
Some History and Research of Frank

Stenger

*******

1 The Earlier Years.

Frank Stenger was born in Magyarpolány, Hungary, on July 6, 1938. His
parents were Stenger György and Görgy Katalin. An historical check shows
that his motherGörgy Katalin’s ancestors were already present in Hungary
in the early 1600’s, whereas the Stenger side of the family came to Hungary
in 1750, following the forced retreat of the Turks out of Hungary, by the
Hapsburgs.

Both of Frank’s grandparents, György Miska and Stenger Simon fought in
WWI; György Miska was killed in that war, whereas Stenger Simon lost a
leg and the use of an arm. Frank’s father, Stenger György, spent nearly
ten years conscripted by the Hungarian army preceding and during WWII.
Indeed, he was one of the very few that survived after being captured on
the Russian Front.

Magyarpolány was primarily a German speaking town, with a German di-
alect close to that of the street language of Vienna, although Hungarian was
spoken equally often in the house in which Frank Stenger (who was called
Stenger Ferenc in Hungary) lived since birth.

Frank Stenger’s family was well off before the end of WWII, but they lost
their home and all of their properties shortly after the end of that war.
Frank, his sister, Kati (4 years younger than Frank) and his father and
mother were forced to live with relatives, in cramped quarters, and in order
to survive, they stole vegetables from the garden that they had previously
planted on their former property.

In 1947 most of the people of Magyarpolány were ethnically cleansed out of
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Hungary. They were locked into box cars and shipped off to East Germany.
After spending 5 weeks in a refugee camp, the Stenger family was forced to
live in the downstairs area of an older couple’s house, in Zwönitz, Erzgb.
Sachsen, East Germany. Whereas they were used to having plenty to eat
in Hungary, food was scarce in East Germany at that time. For this, and
for other reasons, after spending less than one year in East Germany, they
sneaked over the border to West Germany. They lived in Braunschweig for
about a year, after which Frank’s uncle, who had moved to Alberta over 10
years earlier, arranged for them to come to Canada. They spent the first
year in Warburg, Alberta, picking roots on Frank’s uncle’s farm, to pay back
the money it cost his uncle to bring them to Canada.

Frank’s father then bought a farm. He was, however, unlucky with crops:
at the end of the first year of planting, all of the crops were lost due to hail;
there was too much rain during the second year, which killed the crops; and
the snow came too early in the third year, making it impossible to remove
the crops in time, and as a result, they were eaten by mice over the winter. It
was then that Frank decided that if he wanted to get an education, he would
have to do it on his own. Consequently, he supported himself by winning
scholarships, and fellowships and with excellent job opportunities until the
end of his Ph.D. studies. His teachers, too, especially his high school mentor
Erwin Stobbe, and his University of Alberta mentor, J.J. McNamee played
important roles in these decisions.

Frank’s sister, Kati (called Katherine in Canada) also did well scholasti-
cally. The two younger brothers, George and Edward, who were born in
Canada did well monetarily, although they were less interested in scholastic
achievements.

Frank owes a great deal for his education and academic career to:

His mother – for her many life-long sacrifices for him; His excellent teachers,

especially to his “Big Brother”, Ervan Stobbe who started Frank’s love of
mathematics; and His mentor, John McNamee.

Frank enrolled in the electrical engineering program at the University of Al-
berta. While at residence, he met an Irish mathematician, John McNamee,
who decided that Frank had some mathematical ability, and who gave Frank
a copy of R. Courant’s two-volume calculus texts. It did not take Frank long
to solve all of the problems of these texts, which, in effect, sealed his fate
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in mathematics. After completion of his bachelor’s degree in Engineering
Physics, Frank enrolled in two simultaneous Master’s degree programs, in
Math. (Numerical Analysis, with specialty of n-dimensional quadratures),
and in Engineering (Control Theory, with specialty of nonlinear controls).
Although he completed the work of each, he only did a final oral and formal
completion in his numerical analysis masters. He then did a Ph.D. degree
in Math (Asymptotics), after spending a year at the National Bureau of
Standards in Washington, D.C. His official Ph.D. adviser at the Univ. of
Alberta Dept. of Math. was Ian Whitney, an expert in complex variables,
who had previously worked with A. Erdélyi on the Bateman manuscript
projects, and from whom Frank Stenger learned a great deal about analytic
functions, including elliptic functions.

2 Some Research Results of Frank Stenger.

Only some of the research of Frank Stenger is touched upon in this report.
There is, however, an (roughly) 80% complete set of references at the end
of this report. Sinc related research of Frank Stenger is covered in the
first subsection below. This is then followed by inverse problems research,
miscellaneous research results, program packages, and textbooks.

2.1 Sinc Related Research of Frank Stenger.

1. In 1964, John McNamee and Ian Whitney wrote a joint paper, “Whit-
taker’s Cardinal Function in Retrospect”, which they submitted to SIAM.
Unfortunately they had an incompetent referee, who made many unfair crit-
icisms of their paper. They were, however proud men, and refused to rewrite
their paper. McNamee gave a copy of this paper to Frank Stenger, and after
reading it for the third time, Frank got quite excited about it. He approached
McNamee and Whitney — offering to to rewrite the paper, by incorporat-
ing the two reasonable suggestions the referee had made, and also, to make
some improvements, e.g., the inclusion of the Paley–Wiener theorem, more
examples, as well as some applications — and if he did this, would they let
him become a joint author. They agreed, and with this publication [16] the
Cardinal function
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C(f, h)(x) =
∞
∑

k=−∞

f(k h)S(k, h)(x)

S(k h)(x) = sinc

(

x

h
− k

)

sinc(x) =
sin(π x)

π x
,

(1)

became a big part of Frank Stenger’s approach to computation. Here, sinc(x)
is the sinc function coined so by engineers, while we shall refer to the func-
tions S(k, h) as Sinc functions. The beautiful coinage of this function in
the original paper (most likely due to McNamee) was “... a function of
royal blood, whose distinguished properties separate it from its bourgeois
brethren”.

2. After his Ph.D. work, he spent 1965–66 in the Computer Science Depart-
ment at the University of Alberta, In the fall of 1966, he joined the Mathe-
matics Department at the University of Michigan as an Assistant professor,
where he concentrated primarily on improving his mathematical skills. At
that time, there were over 20 seminars held in the department each week,
and he attended 11 of these. One of the themes of the department involved
various aspects of the Wiener-Hopf process: the applied mathematicians
were solving Wiener–Hopf problems; the functional analysts were factoring
Toeplitz operators; the approximation group was studying approximation
by rations of analytic functions; and the probabilist were studying discrete
Wiener–Hopf equations. In particular, during that time, Ron Douglas and
Walter Rudin wrote a joint paper, proving that: Given function f ∈ L∞(T ) ,
with T the unit circle, given any ε > 0, there exists a positive integer n ,
inner functions (functions that are analytic and unimodular in the unit disc
U) ϕ1 , ψ1 , . . . ϕn , ψn and constants c1 , . . . , cn such that

ess sup

r → 1−

∣

∣

∣

∣

∣

∣
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(

ei θ
)

−
n
∑

j=1

cj
ϕj

(

r ei θ
)

ψj (r ei θ)

∣

∣

∣

∣

∣

∣

< ε (2)

a.e.

