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Abstract
Most programming languages support a call stack in the program-
ming model and also in the runtime system. We show that for appli-
cations targeting low-power embedded microcontrollers (MCUs),
RAM usage can be significantly decreased by partially or com-
pletely eliminating the runtime callstack. We present flattening,
a transformation that absorbs a function into its caller, replacing
function invocations and returns with jumps. Unlike inlining, flat-
tening does not duplicate the bodies of functions that have multiple
callsites. Applied aggressively, flattening results in stack elimina-
tion. Flattening is most useful in conjunction with a lifting transfor-
mation that moves global variables into a local scope.

Flattening and lifting can save RAM. However, even more ben-
efit can be obtained by adapting the compiler to cope with proper-
ties of flattened code. First, we show that flattening adds false paths
that confuse a standard live variables analysis. The resulting prob-
lems can be mitigated by breaking spurious live-range conflicts be-
tween variables using information from the unflattened callgraph.
Second, we show that the impact of high register pressure due to
flattened and lifted code, and consequent spills out of the register
allocator, can be mitigated by improving a compiler’s stack layout
optimizations. We have implemented both of these improvements
in GCC, and have implemented flattening and lifting as source-to-
source transformations. On a collection of applications for the AVR
family of 8-bit MCUs, we show that total RAM usage can be re-
duced by 20% by compiling flattened and lifted programs with our
improved GCC.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based Systems]: Real-time and Embedded Systems;
D.3.4 [Programming Languages]: Processors—optimization

General Terms Performance, Languages

Keywords sensor networks, embedded software, compiler opti-
mization, memory optimizations, memory allocation, stack live-
ness analysis

1. Introduction
Microcontroller units (MCUs) are inexpensive systems-on-chip
that are equipped with a limited amount of on-chip RAM: typi-
cally between hundreds of bytes and tens of kilobytes. Regardless
of whether an MCU is programmed in assembly, C, C++, or Java,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-356-3/09/06. . . $5.00
Reprinted from LCTES’09,, [Unknown Proceedings], June 19–20, 2009, Dublin, Ire-
land., pp. 1–10.

it is likely to use some of its RAM to store one or more call stacks:
chains of activation records representing the state of executing
functions. From the point of view of the compiler, targeting a run-
time system based on a callstack has important benefits. First, the
stack is memory-efficient: variables live only as long as they are
needed. Second, the stack is time-efficient, supporting allocation
and deallocation in a handful of clock cycles. Third, compilers can
rapidly generate high-quality code by compiling one function at
a time; the small size of the typical function makes it possible to
run aggressive intraprocedural optimizations while also achieving
short compile times.

Our thesis is that despite these well-known benefits: Partially or
completely eliminating the runtime call stack—using our flattening
and lifting transformations—can significantly reduce the RAM re-
quirements of applications running on embedded microcontrollers.
Additional savings can be obtained by modifying the compiler to
improve its ability to optimize flattened code.

MCUs typically use a Harvard architecture where code is placed
in flash memory and data is placed in SRAM. Unlike flash memory,
which only consumes power when it is being actively used, SRAM
draws power all the time. Thus, for battery-powered applications
that leave the processor idle much of the time, overall energy use
can be dominated by the power required to maintain data in SRAM.
Popular members of the AVR family of low-power MCUs, which
we use to evaluate our work, provide 32 times more flash memory
than SRAM.

Reducing the RAM used by an embedded application serves
two purposes. First, it can enable an application to fit onto a smaller,
cheaper, lower-power MCU than it otherwise would. Second, it can
enable more functionality to be placed onto a given MCU.

Our work targets legacy C code and does not require any
changes to the programming model. Also, we propose replacing
the stack with static memory allocation, not replacing stack allo-
cation with heap allocation (as some functional language runtimes
do). In fact, the MCU applications that we are concerned with do
not use a heap at all.

