
Advanced Adaptive Application (A3) Environment- Initial

Experience1

1 This work is being supported by the Unites States Air Force and DARPA under Contract No. FA8750-10-C-0242. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government.

Partha Pal, Rick Schantz, Aaron Paulos
Raytheon BBN Technologies

Cambridge, MA

{ppal,schantz,apaulos}@bbn.com

John Regehr, Mike Hibler
University of Utah

Salt Lake City, Utah

{jregehr, mike}@flux.utah.edu

ABSTRACT

In this paper, we describe the prevention-focused and adaptive

middleware mechanisms implemented as part of the Advanced

Adaptive Applications (A3) Environment that we are developing

as a near-application and application-focused cyber-defense

technology under the DARPA Clean-slate design of Resilient,

Adaptive, Secure Hosts (CRASH) program.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection—Authentication, Invasive software,

Unauthorized access;

D.2.0 [Software Engineering]: General—Protection mechanisms

General Terms

Security

Keywords

Execution Environment, Middleware, Preventive Adaptation,

Innate Immunity, Survivable Applications.

1. INTRODUCTION AND MOTIVATION
The current way of running applications on host platforms often

impedes cyber-defense. Multiple applications share the physical

host and the OS. Isolation techniques like SELinux [1] exist, but

because of implicit sharing of various host resources, the security

policies frequently are not tight enough and as a result, a

compromise in one of the applications often leads to disruption or

corruption in the operation of other collocated applications.

Stronger isolation technologies such as separation kernels [2]

although available, are primarily used to enforce separation

between multiple levels of security, and not among applications

within individual security domains. In addition, application’s

interactions with the environment through the network, storage

system or the user interface (UI) also take place in shared spaces.

This makes it difficult to tightly monitor application behavior and

enforce application specific controls, and resulted in various rings

of perimeter security—at the network boundary or at the host

boundary—that monitor and control the aggregate of multiple

protectorate constituents. Furthermore, many of the existing

perimeter security techniques such as firewalls, OS or process

level security policies, anti-virus and intrusion detection and

prevention systems are signature-oriented making them ineffective

against novel attacks.

As recent reports [3] indicate, adversaries are still succeeding in

getting through the perimeter defenses. In most cases, it is the

applications that run on the hosts and the data these applications

manage that are the target of these attacks. We argue that no

matter how secured the perimeter or the OS is, applications with

complex logic, structure and interactions will still have flaws. And

such flaws will be discovered and exploited by the adversary who

will often gain access and privilege in the network and host

environment via social engineering and compromising collocated

enclaves, hosts and applications with weaker security. Security

measures near or at the application that go beyond detection and

prevention, and aim to tolerate the impact caused by unknown and

unforeseen attacks are therefore urgently needed.

In this paper we introduce the Advanced Adaptive Applications

(A3) Environment, an innovative middleware designed for

defending individual applications against novel attacks. The A3

environment is a middleware because it mediates the protected

application’s execution and interaction with the physical host

resources such as the disk, network and UI devices. Adaptation is

a major underlying theme of A3’s defenses, which in the context

of survivability, ranges from graceful degradation to recovery, and

to changing the system so that successful past attacks do not

succeed anymore. A3 carries forward our prior successes in

adaptive defense and survivability research [4,5,6,7] which

assumes that no defense is absolute, attacks will happen and often

succeed; and argues that although adaptation is key to survival,

successful defense must include prevention focused defenses

observation mechanisms designed to pick up undesirable

conditions as well. This paper will primarily focus on the

foundational aspects of A3, and will offer a deep dive into the

prevention focused defensive capability. Prevention-focused

defense is one of the three main defensive capabilities of A3, the

other two being recovery techniques based on advanced state

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Middleware 2011 Industry Track, December 12th, 2011, Lisbon, Portugal.

Copyright 2011 ACM 978-1-4503-1074-1/11/12...$10.00

management and replay with modification to improve the

application’s defense based on past successes and failures.