Stenger [17] gave a constructive proof of this result, showing moreover, that
the approximation can be accomplished with n = 2 . In his proof, Stenger
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constructed a novel elliptic function, which was an approximate character-
istic function on a measurable set. Shortly afterward, while visiting the
University of Montreal in 1970, he reconstructed a variant of this beautiful
function in great detail [38], based on a geometric-analytic function proof,
via use of elliptic functions. Indeed, Stenger considers [38] to be his first
Sinc methods paper, which led him to the development of the area of Sinc
computation. In the same paper, [38] he disproved a conjecture made earlier
by several others, which we now describe. In 1965 [130], H.S. Wilf posed
the problem, to determine the best σ(n), with

σ(n) =

inf
wj∈ lC, zj∈U







sup
f∈H2(U),‖f‖=1

∣

∣

∣

∣

∣

∣

∫ 1

−1
f(x) dx−

n
∑

j=1

wj f(xj)

∣

∣

∣

∣

∣

∣







,
(3)

where H2(U) is the Hardy space of all functions f that are analytic on the
unit disc U , normed by

‖f‖ =

(

lim
r→1−

∫ 2 π

0

∣

∣

∣f
(

r ei θ
)
∣

∣

∣

2
dθ

)1/2

.

In his paper [130], Wilf obtained

σ(n) = O
(

(

log(n)

n

)1/2
)

.

Shortly thereafter there followed three independent research articles, each
of which obtained the estimate σ(n) = O(n−1/2): by S. Haber (in Quart.
Appl. Math., 29 (1971) 41-420), by Johnson & Riesz (University of Toronto
Research Report) and S. Ecker (Ph.d. thesis, University of Hamburg) and
with each independently making the conjecture that this is the best bound

possible. Stenger got σ(n) = O
(

exp
(

−π (n/2)1/2
))

, via use of an explicit

“q–series” type quadrature formula constructed in [38] .
In [38]1 Stenger obtained several explicit q-series–type quadrature formulas
via transformations of simple conformal maps in the characteristic function
he constructed: (i) an arc of the unit circle, (ii) the interval (−1, 1), (iii) the
interval (0,∞) , and (iv) the real line lR = (−∞ ,∞) . The latter was just

1The publication of this paper came much later than its discovery. After the referee of
the journal it was submitted to kept it for over a year, he recommended turning it down.
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the trapezoidal rule, but with nearly the exact same bound on the error that
was previously obtained in [16]. This connection with the above Cardinal
series led his mentor, J. McNamee, to suggest to Stenger that he should use
this Cardinal series rather than elliptic functions to derive such formulas,
since the Cardinal series would be understood by a wider audience.

3. As a visitor to the Univ. of British Columbia during the academic year
of 1975–76, Stenger applied various conformal maps to the series (1), to
get explicit, accurate Sinc–type methods for approximation over arbitrary
intervals and contours [34].

4. Whenever the series (3) above converges, the resulting function is an
entire function of order 1 and type π/h . If f is also an entire function of order
1 and type π/h that is uniformly bounded on lR , then the function C(f, h)
defined in (1) above satisfies the identity C(f, h) = f . In this space the
function C(f, h) is replete with many identities obtained via operations on
C(f, h), such as differentiation, orthogonality, delta function-like behavior of
Sinc functions, Fourier transforms, Hilbert transforms, etc. These identities
become highly accurate approximations if f is not analytic in the entire
complex plane, but rather, analytic and uniformly bounded only in the strip

Dd = {z ∈ lC : |ℑ(z)| < d} ,
a region which arose naturally in the derivation of the quadrature rules of
[38]. A conformal map ϕ of another region

D = {z ∈ lC : | arg(ϕ(z))| < d}
onto Dd automatically yields methods of interpolation (as well as other
formulas of approximation) over a contour Γ = ϕ−1(lR), of the form

F ≈ C(F, h) ◦ ϕ =
∞
∑

k=−∞

F (zk)S(k, h) ◦ ϕ ,

∫

Γ
F (x) dx ≈

∫

Γ
C(F, h) ◦ ϕ(x) dx ≈ h

∞
∑

k=−∞

F (zk)

ϕ′(zk)
.

(4)

with zk = ϕ−1(k h) denoting the Sinc points. Moreover, those same identi-
ties for the function C(f, h) now still hold, and one gets exactly the same
bounds on the errors of approximation. In this way, we get an explicit family
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of formulas for interpolation, quadrature, differentiation, and Hilbert trans-
forms, ..., etc., for arbitrary bounded, semi–infinite, infinite intervals and
even for analytic arcs.

For example: If ϕ(z) = log(z) , then D is the sector, | arg(z)| < d , the
interval Γ = (0,∞) , the Sinc points are zk = ekh , the “weights”, h/ϕ′(zk) =
h ekh;

If ϕ(z) = log(z/(1 − z)) , then D is the “eye-shaped” region (see [4], p. 68,
for a picture), {| arg(z/(1−z))| < d} , the interval Γ = (0, 1) , the Sinc points
are zk = ekh/(1 + ekh) , the “weights”, h/ϕ′(zk) = h ekh/(1 + ekh)2 .

5. The concept of Sinc spaces was formulated somewhat later (in 1984).
An understanding of these spaces enable one to tell a priori when one can
achieve uniform accuracy over Γ via use of Sinc methods, by means of a
relatively small number of points. (Actually, because the Sinc methods ap-
proximate functions at Sinc points – all of which are in the interior of Γ –
they achieve approximations that are accurate to within a relative error even
when they approximate an operation the result of which is unbounded at an
end point of Γ . This occurs e.g., for differentiation, for Laplace transform in-
version, for the approximation of Hilbert transforms, for the approximation
of Abel–type integrals, etc.) It is convenient to introduce the Sinc spaces at
this time.