Our lifting transformation moves a global variable into main’s
local scope, and our flattening transformation absorbs a function
into its caller, replacing function call and return operations with
jumps. Unlike inlining, flattening does not make a new copy of
the function’s body for each callsite. In the absence of flattening
hazards—which are similar to inlining hazards and include recur-
sive calls, indirect calls, external calls, and interrupt handlers—a
program can be completely flattened. A completely flattened pro-
gram has a single stack frame—for main—which is a degenerate
case since it is allocated at boot time and is never deallocated. Be-
cause programs for MCUs typically make limited use of recursive
and indirect calls [Engblom 1999], flattening can reduce most pro-
grams to main, some interrupt handlers, and a few external library
calls.
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Aggressive flattening saves RAM in the following ways:

• The function calling convention is bypassed, avoiding the need
to push data such as the return address, frame pointer, and
caller/callee-saved registers onto the stack. It is still necessary
to track the return site of each call, but this information is
stored in regular scalar variables and is therefore exposed to
the register allocator and other optimizers.

• Compilers whose intraprocedural optimizers are stronger than
their interprocedural optimizers (i.e., all compilers) can emit
better code from flattened functions by considering more code
at once.

• Lifting variables into main’s scope exposes them to more ag-
gressive optimizations.

In effect, flattening and lifting trick a legacy C compiler into per-
forming whole-program optimizations. This works because modern
compilers, running on modern desktop machines, are perfectly ca-
pable of whole-program compilation for MCU-sized codes.

Stack elimination is not without risks. First, we have found that
flattening increases application code size due to insertion of func-
tion return tables and explicit initializers for lifted global variables.
Second, it is possible that aggressive flattening can increase regis-
ter pressure to the point where many spills occur, defeating RAM
savings. Even so, modern versions of GCC reduce the RAM usage
of flattened code for almost all applications that we tested. Fur-
thermore, we implemented several improvements to GCC’s AVR
port, and show that these result in additional RAM savings. Our
improvements are in live range analysis and in stack frame alloca-
tion.

Our principal result is that we can reduce total RAM usage of
a collection of embedded applications by an average of 20%. Total
RAM usage is measured by adding the amount of statically allo-
cated RAM (in the data and BSS segments) to the worst-case size
of the callstack, if any. The drawback is that code size is increased
by 14%. Thus, while flattening is not applicable to all programs, it
represents a useful alternative for RAM-limited programs on em-
bedded architectures that provide plenty of code memory. The CPU
usage of our test applications was not greatly affected; they are 3%
faster, on average, after flattening.

Stack elimination has two interesting side effects. First, since
function return addresses are no longer stored on the stack, pro-
grams become less vulnerable to control-flow hijacking via buffer
overflow vulnerabilities. Recent work has shown that even pro-
grams for Harvard-architecture MCUs may be vulnerable to code
injection attacks [Francillon and Castelluccia 2008]. Flattening
does not simply provide security through obscurity; we argue in
Section 5.2 that we have developed a new, viable implementation
of control flow integrity [Abadi et al. 2005]. The second useful
side effect of stack elimination is that the callstack is a source of
unpredictability in MCU software: developers are often uncertain
about its maximum extent. After stack elimination, computing the
worst-case RAM requirement of a program is trivial.

2. Flattening C code
Flattening is a program transformation that, like inlining, removes
edges from the callgraph by absorbing called functions into their
callers’ bodies. Unlike inlining, flattening does not create multiple
copies of function bodies in the common case.

2.1 Flattening Algorithm
From the point of view of the callee (see Figure 1), flattening a

single function works as follows:

1. Rename symbols in the callee to avoid name conflicts.

Before flattening:

int foo (int formal1, int formal2) {
... body ...
return ret;

}

After flattening:

_foo_body:
... body ...
_foo_ret_value = ret;
switch (_foo_ret_site) {

case 0: goto _foo_ret_site_0;
case 1: goto _foo_ret_site_1;
case 2: goto _foo_ret_site_2;
...
default: panic();

}

Figure 1. Flattening from the callee’s perspective

Before flattening:

val = foo (actual1, actual2);

After flattening:

_foo_formal1 = actual1;
_foo_formal2 = actual2;
_foo_ret_site = 2;
goto _foo_body;

_foo_ret_site_2:
val = _foo_ret_value;

Figure 2. Flattening from the caller’s perspective

2. For each local variable in the callee, move it to the caller.

3. Create a fresh variable for storing the return site.

4. Copy the callee’s body into the caller, below a label.

5. Create a switch statement returning to each possible callsite. We
include a default case in each such switch statement that crashes
the running program—this can only happen in the presence of
a compiler bug, flattener bug, or memory safety violation in the
compiled application.