The main contributions of this paper are: 1) a special breed of

execution-containing security-focused adaptive middleware that

mediates the protected application’s interactions with the

environment, b) a framework to structure and impose prevention

focused adaptive control on an application’s interaction with the

environment, c) a foundation for novel recovery and replay based

improvement, and d) initial results establishing the feasibility of

effective and efficient implementation of innovative, near-

application and application-centric defenses.

A3 technology is being developed as part of the DARPA CRASH

program, which pursues innovative R&D into the design of new

computer systems that are highly resistant to cyber-attack, can

adapt after a successful attack to continue rendering useful

services, learn from previous attacks how to guard against and

cope with future attacks, and can repair themselves after attacks

have succeeded. Complementing the application-level and

application-focused approach taken by A3, a number of other

efforts in the CRASH program are developing techniques for

security enhanced processor architectures (e.g., tagged instruction

and execution), OS based security techniques (e.g., information

flow control), and programming language and compiler

technologies (e.g., randomizing compiler to produce variants with

different vulnerability profiles, security focused invariants and

assertions that can be embedded in the application during

development and enforced at runtime).

2. DESIGN AND IMPLEMENTATION
The key idea underpinning the A3 environment is to isolate

individual applications into dedicated containers such that (i)

application-specific defensive adaptations do not interfere with

the operation of other applications and (ii) all interactions of the

protected applications can be subject to mandatory mediation. We

argue that if the application executable is pure (i.e., it may contain

vulnerability, but is not corrupted with attack code) at inception,

the only way it can be compromised is through its interactions

with the environment i.e., via disk storage, network and user

interfaces. Unfortunately, in a modern general purpose computing

platform, the interface between an application and the

environment has gotten out of control with touch points at many

known and unknown surfaces. Isolation of an application in a

container enables us to organize the applications interactions into

storage, network and UI channels, which in turn enables us to put

up crumple zones that subject these channels to mandatory

mediation and act as buffers that absorb the initial blow of attacks

(and potentially crumple), preventing the attack from reaching the

protected application.

A3 prevention-focused defenses are concentrated in the Crumple

Zones (CZs). The CZs essentially impose a space-time dilation

upon the application’s interaction: the interactions are intercepted,

and can be watched, analyzed, processed and transformed in the

defense’s timeframe, changing the equation for the attacker—the

attacker no longer has the advantage of hiding in a general

purpose host running various applications and services. Instead,

the A3 container is dedicated to the single application and the

attacker has to play by the rules of the protected application.

A3 recovery-focused defenses leverage the isolation of the

protected applications into dedicated containers and stands on the

hypothesis that not all parts of the application’s state is equally

important. In particular, some state information is absolutely

crucial and needs to be retained and the rest can be discarded, or

recreated from other saved information. This differential treatment

of state information needed for recovering a crashed or

compromised application is at the core of A3’s Advanced State

Management (ASM) that enables different flavors micro-reboots

with different timeliness and consistency profiles on top of

standard reboot and rollback based recovery options.

For adaptive immunity, i.e., the ability to improve the defense

over time, A3 relies on Replay with Modification (RwM) — a

capability that enables us to roll back the protected application to

a past state, modify the protected application (e.g., a new variant)

or its security configuration (e.g., the inspection and

transformation based rules in the crumple zones), and perform

replay-based experiments. If the recorded events contained an

attack, i.e., triggered a vulnerability that compromised the

crumple zone or the protected application, the experiments are

used to determine an alternate configuration of the protected

application that does not suffer the same outcome.

In the first year of the four year project, we have prototyped the

basic containerization mechanism, and the storage and network

crumple zones. We are currently working on ASM and RwM.

The Crumple Zones and container-isolated applications along

with the ASM and RwM capabilities collectively form the

envisioned A3 environment—where the mediated channels and

crumple zones prevent the protected application from falling

victim of attacks, ASM enables faster and diversified recovery

when the application does succumb to failure and compromise,

and RwM facilitates changes in the configuration that prevent the

protected application from succumbing to the same attacks.

