ steps is
atleast1 —t- ¢(S).

Let vol(S) = |{(i,j) € E|i € S}| = Y_,es5d, be the sum of the degrees of
vertices in S, also known as the volume of S. In order to prove this statement
we consider two facts. First, we bound the probability that a non-escaped
random walk is at some node u € S is at most d,, /vo0l(S). The proof follows
by induction. Before the walk begins, the statement is true, since we chose
the starting vertex with probability exactly d, /vol(S).

Now suppose the statement holds after t rounds. If the random walk is at
node v after 4 1 steps, that means after ¢ steps it was at some node u, which
is a neighbor of v. The probability that it was at node u is at most d,, /vol(S)
by the inductive hypothesis. Since the walk choses one outgoing edge of u
at random, the probability that it transitioned to v is 1/d,. Therefore, the

2This is by analogy with electrical circuits — we can think of the random walk as the
motion of electrons in a network of unit resistances.
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total probability that a random walk ends up at v is at most:

1 1 dy
vol(S) dy, = ) vol(S) - vol(S)

u:(u,v)€E

Now consider the probability that a random walk escapes S at time t. If
the walk is at some node v, and there are ¢ edges from v leaving S, then the
walk escapes with probability ¢/d,. Combined with the fact that the walk is
at node v with probability at most d,/vol(S), the total chance that the walk
escapes from v is at most ¢/vol(S). Taking the sum over all nodes, we have:

{ (v, w) EE|W¢S}| dy {(v,w) € E|V € S,W & S}|
L " 00l(S) - vol(S) = ¢(5)
veS do

Therefore at every step the walk escapes with probability at most ¢(S),
and after ¢ steps it has not escaped with probability at most 1 — t¢(S). We
note that a more refined analysis can give an even tighter bound on the
probability of staying, showing that it is at least (1 — ¢(S)/2)".

Algorithms

The relationship between conductance and random walks suggests a strat-
egy to find a cluster S to peel away. Let us assume that we know a vertex
v € V that belongs to this cluster (this assumption is usually removed by
trying all vertices). If S has low conductance ¢(S) then we would expect
that a random walk starting at v will visit most (or all) of the vertices in S
before “escaping” to the rest of G. One idea is therefore to run a random
walk starting at v for T time steps (for some time T), and define S as the set
of vertices visited.

The formal relationship between conductance and random walks tells us
that if we pick T to be on the order of 1/¢, then we can guarantee that the
walk has not yet escaped S. However, we don’t know ¢ ahead of time. What
we will do instead, is to pick the length of the walk at random as well, with
a bias towards shorter walks.

Suppose we pick the length of the walk, from a geometric distribution.
That is probability that T = k is distributed proportionally to (1 — «)¥ for
some 0 < a < 1. This obviously biases T towards shorter walks, but also
has another natural interpretation.

Consider a random walk " where starting from v, the walk can teleport
back to v at any point with probability a. Formally, this merely means
that at a node of degree d, each neighbor is visited with probability (1 —
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«)/d, and v is visited with probability a. Note that this is equivalent to
first picking T from the geometric distribution is above, and then running
the walk for T steps before resetting. This walk is very well known. In the
resulting stationary distribution, the probability of being at any node u is
called the personalized pagerank of u. Intuitively, the parameter « ensures that
the effective length of a path is roughly 1/« in expectation. This means that
nodes closer to v will naturally appear more frequently in the walk, which
is a desirable outcome3.

Now that we have a random walk that can find nodes close to v, how
do we quantify closeness (and therefore membership in the cluster)? For
a node u, let g(u) denote the probability that personalized pagerank walk
ends at u. We are interested in the value of q(u) relative to the probability
of ending up at u without restarts (which from remarks above we know
to be the degree d(u)). Motivated by this, let q'(u) = gq(u)/d(u) be the
normalized personalized pagerank. Order the nodes in order of decreasing
g (u)i. q'(u1) > q'(uz2) > ... > q'(uy). Our intuition dictates that 1, is more
likely to be in the same cluster as v than up, and u, is more likely to be in
the cluster than u3. Thus we only need to pick a threshold g* and place all
nodes u with ¢'(u) > g* in the same cluster as v, and all other nodes in a
different cluster.