From the point of view of the caller (see Figure 2), flattening
works as follows:

1. Create assignment statements connecting formal and actual pa-
rameters.

2. Create a unique numerical identifier for the callee’s return point
and an assignment statement storing the identifier for this call-
site.

3. Create a jump to the callee’s body.

4. Create a label for the return site.

5. Assign the function’s return value into the appropriate variable.

Figure 3 shows a complete example: the body of A() is copied
into B() and function calls are replaced with jumps.

Our flattening algorithm does not contain a special case for gen-
erating better code for functions that have a single callsite. This
would be straightforward, but we solve the problem in a different
way: by previously performing a function inlining pass that elimi-
nates all functions that have a single callsite (see Section 2.5).
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int x, y;

void A (void)
{

x++;
}

int B (void)
{

A();
y++;
A();
return x+y;

}

Flatten
A() into B()

int x, y;

int B (void) {
int _A_ret_site = 0;
goto _A;

_A_ret1:

y++;

_A_ret_site = 1;
goto _A;

_A_ret2:

return x+y;

_A:
x++;
switch (_A_ret_site) {
case 0: goto _A_ret1;
case 1: goto _A_ret2;
default: panic();
}

}

Figure 3. Example of flattening

2.2 Flattening Hazards
A flattening hazard is a condition that prevents flattening a partic-
ular callee into its caller. Hazards that we have identified are:

1. call through function pointer,

2. unavailable function body,

3. use of setjmp or longjmp in the callee,

4. explicit modification of stack pointer in the callee, for example
to spawn a new thread or to dynamically allocate storage using
alloca, and

5. recursive loops.

When a program contains multiple callgraphs, for example due
to the presence of threads or interrupt handlers, each callgraph
can be individually flattened. Flattening does not provide a way
to merge these separate callgraphs.

When a program is free of flattening hazards, all function calls
can be flattened. When a program additionally contains only a sin-
gle callgraph, all variables can be lifted into main. At this point,
the compiler is free to statically allocate the stack frame for main,
eliminating all dynamic use of the stack. Furthermore, on a RISC
architecture, the compiler is free to use the stack and frame pointers
for other purposes (no compiler that we are aware of takes advan-
tage of this opportunity, however).

2.3 Avoiding Code Duplication
Flattening a callee into a single calling function results in the
creation of a single copy of the callee, regardless of the number of
callsites in the caller. Flattening a callee into multiple callers causes
one copy of the callee to be created for each caller. However, in the
common case, code duplication can be avoided by (1) flattening
only into the root function of each callgraph and (2) removing the
original function once all calls have been flattened away. This leads
to a useful result:

Theorem 1. A hazard-free C program that contains a single call-
graph (i.e., no interrupts or threads) can be completely flattened
without introducing any duplicated code.

Proof Sketch. Proof is by induction over the callgraph.

• Base case: main has no callees.

• Inductive case: main has a callee that we will flatten.
Subcase 1: A copy of this function has not yet been inte-
grated into main. We flatten the function into main, creating
one new copy of its body. However, this copy is “free” be-
cause we will eventually be able to eliminate the standalone
version of the function body.
Subcase 2: A copy of the function has already been inte-
grated into main. We add a new callsite to the function; no
code is duplicated.

When functions are reachable from multiple callgraphs, a policy
decision must be made about whether or not to flatten these func-
tions. We do so in order to save as much RAM as possible—and
pay for this with code size.

2.4 Lifting Global Variables
Once an embedded application has been flattened, some global
variables can be “lifted” into the local scope of main. This trans-
formation is sound when the global is referenced—directly and
indirectly—only by main. Our flattener uses a simple alias anal-
ysis to verify this property for each global variable before lifting it
into main’s scope. Additionally, since local variables in C are not
automatically initialized, lifted variables lacking initializers must
be explicitly initialized to zero. Globals are not lifted when they
have external linkage or are specified (using a non-portable com-
piler directive) to reside in ROM instead of RAM.