2.1 Basic Containerized Isolation
A3 uses virtualization, specifically the Xen hypervisor as the

basic containerization mechanism. An A3 container running a

protected application will be a Dom U (guest) VM (see Figure 1),

with its network, UI and storage channels logically connected to

the VM that runs the device drivers that manage the hardware

devices. In Xen, this could be the Dom0 VM, or one or more

specialized DomUs running the device drivers as advocated by

security enhanced operating systems like Qubes [8] and L4 [9]. In

our current prototype Dom0 is the designated Device Driver VM

(DDVM). In the future, we plan to put the device drivers

managing physical devices in their individual DDVMs separate

from Dom0.

Host HW (CPU, Disk, IO, Network Devices)

Xen

Guest OS

App

D
o

m
0

(D
D

V
M

)

Figure 1: Guest VM as A3 Container

Using a container VM to encapsulate the protected application

implies that the application has the impression of having an entire

machine to itself including its own (virtual) disk. But disk storage

is also used frequently by applications to share information—for

instance, a file created by Word can subsequently be used by an

email application when the user wants to send the file to someone

by email. Or, in order to read a file received by email, another

application such as Word needs to be launched. If Word and email

client applications run in their own dedicated container VMs, the

file created by Word will remain in the container running word,

and the file received by the email client will remain in the

container running the email client application. Note that under

A3, each application runs in its own dedicated container and

therefore, there needs to be a way to share files between the two

containers. More specifically, this points to the need for

synchronizing the virtual disks of different container VMs. This is

a unique issue for the storage channel because of the semantic

difference between virtualizing a storage device like a disk and a

network interface or an IO device: whereas a virtual network

interface or IO device primarily acts as a multiplexer, the virtual

disk also acts a (longer term) buffer. The A3 storage channel

therefore manages the mapping and synchronization of physical

disk content that are shared across multiple applications into the

respective virtual disks by using a commit mechanism which

enforces the following policy: after N (configurable) number of

updates, the storage channel commits the virtual disk and remaps

and remounts the virtual disks (of other VMs) that share the same

file systems of the physical disk. The value of N dictates the

synchronization delay.

2.2 Mediated Channels and Crumple Zones
Even though the UI, Network and Storage channels logically

connect the A3 Container and the DDVM running the device

drivers managing physical devices, the actual path is through the

hypervisor. Therefore, extending the hypervisor is one possibility

to implement the channel mediation and the crumple zones.

However, since the mediation policies are highly application-

specific, this approach would require building/configuring a

custom hypervisor for each protected application. Furthermore

crumple zones are expected to fail (i.e., crumple under attack)

under attack, which in the case of hypervisor-extension approach,

will threaten the integrity and liveness of the hypervisor. To avoid

these issues we designed the bulk of the crumple zones

functionality outside the hypervisor—specifically, CZs are

implemented as interposed VMs—the mediation policy and

controls are either implemented within the VM containing the

protected application or in individual VMs that are part of the A3

conglomerate representing and acting as the protected application.

