Contents

Preface xi

1 Introduction 1
 1.1 Graphics Areas 1
 1.2 Major Applications 2
 1.3 Graphics APIs 3
 1.4 3D Geometric Models 4
 1.5 Graphics Pipeline 4
 1.6 Numerical Issues 5
 1.7 Efficiency 8
 1.8 Software Engineering 8

2 Miscellaneous Math 15
 2.1 Sets and Mappings 15
 2.2 Solving Quadratic Equations 19
 2.3 Trigonometry 20
 2.4 Vectors 23
 2.5 2D Implicit Curves 30
 2.6 2D Parametric Curves 36
 2.7 3D Implicit Surfaces 38
 2.8 3D Parametric Curves 40
2.9 3D Parametric Surfaces 41
2.10 Linear Interpolation .. 42
2.11 Triangles .. 43

3 Raster Algorithms .. 51
3.1 Raster Displays .. 51
3.2 Monitor Intensities and Gamma 52
3.3 RGB Color ... 54
3.4 The Alpha Channel ... 56
3.5 Line Drawing ... 57
3.6 Triangle Rasterization .. 63
3.7 Simple Antialiasing ... 67
3.8 Image Capture and Storage 68

4 Signal Processing .. 71
4.1 Digital Audio: Sampling in 1D 72
4.2 Convolution ... 75
4.3 Convolution Filters ... 89
4.4 Signal Processing for Images 96
4.5 Sampling Theory ... 104

5 Linear Algebra ... 119
5.1 Determinants ... 119
5.2 Matrices .. 121

6 Transformation Matrices ... 135
6.1 Basic 2D Transforms ... 135
6.2 Basic 3D Transforms ... 147
6.3 Translation ... 151
6.4 Inverses of Transformation Matrices 154
6.5 Coordinate Transformations 154

7 Viewing .. 159
7.1 Drawing the Canonical View Volume 160
7.2 Orthographic Projection 162
7.3 Perspective Projection ... 166
7.4 Some Properties of the Perspective Transform 172
7.5 Field-of-View ... 173
Contents

8 Hidden Surface Elimination
8.1 BSP Tree .. 177
8.2 Z-Buffer .. 186

9 Surface Shading
9.1 Diffuse Shading 191
9.2 Phong Shading 194
9.3 Artistic Shading 197

10 Ray Tracing
10.1 The Basic Ray-Tracking Algorithm 202
10.2 Computing Viewing Rays 203
10.3 Ray-Object Intersection 205
10.4 A Ray-Tracking Program 209
10.5 Shadows .. 211
10.6 Specular Reflection 212
10.7 Refraction 213
10.8 Instancing 216
10.9 Sub-Linear Ray-Object Intersection 218
10.10 Constructive Solid Geometry 229
10.11 Distribution Ray Tracing 229

11 Texture Mapping
11.1 3D Texture Mapping 240
11.2 2D Texture Mapping 246
11.3 Tessellated Models 248
11.4 Texture Mapping for Rasterized Triangles 250
11.5 Bump Textures 252
11.6 Displacement Mapping 253
11.7 Environment Maps 253
11.8 Shadow Maps 255

12 A Full Graphics Pipeline
12.1 Clipping ... 259
12.2 Location of Clipping Segment of the Pipeline .. 260
12.3 An Expanded Graphics Pipeline 264
12.4 Backface Elimination 265
12.5 Triangle Strips and Fans 266
12.6 Preserved State 266
12.7 A Full Graphics Pipeline 267
13 Data Structures for Graphics 269
 13.1 Triangle Meshes 269
 13.2 Winged-Edge Data Structure 270
 13.3 Scene Graphs 272
 13.4 Tiling Multidimensional Arrays 274

14 Sampling 279
 14.1 Integration 279
 14.2 Continuous Probability 284
 14.3 Monte Carlo Integration 288
 14.4 Choosing Random Points 291

15 Curves 301
 15.1 Curves .. 301
 15.2 Curve Properties 307
 15.3 Polynomial Pieces 310
 15.4 Putting Pieces Together 318
 15.5 Cubics ... 321
 15.6 Approximating Curves 327
 15.7 Summary .. 344

16 Computer Animation 347
 16.1 Principles of Animation 348
 16.2 Keyframing 352
 16.3 Deformations 360
 16.4 Character Animation 361
 16.5 Physics-Based Animation 367
 16.6 Procedural Techniques 370
 16.7 Groups of Objects 373
 16.8 Notes .. 376

