Evaluating Graph Coloring on GPUs

A.V. Pascal Grosset, Peihong Zhu, Shusen Liu, Suresh Venkatasubramanian, Mary Hall

Graph Coloring
- Color a graph using as few colors as possible
- Vertices connected by an edge must have different colors

Sequential Graph Coloring Algorithm
- First Fit: $O(n)$
- SDO & LDO: $O(m \log n)$
 - n: number of vertices
 - m: number of edges

Graph Coloring Framework
- Graph Partitioning
- Graph Coloring & Conflict Solving

Sequential Conflicts Resolution
- Residual conflicts are solved sequentially

Graph Partitioning
- Evenly distribute vertices per thread into subgraphs

Graph Coloring & Conflict Solving
- Threads choose vertex to color in their subgraph but check whole graph
- Several passes of coloring and conflict solving are done

Algorithms I
- First Fit: Allocate colors randomly
- SDO: Highest Saturation and then Highest degree

Algorithms II
- MAX OUT: Most Neighbors outside the subgraph and then highest degree
- MIN OUT: Least Neighbors outside the subgraph and then highest degree

Results
- Best Colors: MIN OUT & MAX OUT generally
- Fastest: Parallel First Fit is very fast and provides much better color than the sequential First Fit

Conclusion
- Graph coloring on GPU gives few colors at good speed
- Even algorithms like First Fit are better as GPU are more forgiving