Along with the conformal map ϕ of D to Dd , we set ρ = exp(ϕ), we denote
the end points of Γ = ϕ−1(lR) by a = ϕ−1(−∞) and b = ϕ−1(∞) , we
assume that F is analytic and bounded in D , and that limiting values F (a)
and F (b) exist, so that the expression

LF =
F (a) + ρF (b)

1 + ρ
(5)

is well defined. (Note that as traverses Γ from a to b , ρ(z) is real valued,
and increases strictly from 0 to ∞ .) We then say that

A. F ∈ Lα,d(ϕ) if there exist positive constants C and α such that |F (z)| <
C exp(−α |ϕ(z)|) for all z ∈ D .

B. F ∈ Mα,d(ϕ) if F − LF ∈ Lα,d(ϕ) .

Let us also introduce the Hilbert and Cauchy transforms:
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(S F )(τ) =
P.V.

π i

∫

Γ

F (t)

t− τ
dt τ ∈ Γ,

(C F )(z) =
1

2π i

∫

Γ

F (t)

t− z
dt , z 6∈ Γ.

(6)

The following properties hold for Sinc spaces:

Theorem: [87, §1.4] Let α ∈ (0, 1], d ∈ (0, π], and take d′ ∈ (0, d) .

i. If F ∈ Mα,d(ϕ), then F
(n)/(ϕ′)n ∈ Lα,d′(ϕ), n = 1, 2, 3, · · ·;

ii. If F ′/ϕ′ ∈ Lα,d(ϕ), then F ∈ Mα,d(ϕ);

iii. If F ∈ Lα,d(ϕ), then
∫

Γ |ϕ′(x)F (x) dx| <∞ ;

iv. If F ∈ Lα,d(ϕ), then both S F and C F belong to Mα,d′(ϕ) .

These spaces are connected, in that, e.g., if ϕ1 : D1 → Dd and ϕ2 : D2 → Dd

are two conformal maps, and if F ∈ Mα,d(ϕ1) then F ◦ϕ−1
1 ◦ϕ2 ∈ Mα,d(ϕ2) .

6. The truncation of infinite Sinc series to a finite ones became well estab-
lished by this time, as well as a slight alteration of the bases from S(k, h)◦ϕ
to ωk (see §1.4 of [10]) which enabled uniformly accurate Sinc approxima-
tion over Γ of functions which are bounded but non-zero at the end-points
of Γ . An added bonus arose with this truncation: Suppose that F de-
fined on lR is analytic and bounded in Dd, and that, with LF defined in
(5) above, F (z) − (LF )(z) = O(exp(−α |z|)) on D , which translates to
F ∈ Mα,d(id), with id the identity map. If ϕ is a conformal map of D to
Dd, with ϕ : Γ → lR , then G = F ◦ϕ, which belongs to the class Mα,d(ϕ) is
not only analytic and bounded on D, but it furthermore belongs to Lipα(Γ) .
The class Mα,d(ϕ) thus houses solutions of differential equations, and we get
exponential convergence when approximating such functions, even though
we don’t know the exact nature of the singularities at end–points of intervals
(or on the boundary of a region in more than one dimension, when solving
PDE).

For example, if d and α are some positive constants, then the choice h =
c′/N1/2 , with c′ an arbitrary positive constant, independent of N , d or α
yields an error of the form
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sup
x∈lR

∣

∣

∣

∣

∣

∣

F (x)−
N
∑

k=−N

F (zk)ωk(x)

∣

∣

∣

∣

∣

∣

= O(exp(−cN1/2)) , N → ∞ . (7)

with c a positive constant. The best (i.e., largest) c =
√
π dα , which obtains

with h =
√

π d/(αN) .

7. Also during his visit to the Univ. of British Columbia in ’75–’76, Stenger
discovered the important Sinc indefinite integration matrices, for approxi-
mating the operations

(J + g)(x) =

∫ x

a
g(t) dt , and (J − g)(x) =

∫ b

x
g(t) dt . (8)

By this time, it became understood, that Sinc methods are easily dealt with
via matrix techniques, inasmuch as the basis functions only generate the
matrices for approximating operations of calculus, whereas we are interested
only in vectors of values of functions at Sinc points.

Letting u denote an arbitrary function defined on Γ , and letting ωj denote
the Sinc basis as defined in §1.4 of [87] it is now convenient to define a
diagonal matrix D(u) , an operator V that changes u to a column vector
V (u) , and a row vector w of Sinc basis functions on Γ by

D(u) = diag[u(z−N ), . . . , u(zN )]
V (u) = (u(z−N ), . . . , u(zN ))T

w = (ω−N , . . . , ωN ) .
(9)

We also need certain numbers, σk , generated by integrals of Sinc functions.
These are given by

ek =

∫ k

0
sinc(x) dx , σk = 1/2 + ek , k = 0 , ±1 , ±2 , . . . .

Let m = 2N + 1 , and let I
(−1)
m denote2 m×m matrix with (i, j)th element

σi−j . Then setting

2To date it has been shown via numerical computation that all eigenvalues of I
(−1)
m lie

in the open right half plane, for 1 ≤ m ≤ 1024. Stenger offers $300 to the first person who
proves or disproves that all of the eigenvalues of I

(−1)
m lie in the open right half plane, for

every positive integer m.
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A+ = h I(−1)
m D(1/ϕ′) , A− = h

(

I(−1)
m

)T
D(1/ϕ′) , (10)

we get the accurate approximations

(J+ g)(x) =

∫ x

a
g(t) dt ≈ w(x)A+ V g

(J− g)(x) =

∫ b

x
g(t) dt ≈ w(x)A− V g .

(11)

Although this formula was discovered in 1976-77, it was first published with-
out proof only in 1981 [58]. Several proofs have been given since.

8. One important application of Sinc indefinite integration is that it enables
uniform approximation of indefinite integrals on arbitrary intervals and con-
tours, even when the integrands are unbounded at (but integrable over Γ)
at end–points of Γ . (As already mentioned above, we can even get good ap-
proximations of integrals that are unbounded, e.g., the incomplete Gamma
function, Γ(a, x) =

∫∞
x ta−1 dt , with a ≤ 0 ). Another important application

was a novel package for solving ODE (ordinary differential equation) initial
value problems [92] over arbitrary intervals; furthermore, while stability and
stiffness can cause difficulties for other methods and packages, these are not
difficulties for the Sinc ODE package. The reasons: The above approxima-
tion to J+ is applied after the usual conversion of the ODE to one, or a
system of integral equations, enabling an immediate reduction to a system of
algebraic equations, via Sinc collocation over the whole interval, a procedure
that requires no computation. The resulting system of algebraic equations
is then solved via Newton’s method, thereby avoiding problems of stability.
Stiffness is not a problem since the Sinc points “bunch up” at the end–points
of the interval. and are thus able to accurately approximate solutions even
though they may change rapidly in neighborhoods of the end-points.