Here we just try all possible values for g%, and check which one yields
a set with the lowest conductance. Known as a sweep cut, this is equivalent
to checking the conductance of {u1},{u1,us}, {u1, u2,u3}, and so on. Thus
instead of looking for 2/VI=1 possible clusters, we only consider the |V| — 1
clusters.

Remarkably, we can prove that this simple algorithm achieves a nearly
optimal solution ?

Theorem 6.1. For an undirected connected graph G = (V,E) on n nodes, let et
S§* C V be the set with the lowest conductance, and ¢* be the conductance of S*.
Then for « > 16¢*, the above algorithm finds a set with conductance ¢ such that:

¢ = O(y/¢*log[S*|) = O(/¢*logn).

In practice, computing the exact personalized pagerank of a node is com-
putationally intensive. However, what we can do instead is to compute the
empirical distribution by starting many nodes at v, letting them run for a
number of timesteps and recording where they end up. These empirical

3If, instead of returning to v, we had the walk jump to a random node in the graph G,
the stationary distribution represents the global pagerank of the node u.
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personalized pagerank vectors can be used instead during the sweep cut,
and still yield provably good approximations to the global lowest conduc-
tance cut.

The above algorithm gives us a way to find a single good cluster. A
natural approach for graph clustering is then to remove this cluster from the
graph, and recurse on the remainder as necessary. While there are no formal
guarantees for this heuristic, it is a practically effective way to find clusters.

Directed Graphs

The personalized pagerank based algorithm above is specific to undirected
graphs. However, a very similar approach can be used when the graph itself
is strongly connected, that is, there is a directed path from every node u to
every other node v.

The main difference from the undirected case is we no longer use the
regular random walk as the basis of our analysis. Instead, consider the lazy
random walk W, which, when moving from node u, with probability 1/2
stays at u, and with the remaining probability picks one of the outgoing
edges at random.

We compute two stationary distributions. Let 7ty be the stationary dis-
tribution of W, and 7w (u) its value at node u. Since the graph is strongly
connected, this distribution is well defined. We then compute the personal-
ized pagerank equivalent, that is the stationary distribution of a walk that
at every time step returns to a given node v with probability «, and with
probability (1 — «) follows W. For a node u, let q(u) be the probability that
this walk ends up at u.

As in the undirected case, we first order the vertices by their value of

HZSL(’BI) and then perform a sweep cut over the resulting sets, evaluating the
conductance of the two vertices with the highest values, then the top three
vertices, and so on. Once again we can prove that the best set found by this

method is approximately optimal.







Correlation Clustering

The enemy of my enemy is my
friend

Ancient Proverb

In the last chapter we learnt how to formulate a clustering problem when
the only information we have on our data is the relationship between items,
expressed in the form of a graph. This form of relationship information is
positive: we can either encode a connection between two entities in the form
of an edge, or we can use the absence of an edge as a lack of connection.

But suppose we wanted to express both positive and negative connec-
tions between entities? For example, when clustering fruit we may consider
that lemons and bananas should belong to the same cluster because both
are yellow, and lemons and limes should belong to the same cluster because
both are citrus fruits, but then insist that bananas and limes be in different
clusters. When given inconsistent information, our goal is either to max-
imize the total number of agreements, or, equivalently, minimize the total
number of disagreements. In the example above, putting all three fruit in
the same cluster has two agreements and one disagreement. Putting lemons
and limes together, and bananas separate also leads to two agreements: (i)
lemons and limes are in the same cluster, (ii) limes and bananas are in dif-
ferent clusters, but also has one disagreement: lemons and bananas are in
different clusters. We call the class of clustering questions arising out of this
formulation correlation clustering.

A pleasant property of correlation clustering is that we never specify the
number of clusters that we are looking for. Instead, the correct number of
clusters emerges naturally. For example, if all of the items are similar to
each other, the optimum solution returns all of the elements in one cluster,
if all are dissimilar from each other, then each point is its own (singleton)
cluster. This is in direct contrast to other clustering methods which ask for
the number of clusters, k, as the input to the problem.

