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ABSTRACT 

In this paper, we describe the prevention-focused and adaptive 

middleware mechanisms implemented as part of the Advanced 

Adaptive Applications (A3) Environment that we are developing 

as a near-application and application-focused cyber-defense 

technology under the DARPA Clean-slate design of Resilient, 

Adaptive, Secure Hosts (CRASH) program.   

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]:  

Security and Protection—Authentication, Invasive software, 

Unauthorized access; 

D.2.0 [Software Engineering]: General—Protection mechanisms 

General Terms 

Security 

Keywords 

Execution Environment, Middleware, Preventive Adaptation, 

Innate Immunity, Survivable Applications. 

1. INTRODUCTION AND MOTIVATION 
The current way of running applications on host platforms often 

impedes cyber-defense. Multiple applications share the physical 

host and the OS.  Isolation techniques like SELinux [1] exist, but 

because of implicit sharing of various host resources, the security 

policies frequently are not tight enough and as a result, a 

compromise in one of the applications often leads to disruption or 

corruption in the operation of other collocated applications. 

Stronger isolation technologies such as separation kernels [2] 

although available, are primarily used to enforce separation 

between multiple levels of security, and not among applications 

within individual security domains. In addition, application’s 

interactions with the environment through the network, storage 

system or the user interface (UI) also take place in shared spaces. 

This makes it difficult to tightly monitor application behavior and 

enforce application specific controls, and resulted in various rings 

of perimeter security—at the network boundary or at the host 

boundary—that monitor and control the aggregate of multiple 

protectorate constituents. Furthermore, many of the existing 

perimeter security techniques such as firewalls, OS or process 

level security policies, anti-virus and intrusion detection and 

prevention systems are signature-oriented making them ineffective 

against novel attacks.   

As recent reports [3] indicate, adversaries are still succeeding in 

getting through the perimeter defenses. In most cases, it is the 

applications that run on the hosts and the data these applications 

manage that are the target of these attacks. We argue that no 

matter how secured the perimeter or the OS is, applications with 

complex logic, structure and interactions will still have flaws. And 

such flaws will be discovered and exploited by the adversary who 

will often gain access and privilege in the network and host 

environment via social engineering and compromising collocated 

enclaves, hosts and applications with weaker security. Security 

measures near or at the application that go beyond detection and 

prevention, and aim to tolerate the impact caused by unknown and 

unforeseen attacks are therefore urgently needed.   

In this paper we introduce the Advanced Adaptive Applications 

(A3) Environment, an innovative middleware designed for 

defending individual applications against novel attacks. The A3 

environment is a middleware because it mediates the protected 

application’s execution and interaction with the physical host 

resources such as the disk, network and UI devices. Adaptation is 

a major underlying theme of A3’s defenses, which in the context 

of survivability, ranges from graceful degradation to recovery, and 

to changing the system so that successful past attacks do not 

succeed anymore. A3 carries forward our prior successes in 

adaptive defense and survivability research [4,5,6,7] which 

assumes that no defense is absolute, attacks will happen and often 

succeed; and argues that although adaptation is key to survival, 

successful defense must include prevention focused defenses  

observation mechanisms designed to pick up undesirable 

conditions as well. This paper will primarily focus on the 

foundational aspects of A3, and will offer a deep dive into the 

prevention focused defensive capability. Prevention-focused 

defense is one of the three main defensive capabilities of A3, the 

other two being recovery techniques based on advanced state 
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management and replay with modification to improve the 

application’s defense based on past successes and failures.   

The main contributions of this paper are: 1) a special breed of 

execution-containing security-focused adaptive middleware that 

mediates the protected application’s interactions with the 

environment, b) a framework to structure and impose prevention 

focused adaptive control on an application’s interaction with the 

environment, c) a foundation for novel recovery and replay based 

improvement, and d) initial results establishing the feasibility of 

effective and efficient implementation of innovative, near-

application and application-centric defenses.  