2.5 Implementation
We implemented flattening and lifting as source-to-source transfor-
mations using CIL [Necula et al. 2002]. The algorithm is as fol-
lows:

1. Perform a function inlining pass to eliminate functions that are
very small or that are called from just one site.

2. Flatten the program and lift global variables as described in this
section.

3. Run a cleanup pass that performs dead code elimination, dead
data elimination, and copy propagation.

The resulting C program can be passed directly to the embedded
C compiler. Our flattener/lifter was implemented in 664 lines of
OCaml code. In comparison, our source-to-source inliner is 1783
lines and our cleanup pass is 1011 lines.

3. Optimizing Flattened Code
The main purpose of flattening and lifting is to create additional
opportunities for existing compiler optimizations to improve code.
However, these opportunities also represent a hazard: it is possible
that the compiler will not be up to the task of optimizing the much
larger post-flattening code. Specifically, not only does flattened
and lifted code generate considerable register pressure, but it also
confuses a standard live range analysis by creating false paths that
increase apparent register pressure. The compiler that we chose
to improve is a pre-release snapshot of GCC 4.4.0 for the AVR
architecture. We expect that these improvements would also be
useful if implemented in other embedded compilers.

3.1 Problem 1: Flattening Creates False Paths
Flattening can create very large function bodies with large num-

bers of variables. For the resulting object code to be of high quality,
it is critical that the compiler’s register allocator do a good job. For
the register allocator to do a good job, as few variables as possible
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extern
volatile
int TIMER;

void C (void)
{

... no calls ...
}

void A (void)
{

int a1 = TIMER;
C();
a2 = a1;

}

void B (void)
{

int b1 = TIMER;
C();
b2 = b1;

}

void D (void)
{
...
A();
...
B();
...

}

extern
volatile
int TIMER;

void D (void) {
int a1, b1;
...

_A_body:
a1 = TIMER;
_C_ret_site = 1;
goto _C_body;

_c_ret_site_1:
a2 = a1;
... A return code ...

_B_body:
b1 = TIMER;
_C_ret_site = 2;
goto _C_body;

_c_ret_site_2:
b2 = b1;
... B return code ...

_C_Body:
... C body ...
switch (_C_ret_site) {
case 1: goto _C_ret_site_1;
case 2: goto _C_ret_site_2;
...

}

Figure 4. Example illustrating the introduction of false paths via
flattening. At left, hypothetical source code including reads from
a hardware register TIMER. At right, fragments of D() after A(),
B(), and C() have all been flattened into it. In the original code it
is obvious that a1 and b1 have non-overlapping live ranges. In the
flattened code, many compilers will consider a1 and b1 to conflict.

D

B

C

A

Figure 5. Callgraph for unflattened code in Figure 4

should conflict. Conflicts occur when the live ranges of two vari-
ables overlap at at least one program point. If two variables con-
flict, they may not be allocated to the same register or memory cell.
Thus, to keep RAM usage low, it is critical for live ranges to be as
short as possible.

Figure 4 shows how flattened code can trick a compiler into
computing overly pessimistic live ranges. Given the callgraph for
the original code (shown in Figure 5), it is obvious that a1 and
b1 are not live at the same time. Flattening does not change the
live range of any variable. However, a standard flow sensitive, path
insensitive live variables analysis will be confused by the flattened
code. The problem is that there are two paths through the code from
C(): one returning to A()’s code, the other returning to B()’s code.
Lacking an expensive path-sensitive live variables analysis, the
analysis state is “polluted” by passing through C(), and it appears
that a1 and b1 have overlapping live ranges.

We examined some embedded applications and found that when
using an unmodified GCC to compile flattened code, 40%–70% of
conflicts between variables were false positives.

3.2 Solution 1: CGO—Callgraph-Based Optimization
A variable in function f() can conflict with a variable in function
g() only if there is a path through the callgraph leading from f()
to g() or vice versa. Flattening a C program does not add any
conflicts, but as we saw in Figure 4, flattening makes it difficult
for the compiler’s conflict analysis to succeed.