An instance of correlation clustering is then a graph G = (V,ET UE™),
where the vertices, V represent the set of items to be clustered, E™ denote
pairs of items that should be placed in the same cluster, and E~ represent
pairs that should be placed in different clusters.
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Objective Function

There are two obvious ways to evaluate the results of correlation clustering.
The first is to maximize agreements: count all of the positive edges within
each cluster and all of the negative edges across clusters. The second is
to minimize disagreements: count all of the positive edges across clusters,
and negative edges within each cluster. A moment’s reflection shows that
the two are the same, the sum of the two objectives is always equal to the
number of edges, |E*|+ |[E™|.

Since the sum is always fixed, the optimal solution will simultaneously
maximize agreements and minimize disagreements. However, the same
does not hold for approximately optimal solutions. Indeed a solution that is
within a constant factor on one metric, can be very far from optimum on the
other. To see this, consider the following simple algorithm for maximizing
agreement.

Let S be a clustering that places each vertex into its own cluster, and T
be a clustering that places all vertices into one cluster.

Lemma 7.1. Either S or T give a 2-approximation to maximizing agreement.

Proof. By placing all vertices into separate clusters, S is consistent with all
of the negative edges, E-. On the other hand, by placing all vertices into
the same cluster, T is consistent with all of the positive edges, E*. Since the
optimum solution value is at most |[E™| 4 |E™ |, one of these solutions agrees
achieves at least half of the optimum objective (S if there are more negative
edges than positive ones, and T otherwise.) O

While the above proof shows that it is easy to find a 2-approximation
to maximizing agreement, it says nothing about minimizing disagreements.
Indeed, even it is easy to come up with situations where the minimum num-
ber of disagreements is 0, yet the above algorithm will not find it !

Minimizing Disagreements

Since it is easy to find approximately optimal solutions that maximize agree-
ment, we instead focus on minimizing disagreements. We begin with the full
information version, where for every pair of nodes we are told whether they
should be in the same cluster, or in a different cluster. Equivalently, every
pair of nodes (v;,v;) is either in E™ or E~, and the graph G is a complete
graph.
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Given such an instance, how do we find a good clustering? It turns
out that one of the simplest algorithms is also one of the best. The RaAN-
poMP1vorT algorithm proceeds by selecting one vertex, called the pivot, uni-
formly at random. It then adds it, and all of the similar points to a cluster,
and recurses on the leftovers. We show it formally in Algorithm 7.1.

Algorithm 7.1 RanoomPivor(V,E*,E7)

If G is empty, return
Select a random pivot v; € V
SetC={v;}, V' =0
for all v; € V do
if (v;, Uj) € ET then
Add vj to C
else
Add vj to R
Let G' = (R,ET[R],E~[R])
return C, RanpomPivor(G’)

Observe that since every pair of vertices is either in E™ or E~, each node
is either similar to the pivot (in which case it is added to the cluster), or
dissimilar, in which case it is added to the remaining set R, and is then
handled in the recursive call. For ease of notation, we denote by E*[R]
and E~[R] the set of edges in ET and E~ restricted to having both of their
endpoints in R.

It is perhaps surprising that such a simple algorithm returns a nearly
optimal solution. Specifically:

Theorem 7.1. When the objective is to minimize the number of disagreements,
the solution returned by the RANDOMPIvVOT algorithm is a 3-approximation in
expectation.

How do we go about proving such a statement? Consider the situation
with three items, A, B and C and constraints that A and B and A and C
should be in the same cluster, and B and C should be in different clusters.
Looking at it in a graph sense, we have a triangle where two of the edges
are positive, and one is negative, let’s call such a triangle, a bad triangle.
Any solution, including the optimum, must make at least one mistake when
clustering A, B and C. On this simple example, the algorithm RaANDOMPIVOT
will also make one mistake, no matter which vertex is chosen first.
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Can we use the number of bad triangles as a lower bound on the number
of mistakes any algorithm must make? Not quite: consider the example in
Figure 7.1, here both ABD and CBD are bad triangles, but since they share
the BD edge, a solution can make one mistake overall, but break both trian-
gles (for example, putting all points in one cluster). Thus simply counting
the number of bad triangles is not enough, we must ensure that each edge
is counted at most once. One way to do this is to assign a weight to each
bad triangle, and make sure that for any edge, the total weight of triangles
this edge is incident on is at most 1. Consider again the example in Figure
7.1. Here we can assign a weight of 1/2 to each of the three bad triangles,
ABD, BCD, and ACD. The total weight of all bad triangles is 3/2, thus any
solution must have a cost of [3/2] = 2.