A3 technology is being developed as part of the DARPA CRASH 

program, which pursues innovative R&D into the design of new 

computer systems that are highly resistant to cyber-attack, can 

adapt after a successful attack to continue rendering useful 

services, learn from previous attacks how to guard against and 

cope with future attacks, and can repair themselves after attacks 

have succeeded. Complementing the application-level and 

application-focused approach taken by A3, a number of other 

efforts in the CRASH program are developing  techniques for 

security enhanced processor architectures (e.g., tagged instruction 

and execution), OS based security techniques (e.g., information 

flow control), and programming language and compiler 

technologies (e.g., randomizing compiler to produce variants with 

different vulnerability profiles, security focused invariants and 

assertions that can be embedded in the application during 

development and enforced at runtime). 

2. DESIGN AND IMPLEMENTATION 
The key idea underpinning the A3 environment is to isolate 

individual applications into dedicated containers such that (i) 

application-specific defensive adaptations do not interfere with 

the operation of other applications and (ii) all interactions of the 

protected applications can be subject to mandatory mediation. We 

argue that if the application executable is pure (i.e., it may contain 

vulnerability, but is not corrupted with attack code) at inception, 

the only way it can be compromised is through its interactions 

with the environment i.e., via disk storage, network and user 

interfaces. Unfortunately, in a modern general purpose computing 

platform, the interface between an application and the 

environment has gotten out of control with touch points at many 

known and unknown surfaces. Isolation of an application in a 

container enables us to organize the applications interactions into 

storage, network and UI channels, which in turn enables us to put 

up crumple zones that subject these channels to mandatory 

mediation and act as buffers that absorb the initial blow of attacks 

(and potentially crumple), preventing the attack from reaching the 

protected application.  

A3 prevention-focused defenses are concentrated in the Crumple 

Zones (CZs). The CZs essentially impose a space-time dilation 

upon the application’s interaction: the interactions are intercepted, 

and can be watched, analyzed, processed and transformed in the 

defense’s timeframe, changing the equation for the attacker—the 

attacker no longer has the advantage of hiding in a general 

purpose host running various applications and services.  Instead, 

the A3 container is dedicated to the single application and the 

attacker has to play by the rules of the protected application. 

A3 recovery-focused defenses leverage the isolation of the 

protected applications into dedicated containers and stands on the 

hypothesis that not all parts of the application’s state is equally 

important. In particular, some state information is absolutely 

crucial and needs to be retained and the rest can be discarded, or 

recreated from other saved information. This differential treatment 

of state information needed for recovering a crashed or 

compromised application is at the core of A3’s Advanced State 

Management (ASM) that enables different flavors micro-reboots 

with different timeliness and consistency profiles on top of 

standard reboot and rollback based recovery options.  

For adaptive immunity, i.e., the ability to improve the defense 

over time, A3 relies on Replay with Modification (RwM) — a 

capability that enables us to roll back the protected application to 

a past state, modify the protected application (e.g., a new variant) 

or its security configuration (e.g., the inspection and 

transformation based rules in the crumple zones), and perform 

replay-based experiments. If the recorded events contained an 

attack, i.e., triggered a vulnerability that compromised the 

crumple zone or the protected application, the experiments are 

used to determine an alternate configuration of the protected 

application that does not suffer the same outcome. 

In the first year of the four year project, we have prototyped the 

basic containerization mechanism, and the storage and network 

crumple zones.  We are currently working on ASM and RwM. 

The Crumple Zones and container-isolated applications along 

with the ASM and RwM capabilities collectively form the 

envisioned A3 environment—where the mediated channels and 

crumple zones prevent the protected application from falling 

victim of attacks, ASM enables faster and diversified recovery 

when the application does succumb to failure and compromise, 

and RwM facilitates changes in the configuration that prevent the 

protected application from succumbing to the same attacks. 

2.1 Basic Containerized Isolation  
A3 uses virtualization, specifically the Xen hypervisor as the 

basic containerization mechanism. An A3 container running a 

protected application will be a Dom U (guest) VM (see Figure 1), 

with its network, UI and storage channels logically connected to 

the VM that runs the device drivers that manage the hardware 

devices. In Xen, this could be the Dom0 VM, or one or more 

specialized DomUs running the device drivers as advocated by 

security enhanced operating systems like Qubes [8] and L4 [9]. In 

our current prototype Dom0 is the designated Device Driver VM 

(DDVM). In the future, we plan to put the device drivers 

managing physical devices in their individual DDVMs separate 

from Dom0.  
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Figure 1: Guest VM as A3 Container 