9. It was also shown in 1984, that if the coefficients of function values at
the Sinc points are in error, then the error of Sinc interpolation on Γ is not
appreciably larger in magnitude than the error in the coefficients. This fact
and the fact that Sinc collocation is equivalent to Sinc–Galerkin enables us
to drop the sinc basis vector w in our Sinc approximation formulas.

10. In [67] Elliott & Stenger obtained the following formula for approximat-
ing the above Cauchy integral CF :
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(C F )(z) ≈
N
∑

k=−N

F (zk) ck(z) ,

(S F )(τ) ≈
N
∑

k=−N

F (zk) tk(τ) ,

(12)

with

ck(z) =
h

2π i

exp{i π [ϕ(z) − kh]/h} − 1

ϕ′(zk)(z − zk)
,

tk(τ) =
h

π

cos{π[ϕ(x) − kh]/h} − 1

φ′(zk)(x− zk)
.

(13)

11. This is a stable method of analytic continuation, i.e., in determining
the values of an analytic function in the interior of a domain once they
are known on Sinc points of the boundary. Additionally, the formula (12)
combined with an equally efficient variant of (12) for Sinc approximation of
Hilbert transforms (see below, however, for a recently discovered variant that
is even better!) were used in [106] for devising an (i.e., probably the most
efficient) algorithm to construct conformal maps of regions whose boundary
consists of a finite number analytic arcs.

12. A family of rational functions was constructed in the paper [73], which
interpolated functions at Sinc points z−N , . . . , zN and for which the error of
interpolation of functions belonging to the above Sinc spaces had the same
bound as the error of Sinc interpolation at these same points. The most
important consequence of this was in the area of rational extrapolation to
the limit. If a function f is analytic in a simply connected domain D , and
if points z1 , z2 , . . . , zn and ζ are in D then the known values of f at
the points zj can be used to predict the value f(ζ) via use of polynomial
extrapolation, and moreover, the process converges exponentially, with error
of the order of O(exp (−c n) . The reason for this is that there exists a
polynomial of degree n for which the maximum difference between f and
the polynomial in a simply connected compact subset of D is of the order
of exp (−c n) . However, if ζ is on the boundary of D such that f has an
algebraic singularity at ζ , then the convergence of polynomial extrapolation
is so slow making polynomial extrapolation practically worthless.
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On the other hand, if the above points zj belong to a domain D which
is mapped by ϕ onto the above defined strip Dd, if f ∈ Mα,d(ϕ) , and if ζ
either belongs to D or is an end-point of Γ = ϕ−1(lR) , then there is a rational
function of the type derived in [73] which interpolates f at 2N +1 points of
Γ and for which the maximum difference between f and the rational at the

points zj and at ζ is of the order of exp
(

−c n1/2
)

, i.e., we can be sure that

rational extrapolation works to predict the value of f(ζ) , even though this
value might be difficult or impossible to compute directly. That is whereas
the success of rational extrapolation was previously based on a “gut feeling’,
we now conditions under which it is guaranteed to work. Some examples of
this type are given in [87]; other practically important ones, including not
yet tried possibilities are given below.

13. A recent discovery of Stenger is the formula for indefinite convolutions
[89], which has led to many novel important formulas in applications, for
approximating convolution integrals, for inverting Laplace transforms, for
solving integral equations, such as Wiener–Hopf equations, which were hith-
erto considered to be difficult, for evaluating Hilbert transforms, for solving
PDE (partial differential equations) and for solving multidimensional inte-
gral equations. The basic models are the integrals

p(x) =

∫ x

a
f(x− t) g(t) dt ,

q(x) =

∫ b

x
f(t− x) g(t) dt ,

(14)

with x ∈ (a, b) (i.e., this process has not yet been studied for a more general
contour Γ .) The “Laplace transform”

F(s) =

∫

E
f(t) e−t/s dt (15)

is required, with E any subinterval of lR = (−∞,∞) such that E ⊇ (0, b−a),
exists for all s ∈ Ω+ ≡ {s ∈ lC : ℜs > 0}. It is shown in [89] that

p = F(J +) g and q = F(J −) g , (16)

with J + and J− defined as in (11) above.

Using the approximations of (11), i.e., J± g ≈ J ±
m g with J ±

m = wA± V ,
and with V defined as in (9) above, one can surmise that if J ± ≈ J±

m , then
F(J ±) ≈ F(J ±

m ) , and indeed, this was shown to be the case in [89]. One
thus gets the approximations
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V p ≈ F (A+)V g and V q ≈ F (A−)V g (17)

with the error these approximations of the same order as the error in (6)
above.
Here, the matrices F (A±) can be evaluated by diagonalization of A±, (a
procedure which has always been possible numerically, to date) for exam-
ple, if A+ = X S X−1 , with S = diag (s−N , . . . , sN ) , then F (A+) =
X F (S)X−1 .

14. Summarizing to this point, we see that Sinc methods offer a self con-
tained family of approximations of the most significant operations of calcu-
lus, and with the error being of the order of that in (6) above:

Interpolation: F ∈ Mα,d(ϕ) =⇒

V F = V F (F (x) ≈ w(x)V F ) ;

Differentiation: ϕ′ F ∈ Lα,d(ϕ) =⇒

V F ′ ≈ (A+)−1 V F (or V F ′ ≈ −(A−)−1 V F ;

Indefinite Integration: F/ϕ′ ∈ Lα,d(ϕ) =⇒

V J± F ≈ A±V F ;

Quadrature: F/ϕ′ ∈ Lα,d(ϕ) =⇒
∫

Γ
F (x) dx ≈ h (V f)T V (1/ϕ′) ;

Indefinite Convolution: (See above for the definitions of p and q.) More
complicated precise conditions hold for the following, but usually it suffices
if p and q belong to Mα,d(ϕ) .

V p ≈ F (A+)V g , V q ≈ F (A−)V g ;

Hilbert Transform: See (6) & (12) above. Uniform error bounds for the
following hold if f ∈ Lα,d(ϕ) :

V S F ≈
(

log(A−)− log(A+)
)

F ;
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This result was derived recently, in [10] .

Cauchy Transforms. See (6) & (12) above. Uniform error bounds for the
following hold if f ∈ Lα,d(ϕ) .

(C F )(z) ≈
N
∑

k=−N

F (zk) ck(z) , z 6∈ Γ;

Laplace Transform Inversion: If g(s) =
∫∞
0 f(t) dt , then (over an interval

Γ , with ϕ : Γ → lR), and if 1 is a column vector of order m with a “1” in
each entry, then

V f ≈
(

A+)−1
g
(

(

A+)−1
)

1 ;

Uniformly accurate error bounds hold for this approximation if f ∈ Mα,d(ϕ) .