A

Figure 7.1: Bad triangles

Let T be the set of bad triangles, and w; be the weights such that ) ;c7..c; w; <
1 for all edges; such an assignment is called a packing. Then any solution,
including the optimum must have a cost at least ) ;7 w;.

To analyze the performance of RANDOMPIVOT, let Z; be the event that
one of the vertices of ¢ is chosen as a pivot, when all three vertices are part
of the same recursive call. We denote by p; = Pr[Z;] the probability of this
happening. Then the expected number of mistakes made by the algorithm is
exactly ) 4 pr (we make a mistake every time we pivot on one of the vertices
of the bad triangle). What we will show is that setting w; = p;/3 satisfies
the conditions of the packing. Thus the cost of any solution is at least one
third of the cost of the algorithm’s solution.

To show that the weights p;/3 satisfy the packing constraints, we must
show that for any edge e, ) ;cr..e; P¢t/3 < 1. Consider an edge e whose
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constraint is violated. It must be that it is part of some bad triangle, and the
vertex opposite this edge was chosen as a pivot. Let ey = {t1,t2,...,t;} be
the set of bad triangles that e is present in. For every such bad triangle ¢,
the probability that the vertex opposite is chosen is 1/3, since every vertex is
chosen equally likely. Moreover, if the edge is broken due to pivoting on a
vertex in some triangle t;, it cannot be broken again by pivoting on a vertex
in another triangle ¢;. Formally, the events of an edge ¢ being broken by
pivoting on an opposing vertex are independent. Therefore, ), ., p;/3 < 1,
and w; = p;/3 represents a feasible packing.

Weighted Instances

So far we have assumed that the world is black and white, that is every pair
of points is either similar or dissimilar. However, often times, the world is
gray, and a pair of points tends to be similar or dissimilar. Formally, for
every pair of nodes v;, v; we assign a similarity score w; and a dissimilarity
score of (. The goal is now to maximize the weighted agreement or mini-
mize the weighted disagreement. The two formulations are equivalent if we
insist that for every pair of nodes wi’; + w;; = 1, in other words, any two
nodes that are p-similar are 1 — p-dissimilar.

To solve the weighted version, a simple approach is to look at the major-
ity vote for each pair of points. If w;]T > w;; add this pair to E*, otherwise,
add it to E™. It is remarkable that in this situation the RanpomPivor al-
gorithm is in expectation a 5-approximation algorithm to minimizing the
weighted disagreement!

Incomplete Information

The RanpomPrvor algorithm crucially relies on the fact that all of the points
are either similar or dissimilar. However, what if we don’t hold strong opin-
ions on the similarity of a pair of items. One can of course simply assign a
random direction to this edge (this is equivalent to putting a weight of 1/2 in
the weighted instance. This would transform the problem into a full infor-
mation instance. However, from the point of view of approximation, such
a transformation actually changes the value of the objective function, there-
fore there is no guarantee that the final solution is reasonable with respect
to the original set of constraints.

Instead, such a scenario calls for a different approach. Consider again
the graph view of the correlation clustering problem. We are given a set of
nodes, and some edges are positive, denoting that the pair of nodes should
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be in the same cluster, while others are negative. Our goal is to cut the graph
into a number of pieces to minimize disagreements.

We can transform the problem of correlation clustering directly into the a
cut problem on graphs. Specifically, we will make use of the multiway cut for-
mulation. In the MuLTICUT problem we are given a (potentially weighted)
graph, and a set of pairs of nodes, called terminals, (s;, f;). The goal is to
remove as few edges as possible so that for all paris, s; and t; lie in different
connected components.

