MLRG/fall10
From ResearchWiki
Semisupervised and Active Learning
Fri 2:00-3:20pm
MEB 3105
Contents |
Synopsis
Supervised learning algorithms usually require a good amount of labeled data in order to learn a reliable model. Since getting large quantities of labeled data can be expensive and/or difficult, much effort in machine learning has been devoted on coming up with ways to learn with a limited amount of labeled data. There are many ways of doing this. Two very important paradigms we will be looking at in this seminar are (1) semi-supervised learning which involves augmenting a small amount of available labeled data with a large amount of additional unlabeled data (which is usually very easy to obtain), and (2) active learning which involves judiciously selecting the most informative/useful labeled examples to be given to a supervised learning algorithm. In this seminar, we will be looking at some representative papers from both these paradigms. As it will not be possible to cover all important papers in a single seminar, for those interested, a bunch of papers will be added under the suggested readings.
Participants
- Piyush Rai, PhD Student, School of Computing
- Suresh Venkat, Asst. Prof, School of Computing
Schedule
(subject to change; * means will probably need a rescheduling)
Suggested Readings
Will be updated with more papers.