Interposing a crumple zone VM relies on Xen’s basic inter-VM

communication technique of using a circular buffer in a shared

memory page. The circular buffer connects the device driver in

the guest VM (known as the front-end driver) with the device

driver in the DDVM that is responsible for managing the physical

device (known as the back-end driver). For storage and UI

channels, only one circular buffer is used, whereas for network

channels a pair of buffers is used. The sharing of the memory

pages is implemented by "grant tables” and strictly controlled

share or transfer primitives. In this grant table based paradigm,

sharing or transfer of data cannot be done without one side first

making a hypervisor call. Our VM-based implementation of

containers rely on the trustworthiness of the virtualization

mechanism, i.e., the hypervisor responsible creating VMs,

assigning and managing VM identities is treated as part of the

trusted computing base (TCB), the grant tables and shared

memory circular buffer between the front-end device driver at the

guest VM and the back-end device driver (that manages the actual

hardware devices) at the DDVM provides a fairly strong non-

bypassable way to mediate channel interaction outside of the

hypervisor. A CZ VM can be inserted in front of the Dom0

DDVM such that an A3 container VM trying to use the real

hardware devices (via the back-end drivers in the DDVM) must

go through the CZ VM. Because the intercepted traffic is now

available to a VM, we are not limited to looking at the contents of

the circular memory buffers—our mediation policies can inspect,

interpret and process the intercepted information at various levels

of the system stack.

Figure 2 shows the A3 conglomerate for protecting an illustrative

application. Guest VM-1 is the container running the protected

application (APPVM henceforth), Guest VM-2 is the storage

CZVM and Guest VM-3 is the network CZVM. The storage

CZVM and the corresponding split-pair device drivers (shown in

grey) at DDVM form the storage channel, and the network CZVM

and the corresponding device drivers (shown in blue) in the

DDVM form the network channel. Note that although each of the

CZVMs introduces an additional circular buffer indirection in the

original paths connecting the APPVM and the DDVM, there is a

slight difference. The storage CZVM connects with the APPVM

presenting a backend driver and also with the DDVM presenting a

front end driver. Whereas the network CZVM behaves much like

the APPVM in the sense that it only has a front end driver, and

connects only with the DDVM. The network channel is designed

in this way to take advantage of the Xen’s standard networking

infrastructure (the Ethernet Bridge and supporting mechanisms at

the DDVM): in a sense, the network CZVM acts like an

intermediate hop between the APPVM and the DDVM.

2.3 The I/E/T Prevention Framework
To facilitate easy conception, formulation and enforcement of

application-specific policy and control that can prevent entire

classes of novel attacks we developed a framework to organize the

mediation policies that can be enforced in our crumple zones.

Apart from thwarting novel attacks for which a-priori known

signatures do not exist, the other key design goal of this

framework is to provide a structure that can support a generic

Figure 2: Insertion of Storage and Network CZ

application by accommodating custom specializations. We argue

the constraints and consequent reactive adaptations in the

following three categories cover a wide range of novel attack

avenues.

 Inspect (I): Inspection based policy and control include

computing aggregate properties (e.g., rate, size, patterns) of

interaction and subjecting them to application-specific

operating ranges. This category also includes filtering based

on known signatures, and observing the side effects of

execution-based policies that are described next.

 Execute (E): This category supports execution or processing

of intercepted interaction to determine whether the

interaction would cause any known undesired effect on the

protected application. If so, such interactions should not be

released. On the lighter extreme, E policies may constitute

straightforward middleware functions such as

marshalling/demarshalling, serializing/deserializing. On the

heavier extreme, E policies engage a copy of the protected

application executing and responding to the stimuli received

on the mediated channels (with appropriate buffering to

eliminate spurious side effects) before the stimuli are

released to the real protected application. As mentioned

earlier, I policies may observe the execution of E policies,

implementing the cyber security analog of a try before you

buy or the 7 second profanity delay.

 Transform (T): Analogous to the way transformation from

time domain (amplitude over time) to frequency domain

reveals and enables filtering unwanted noise in signal

processing, we argue attacks that exploit data format or

protocol flaws can be thwarted by data format or protocol

conversion. Such transformations need to be semantics

preserving and as a corollary application specific. The

common input validation techniques currently in use to

defend against SQL injection, CSRF and XSS attacks

transform parts of the incoming request—which are inbound

interactions on the network channel for A3. In addition, a

number of modern applications do not have a pre-conceived

notion of data format—for example, a search may return

anything from text, PDF, word, spreadsheet, audio and

video. Service-oriented applications (e.g., web services using

WSDL) often are able to negotiate the nature and format of

the data exchange at runtime. In these cases, application-

specific transformation from one protocol or data format to

another is acceptable, and will either eliminate or disrupt the

embedded attack code or data. Even with traditional

applications where the protocol and data format is not

flexible, transformation from one format to another and back

to the original will be useful for defense against embedded

attacks. This is because in most cases the attacks exploit the

vendor-added features or lapses in the specification. If the

transformations strictly impose the protocol/data format

specifications, malicious elements like embedded scripts can

be eliminated or sufficiently disturbed to render then useless.