This problem feels similar to correlation clustering. In some sense, we
are replacing the notion of dissimilar edges with pairs of nodes that must
be separated. The difference of course, comes from the fact that correlation
clustering is more lax: we are allowed to put dissimilar nodes into the same
cluster, it simply increases our objective. On the other hand the multi cut
problem is strict, any solution must separate all pairs of terminals. It turns
out this distinction does not change the complexity of the problem, and we
can reduce every correlation clustering instance to an instance of weighted
multicut with the optimal solutions having the same value.

Specifically, for each negative edge (v;,v;) with an auxiliary vertex v;;
and replace the edge with an edge (v;, v;;) of the same weight. Moreover,
we add (vj,v;j) to the set of terminals that must be separated. We then
consider the multi cut problem on the graph G’ consisting of all positive
edges and all auxiliary edges. Note that if there were no positive edges
connecting v; to o; then in G’ the terminals v; and v;; are not connected. On
the other hand, if there were positive edges, we can separate the terminals
by either cutting the auxiliary edge, or cutting one of the positive edges.
The former may be cheaper, but only disconnects v;j, whereas the latter may
simultaneously disconnect multiple terminals.

One can show that this construction is tight, that is for a correlation
clustering with objective W there exists a multi cut in the new graph G’ of
weight W and vice versa. The multicut problem is NP-complete in general
(only the version with one or two pairs of terminals is solvable in polynomial
time), however, there are efficient log n-approximation algorithms for this
problem. Moreover, for more restricted versions of the problem (for example
when the underlying graph G is a tree, or is planar) there are more efficient
and better approximation algorithms.



Spectral Clustering

Omne cannot alter a condition with
the same mind set that created it in
the first place.

Albert Einstein

Ceci n’est pas une pipe

René Magritte

We have now seen two ways to cluster data presented to us in the form
of relationships (positive or negative). If we merely have information about
linkage, we can use a graph clustering framework as described in Chapter 6
and if we have both positive and negative linkage information we could
perform correlation clustering as described in Chapter 7.

A third approach leads us to spectral clustering, which is one of the most
popular approaches to clustering. Just like before, it takes as input a set of
objects V and a similarity functionw: V x V — R, and groups them so that
similar objects are clustered together.

The interesting thing about spectral clustering though is that it’s not ac-
tually a clustering technique! Rather, it’s a way to change the space the data
lies in from some arbitrary space to a Euclidean space while approximately
preserving the similarities given by w. Once this embedding is done, any
Euclidean clustering algorithm (such as k-means) can be used to cluster the
points.

8.1 Formal Objective

To motivate how spectral clustering works, consider the simpler situation
when we wish to divide a set of objects into two clusters. For convenience,
we will assume that the set V = [n] = {1,...,n} and we use w;; = w(i, j) to
represent the similarity between two objects.

We encode the desired clustering as a function f: [n] — {—1,1}, so that
the two clusters correspond to points that f maps to 1 and to —1. Again,
we will use the shorthand f; = f(i). Abusing notation slightly, we will also

interpret f as a vector (f1, fa, ..., fu)-
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Our goal is to place points that are similar in the same cluster. Note that
any two points 7, j are in the same cluster if and only if f; — f; = 0, and belong
to different clusters if f; — f; € {—2,+2}, or equivalently if (f; — f;)* = 4.
For every pair of points i, j that is not clustered together we pay a cost w;.
Since (f; — fj)? is either 0 or 4, we can write the total cost incurred by any
clustering as

(f) =L
ij

Minimizing c(f) is easy. If we set f to be the constant vector (1,1,...,1)
then c¢(f) = 0. However, this is not a very interesting solution. It corre-
sponds to placing all of the objects in a single cluster. This solution captures
the literal interpretation of the cost function but not its spirit *.

We must add additional constraints to the problem in order to obtain
more interesting solutions. One way to do it is by requiring both clusters to
be of exactly the same size. Since all points are assigned either +1 or —1
this can be encoded by requiring that ), f; = 0.

Our clustering problem now looks like this:

(fi— fi)*

min ¢(f) = 1/4Zwij(fi —fi)
L]
Subject to: Z fi=0
Vi fie{-1,41)

A relaxed optimization

This problem is NP-hard. We can make the problem easier by allowing f to
vary smoothly between [—1,1] instead of requiring it to be exactly +1 or —1.
A solution to this relaxed problem is a mapping of the points to locations on
the interval [—1, +1] in‘'a way that minimizes the cost. In essence, we have
constructed an embedding of the data onto the interval [—1,+1] in such a
way that any clustering algorithm, such as k-means or k-median, can now
be used to find the desired 2-partition.

