
Moving CNN Accelerator Computations Closer to Data

Sumanth Gudaparthi

University of Utah

Email: sgudapar@cs.utah.edu

Surya Narayanan

University of Utah

Email: surya@cs.utah.edu

Rajeev Balasubramonian

University of Utah

Email: rajeev@cs.utah.edu

Abstract—
A significant fraction of energy in recent CNN accelerators

is dissipated in moving operands between storage and compute
units. In this work, we re-purpose the CPU’s last level cache
to perform in-situ dot-product computations, thus significantly
reducing data movement. Since a last level cache has several
subarrays, many such dot-products can be performed in paral-
lel, thus boosting throughput as well. The in-situ operation does
not require analog circuits; it is performed with a bit-wise AND
of two subarray rows, followed by digital aggregation of partial
sums. The proposed architecture yields a 2.74× improvement
in throughput and a 6.31× improvement in energy, relative to
a DaDianNao baseline. This is primarily because the proposed
architecture eliminates a large fraction of data transfers over
H-Tree interconnects in the cache.

Keywords-CNN, neuromorphic architectures, neural net-
works, accelerator

I. INTRODUCTION

Several recent works have introduced accelerators for con-

volutional neural networks (CNNs) [1], [2], [3], [4], [5], [6].

Many of these papers achieve high efficiency by reducing

data movement and with new dataflows that maximize data

reuse. Some even propose in-situ computing to reduce data

movement. However, prior efforts at in-situ computing either

require inefficient analog circuits (ISAAC [2], PRIME [7]),

or require a new higher-cost DRAM chip (DRISA [8]). This

paper introduces an SRAM cache based In-Situ Computation

Accelerator (SISCA), that performs dot products adjacent to

SRAM subarrays. This significantly reduces data movement,

it performs in-situ computations without relying on analog

circuits, and it shows how the last level cache (LLC) in a

conventional CPU can be re-purposed as a CNN accelerator.

This can improve CNN inference efficiency in both servers

and mobile devices.

SISCA leverages recently introduced logic-in-memory

circuits [9] that activate two wordlines in an SRAM subarray

to produce the bit-wise AND of the contents in the corre-

sponding rows. A tree of adders beside the SRAM subarray

then adds these bits to produce the eventual dot-product. To

facilitate these operations, one of the operands in the dot-

product is shifted and replicated in the SRAM.

Several factors contribute to the high efficiency of this

architecture. It offers very high parallelism since every

subarray in a large LLC can perform parallel dot-product

operations. Weights once programmed into a subarray do

not have to navigate the H-tree within the LLC bank. The

primary downside is that the accelerator offers a lower on-

chip storage capacity than some competing accelerators.

This is because SISCA relies on SRAM (as opposed to

dense memristors in ISAAC/PRIME or eDRAM in DaDi-

anNao [1]) and because of operand replication. However, its

integration into an LLC means that the incremental cost of

adding a CNN accelerator to a mobile or server processor

is relatively small.

Our preliminary evaluation with ResNet18 shows that

SISCA is able to achieve 2.74× higher throughput than

DaDianNao and 6.31× lower energy.

II. BACKGROUND

A. Logic-in-Memory

Work by Jeloka et al. [9] introduces a configurable SRAM

memory that can perform bit-wise logical operations on

two or more rows within a subarray. By activating multiple

wordlines, logical AND/NOR operations can be performed

on cells that share the same bitlines. This Logic-in-Memory

operation splits the cross-couple of a conventional voltage

differential sense amplifier (SA) into two parallel cross-

couples tied together.

B. Compute Caches

The Compute Cache architecture [10] employs the Logic-

in-Memory circuit to perform several simple in-situ vector

operations (copy, search, compare, and logical operations).

With in-situ computing, the on-chip data movement and

especially traversal of the H-Tree are reduced. Since the H-

Tree consumes more than 80% of energy in a large cache,

this has a significant impact on overall cache energy and

throughput.

C. CNN Accelerators

Our baseline for this study is DaDianNao [1], which offers

the basic scaffolding required in most CNN accelerators.

For future work, we will explore if the proposed SISCA

architecture can be combined with the many ideas that

have been introduced in recent years, e.g., the data reuse

in Eyeriss [3], or the deep compression in EIE [5].

A few other CNN accelerators, notably ISAAC [2] and

PRIME [7], have constructed pipelines that incorporate in-

situ dot-product calculations. Memristor crossbars are used



to compute an analog dot-product across several rows and

in parallel for several columns. That approach requires

large and power-hungry analog-to-digital converters. Analog

circuits have traditionally also been unattractive for industry.