Of course, this scheme may impact the application’s

operation if the application relies on vendor-added features.

2.4 Current Prototype
Figure 3 shows the A3 test environment where the APPVM runs

an illustrative web server application protected by the two

CZVMs providing application-specific and prevention-focused

adaptive defense capability. As shown, the web server can be

invoked (HTTP request) by a browser as well as non-browser

clients to manage documents. The server supports multiple users,

each authenticates using a token, and can perform a list, upload,

download and delete operations on a file store. The server is

expected to maintain the file store within a specified directory—

and is not expected to write user submitted content to any other

directory. The server is also expected to enforce ownership in the

sense that a user cannot delete another user’s files, but they can

openly share. However, the server implementation is inherently

buggy, and it is possible for a malicious user to traverse the

directory structure, write files in arbitrary places, rename files,

execute cross site scripting, upload and execute arbitrary

executables etc. This application does not use human interaction,

so only the network and storage channels are relevant.

The storage crumple zone that we used for this application

enforces the policy and control described below:

Figure 3: Illustrative Web Server Application in A3

Policy item Type Control Action and notes

Path traversal C ; Inspect Block requests that try

Write outside I; Inspect Block requests that try

Read outside C; Inspect Block requests that try

Size limit A; Inspect Block requests with large data

Rate limit

(blocks read

or written)

A;

Execute

Abort the write or read that

involves too many bytes,

thwarting novel attacks that

cause infinite read or write loop

Content

control

I; Inspect Block requests that include

executables and scripts

Renaming I; Inspect Block requests that try

The 2nd column describes the nature of the mediation, i.e., the

security attribute (C for Confidentiality, I for Integrity and A for

Availability) that would suffer without the policy along with

whether the policy is based on Inspection, Execution and

Transformation. The 3rd column describes the control actions.

The policy and control imposed by the network crumple zone are

similarly described by the following table:

Policy item Type Control Action and notes

Fingerprinting C;

 Inspect

Drop or “wash” response,

thwarts application and

transport layer probing

Argument

filtering

C, I and A;

Inspect

Block requests, stopping

application level requests to

change directory, exec.,

malformed requests, arguments

Rate

enforcement

A, Inspect

and Execute

Block requests, based on

source based and aggregate

number of packets and requests

Protocol

transform

C, A and I;

Transform

Normalize requests into a well

tested library, thwarting novel

attacks that exploit browser and

vendor specific extensions

Try before

you accept

C, A and I;

Execute and

Inspect

Block requests, thwarts novel

attacks that inject undesired

and out of range application

behavior

The policies enforced at the crumple zones are usually a mix of

generic and application specific policies. The generic policies are

applicable to a class of applications (e.g., all web service

applications) and can take application specific parameters. Rate

and size checking, validation and sanitization of inputs are

examples. Application specific policies are can be provided by

various stakeholders such as the application developer or the

application deployer or the user; and can also be determined by

human experts by empirical observation. A specific installation of

the web service-based document management application

described in this section may have the T policy to transform all

word documents into pdfs, and disallow opening of outbound

socket connections. The E policy of try-before-accept is a curious

mix of generic and specific: the generic aspect is that for any

protected application, one needs an application proxy or code that

partially emulates the application in one of the crumple zones. At

the same time, the proxy, by nature is application specific, for

example, in our illustrative application it is essentially a replica of

the application running in the network crumple zone. It is also

worth noting that E policy is usually complemented by its

accompanying I policies that monitor the execution of the E

policy (i.e., watches over the proxy). Some of these I policies can

be highly generic—such as death the proxy or code performing

the execution/processing of channel events, while the others can

be application specific such as, watching for the frequency of

specific files being down loaded or the frequency of delete

operations performed by a individual users.