17 Using Graphics Hardware 379
 17.1 What is Graphics Hardware 379
 17.2 Describing Geometry for the Hardware 380
 17.3 Processing Geometry into Pixels 387

18 Building Interactive Graphics Applications 401
 18.1 The Ball Shooting Program 402
 18.2 Programming Models 404
 18.3 The Modelview-Controller Architecture 421
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4 Example Implementations</td>
<td>433</td>
</tr>
<tr>
<td>18.5 Applying Our Results</td>
<td>443</td>
</tr>
<tr>
<td>18.6 Notes</td>
<td>446</td>
</tr>
<tr>
<td>18.7 Exercises</td>
<td>447</td>
</tr>
<tr>
<td>19 Light</td>
<td>451</td>
</tr>
<tr>
<td>19.1 Radiometry</td>
<td>451</td>
</tr>
<tr>
<td>19.2 Transport Equation</td>
<td>460</td>
</tr>
<tr>
<td>19.3 Photometry</td>
<td>462</td>
</tr>
<tr>
<td>20 Color</td>
<td>465</td>
</tr>
<tr>
<td>20.1 Light and Light Detectors</td>
<td>466</td>
</tr>
<tr>
<td>20.2 Tristimulus Color Theory</td>
<td>466</td>
</tr>
<tr>
<td>20.3 CIE Tristimulus Values</td>
<td>468</td>
</tr>
<tr>
<td>20.4 Chromaticity</td>
<td>469</td>
</tr>
<tr>
<td>20.5 Scotopic Luminance</td>
<td>472</td>
</tr>
<tr>
<td>20.6 RGB Monitors</td>
<td>472</td>
</tr>
<tr>
<td>20.7 Approximate Color Manipulation</td>
<td>473</td>
</tr>
<tr>
<td>20.8 Opponent Color Spaces</td>
<td>474</td>
</tr>
<tr>
<td>21 Visual Perception</td>
<td>477</td>
</tr>
<tr>
<td>21.1 Vision Science</td>
<td>478</td>
</tr>
<tr>
<td>21.2 Visual Sensitivity</td>
<td>479</td>
</tr>
<tr>
<td>21.3 Spatial Vision</td>
<td>495</td>
</tr>
<tr>
<td>21.4 Objects, Locations, and Events</td>
<td>509</td>
</tr>
<tr>
<td>21.5 Picture Perception</td>
<td>517</td>
</tr>
<tr>
<td>22 Tone Reproduction</td>
<td>521</td>
</tr>
<tr>
<td>22.1 Classification</td>
<td>524</td>
</tr>
<tr>
<td>22.2 Dynamic Range</td>
<td>525</td>
</tr>
<tr>
<td>22.3 Color</td>
<td>527</td>
</tr>
<tr>
<td>22.4 Image Formation</td>
<td>529</td>
</tr>
<tr>
<td>22.5 Frequency-Based Operators</td>
<td>529</td>
</tr>
<tr>
<td>22.6 Gradient-Domain Operators</td>
<td>531</td>
</tr>
<tr>
<td>22.7 Spatial Operators</td>
<td>532</td>
</tr>
<tr>
<td>22.8 Division</td>
<td>534</td>
</tr>
<tr>
<td>22.9 Sigmoid</td>
<td>535</td>
</tr>
<tr>
<td>22.10 Other Approaches</td>
<td>540</td>
</tr>
<tr>
<td>22.11 Night Tonemapping</td>
<td>543</td>
</tr>
<tr>
<td>22.12 Discussion</td>
<td>544</td>
</tr>
</tbody>
</table>
23 Global Illumination 547
 23.1 Particle Tracing for Lambertian Scenes 548
 23.2 Path Tracing 551
 23.3 Accurate Direct Lighting 553
24 Reflection Models 561
 24.1 Real-World Materials 561
 24.2 Implementing Reflection Models 563
 24.3 Specular Reflection Models 565
 24.4 Smooth Layered Model 566
 24.5 Rough Layered Model 569
25 Image-Based Rendering 577
 25.1 The Light Field 578
 25.2 Creating a Novel Image from a Set of Images 579
26 Visualization 583
 26.1 2D Scalar Fields 583
 26.2 3D Scalar Fields 585
References 595
Index 613