We solved this problem in a direct way: by reusing information
about unflattened code to improve compilation of flattened code.
Basically, by looking at unflattened code we can infer many non-
conflict relationships between variables. We use this information to
break apparent conflicts in the flattened code. In detail:

• We modified a GCC pass that performs call graph analysis to
dump the callgraph of an unflattened application into a file,
along with a mapping of variables to the functions in which
each variable is declared.

• We modified GCC to read the callgraph and variable mapping
information while compiling a flattened program. It computes
a set of variable pairs that cannot be conflicts, and uses that
information to break false conflicts.

3.3 Problem 2: Spilling Wastes RAM
Typically, a variable is put into memory, as opposed to being allo-
cated to a register, if one of the following conditions is true:

• The variable has an aggregate type (struct, union, or array).
• The variable has its address taken and the resulting pointer is

used in a nontrivial way.
• The variable spills out of the register allocator.

In general, on architectures with a reasonable number of reg-
isters, register allocator spills are uncommon. Thus—practically
speaking—compilers do not seem very concerned with generating
efficient code in the presence of spills. For example, it is common
for spilled variables to effectively have infinite live ranges: the com-
piler makes no attempt to share their memory cells with other, non-
conflicting spilled variables. Stack memory allocation is therefore
very simple: variables are lined up according to their alignment re-
quirements.

3.4 Solution 2: SSO—Stack Slot Optimization
Since flattened code is nearly certain to cause the register allocator
to spill, it is important to avoid pathological behavior such as
infinite live ranges for spilled variables. Quite recently (i.e., since
GCC 4.3), GCC has started to optimize spilled registers by co-
locating them on the stack if they fail to conflict [Makarov 2007].

We modified GCC to push this idea further by performing live-
ness analysis on variables with aggregate type and on variables ma-
nipulated using pointers, and then to collocate these variables on
the stack when they fail to conflict. The analysis that we imple-
mented is field sensitive. The goal is to minimize RAM consump-
tion by co-locating non-conflicting variables whenever possible.

Our analysis finds, at the level of GCC’s RTL (register transfer
language), all references to stack memory locations. For each such
reference, it computes a conservative set of possible target memory
locations. Some cases that we deal with, where FP is the frame
pointer, are:

• Addresses of the form FP + i, where i is a constant. We can
trivially resolve the location of the reference.

• Addresses of the form FP+Rn, where Rn is a register. Here we
need to reason about the value of Rn; we do this by performing
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a backwards dataflow analysis that, if successful, provides a
concrete value for the register. For example consider this code:

if (R4)
R2 = 0;

else
R2 = 4;

if (R5)
R1 = R2 * 2;

else
R1 = R2 * 3;

load MEM(FP + R1)

The goal of our analysis is to find the value in R1 when the load
is performed. A backwards dataflow analysis can conclude that
at the location of the memory reference, R1 can contain 0, 8, or
12. In other words, the access is either 0, 8, or 12 bytes offset
from the frame pointer. Our analysis includes special cases to
deal with array induction variables; in this case the entire array
being traversed is treated as being referenced by the eventual
memory operation.

• Addresses of the form Rn. Again, we perform a backwards
dataflow analysis, with the additional complication that the tar-
get may not be on the stack. If the analysis terminates without
involving the frame pointer, then the access is to a global vari-
able and we may disregard it. If the access may be to the stack,
analysis proceeds as for the second case.

In some cases, source-level symbolic information can be used
to help our analysis. For example, for an RTL instruction store
[Rn] where Rn is a pointer, and [Rn] is associated with the
location X[3].f, we can simply mark the corresponding struct field
as being referenced. If the array index is indeterminate, the entire
array would be marked as being referenced. Finally, if our various
heuristics and analysis fail to compute a useful, conservative set of
memory locations that may be referenced by a load or store, we
treat it as possibly referencing all memory locations that are part of
objects whose address has been taken.

Unlike GCC’s existing liveness analyses, our new conflict analy-
sis deals with may-alias relations. Thus, in addition to def/use infor-
mation, we have may-def and may-use information. We deal with
these in the standard way: a must-define command marks the be-
ginning of a live range, but a may-define does not. A may-use com-
mand can be treated the same as a must-use command.