3. EVALUATION TO DATE
We used a Dell Latitude D820 laptop, an Intel Centrino Duo

clocked at 2.33Ghz and 2GB of memory connected to a single

router along with a client PC as our experimental set up. The

D820 is used to host an illustrative web service application

protected by A3 with the APPVM and network and storage VMs

as shown in Figure 3, the client laptop is used for sending both

benevolent and attack HTTP requests to the protected web-

service. We use Xen 3.1.4 with Fedora Core 8 (kernel 2.6.18.8)

images for both Dom0 and three DomUs in the prototype A3

environment. Each DomU is configured to have one CPU and

512MB of memory.

For the initial assessment of the overhead associated with A3

crumple zones, we recorded six unique client interactions with a

web-service over a 10 minute window and used the recordings to

drive our protected web service. Each client represents a different

client OS, web-browser and usage-pattern. The usage pattern is

roughly categorized as: (i) a batch-bulk download every 2

minutes, (ii) a file download every minute, (iii) random heavy

burst of eight mixed operations lasting between 10 to 20 seconds,

(iv) a upload-download-delete cycle (.2Hz), (v) a constant fast-

clicking refresher (.3Hz), and (vi) a heavy uploader every minute.

Clients submit and retrieve files ranging from 9KB to 476KB and

of multiple mime-types. Taken as a whole, the clients driving the

protected web service present a load equivalent of a small-office

wiki. The results of the performance assessment experiments are

described in Section 3.1

Objective evaluation of how effective a defense mechanism is has

always been a challenge, and our experience in evaluating the

effectiveness of A3 is no exception. The most credible validation

by the community is independent red team experiments, which we

expect to undertake later in the project, however, red team

evaluation has its own limitations such as the motivation,

expertise and resources of the red team and the rules of

engagement used in the experiments. Clearly, the answer to

questions like has A3 made the illustrative application completely

invincible to attacks is no. In fact, A3 alone cannot achieve that

goal. However, the crumple zones do make attacks on the

application that make use or exploit the storage and network

channels more difficult to actually affect the application. In the

preliminary evaluation we sought to validate that claim by taking

the following approach. First, starting with the semantics of the

web service application, we developed a number of I/E/T policies

that we deployed in the network and storage CZ, and subjected

both the protected and unprotected application to requests with

appropriate privilege that attempt to break the application or cause

undesired behavior or effect in the system. Second, we conducted

tests where we injected failures into the crumple zones, emulating

the effects of novel attacks to observe how the protected

application behaves. Section 3.2 elaborates.

3.1 Efficiency
Figure 4 and Figure 5 show the client latencies of the unprotected

baseline application and the A3 protected application respectively.

The protected application uses the default un-optimized A3

policies (all policies and virtual disk committed after every update

event). Round-trip latencies are collected from clients replaying

the six profiles and are grouped into three categories: list and

delete; download and upload. This grouping separates data-heavy

ingress and egress flow (upload/download) from light-weight

requests (list files, get upload form and delete a file).

The average latency aggregating the different categories is 50.2ms

for the baseline, compared to 64.9ms with A3 protection. In other

words, the default non-optimized A3 CZs introduce a 29%

overhead under this specific load. This overhead may seem low

considering that the proxy crumple zone is fully executing and

reverse proxying the request to the real application, but we note

that the network latency may mask some of the overhead

introduced by A3.