Inner Product Evaluations in Galerkin Methods. If f/ϕ′ ∈ Lα,d(ϕ) , and if
ωj denotes the jth basis function, then

∫

Γ
f(x)ωj(x) dx ≈ h f(zj)

ϕ′(zj)
.

15. The above one dimensional convolution procedure extends readily to
multidimensional convolutions. And while the approximation of one di-
mensional convolutions requires the diagonalization of a matrix and thus
seemingly requires more work than we are normally used to expend on a
numerical method, this amount of work is relatively small for solution of
partial differential equations.

16. The solution of PDE that are expressed via integrals of Green’s func-
tions is a straight forward application of Sinc convolution, but to achieve
this, one requires the multidimensional “Laplace transform” of the Green’s
function. Stenger was lucky in this endeavor, in that he was able to obtain
explicit expressions of all of the free space multidimensional Green’s func-
tions known to him for Poisson, biharmonic, wave, and heat problems. The
derivations of these are given in [121 ]. Also in [121], Stenger gives explicit
algorithms for the evaluation of the Green’s function convolution integrals,
first over rectangular, and then also over curvilinear regions. It has thus
become possible to achieve a highly efficient and accurate approximation of
multidimensional Green’s function convolution integrals via the use of a very
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small number of multiplications of one dimensional matrices i.e., via separa-
tion of variables . We are thus able to circumvent the use of large matrices
required via use of classical finite difference or finite element methods, and
thus, to get uniformly accurate solution via use of considerably less effort.

For example, to evaluate the solution of a Poisson problem for a function
U , over a planar region B, with

U(x, y) =

∫ ∫

B
G(x− ξ, y − η) e(ξ, η) dξ dη .

G(x, y) = 1

2π
log

1
√

x2 + y2
,

(18)

and with e a forcing function that might be unbounded on the boundary of B
but is integrable over B , we need the two dimensional “Laplace transform”
Ĝ of the Green’s function G , i.e.,

Ĝ(u, v) =

∫ ∞

0

∫ ∞

0
exp

(

−x
u
− y

v

)

G(x, y) dx dy

=

(

1

u2
+

1

v2

)−1

·

·
(

−1

4
+

1

2π

(

v

u
(γ − ln(v)) +

u

v
(γ − ln(u))

))

.

(19)

Thus, if B is a rectangular region such as B = (0, 1) × (0, 1), if A± are
the Sinc indefinite integration matrices of order m = 2N + 1 over (0, 1),
with A+ = X SX−1 , A− = Y S Y −1 , with S a diagonal matrix, S =
diag(s−N , . . . , sN ) , withXi = X−1 and Y i = Y −1, with G the matrix with
(i, j)th entry Ĝ(si , sj) , and with E the matrix with (i, j)th entry e(zi, zj),
and where the zk denote Sinc points, we can approximate U(zi, zj) ≈ Uij

via use of the following Matlab program:

U = X ∗ (G. ∗ (Xi ∗ E ∗Xi.′)) ∗X.′;
U = U + Y ∗ (G. ∗ (Y i ∗ E ∗Xi.′)) ∗X.′;
U = U +X ∗ (G. ∗ (Xi ∗ E ∗ Y i.′)) ∗ Y.′;
U = U + Y ∗ (G. ∗ (Y i ∗ E ∗ Y i.′)) ∗ Y.′;

This approximate solution has a uniform error of the order of that on the
right hand side of (6), provided that each of the functions, e(·, y) for each
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fixed y ∈ (0, 1) and e(x, ·) for each fixed x ∈ (0, 1) are analytic, and provided
that U is uniformly bounded on B .

We may note that this procedure just involves the product of a few one di-
mensional matrices (separation of variables!). Similarly, higher dimensional
problems, including, e.g., problems over a rectangular region B in lR3, or
over B × (0, T ) are not much more difficult to solve.

17. For example, the electric field integral equation

e(r, t)−
∫

V

∫ t

0

(

∫ t′

0
γ(r′, t′ − ξ)e(r′, ξ)dξ

)

g(| r− r′ |, t− t′)dt′d3r′ = ein(r, t)

was solved in [125] after collocation via Sinc convolution and then solution
of the resulting system of equations via successive approximation. Naghsh-
Nilchi obtained the following computation times:

IBM RISC/560 Workstation Run–Times

Computation time required by Yee’s Finite Difference (F.D.) and Sinc-
convolution methods vs. desired precision. Computer run–time is shown
as Days: Hours: Minutes: Seconds

The unstarred entries are actual computation times.

The starred ({·}∗) entries are computed computation times, based on known
rates of convergence of the finite difference method of Yee [128]. The un-
starred entries are actual computation times.
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Acc. F. D. Run-Time Sinc–Conv. Run-Time

10−1 ≈ 1 second ≈ 1 second

10−2 000:00:00:27 000:00:00:06

10−3 003:00:41:40∗ 000:00:02:26

10−4 > 82 years∗ 000:00:43:12

10−5 > 800,000 years∗ 000:06:42:20

10−6 > 8.2 billion years∗ 001:17:31:11

18. Many other PDE have been solved since via the Sinc convolution ap-
proach, each illustrating the ease of use and accuracy of Sinc methods. The
tutorial [121] contains examples of the solution of PDE over curvilinear
regions, solution of nonlinear PDE, one of which (the nonlinear integro–
differential equation in [10, §4.3.1]) no-one else was able to solve via any
other method, and the ease of solution of wave and time problems via use of
Neumann type iteration, which works, in essence for Sinc methods whenever
it works in theory.

19. In [17] Morse & Feshbach discuss the possibility of use of separation
of variables to solve three dimensional Laplace and Helmholtz equations.
They conclude via use of the Stäckel determinant, that there are essentially
only 13 coordinate systems for which this is possible. The key to success of
this procedure is, in essence is to be able to transform the problem over the
original region into a similar one over a rectangular region. They would then
be able to use one-dimensional methods to solve multidimensional problems.
Stenger shows in [10] that such separation of variables is possible for Poisson,
wave and heat problems in all dimensions. One reason for this is that the
Sinc methods of this package enable solutions of PDE without approximation
of the highest derivatives. The procedure is based on the above convolution
method. One does, however, require one additional property for success,
which is that the coefficients of PDE as well as the patches of the boundary
of the region are analytic in each variable, with all other variables held fixed,
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and real. PDE from applications that are modeled via use of calculus do,
in fact have this feature, under the assumption that such PDE are modeled
by scientists and engineers, via use of calculus. In such circumstances, Sinc
methods also yield exponential convergence, and combined with the separa-
tion of variables referred to above, we are able to obtain significant increases
in the rates of convergence over classical methods.