Once our analysis has computed live ranges for stack slots, it
performs a conflict analysis. A spilled register may share memory
locations with any kind of stack object with which it fails to con-
flict, including unused fields of live structs.

4. Evaluation
This section evaluates flattening, lifting, and our compiler improve-
ments using a collection of embedded applications written in C
and targeting the AVR architecture. The AVR is an 8-bit RISC
architecture; like other ultra-low-power microcontrollers, it lacks
performance-oriented features such as caches and branch predic-
tors.

4.1 Test Applications
Our test applications are:

• FlyByWire—an unmanned aerial vehicle control program from
the Paparazzi project [Paparazzi]. It is responsible for reading
and decoding sensor data, driving servos, and switching be-
tween manual and automatic control. It is 1306 lines of code
(LOC).

application baseline RAM baseline ROM
FlyByWire 1174 9516
Robot 290 3386
Projector 78 9438
BaseStation 1747 12156
Blink 111 1968
BlinkToRadio 477 9366
Oscilloscope 512 9846
RadioCountToLeds 483 9362
SharedResourceDemo 136 2616
TestAM 449 8878
TestFcfsArbiter 126 2306
TestLocalTime 405 5580
TestRoundRobinArbiter 128 2414
TestSerial 407 5652
TestSimComm 475 9180

Figure 6. Baseline RAM and ROM usage in bytes

• Robot—a robot control application emitted by KESO [Waw-
ersich et al. 2007], an ahead-of-time Java-to-C compiler for
highly constrained embedded systems. 2526 LOC.

• Projector—a laser video projector control program [Hjortland].
2307 LOC.

• 12 sensor networking applications from TinyOS [TinyOS] 2.1,
emitted by the nesC [Gay et al. 2003] compiler. 3015–13978
LOC.

Although these applications target different members of the
AVR processor family, the TinyOS applications all target the AT-
mega128, a chip supporting 4 KB of SRAM and 128 KB of flash
memory. Figure 6 shows the default RAM and ROM usage of these
applications.

4.2 Evaluation Metrics
Our primary evaluation metrics are ROM usage, RAM usage, and
CPU usage. ROM usage is trivial to measure since the size of an
MCU application’s code segment is static.

Estimating RAM Usage A C program’s static RAM is divided
into two segments. The data segment holds global variables that
are explicitly initialized. The BSS segment holds global variables
that lack initializers; this segment is zeroed (as required by the C
standard) at boot time. The sizes of both are fixed at link time and
are therefore trivial to compute.

Estimating the worst-case stack memory usage of a program is
not totally straightforward, but the problem has been previously ad-
dressed [Brylow et al. 2001, McCartney and Sridhar 2006, Regehr
et al. 2003]. Our approach to bounding stack memory consumption
is based on this previous work: we have a program that walks the
callgraphs of an AVR binary, conservatively estimating the worst-
case stack depth of each function as it is found. To compute total
worst-case stack depth, the worst-case depth of main is added to
the maximum stack depth of any interrupt handler.

For sequential code, such as main or an isolated interrupt han-
dler, our stack analyzer tends to return tight bounds: its estimates
are in close agreement with actual measurements. For concurrent
code, such as an entire sensor network application, our stack ana-
lyzer typically returns stack memory bounds that are larger (often
by a factor of two) than the worst-observed stack memory usage.
We believe that our analyzer is correct. The gap between predicted
and observed maximum stack memory usage is due to the fact that
reaching a concurrent system’s maximum stack depth requires tim-
ing coincidences that have low probability in practice.
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The RAM usage of an application is the sum of the RAM usage
of the data segment, the BSS segment, and the call stack. None of
our test applications uses a heap, and in fact heaps are uncommon
on microcontrollers with just a few KB of RAM.

CPU Usage The standard metric for a sensor network applica-
tion’s CPU usage is duty cycle: the fraction of time that the pro-
cessor is active, as opposed to sleeping in a power-saving mode.
We measured duty cycle using Avrora [Titzer et al. 2005], a cycle-
accurate simulator for sensor network applications.