We examine Figure 5 to identify which component of A3

contributes most to A3’s overhead, and observe an outlier group

of list-delete operations and a few spurious download and upload

operations. Over both runs, list-delete, download and upload

make 80%, 12% and 8% of the total requests respectively. While

the average baseline list-delete latencies are 16.4ms (compared

with 64.6ms for A3), over 11% of the A3 list-delete outliers have

latencies greater than 100ms.

In the current prototype, the storage channel commits the virtual

disk of the Network CZ host running the application proxy by

rsyncing the application proxy’s stored-filed directory to

persistent storage (the rsync duration for this fixed traffic volume

is a consistent 250ms) after a configurable number of operations

which modify the application state, here, upload and delete

operations. At the beginning of the commit sequence, a firewall

rule is introduced to block incoming client requests and ultimately

wait to reach request-quiescence before starting the rsync. To

evaluate A3’s sensitivity to commit intervals, we ran four

experiments varying the commit interval between one and fifteen

as shown in the box-plots in Figure 6. The box-plots show the

distribution of client latencies, the mean latency (large X per

series) and a trail of outliers for each evaluation.

From the analysis, we notice average latencies decrease (64.6ms,

60.7ms, 55.2ms 49.6ms) as the check pointing interval grows.

Likewise, the severity of the outliers decrease as the commit

interval grows. We believe that both of these trends, when

considered against the relative high volume (i.e., 80% of all

requests) of list-delete operations, explain why list-delete

Figure 5: Latency with A3

Figure 4: Baseline Latency

Commit interval (number of delete and
upload operations between commits)

Figure 6: Impact of Commit Interval

operations fair so poorly for our A3 application. In effect, list-

delete operations are more likely to be blocked when a commit

occurs, thus resulting in a higher perceived latency.

3.2 Effectiveness
Using a commit interval of 15 modification events and the client

mix as described earlier, we introduced six random attacking

clients to exercise A3 CZ defenses and record client overheads

under attack scenarios. During a ten minute experiment, we used

six attack clients attempting a variety of attacks: (i) script

injection to compromise future legitimate requests, (ii) path

traversal to exfiltrate and infiltrate data, (iii) random fuzzing to

scan for buffer overruns and host fingerprinting, (iv) resource

exhaustion, (v) upload and execution of binary files and (vi) a

fault-injection client that triggers a synthetic crash in the

application proxy running the network CZ during the sixth

minute. Against our naive web-service without A3’s protections

the same attacks result in cross-site script attacks, removal of

readable host configuration files (e.g., private encryption keys,

/etc/iptables), replacement of writable files, fingerprinting via

thrown exceptions, resource starvation, and execution of arbitrary

shell code and attack binaries. We also verified that the failure

injected at the application proxy will also kill the application if

injected at the application itself. Figure 7 captures the results.

The top half of Figure 7 shows a time-series showing the latencies

for the six benevolent clients, commit durations, and the crash

roll-back recovery duration from the fault-injection. As can be

seen in the figure, other than the interval around the 6th minute,

the benevolent clients did not suffer any loss of service. In the

bottom half of the figure, we group and plot each policy violation

in time as reported from the A3 host. Speaking generally, the A3

host blocked binary file uploads and path traversal attempts in the

storage crumple-zone, and via the network crumple zone, A3

enforced a strict QoS policy on request rate thus mitigating DoS

attempts, filtered <script> tags from submission thus blocking

script injection attempts and enforced WS parameter and HTTP

header constraints thus disallowing the execution of arbitrary, out-

of-bounds fuzzed inputs. Specifically, the attack clients attempted

1,519 attacks and benevolent clients executed 933 requests,

which, in effect, doubled the number of clients. In terms of

average latency for the benevolent clients, the additional load

introduced by the experiment (i.e., request load and A3 I/E/T

policies) resulted in a modest 4% of additional overhead. In terms

of distribution of performance, we observed a max latency 1%

larger than the previous 15-interval experiment which is

ultimately negligible.