Using a container VM to encapsulate the protected application 

implies that the application has the impression of having an entire 

machine to itself including its own (virtual) disk. But disk storage 

is also used frequently by applications to share information—for 

instance, a file created by Word can subsequently be used by an 

email application when the user wants to send the file to someone 

by email.  Or, in order to read a file received by email, another 

application such as Word needs to be launched. If Word and email 

client applications run in their own dedicated container VMs, the 

file created by Word will remain in the container running word, 

and the file received by the email client will remain in the 

container running the email client application. Note that under 

A3, each application runs in its own dedicated container and 

therefore, there needs to be a way to share files between the two 

containers. More specifically, this points to the need for 

synchronizing the virtual disks of different container VMs. This is 

a unique issue for the storage channel because of the semantic 

difference between virtualizing a storage device like a disk and a 

network interface or an IO device: whereas a virtual network 

interface or IO device primarily acts as a multiplexer, the virtual 

disk also acts a (longer term) buffer. The A3 storage channel 

therefore manages the mapping and synchronization of physical 

disk content that are shared across multiple applications into the 

respective virtual disks by using a commit mechanism which 

enforces the following policy: after N (configurable) number of 

updates, the storage channel commits the virtual disk and remaps 

and remounts the virtual disks (of other VMs) that share the same 

file systems of the physical disk. The value of N dictates the 

synchronization delay. 

2.2 Mediated Channels and Crumple Zones 
Even though the UI, Network and Storage channels logically 

connect the A3 Container and the DDVM running the device 

drivers managing physical devices, the actual path is through the 

hypervisor. Therefore, extending the hypervisor is one possibility 

to implement the channel mediation and the crumple zones. 

However, since the mediation policies are highly application-

specific, this approach would require building/configuring a 

custom hypervisor for each protected application. Furthermore 

crumple zones are expected to fail (i.e., crumple under attack) 

under attack, which in the case of hypervisor-extension approach, 

will threaten the integrity and liveness of the hypervisor. To avoid 

these issues we designed the bulk of the crumple zones 

functionality outside the hypervisor—specifically, CZs are 

implemented as interposed VMs—the mediation policy and 

controls are either implemented within the VM containing the 

protected application or in individual VMs that are part of the A3 

conglomerate representing and acting as the protected application.  

Interposing a crumple zone VM relies on Xen’s basic inter-VM 

communication technique of using a circular buffer in a shared 

memory page. The circular buffer connects the device driver in 

the guest VM (known as the front-end driver) with the device 

driver in the DDVM that is responsible for managing the physical 

device (known as the back-end driver). For storage and UI 

channels, only one circular buffer is used, whereas for network 

channels a pair of buffers is used. The sharing of the memory 

pages is implemented by "grant tables” and strictly controlled 

share or transfer primitives. In this grant table based paradigm, 

sharing or transfer of data cannot be done without one side first 

making a hypervisor call. Our VM-based implementation of 

containers rely on the trustworthiness of the virtualization 

mechanism, i.e., the hypervisor responsible creating VMs,  

assigning and managing VM identities is treated as part of the 

trusted computing base (TCB), the grant tables and shared 

memory circular buffer between the front-end device driver at the 

guest VM and the back-end device driver (that manages the actual 

hardware devices) at the DDVM provides a fairly strong non-

bypassable way to mediate channel interaction outside of the 

hypervisor. A CZ VM can be inserted in front of the Dom0 

DDVM such that an A3 container VM trying to use the real 

hardware devices (via the back-end drivers in the DDVM) must 

go through the CZ VM. Because the intercepted traffic is now 

available to a VM, we are not limited to looking at the contents of 

the circular memory buffers—our mediation policies can inspect, 

interpret and process the intercepted information at various levels 

of the system stack.  

Figure 2 shows the A3 conglomerate for protecting an illustrative 

application. Guest VM-1 is the container running the protected 

application (APPVM henceforth), Guest VM-2 is the storage 

CZVM and Guest VM-3 is the network CZVM. The storage 

CZVM and the corresponding split-pair device drivers (shown in 

grey) at DDVM form the storage channel, and the network CZVM 

and the corresponding device drivers (shown in blue) in the 

DDVM form the network channel.  Note that although each of the 

CZVMs introduces an additional circular buffer indirection in the 

original paths connecting the APPVM and the DDVM, there is a 

slight difference. The storage CZVM connects with the APPVM 

presenting a backend driver and also with the DDVM presenting a 

front end driver. Whereas the network CZVM behaves much like 

the APPVM in the sense that it only has a front end driver, and 

connects only with the DDVM.  The network channel is designed 

in this way to take advantage of the Xen’s standard networking 

infrastructure (the Ethernet Bridge and supporting mechanisms at 

the DDVM): in a sense, the network CZVM acts like an 

intermediate hop between the APPVM and the DDVM. 