Stenger has also demonstrated that this separation of variables procedure
extends to PDE defined over curvilinear regions, B, under the assumption
that such regions B can be represented as a union of rotations of a finite
number of regions of the form

B = {(x, y) : a1 < x < b1, a2(x) < y < b2(x)} (20)

in two dimensions, and of the form

B = {(x, y, z) : a1 < x < b1, a2(x) < y < b2(x), a3(x, y) < z < b3(x, y)} ,
(21)

in three dimensions (and similarly, in more than 3 dimensions). These re-
gions can be transformed into rectangular ones via the respective transfor-
mations

x = a1 + (b1 − a1)ξ
y = a2(x) + (b2(x)− a2(x)) η ,

(22)

and

x = a1 + (b1 − a1) ξ
y = a2(x) + (b2(x)− a2(x)) η
z = a3(x, y) + (b3(x, y)− a3(x, y)) ζ .

(23)

These transformations map these regions to rectangular ones while preserv-
ing the requisite analyticity property referred to above, provided that the
ai and bi have similar analyticity properties. Similar assumptions must be
made of the boundary, which is to consist of a finite number of analytic arcs
in two dimensions, and of a finite number of “analytic patches” in three
dimensions3. Surprisingly, (i.e., since such transformations “disturb” the
convolutions, although luckily, they do not disturb them enough) we are

3Stenger makes these concepts precise in [121] .
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still able to use separation of variables to evaluate the convolution inte-
grals after such transformations are made, via use of the original “Laplace
transformed” Green’s functions.

20. Success of the above procedure also depends on recently obtained novel
extensions in [121] of the one dimensional convolution formulas for approxi-
mating the above one dimensional integrals p and q in (14) , to the approx-
imation of integrals of the form

r(x) =

∫ x

a
g(x− t, t) dt ,

s(x) =

∫ x

a
k(x , x− t , t) dt .

(24)

21. Stenger also shows in [121] that if the non-homogeneous term of the PDE
has such analyticity properties, then so does the result of a convolution of
this term with a Green’s function, and this enables him to show that the
solution of the PDE also has the correct analyticity properties to enable the
achievement of exponential convergence at a rate (7) in the approximate
solution.

2.2 Some Inverse Problem Results of Frank Stenger.

The company, TechniScan Inc., was founded by S.A. Johnson, who is Chief
Scientist of this company. Frank Stenger has in the past written a number of
joint papers with S. Johnson, D. Borup, J. Wiskin, M. Berggren and other
present or past members of this group. Frank Stenger is also listed as an
inventor on certain TechniScan patents.

TechniScan, Inc. recently won two awards for the development of a breast
cancer scanner based on ultrasound inverse scattering tomography. It re-
ceived the Stoel-Rives award for medical innovation. It also received the
”Best of State Utah 2005” presentation for medical product development.

Currently, TechniScan Inc. has a prototype ultrasonic tomography machines
installed and undergoing clinical evaluation the St. Mark’s Hospital in Salt
City, UT and one at McKay-Dee Hospital in Ogden, UT. These machines are
the outgrowth of earlier research machines that used preliminary imaging
algorithms based on use Sinc bases to carry out their inversion algorithms.
This early work provides a beneficial balance of accuracy and speed and
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efficient use of computer memory since only 4 samples per wavelength are
required using Sinc bases, whereas at least 8 samples per wavelength are
required via other bases or sampling schemes.

Sinc basis sampling was featured in a TechniScan, Inc. publication outlining
a method, using inverse scattering, that increased speed and accuracy for
remote SONAR imaging of buried objects on the ocean bottom [129]

Other articles featuring Sinc methods of inverse problems and imaging in-
clude [130 , 131 , 132] .

We list here some inverse problems results of Frank Stenger which have
yet been used commercially. The results listed here are based on the 3–d
Helmholtz equation,

∇2 u(r̄) + k2(1 + f(r̄))u(r̄) = 0 in B , (25)

where B is a bounded region in lR3 , f(r̄) = c20/c
2(r̄)−1, with c(r̄) and c0 the

speeds of sound in B and in lR \ B respectively, so that f = 0 on lR3 B̄, and
with k = ω/c0 . A source with respect to the equation (25) is any function
v which satisfies in B the equation

∇2 v(r̄) + k2 v(r̄) = 0 . (26)

It may be shown that the solution u of (25) resulting from a source v satis-
fying (26) satisfies the integral equation

u(r̄)− v(r̄) = k2
∫ ∫ ∫

B
G(r̄ , r̄′ , k) f(r̄′)u(r̄′) dr̄′ , (27)

where

G(r̄ , r̄′ , k) =
exp (i k |r̄ − r̄′|)

4π |r̄ − r̄′| . (28)

For example, two easily produced sources in applications are a plane wave
and a spherical source. These are given respectively by

v(r̄) = exp(i k̄ · r̄) , |k̄| = k
v(r̄) = G(r̄ , r̄s , k) , r̄s 6∈ B . (29)

We also denote two points on the exterior of B : r̄s – a source point, and r̄d
– a detector point.
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Two types of approximations were popular in the past, since the solution of
the Helmholtz equation is time consuming:

A. The Born approximation:

u(r̄) = ei k̄ · r̄ eW ,

W =WB(r̄ , r̄s , k) =

∫ ∫ ∫

B
G(r̄ , r̄′ , k) f(r̄′) ei k̄ · r̄ dr̄ .

(30)

and

B. The Rytov approximation

u(r̄) = G(r̄ , r̄s , k) e
W ,

W =WR(r̄ , r̄s , k) =

∫ ∫ ∫

B
G(r̄ , r̄′ , k) f(r̄)′G(r̄′ , r̄s , k) dr̄ ,

(31)

The following results in which α is a positive number depending on the
smoothness of f on the ray path connecting r̄s and r̄d were established in
[60]:

2 i

k
WB(r̄d , r̄s , k)

= |r̄d − r̄s|
∫ 1

0
f((1− t) r̄d + tr̄s) dt+O(k−α) , k → ∞ ,

4 i

k G(r̄d , r̄s , k)
WR(r̄d , r̄s , k)

= |r̄d − r̄s|
∫ 1

0
f((1− t) r̄d + t r̄s) dt+O(k−α) , k → ∞ .

(32)

These results show that the ray paths for the Born and Rytov approxima-
tions are straight lines, and if the dominant terms of these approximations
were known then one could use X-ray tomography algorithms to reconstruct
the function f in B .

The geometric optics approximation to the solution u of (25) satisfies the
equation

i

k
log

(

u(r̄s , k)

u(r̄d , k)

)

=

∫

P

√

1 + f(r̄(s)) ds+O(k−α) , k → ∞ , (33)
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where P is the ray path (i.e., not a straight line) connecting r̄s and r̄d .