We measured the CPU usage of only the sensor networking ap-
plications, omitting Robot, Projector, or FlyByWire from our duty
cycle evaluation. We lack the customized hardware—and simula-
tors for that hardware—required by these embedded applications.

4.3 Methodology
The baseline for comparison is an unimproved version of GCC 4.4.0
for the AVR architecture. The following factors help ensure a fair
comparison between GCC and our flattener:

• The nesC compiler emits a single C file for an application and
also aggressively marks functions with the “inline” directive,
which GCC obeys.

• For non-TinyOS applications, we used CIL to combine all
source files pertaining to each application into a single C file.

These measures help the unmodified GCC by permitting it to see
the entire application at once, and for example to inline arbitrary
calls even when these cross compilation units in the original appli-
cation. These measures do not help the flattener, which performs
file combining on its own.

We evaluated seven compilations of each application:

1. Baseline: unmodified source code, compiled with unmodified
GCC 4.4.0

2. Flattened: flattened source code, compiled with unmodified
GCC 4.4.0

3. Flattened + SSO: flattened source code, compiled with GCC 4.4.0
and stack slot optimizations (Section 3.4)

4. Flattened + SSO + CGO: flattened source code, compiled with
GCC 4.4.0, stack slot optimizations, and callgraph-based opti-
mization (Section 3.2)

5. Unflattened + SSO

6. Unflattened + CGO

7. Unflattened + SSO + CGO

The last three combinations of optimizations resulted in identi-
cal resource usage compared to the baseline, and so we omit these
data points from our graphs. SSO (stack slot optimization) is inef-
fective when compiling unflattened applications, which cause few
or no register allocator spills, and CGO (callgraph optimization)
clearly has no effect since the compiler already has all of the call-
graph information for the unflattened code. Our results are shown
in Figure 7. Each graph contains three data points for each applica-
tion: change due to flattening vs. the baseline, change due to flat-
tening + SSO vs. the baseline, and change due to flattening + SSO
+ CGO vs. the baseline.

4.4 Impact on RAM Usage
On average, the RAM usage of our test applications was reduced
by 20% when compiled with flattening, CGO, and SSO. This is our
most significant high-level result: RAM is in very short supply on
a low-power MCU.

Flattening alone reduces RAM usage by 15%, on average. In
one case, flattening increased RAM usage slightly due to greatly

application variables lifted bytes lifted
FlyByWire 72% 45%
Robot 75% 97%
Projector 0% 0%
BaseStation 20% 80%
Blink 44% 78%
BlinkToRadio 22% 54%
Oscilloscope 24% 52%
RadioCountToLeds 22% 46%
SharedResourceDemo 72% 74%
TestAM 18% 49%
TestFcfsArbiter 67% 80%
TestLocalTime 14% 30%
TestRoundRobinArbiter 64% 79%
TestSerial 14% 28%
TestSimComm 21% 46%

Figure 8. Success rates for lifting global variables into main’s
scope after flattening

increasing register pressure, causing the compiler to spill data to
RAM. However, in this case SSO and CGO were effective in
bringing RAM usage down below the baseline.

4.5 Impact on Duty Cycle
On average, the CPU usage, measured using duty cycle, is reduced
by 3% by flattening. However, flattening increases the CPU usage
of several applications. SSO and CGO have little or no effect on
CPU usage.

Flattening can speed up a program by effectively permitting the
compiler to use customized calling conventions and by increasing
the scope of existing intraprocedural optimizations. On the other
hand, returning from flattened function calls is not as efficient
as returning from real function calls. Furthermore, the increased
function size of a flattened program causes the compiler to use more
long branches, which are inefficient.

4.6 Impact on ROM Usage
The biggest drawback of flattening is that it increases code size,
by an average of 14% when flattening, CGO, and SSO are all
applied to a program. There are several contributors. First—and
most important—return sites from functions with many callsites
can become quite bulky. For example, we saw functions in large
TinyOS applications with up to 27 call sites. Second, flattening
requires code to be inserted to explicitly initialize global variables
that are lifted into main. Third, when a function is flattened both
into main and into an interrupt handler, its code is duplicated.