2.3 The I/E/T Prevention Framework  
To facilitate easy conception, formulation and enforcement of 

application-specific policy and control that can prevent entire 

classes of novel attacks we developed a framework to organize the 

mediation policies that can be enforced in our crumple zones.  

Apart from thwarting novel attacks for which a-priori known 

signatures do not exist, the other key design goal of this 

framework is to provide a structure that can support a generic 

 

Figure 2: Insertion of Storage and Network CZ 



application by accommodating custom specializations. We argue 

the constraints and consequent reactive adaptations in the 

following three categories cover a wide range of novel attack 

avenues. 

 Inspect (I): Inspection based policy and control include 

computing aggregate properties (e.g., rate, size, patterns) of 

interaction and subjecting them to application-specific 

operating ranges. This category also includes filtering based 

on known signatures, and observing the side effects of 

execution-based policies that are described next. 

 Execute (E): This category supports execution or processing 

of intercepted interaction to determine whether the 

interaction would cause any known undesired effect on the 

protected application. If so, such interactions should not be 

released. On the lighter extreme, E policies may constitute 

straightforward middleware functions such as 

marshalling/demarshalling, serializing/deserializing. On the 

heavier extreme, E policies engage a copy of the protected 

application executing and responding to the stimuli received 

on the mediated channels (with appropriate buffering to 

eliminate spurious side effects) before the stimuli are 

released to the real protected application.  As mentioned 

earlier, I policies may observe the execution of E policies, 

implementing the cyber security analog of a try before you 

buy or the 7 second profanity delay. 

 Transform (T): Analogous to the way transformation from 

time domain (amplitude over time) to frequency domain  

reveals and enables filtering unwanted noise in signal 

processing, we argue attacks that exploit data format or 

protocol flaws can be thwarted by data format or protocol 

conversion. Such transformations need to be semantics 

preserving and as a corollary application specific. The 

common input validation techniques currently in use to 

defend against SQL injection, CSRF and XSS attacks 

transform parts of the incoming request—which are inbound 

interactions on the network channel for A3. In addition, a 

number of modern applications do not have a pre-conceived 

notion of data format—for example, a search may return 

anything from text, PDF, word, spreadsheet, audio and 

video. Service-oriented applications (e.g., web services using 

WSDL) often are able to negotiate the nature and format of 

the data exchange at runtime. In these cases, application-

specific transformation from one protocol or data format to 

another is acceptable, and will either eliminate or disrupt the 

embedded attack code or data. Even with traditional 

applications where the protocol and data format is not 

flexible, transformation from one format to another and back 

to the original will be useful for defense against embedded 

attacks.  This is because in most cases the attacks exploit the 

vendor-added features or lapses in the specification. If the 

transformations strictly impose the protocol/data format 

specifications, malicious elements like embedded scripts can 

be eliminated or sufficiently disturbed to render then useless. 

Of course, this scheme may impact the application’s 

operation if the application relies on vendor-added features. 

2.4 Current Prototype 
Figure 3 shows the A3 test environment where the APPVM runs 

an illustrative web server application protected by the two 

CZVMs providing application-specific and prevention-focused 

adaptive defense capability.  As shown, the web server can be 

invoked (HTTP request) by a browser as well as non-browser 

clients to manage documents. The server supports multiple users, 

each authenticates using a token, and can perform a list, upload, 

download and delete operations on a file store. The server is 

expected to maintain the file store within a specified directory—

and is not expected to write user submitted content to any other 

directory. The server is also expected to enforce ownership in the 

sense that a user cannot delete another user’s files, but they can 

openly share. However, the server implementation is inherently 

buggy, and it is possible for a malicious user to traverse the 

directory structure, write files in arbitrary places, rename files, 

execute cross site scripting, upload and execute arbitrary 

executables etc. This application does not use human interaction, 

so only the network and storage channels are relevant.  