Now, e.g., for the case of ultrasonic tomography involving frequencies ν
from 2 to 4 megahertz, the difference between the actual values on the
left hand sides of (32) and (33) and the corresponding terms on the right
is very large, so that direct application of these asymptotic results is not
very useful. Similarly, the left hand sides of each of the terms in (33) and
(33) have a singularity at k = ∞, and so polynomial extrapolation to the
limit via polynomials in 1/k does not work. On the other hand, it can
be shown that the terms on the left hand sides of of (32) and (33) belong
to the space Mα,d(ϕ) as a function of k , (see §2.1 , #5 above) with ϕ(k) =
log(k−k0) , with 0 < k0 < 2π ν/c0 , i.e., we can accurately approximate these
functions with low degree rationals (see §2.1 , #12 above). Additionally,
when a transducer “fires”, it contains all frequencies ν in an interval of
frequencies, such as, e.g., 2 × 106 < ν < 4 × 106. We can thus use Thiele’s
method of extrapolation to the limit using a finite number of values of on
2×106/c0 < k < 4×106/c0 to accurately predict the dominant terms on the
right hand sides of (32) and (33). Noise is of course present in applications,
and we must therefore first apply a noise reduction algorithm such as ℓ1

averaging [62] to remove the majority of the noise before applying Thiele’s
method.

2. The following result is established in [123]: Given points r̄0 ∈ B ,
r̄ ∈ lR3 \ B , and any ε > 0 , there exist two sources v1 and v2 satisfying
(26) , such that f(r̄0) may be computed to within an error of ε using the
values u1(r̄) and u2(r̄) by performing one addition, one multiplication, and
one division.

2.3 Miscellaneous Research Results of Frank Stenger.

Some of the more interesting ”non-Sinc” research results of Frank Stenger
are presented here.

1. In [19], a joint with P. Lipow (a former student of Schoenberg) it is shown
that if {Qn}∞1 is any sequence of n–point quadrature formulas such that
Qn(f) converges to I(f) =

∫ b
a f(x) dx as n→ ∞ for all continuous functions

f on a finite interval [a, b] , and given any strictly decreasing sequence of pos-
itive numbers {ak}∞k=1 there exists a function f that is continuous on [a, b] ,
and a sub-sequence {Qnk

}∞k=1 such that I(f)−Qnk
(f) = ak , k = 1 , 2 , . . . ,

where ‖f‖ = 3 a0 . That is, the sequence {Qn} can converge arbitrarily
slowly. Such a result was previously known only for polynomial approxi-
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mation of continuous functions. Moreover, it extends Polya’s result on the
non-convergence of the Newton–Cotes quadrature rules for all continuous
functions.

2. In [32] Rosenberg and Stenger obtained an interesting result involving
the “bisection” of triangles. Given a triangle T0 with smallest interior angle
α , the process of bisection of this triangle is to draw a line segment from
the mid-point of the longest edge to the opposite vertex (if there are two or
three of the edges that are longest, then it is immaterial which longest edge
is selected), thus producing two triangles. The result proved in [32] states
that if T is any member of the family of triangles produced by first bisecting
T0 to produce T1 and T2 , then bisecting each of the two new triangles, and so
on, then the size of the smallest interior angle of T is at least α/2 . Although
it was unknown to the authors of [32] when they wrote their paper, that the
angles of triangles do not go to zero upon repeated bisection was a conjecture
of finite element users, the result of which was required for convergence.

3. Also, during the same year, Stenger derived a novel formula via use
of a combinatorial argument [34] for computing the topological degree of
a continuous mapping from lRn to lRn, as a function of the signs of the
coordinates of the map at a finite number of points on the boundary of the
domain. The original proof published in [34] uses induction. A different
proof for the two dimensional case is given on page 32 of Stenger text [87].
For example, if B is a bounded planar region with boundary ∂B containing
the points X0 = (x0, y0) , X1 = (x1, y1) , . . . , XN = (xN , yN ) , where these
points are listed in counterclockwise fashion, and if at least one the two
continuous components (f, g) of F is non-zero on each closed arc of ∂B with
end-points at Xj and Xj+1 , for j = 0 , 1 , . . . , N , with XN+1 = X0 , then
the topological degree of F at (0, 0) relative to B given by

d(F,B, (0, 0)) =
1

8

N
∑

j=0

∣

∣

∣

∣

∣

∣

∣

sgn f(Xj) sgn g(Xj)

sgn f(Xj+1) sgn g(Xj+1)

∣

∣

∣

∣

∣

∣

∣

. (34)

Here sgn(a) is defined for any real number a by sgn(a) = 1 if a > 0 , 0 if
a = 0 , and −1 if a < 0 .

The above sum (34) is always an integer under the conditions of application
of the formula, and as is well known, if d(F,B, (0, 0)) 6= 0 then there are at
least |d(F,B, (0, 0))| solutions of the equation (f, g) = (0, 0) in the interior
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of B .

4. In a recent colloquium talk in Math. at the Univ. of Utah, David Bailey
from Lawrence Livermore Labs. stated that in computing π to 20 billion
places, his group used Sinc quadrature to check their results.

5. Asymptotic methods are, of course important, especially for deriving
the dominant term of an expansion. It is also frequently possible to set up
an indefinite integral, or a Volterra integral equation for either bounding
the error of a truncated expansion, or for obtaining more terms of of an
expansion. This integral, or Volterra integral equation can now be evaluated
to uniform accuracy on the whole interval of interest via Sinc methods. For
example, a derived asymptotic result (of an integral, a differential equation,
etc.) might take the form

f(x) = g(x) (1 + ε(x)) , x ∈ (a ,∞) ,

with g(x) explicitly known, followed by an estimate such as, ε(x) = O (x−c) ,
or a bound on ε(x) which might depend on x ∈ (a ,∞) . Sinc methods enable
a simple expression for ε(x) that can be evaluated to arbitrary accuracy for
any x ∈ (a ,∞) . See the IVP examples section of Sinc-Pack.

6. In [8] Stenger proved, among other things, if Qn(f) is the n–point Gaus-
sian quadrature approximation to I(f) =

∫ 1
−1 f(x) dx , if f is analytic on the

unit disc and integrable over (−1, 1) , and if the even derivatives f (2k)(0) of
f are all of one sign, then Qn(f) converges monotonically to I(f) .

2.4 Program Packages of Frank Stenger.

The following program packages exist:

i. The quadrature package, ALGORITHM 614. A FORTRAN Subroutine
for Numerical Integration in Hp, written jointly with K. Sikorski and
J. Schwing, in ACM TOMS 10 (1984) 152–160.