This paper uses a more modest digital in-situ operation that

may be more palatable to industry. We therefore arrive at

a design point that offers performance and energy that is

between those of DaDianNao and ISAAC.

III. PROPOSAL

A. Overview

We propose incorporating the Logic-in-Memory operation

into a processor’s LLC. This introduces a small overhead in

area, but has a minimal impact on the typical read/write

operations of the LLC. When executing a CNN, the LLC

or parts of it can be operated as an accelerator. To process

a layer of the CNN, its input feature maps and weights are

loaded from memory into LLC subarrays. In-situ computa-

tions are performed and the output results are retained in the

LLC subarrays. When performing the next layer, a new set of

weights are loaded into LLC subarrays and the computations

continue. Many networks may be able to accommodate all

their weights in the LLC, thus avoiding frequent memory

fetches.

The multiplication of two operands can be computed by

AND-ing each bit of one operand with each bit of the other

operand, and aggregating the results with appropriate shifts.

To facilitate the AND operation, we leverage the Logic-in-

Memory circuit; to reduce data movement, the aggregation is

performed adjacent to the subarray without H-Tree traversal.

The weights and the input feature maps are first placed

into SRAM subarrays. If the weights have a smaller size

than the input feature maps, the weights are replicated. Each

replica occupies a different row in the subarray and is a

bit-shifted version of the previous row. A row of the input

feature map is bit-wise AND-ed with a row of weights; this

is repeated for each shifted replica. Once this is done (i.e.,

each bit of an input operand has been AND-ed with every

bit of a weight operand), an adjacent RAT unit (Registers

and Adder Tree) aggregates all these partial sums to yield a

product.

To compute an output neuron, a number of such products

have to be aggregated. Since a subarray row can have many

operands, the above steps yield many products within the

subarray. These products can be aggregated in the RAT unit

adjacent to the subarray (without requiring H-Tree traversal).

Another aggregation step must be performed if a neuron has

many inputs and its dot-product computation is spread across

multiple subarrays.

To compute other output neurons in a convolutional layer,

the input operands in a row can be shifted so they can be

multiplied with other weights in that subarray. Further, a

row of input operands must also be sent to other subarrays

so they can be multiplied with weights in other subarrays.

Thus, to compute all the output neurons in a convolutional

layer, the input operand rows must be occasionally moved

around over the H-Tree. However, this data movement is

much lower than the data movement required in a baseline

like DaDianNao.

Since frequent bit-shift and operand-shift operations must

be performed for activations and input operands respectively,

each bank has a Shifter unit that is shared by all the

subarrays. For example, when loading weights into the

subarrays, the Shifter unit receives a row of weights from

off-chip DRAM; shifted replicas of that row are then written

into the subarrays.

B. Example

Figure 1 shows the overall block diagram of the SISCA

architecture and an example mapping of operands to one

subarray. The figure shows a single LLC bank that has

8 subarrays (only 4 are shown) and a shifter unit. Each

subarray has a RAT unit. We assume that each subarray

size is 512×512. We split this subarray into 32 logical

columns; each logical column is wide enough to store a

16-bit operand.

Consider an example layer in a CNN where 128

{3×3×64} kernels are being applied on 128×128×64 input

feature maps. Assume that inputs and weights are both 16-

bit fixed-point values.

There are a total of 1 million activations and 72K weights

present in this example. As the set of weights is significantly

smaller than the set of activations, the weights are replicated

16× and are placed in different rows of a subarray. Each

replica in a logical column is a 1-bit left rotated version of

the previous replica (see Figure 1b). For example, a weight

operand1 (W0) is replicated 16× and its left shifted versions

are placed in different rows (row:1 to row:16) of the same

logical column (LC:1).

The rows in a subarray are split between weights and ac-

tivations. To utilize the computational capability of SISCA,

the activations and kernels are distributed evenly across all

1024 subarrays. For our example, the activations have a

memory footprint of 2 MB, while the replicated kernels

have a memory footprint of 2.25 MB. After even distribution

among all the subarrays, each subarray has 32 rows allocated

for activations, and 36 rows allocated for kernels. The

remaining 444 rows are used to store the generated output

neurons as well as to store the weights for other layers.

Figure 1b shows the operations that are performed in

a single subarray. The kernel entry in row:1 is bit-wise

AND’ed with the feature map entry in row:p+1. This

operation generates 1/16th of the bits required for one

multiplication operation. The partial products after an AND

operation are stored in registers present in the RAT unit.