The storage crumple zone that we used for this application 

enforces the policy and control described below:  

 

 

Figure 3: Illustrative Web Server Application in A3 



Policy item Type Control Action and notes 

Path traversal C ; Inspect Block requests that try  

Write outside I; Inspect Block requests that try 

Read outside C; Inspect Block requests that try 

Size limit A; Inspect Block requests with large data 

Rate limit 

(blocks read 

or written) 

A;  

Execute 

Abort the write or read that 

involves too many bytes, 

thwarting novel attacks that 

cause infinite read or write loop 

Content 

control 

I;  Inspect Block requests that include 

executables and scripts 

Renaming I; Inspect Block requests that try 

 

The 2nd column describes the nature of the mediation, i.e., the 

security attribute (C for Confidentiality, I for Integrity and A for 

Availability) that would suffer without the policy along with 

whether the policy is based on Inspection, Execution and 

Transformation. The 3rd column describes the control actions. 

The policy and control imposed by the network crumple zone are 

similarly described by the following table: 

 

Policy item Type Control Action and notes  

Fingerprinting C; 

 Inspect    

Drop or  “wash” response, 

thwarts application and 

transport layer probing  

Argument 

filtering 

C, I and A; 

Inspect 

Block requests, stopping 

application level requests to 

change directory, exec., 

malformed requests, arguments 

Rate 

enforcement 

A, Inspect 

and Execute 

Block requests,  based on 

source based and aggregate 

number of packets and requests 

Protocol 

transform 

C, A and I; 

Transform 

Normalize requests into a well 

tested library, thwarting novel 

attacks that exploit browser and 

vendor specific extensions 

Try before 

you accept 

C, A and I; 

Execute and 

Inspect 

Block requests, thwarts novel 

attacks that inject  undesired 

and out of range application  

behavior 

 

The policies enforced at the crumple zones are usually a mix of 

generic and application specific policies. The generic policies are 

applicable to a class of applications (e.g., all web service 

applications) and can take application specific parameters. Rate 

and size checking, validation and sanitization of inputs are 

examples. Application specific policies are can be provided by 

various stakeholders such as the application developer or the 

application deployer or the user; and can also be determined by 

human experts by empirical observation.  A specific installation of 

the web service-based document management application 

described in this section may have the T policy to transform all 

word documents into pdfs, and disallow opening of outbound 

socket connections. The E policy of try-before-accept is a curious 

mix of generic and specific: the generic aspect is that for any 

protected application, one needs an application proxy or code that 

partially emulates the application in one of the crumple zones. At 

the same time, the proxy, by nature is application specific, for 

example, in our illustrative application it is essentially a replica of 

the application running in the network crumple zone. It is also 

worth noting that E policy is usually complemented by its 

accompanying I policies that monitor the execution of the E 

policy (i.e., watches over the proxy). Some of these I policies can 

be highly generic—such as death the proxy or code performing 

the execution/processing of channel events, while the others can 

be application specific such as, watching for the frequency of  

specific files being down loaded or the frequency of delete 

operations performed by a individual users. 

3. EVALUATION TO DATE  
We used a Dell Latitude D820 laptop, an Intel Centrino Duo 

clocked at 2.33Ghz and 2GB of memory connected to a single 

router along with a client PC as our experimental set up. The 

D820 is used to host an illustrative web service application 

protected by A3 with the APPVM and network and storage VMs 

as shown in Figure 3, the client laptop is used for sending both 

benevolent and attack HTTP requests to the protected web-

service. We use Xen 3.1.4 with Fedora Core 8 (kernel 2.6.18.8) 

images for both Dom0 and three DomUs in the prototype A3 

environment. Each DomU is configured to have one CPU and 

512MB of memory. 

For the initial assessment of the overhead associated with A3 

crumple zones, we recorded six unique client interactions with a 

web-service over a 10 minute window and used the recordings to 

drive our protected web service. Each client represents a different 

client OS, web-browser and usage-pattern. The usage pattern is 

roughly categorized as: (i) a batch-bulk download every 2 

minutes, (ii) a file download every minute, (iii) random heavy 

burst of  eight mixed operations lasting between 10 to 20 seconds, 

(iv) a upload-download-delete cycle (.2Hz), (v) a constant fast-

clicking refresher (.3Hz), and (vi) a heavy uploader every minute. 