This routine, originally written in FORTRAN, evaluates integrals in
two ways: (a) To an arbitrary given accuracy of ε ; or (b) Using a mini-
mal number of points to achieve and accuracy, when f/vp′ ∈ Mα,d(ϕ) ,
and we know both α and d . It is time to improve it, by rewriting it
in Matlab, and by making it dependent on ϕ , thus shortening the
program considerably.
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ii. The ODE–IVP package [106], ODE – IVP – PACK via Sinc Indefi-
nite Integration and Newton’s Method, with SÅ. Gustafson, B. Keyes,
M. O’Reilly, and K. Parker, published in “Numerical Algorithms” 20
(1999) 241–268 .

This package can be downloaded from Netlib. It is similar to Bill
Gear’s package for solving initial value problems of ordinary differential
equations, except that it differs from his, or other packages, in the
following ways:

• a. It uses Sinc indefinite integration, rather than step–by–step
methods based on finite differences;

• b. The package yields arbitrary, uniform accuracy, for all prob-
lems, whereas other packages are accurate to within a least squares
error;

• c. Other packages work only for finite intervals, whereas the
present one yields solutions over arbitrary intervals, finite or in-
finite, and even contours;

• d. Classical methods suffer due to problems of instability, whereas
this package does not; and

• e. Classical methods have trouble dealing with Stiff problems,
whereas this package does not.

iii. The PDE package, Ptolemy, [107], prepared for his Ph.D. work, by K.
Parker, in 1999.

It is written in Maple. It converts an elliptic PDE and IE (integral
equations) over a curvilinear region to a system of algebraic equations,
based on Sinc approximation of the derivatives of the PDE.

iv. Handbook of Sinc Numerical Methods, published by CRC Press (2010).

It consists of two parts:

(a) A Tutorial of Sinc Methods, a 470–page text, i containing novel
derivations of the Sinc theory and one dimensional Sinc methods, via
minimization of the use of complex variables, then derives novel meth-
ods of solution of PDE and integral equations via use of Sinc convo-
lution and boundary integral methods. It is moreover shown in the
tutorial that all solutions of linear PDE can be obtained via use of one
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dimensional Sinc methods, (i.e., via separation of variables– Stenger
expends considerable effort to show that this is always possible) even
over curvilinear regions, yielding solutions that are uniformly accurate
and converge exponentially, as a function of the size of the one dimen-
sional matrices. The multidimensional Laplace transforms of Green’s
functions are required for success of this endeavor, and to this end,
Stenger was able to obtain the Laplace transforms of all of the free
space Green’s functions known to him. The resulting solution tech-
niques are often orders of magnitude faster than current methods in
use.

(b) A set of approximately 450 Matlab programs, written by Stenger.
The use of some of these programs is illustrated in the above cited
tutorial, for solving a variety of one dimensional and PDE problems.
These are contained in a CD published with the text ”Handbook of
Sinc Numerical Methods”, CRC Press (2010).

2.5 Textbooks.

The following textbooks are authored or co-authored by Stenger:

a. Numerical Methods Based on Sinc and Analytic Functions, approxi-
mately 565 pages, Computational Math. Series, Vol. 20, Springer–
Verlag (1993).

b. Selected Topics of Approximation and Computation, with K. Sikorski
and M. Kowalski, approximately 349 pages, Oxford University Press
(1995). Was awarded “First Prize” by the Minister of Education in
Poland, for the best research in 1995.

c. Numerical Analysis, textbook, with J. McNamee, 531 pages, in manuscript.
McNamee has been deceased for over 12 years. The book was started
by him and me about 20 years ago. During the past year I wrote
three additional chapters, 2 on Sinc methods and one on asymptotic
methods.

d. Handbook of Sinc Numerical Methods, CRC Press (2010). About 490
pages. Completed in 2010. this was already discussed above.

The following text is a nice introduction to Sinc methods:
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e. Sinc Methods for Quadrature and Differential Equations, by J. Lund &
K. Bowers, approximately 334 pages, SIAM (1992).
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tion and Newton’s Method, with SÅ. Gustafson, B. Keyes, M. O’Reilly,
and K. Parker, Numerical Algorithms 20 (1999) 241–268.

[107]–Computer Package, Ptolemy, A Sinc–Maple package prepared mainly
by my student, Ken Parker, for his Ph.D. work.

[108] Sinc Approximation for Cauchy–Type Singular Integrals over Arcs,
Aus. Math. Soc. V. 42 (2000) 87–97.

[109] Functional Equations related to the Iteration of Functions, with R.
Resch and J. Waldvogel, Aequationes Math. 60 (2000) 25–37.

[110] Sinc Solution of the Integral Equation Formulation of Lamé’s Equa-
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Method, with SÅ. Gustafson, B. Keyes, M. O’Reilly, and K. Parker,
Numerical Algorithms 20 (1999) 241–268. Package can be down loaded
from Netlib.

37



[125] A. Naghsh–Nilchi, Iterative Sinc Convolution Method of Solving Three
Dimensional Electromagnetic Models, Ph.D. Dissertation, Univ. of
Utah (1997).

[126] P.M. Morse & H. Feshbach, Methods of Theoretical Physics, §5.1, Vol.
1, 464–523 & 655-666 (1953).

[127] H.S. Wilf, Exactness Condition in Numerical Quadrature, Numer.
Math. 6 (1964) 315–319 .

[128] K. Yee, Numerical Solution of Boundary Value Problems Involving
Maxwell’s Equations in Isotropic Media, IEEE Trans., Antennas and
Propagation, AP–16 (1966) 302–307 .

[129] J.W. Wiskin, D.T. Borup, & S.A. Johnson. Inverse Scattering
from cylinders of arbitrary cross-section in stratified environments via
Green’s operator, J. Acoust. Soc. Am., 102 (2), Pt.1, August, pp.
853-864, 1997.

[130] J.W. Wiskin, D. Borup, S.A. Johnson. Fast and Accurate Acoustic
Propagation and Inversion in Layered Media Environments, presented
Oct. 27-30, 1998, at the Canadian Acoustic Association (CAA) Con-
ference, in London, Ontario, Canada, Secretary of CAA, Ottawa, On-
tario, Canada.

[131] J.W. Wiskin, M. Zhdanov, D. T. Borup, S. A. Johnson, J. Riley,
O. Portniaguine, E. Nichols, U. Conti., 3-D EM Imaging in Quasi-
Static regime, of Inhomogeneities in Ocean Sediment with Layered
Green’s Functions: Experiment and Theory, 2nd Quadrennial Sympo-
sium on Three-Dimensional Electromagnetics (Symposium Honoring
G Hohmann), Univ. of Utah, , Oct. 26-29, 1999.

[132] A. Naghsh–Nilchi & Shahram Daroee, Iterative Sinc Convolution
Method for Solving Radiosity Equation in Computer Graphics, to ap-
pear in ETNA.

38