The final thing to notice in Figure is the grayed-out recovery

window. As mentioned earlier, during the sixth minute of the run,

we injected a synthetic crash failure emulating a novel attack that

would not have been blocked by policy violation in the earlier

stages. However, this attack was fully absorbed by the network

crumple zone’s proxy. Unoptimized, A3 can detect a process

crash (observers for more complex failures such as verifying the

integrity of the CZ VMs are under development) in the network

crumple zone, and complete the subsequent roll-back recovery

comprising of tearing down the crumple zone VMs, and restoring

them to the last known good checkpoint in under 77 seconds.

4. CONCLUSION AND NEXT STEPS
The initial evaluation of the A3 execution container and

constituent prevention-focused mediation and adaptive response

indicates that the middleware-based, near-application and

application-specific cyber-defense can be effective against novel

attacks whose signatures are not known, and such defenses can be

mounted effectively.

We are continuing to enhance the CZ policies. A specific case

alluded to in the previous section concerns enhancement of I

policies. This involves developing observers for more

Figure 7: A3-protected Application under Attack

sophisticated compromised behavior and undesirable conditions

than process crash. We are using Virtual Machine Introspection

(VMI) and application-specific invariants to implement these

observers. Work is also underway to support recovery-focused

adaptation using ASM and improving the defensive policy and

configuration using RwM.

Evaluation of a security solution such as A3 that aims to address

the uncertainty and impact of novel attacks is a hard problem.

Testing the technology against an application with known

vulnerabilities goes part way in demonstrating the effectiveness of

the technology, but falls short on evaluating the technology’s

response to novel attack. We are extending the failure injection

approach described in Section 3.2 to emulate the manifestation of

novel attacks by using a protected application that is injected with

artificial vulnerabilities (i.e., made artificially vulnerable) and

exploiting the vulnerabilities in a non-deterministic way. Our

future evaluation plan includes testing whether the I/E/T policies

of A3 crumple zones can absorb and contain such attack effects,

and if not, whether advanced state management and replay with

modification can quickly recover and reconstitute a more effective

defense.

5. ACKNOWLEDGMENTS
This work is being supported by the Unites States Air Force and

DARPA under Contract No. FA8750-10-C-0242.

6. REFERENCES
[1] NSA SELinux website,

http://www.nsa.gov/research/selinux/index.shtml

[2] Linux Works LynxSecure Separation Kernel,

http://www.lynuxworks.com/virtualization/hypervisor.php

[3] Verizon 2010 Business Data Breaches Investigation Report,

http://www.verizonbusiness.com/resources/reports/rp_2010-

data-breach-report_en_xg.pdf

[4] Michael Atighetchi et al. Adaptive Cyberdefense for Survival

and Intrusion Tolerance, IEEE Internet Computing, vol. 8,

no. 6, pp. 25-33, Nov/Dec, 2004

[5] Partha Pal et al. An architecture for adaptive intrusion-

tolerant applications, Software: Practice and Experience,

vol. 36, no 11-12, pp. 1331-1354, Sep/Oct, 2006

[6] Jennifer Chong et al. Survivability Architecture of a Mission

Critical System: The DPASA Example. Proceedings of the

21st Annual Computer Security Applications Conference,

Tucson, Arizona, pp. 495-504, Dec, 2005

[7] D. Paul Benjamin et al. Using a Cognitive Architecture to

Automate Cyberdefense Reasoning. Proceedings of the

ECSIS Symposium on Bio-inspired, Learning, and Intelligent

Systems for Security (BLISS 2008), Edinburgh, Aug, 2008

[8] The Qubes OS web page, http://qubes-os.org/Home.html

[9] Jochen. Liedtke. On micro-kernel construction. SIGOPS

Oper. Syst. Review, vol. 29, no. 5, pp. 237-250, Dec, 1995

http://www.nsa.gov/research/selinux/index.shtml
http://www.lynuxworks.com/virtualization/hypervisor.php
http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_2010-data-breach-report_en_xg.pdf
http://qubes-os.org/Home.html