To derive the next set of bits required for the multiplication

1Ca−b: bit number-b in the ath variable of operand C



(a) (b)

SA: Sub-Array RAT: Registers and Adder Tree Block LC: Logical Column

Figure 1. SISCA Block Diagram

operation, a bit-wise AND is performed for the kernel entry

in row:2 and the the feature map entry in row:p+1. After

16 such steps until row:16, all the partial products necessary

for the multiplication operation have been generated and

stored in registers. These partial products are sent to a tree

of 1-bit adders present in the RAT unit for accumulation. A

single output neuron in this example must sum 576 products.

Therefore, this computation is spread across 18 subarrays

(each subarray performs 32 products in parallel). A home

subarray gathers these partial sums to produce the final

output neuron; 34 bytes are transmitted on the H-tree every

16 cycles to enable this. Once the output neuron is produced,

it is written to one of the rows in the home subarray. Since

a subarray has two rows of weights (and their 30 rotated

replicas), the same row of input operands can be reused to

produce another set of output neurons in the next 16 cycles.

In the next step, each subarray uses the next row of inputs

to compute the next two output neurons in the next 32 cycles.

Since each subarray in our example has 32 rows of inputs,

this process continues for a total of 1K cycles, generating

64 output neurons across 18 subarrays. Since the LLC has

1K subarrays, nearly 3.6K output neurons are generated in

these 1K cycles with minimal data movement.

Next, each input row in each subarray must perform

an operand-level rotation, i.e., input operand I0 occupies

the position of input operand I1, and so on. This shift is

performed by sending each input operand row to its shifter

over the H-tree. One such shift has to be performed every

32 cycles, so the overhead is low. After these shifts, another

3.6K output neurons are generated in the next 1K cycles.

Since a row has 32 input operands, this process repeats for

a total of 32K cycles, generating 115K output neurons.

Once this is done, every row of inputs has to move to a

different subarray so it can be multiplied with other weights.

This H-tree traversal for a row is performed once every 1K

cycles, so the overhead is again low.

To summarize, processing a layer requires many hierar-

chical steps. First, it takes 16 cycles to multiply two 16-bit

operands. Several such products are computed in parallel.

These products are aggregated, partially within a subarray,

and partially across subarrays to produce a set of output

neurons. The second hierarchical step is to repeat the above

computation for all rows of input feature maps and kernel

weights in a subarray. The next hierarchical step is to rotate

the input operands in a row and repeat. The final hierarchical

step is to send input operand rows to other subarrays so

additional convolutions can be performed.



IV. METHODOLOGY

We modelled the energy and area numbers of the cache

architecture and registers using CACTI 6.5 [11] at 32nm

technology. The area and energy numbers for the adder

tree are derived from [12], while the numbers for the

barrel right rotate only shifter circuit is based on [13].

The energy overhead of activating multiple wordlines in

a subarray, and the area overhead in modifying the sense-

amplifier circuit are adapted from the analysis of Compute

Caches [10]. We used a 32 MB SRAM for most of our

analysis. The additional hardware enhancements to the LLC

constitute an area overhead of 18% for the LLC. The area

and energy estimates for DaDianNao are taken directly from

that work [1], but scaled from 28 nm to 32 nm for an apples-

to-apples comparison.

We have manually mapped a version of the ResNet18

deep network [14] to individual subarrays using the mapping

technique described in Section III-B. We made sure no

hazards or conflicts occur as the pipeline progresses. We

also mapped the network manually on DaDianNao.

V. RESULTS

We first analyze the impact of the proposed accelerator

on performance. Figure 2 depicts the execution time for

each layer of ResNet18 on SISCA and DaDianNao. We

observe that SISCA outperforms DaDianNao in all the con-

volution layers (C1-17). The overall execution time reduces

by 2.74×. The main reason for this is the high parallelism

offered by SISCA’s in-situ computations (32K computational

units in a 32MB SRAM with 16-bit operands). However,

DaDianNao has lower execution time for the fully connected

layers (FC). This is because the FC layer in ResNet18

only computes 1K activations from 1×1×512 input feature

map. To better utilize all the computational units in SISCA,

we duplicate these 512 feature maps to cover all the sub-

arrays, thus increasing the utilization of the H-Tree. In

this workload, the FC layer plays a small role in overall

execution time.

Figure 2. Execution time comparison for each layer of ResNet18 for
SISCA and DaDianNao.