Clients submit and retrieve files ranging from 9KB to 476KB and 

of multiple mime-types. Taken as a whole, the clients driving the 

protected web service present a load equivalent of a small-office 

wiki. The results of the performance assessment experiments are 

described in Section 3.1 

Objective evaluation of how effective a defense mechanism is has 

always been a challenge, and our experience in evaluating the 

effectiveness of A3 is no exception. The most credible validation 

by the community is independent red team experiments, which we 

expect to undertake later in the project, however, red team 

evaluation has its own limitations such as the motivation, 

expertise and resources of the red team and the rules of 

engagement used in the experiments. Clearly, the answer to 

questions like has A3 made the illustrative application completely 

invincible to attacks is no. In fact, A3 alone cannot achieve that 

goal. However, the crumple zones do make attacks on the 

application that make use or exploit the storage and network 

channels more difficult to actually affect the application. In the 

preliminary evaluation we sought to validate that claim by taking 

the following approach. First, starting with the semantics of the 

web service application, we developed a number of I/E/T policies 

that we deployed in the network and storage CZ, and subjected 



both the protected and unprotected application to requests with 

appropriate privilege that attempt to break the application or cause 

undesired behavior or effect in the system. Second, we conducted 

tests where we injected failures into the crumple zones, emulating 

the effects of novel attacks to observe how the protected 

application behaves. Section 3.2 elaborates.  

3.1 Efficiency 
Figure 4 and Figure 5 show the client latencies of the unprotected 

baseline application and the A3 protected application respectively. 

The protected application uses the default un-optimized A3 

policies (all policies and virtual disk committed after every update 

event). Round-trip latencies are collected from clients replaying 

the six profiles and are grouped into three categories: list and 

delete; download and upload. This grouping separates data-heavy 

ingress and egress flow (upload/download) from light-weight 

requests (list files, get upload form and delete a file).  

The average latency aggregating the different categories is 50.2ms 

for the baseline, compared to 64.9ms with A3 protection. In other 

words, the default non-optimized A3 CZs introduce a 29% 

overhead under this specific load. This overhead may seem low 

considering that the proxy crumple zone is fully executing and 

reverse proxying the request to the real application, but we note 

that the network latency may mask some of the overhead 

introduced by A3. 

We examine Figure 5 to identify which component of A3 

contributes most to A3’s overhead, and observe an outlier group 

of list-delete operations and a few spurious download and upload 

operations. Over both runs, list-delete, download and upload 

make 80%, 12% and 8% of the total requests respectively. While 

the average baseline list-delete latencies are 16.4ms (compared 

with 64.6ms for A3), over 11% of the A3 list-delete outliers have 

latencies greater than 100ms.  

In the current prototype, the storage channel commits the virtual 

disk of the Network CZ host running the application proxy by 

rsyncing the application proxy’s stored-filed directory to 

persistent storage (the rsync duration for this fixed traffic volume 

is a consistent 250ms) after a configurable number of operations 

which modify the application state, here, upload and delete 

operations. At the beginning of the commit sequence, a firewall 

rule is introduced to block incoming client requests and ultimately 

wait to reach request-quiescence before starting the rsync. To 

evaluate A3’s sensitivity to commit intervals, we ran four 

experiments varying the commit interval between one and fifteen 

as shown in the box-plots in Figure 6. The box-plots show the 

distribution of client latencies, the mean latency (large X per 

series) and a trail of outliers for each evaluation.  

From the analysis, we notice average latencies decrease (64.6ms, 

60.7ms, 55.2ms 49.6ms) as the check pointing interval grows. 

Likewise, the severity of the outliers decrease as the commit 

interval grows. We believe that both of these trends, when 

considered against the relative high volume (i.e., 80% of all 

requests) of list-delete operations, explain why list-delete 

 

Figure 5: Latency with A3 

 

Figure 4: Baseline Latency 

Commit interval (number of  delete and 
upload operations between commits)

 

Figure 6: Impact of Commit Interval 



operations fair so poorly for our A3 application. In effect, list-

delete operations are more likely to be blocked when a commit 

occurs, thus resulting in a higher perceived latency. 