How do we obtain such an embedding ? The simplest approach would
be to replace the constraint

fie{-1,+1}

'This is a common pitfall when formalizing a notion of clustering. Modeling an inher-
ently fuzzy problem with precise mathematics often creates a disconnect between what you
want and what you get.
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by

-1<f<1
But this doesn’t work ! Once again, we can get a trivial solution by setting
fi < 0.

In order to prevent this from happening, we must insist that the proce-
dure make full use of the available range for f. One way to ensure this is
to place a lower bound on the sum of the magnitude of the coordinates of
f. When we required f; € {—1,+1}, then we knew that ; |fi| = ¥; f? = n.
We can use the same constraint in this relaxed setting.

We can now allow f; to range freely between —co and +oco, without wor-
rying about the all zero solution, since it is no longer feasible. The constraint
Y f? = n ensures that the individual components cannot get too big or too
small. Rewriting, and dropping the factor of 1/4 since it doesn’t affect the
optimization, we get:

min c(f) :Zwij(fi_fj)z
ij
Subject to: Zfi =0

Y =n

Matrix Form

Finding the solution to the above problem looks like a daunting challenge.
However, it is very closely related to a classical problem in linear algebra:
finding the eigenvectors and eigenvalues for a matrix.

To explore the connection, we must transform the above optimization
problem into matrix form. First consider the objective c(f). We can expand
the quadratic form and rewrite it as }; ; {; ;fi f; where the coefficients ;; are:

T\ Lewn ifi=j

If we let L be the matrix with value /;; in the position (i, ), then we can
rewrite the objective as:

c(f) = Zwij(fi - fi)? = Zfz‘jfifj = f'Lf.
1,] 1
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To rewrite the constraints in matrix form, note that if f is a vector then
Yi f2 = |Ifl> = f'f is just the squared length of the vector. This leads the
following optimization:

min f'Lf
Subject to: Zf, =0

flf=n

We are almost done. Recall that the constraint f'f = n came from
a desire to put a lower bound on the magnitude of the coordinates of f.
However, the exact value is not important — if we know that f' f = ¢
for some constant ¢, then we can scale all entries by /#/c to satisfy this
constraint. In this case the value of the solution will also increase by /c.
Thus we are looking to minimize the ratio of the two constraints, which
leads to a simpler formulation:

-
min f TLf subject to Y fi = 0.
ff i

Without the balance constraint, ) ; fi = 0, the solution is the eigenvec-
tor corresponding to the smallest eigenvalue of L. It is easy to verify that this
eigenvector is the all 1s vector v; = (1,1,...,1), which corresponds to the
unbalanced solution we had discarded earlier !

The constraint ) f; = 0 can be rewritten as f'1 = 0 which in turn
can be written as f'v; = 0. Now the balance constraint can be interpreted
geometrically, as we are looking for a vector f that is perpendicular to the all
ones vector, or equivalently to the first eigenvector. The resulting balanced
optimization is then:

L
min fLf
fTo=0 fTf
The solution to this is the eigenvector corresponding to the second smallest

eigenvector of L.

Constructing A Solution

Now that we have a vector of (relaxed) assignments f, we need to recover a
2-clustering. The easiest approach is to replace f; by sign(f;) putting those
points with positive f; into one cluster, and negative f; to another. This can
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also be viewed as fixing a boundary at 0 and dividing the points into clusters
on either side of the boundary.

But there is nothing particularly special about a boundary at 0. In fact,
we could imagine replacing each object by the 1-dimensional point (f;), and
then clustering the points optimally into two clusters by moving from left to
right and trying all possible splits. In effect, we have embedded the objects
in a (1-dimensional) feature space and are clustering the resulting points. In
fact, if we retain the all 1s eigenvector, then we’ve performed a mapping into
a two-dimensional coordinate system where object i is represented by (1, f;).