SISCA energy breakdown per subarray for a
block size of 64 Bytes

Read Energy 147.4 pJ

H-Tree Energy 146.3 pJ

Subarray Access Energy 1.039 pJ

Energy per bit-wise AND Op across two
wordlines

2.60 pJ

Energy of RAT block 8.64 pJ

DaDianNao energy breakdown for 8KB block

sizes

NFU (spread across 16 tiles) Energy 3.8 nJ

Central eDRAM Energy (4MB) 3.73 nJ

Tile eDRAM Energy (32 MB) 8.96 nJ

Table I
SISCA ENERGY BREAKDOWN.

We define Computational efficiency (CE) as the number of

16-bit operations performed per second per mm
2 (GOPS/s x

mm
2). Executing the ResNet18 network over both architec-

tures gives us a CE of 18.6 GOPS/s x mm
2 for DaDianNao,

and 26.8 GOPS/s x mm
2 for SISCA. While SISCA can offer

higher throughput than DaDianNao, its area overhead is non-

trivial. This is primarily because DaDianNao uses eDRAM

(88mm
2 for 36 MB), while SISCA uses SRAM (167mm

2

for 32 MB). Viewed through a different lens, SISCA allows

an LLC to be re-purposed as a CNN accelerator with an

additional 25mm
2 area overhead (18%) w.r.t. baseline cache.

As most of the computations are in-situ, the H-Tree or the

output drivers of the SRAM are used minimally for neural

network computations. Table I shows the energy breakdown

for each SISCA and DaDianNao operation. Note that the

subarray read and H-Tree energy are infrequently exercised

in SISCA. The energy for subarray access, bit-wise AND,

and RAT units are significantly lower for SISCA, even if

they are multiplied by 1K (since there are 1K subarrays).

Figure 3 compares the energy consumption for DaDian-

Nao and SISCA for each layer of ResNet18. SISCA yields

a 6.31× energy reduction primarily because of much fewer

H-tree traversals.

VI. CONCLUSION

In this paper, we propose that with some hardware en-

hancements, the SRAM cache can function as a neural

network accelerator. This can be helpful for both server

architectures and mobile devices. Our early estimates show

that relative to DaDianNao, SISCA offers high throughput

and energy efficiency. This is primarily because of the

massive data parallelism that can be achieved by activating

multiple wordlines among all the subarrays, and the reduced

data movement on H-Tree interconnects. While prior works

like DaDianNao have leveraged a near-data processing ap-

proach, we show that this concept can be further exploited



Figure 3. Energy consumption for each layer for SISCA and DaDianNao
for ResNet18.

by moving computations even closer to data storage in

subarrays.

REFERENCES

[1] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun et al., “DaDianNao: A Machine-
Learning Supercomputer,” in Proceedings of MICRO-47,
2014.

[2] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. Strachan, M. Hu, R. Williams, and V. Srikumar, “ISAAC:
A Convolutional Neural Network Accelerator with In-Situ
Analog Arithmetic in Crossbars,” in Proceedings of ISCA,
2016.

[3] S.Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and
W. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in Proceedings of ISCA, 2016.

[4] S.Han, H. Mao, and W. Dally, “Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quan-
tization, and Huffman Coding,” in Proceedings of ICLR, 2016.

[5] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” in Proceedings of ISCA-43, 2016.

[6] S. Venkataramani, A. Ranjan, S. Avancha, A. Jagannathan,
A. Raghunathan, S. Banerjee, D. Das, A. Durg, D. Nagaraj,
B. Kaul, and P. Dubey, “SCALEDEEP: A Scalable Compute
Architecture for Learning and Evaluating Deep Networks,”
2017.

[7] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao,
Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel Processing-
In-Memory Architecture for Neural Network Computation in
ReRAM-based Main Memory,” in Proceedings of ISCA-43,
2016.

[8] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
Y. Xie, “Drisa: A dram-based reconfigurable in-situ acceler-
ator,” in Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO-50 ’17,
2017.

[9] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28
nm configurable memory (tcam/bcam/sram) using push-rule
6t bit cell enabling logic-in-memory,” IEEE Journal of Solid-
State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.

[10] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, “Compute caches,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 481–492.

[11] N. Muralimanohar et al., “CACTI 6.0: A Tool to Understand
Large Caches,” University of Utah, Tech. Rep., 2007.

[12] M. Horowitz, “1.1 computing’s energy problem (and what we
can do about it),” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International. IEEE,
2014, pp. 10–14.

[13] S. Huntzicker, M. Dayringer, J. Soprano, A. Weerasinghe,
D. M. Harris, and D. Patil, “Energy-delay tradeoffs in 32-bit
static shifter designs,” in 2008 IEEE International Conference
on Computer Design, 2008, pp. 626–632.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learn-
ing for Image Recognition,” arXiv preprint arXiv:1512.03385,
2015.