 

3.2 Effectiveness 
Using a commit interval of 15 modification events and the client 

mix as described earlier, we introduced six random attacking 

clients to exercise A3 CZ defenses and record client overheads 

under attack scenarios. During a ten minute experiment, we used 

six attack clients attempting a variety of attacks: (i) script 

injection to compromise future legitimate requests, (ii) path 

traversal to exfiltrate and infiltrate data, (iii) random fuzzing to 

scan for buffer overruns and host fingerprinting, (iv) resource 

exhaustion, (v) upload and execution of binary files and (vi) a 

fault-injection client that triggers a synthetic crash in the 

application proxy running the network CZ during the sixth 

minute. Against our naive web-service without A3’s protections 

the same attacks result in cross-site script attacks, removal of 

readable host configuration files (e.g., private encryption keys, 

/etc/iptables), replacement of writable files, fingerprinting via 

thrown exceptions, resource starvation, and execution of arbitrary 

shell code and attack binaries. We also verified that the failure 

injected at the application proxy will also kill the application if 

injected at the application itself. Figure 7 captures the results. 

 

The top half of Figure 7 shows a time-series showing the latencies 

for the six benevolent clients, commit durations, and the crash 

roll-back recovery duration from the fault-injection. As can be 

seen in the figure, other than the interval around the 6th minute, 

the benevolent clients did not suffer any loss of service. In the 

bottom half of the figure, we group and plot each policy violation 

in time as reported from the A3 host. Speaking generally, the A3 

host blocked binary file uploads and path traversal attempts in the 

storage crumple-zone, and via the network crumple zone, A3 

enforced a strict QoS policy on request rate thus mitigating DoS 

attempts, filtered <script> tags from submission thus blocking 

script injection attempts and enforced WS parameter and HTTP 

header constraints thus disallowing the execution of arbitrary, out-

of-bounds fuzzed inputs. Specifically, the attack clients attempted 

1,519 attacks and benevolent clients executed 933 requests, 

which, in effect, doubled the number of clients. In terms of 

average latency for the benevolent clients, the additional load 

introduced by the experiment (i.e., request load and A3 I/E/T 

policies) resulted in a modest 4% of additional overhead. In terms 

of distribution of performance, we observed a max latency 1% 

larger than the previous 15-interval experiment which is 

ultimately negligible. 

The final thing to notice in Figure is the grayed-out recovery 

window. As mentioned earlier, during the sixth minute of the run, 

we injected a synthetic crash failure emulating a novel attack that 

would not have been blocked by policy violation in the earlier 

stages. However, this attack was fully absorbed by the network 

crumple zone’s proxy. Unoptimized, A3 can detect a process 

crash (observers for more complex failures such as verifying the 

integrity of the CZ VMs are under development) in the network 

crumple zone, and complete the subsequent roll-back recovery 

comprising of tearing down the crumple zone VMs, and restoring 

them to the last known good checkpoint in under 77 seconds. 

4. CONCLUSION AND NEXT STEPS  
The initial evaluation of the A3 execution container and 

constituent prevention-focused mediation and adaptive response 

indicates that the middleware-based, near-application and 

application-specific cyber-defense can be effective against novel 

attacks whose signatures are not known, and such defenses can be 

mounted effectively. 

We are continuing to enhance the CZ policies. A specific case 

alluded to in the previous section concerns enhancement of I 

policies. This involves developing observers for more 
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sophisticated compromised behavior and undesirable conditions 

than process crash. We are using Virtual Machine Introspection 

(VMI) and application-specific invariants to implement these 

observers.  Work is also underway to support recovery-focused 

adaptation using ASM and improving the defensive policy and 

configuration using RwM. 

Evaluation of a security solution such as A3 that aims to address 

the uncertainty and impact of novel attacks is a hard problem. 

Testing the technology against an application with known 

vulnerabilities goes part way in demonstrating the effectiveness of 

the technology, but falls short on evaluating the technology’s 

response to novel attack. We are extending the failure injection 

approach  described in Section 3.2 to emulate the manifestation of 

novel attacks by using a protected application that is injected with 

artificial vulnerabilities (i.e., made artificially vulnerable) and 

exploiting the vulnerabilities in a non-deterministic way. Our 

future evaluation plan includes testing whether the I/E/T policies 

of A3 crumple zones can absorb and contain such attack effects, 

and if not, whether advanced state management and replay with 

modification can quickly recover and reconstitute a more effective 

defense.  
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