There is no fundamental reason to stop at the second eigenvector. In
general, let us fix a parameter d. We compute the matrix L as before, and
assemble the eigenvectors V = (vy,...,v,) corresponding to the eigenvalues
A =0< Ay <Az--- < Ay Recall that all of the eigenvectors are orthogonal
to each other, so this corresponds to an embedding of f into d-dimensional
space. Object i maps to the i row of V (i.e the vector of i coordinates of
each eigenvector). Given this embedding we can cluster these vectors using
any clustering algorithm, such as 2-means.

Beyond 2-clustering

Note that the embedding of points described above is oblivious to the num-
ber of clusters we are looking for. Whether we are looking for two, three, or
many more clusters the embedding is the same, and it is the final clustering
algorithm, working on points in Euclidean space that determines the actual
partition into k sets.

This is the key insight of spectral “clustering”. Given an arbitrary sim-
ilarity matrix between points, we find an embedding of these points into
d-dimensional Euclidean space that is in some sense the best possible such
embedding. Then we can cluster these points using any of the myriad of
clustering algorithms we already discussed. Spectral clustering is not a clus-
tering algorithm at all: it’s a feature transformation of the input!

8.2 *Graph Laplacians

The matrix L is known as the Laplacian of the graph, and has rich connections
to graph theory and topology. The transformation of a graph to a collection
of points in a Euclidean space via the Laplacian is a powerful tool for go-
ing from pairwise similarities between items (encoded in a combinatorial
structure of a graph) to a geometry of the space.
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Let us start with a simple example. Consider a graph consisting of an
n-vertex cycle. If we construct the Laplacian matrix L for this graph, then the
diagonal entries are all 2, and assuming the rows are ordered as the nodes
in the cycle, then the other nonzero entries are two diagonals of —1s above
and below the main diagonal.

Suppose we assign a scalar value x; to each vertex i, and multiply the
Laplacian matrix L by this vector = (x1,...,x,), we get y = Lz where

Yi=2x; — Xip1— X1
which can be rewritten as

yi = (xi —xi1) — (Xiqa — %)

This is essentially the second derivative of x viewed as a function over
[1...n]. In other words, the Laplacian matrix acts as a discrete version of
the second derivative, A = ;—:2. Imagine now that we let n — 0. In the limit,
the Laplacian matrix becomes the second derivative operator on the line.

On the other hand, if we the graph was a grid instead of a line, a sim-
ilar calculation shows that in the limit, the Laplacian matrix becomes the
Laplacian operator A = % + %. Notice what happened here: when the
graph was a line, the limiting behavior of the Laplacian matrix was that of
the second derivative on the line. When the graph was a grid, the limiting
behavior was that of the second derivative in two dimensions.

In general, suppose that we have a manifold M, and let V be a sam-
ple of points form M, with points that are reasonably close connected by
edges, and weighted accordingly. Then the Laplacian matrix of this graph
represents the geometry of the manifold (formally it tends in the limit to the
Laplace-Beltrami operator associated with M).

Distances

The connection between a graph Laplacian and the Laplace-Beltrami oper-
ator explains the shape we're expecting to see when we analyze the Lapla-
cian of a graph. But the spectral analysis of the Laplacian gives us an actual
embedding of vertices in a vector space. What do the resulting distances
represent?

The Laplace-Beltrami operator comes about in the analysis of heat flow
on a surface. Roughly speaking, the rate of heat decay at a point over time is
controlled by the shape of the manifold near that point. This interpretation
has a natural discrete analogy: that of flows and cuts. Parts of the graph
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that are loosely connected are “far” from the perspective of heat flow, be-
cause the lack of connectivity means that it would take heat longer to flow
between the two points. And it is this distance that the mapping produced
by the Laplacian captures. In particular, if we model the heat flow as a
random walk, then the commute time between two vertices corresponds to
the Euclidean distance between the corresponding feature vectors produced
from a spectral analysis of the Laplacian.

To summarize, the spectral interpretation of similarities is based on two
modeling assumptions:

(a) That the similarities represent a graph that can be viewed as capturing
the shape of a manifold.

(b) That the “distance” between two vertices can be captured in terms of
the time taken for heat to flow from one vertex to the other, rather than
some kind of geodesic distance.