Despite the code bloat, we believe that flattening is useful for
RAM-constrained applications, particularly on architectures such
as AVR that have many times more ROM than RAM.

4.7 Lifting Globals
Figure 8 shows the percentage of variables and bytes that could be
lifted into main’s local scope after each application was flattened.
Lifting is important because it exposes variables to more aggressive
optimizations. Across the applications that we tested, the main
reason why a variable could not be lifted into main’s scope was that
it was potentially accessed from an interrupt handler. For example,
the Projector application contains 16 global variables, all of which
are shared with interrupts.

4.8 Compile Times
The optimizations presented in this paper—flattening, SSO, and
CGO—are all fairly fast. The flattener, which includes function
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Figure 7. Effect of flattening on resource usage for our test applications. The baseline for comparison is compilation with inlining targeted
towards minimizing code size.
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inlining and dead code/data elimination passes, takes up to one
minute to run on our largest testcases. However, this is an en-
tirely unoptimized prototype implementation written in a functional
language—we believe that flattening could be made to be very fast,
adding perhaps a few percent to overall compile times. SSO and
CGO add no more than about three seconds to the compile time of
our largest test applications.

5. Discussion
This section addresses some of the broader implications of our
research.

5.1 Toward Bounded Memory Usage
When a C program is completely flattened, a single stack frame,
for main, results. Furthermore, the compiler is free to allocate this
frame statically, and to never deallocate it. In fact, this is what some
versions of GCC for the AVR architecture do.

In the absence of dynamic use of the callstack, the worst-case
memory usage of an embedded application becomes easy to pre-
dict: it is the same as the best-case memory usage. This permits
developers to avoid a difficult problem: predicting worst-case stack
memory usage. Another way to avoid this problem is to use a static
analysis tool [Brylow et al. 2001, McCartney and Sridhar 2006,
Regehr et al. 2003]. However, for various reasons these tools are
not in widespread use and in practice developers rely on guess-
work [Ganssle 1999].

Even when complete flattening is impossible—as it often is, due
to interrupt handlers and library calls—flattening greatly simplifies
an application’s callgraph. Thus, while flattening does not elimi-
nate the stack depth estimation problem, it does make it easier to
compute a program’s worst-case stack memory usage.

5.2 Control Flow Integrity
Control flow integrity (CFI) [Abadi et al. 2005] is a program prop-
erty specifying that execution must follow a control flow graph
determined ahead of time. CFI means that a program is invulner-
able to code injection attacks where an attacker exploits a buffer
overflow vulnerability to jump to malicious code residing in a data
buffer. Recent work [Francillon and Castelluccia 2008] has shown
that even Harvard architecture MCUs, which store code in ROM,
may be vulnerable to code injection attacks.

For programs in unsafe languages like C and C++, static verifi-
cation of CFI is difficult or impossible due to problems in reasoning
about pointers and arrays. Enforcement of CFI, then, must be dy-
namic. A major problem is that regular program data is mixed up on
the stack with metadata such as saved return addresses. A typical
enforcement mechanism for CFI involves creating a shadow stack
which stores only metadata, and protecting it from being overwrit-
ten using sandboxing techniques.

Unlike a regular C program, a completely flattened C program
does not store function return addresses anywhere in memory.
Instead, small integers denoting return sites are stored in regular
program variables, which may or may not be spilled to RAM. If a
function return site is corrupted by a buffer overflow vulnerability
while it resides in RAM, CFI is not violated. Rather, as the code
in Figure 1 shows, the worst thing an attacker can accomplish is
to make the program panic or return to the wrong caller. Although
these consequences are undesirable, they are certainly safer than
executing arbitrary injected code.

A bit more formally:

Theorem 2. A hazard-free C program that contains only vanilla
C control flow constructs (i.e., no setjmp/longjmp, UNIX signals,
interrupts, coroutines, etc.) has the control flow integrity property
when completely flattened and compiled by a correct C compiler.

Proof Sketch. Assume the CFG is a set of addresses that the pro-
gram counter (PC) may legally execute, and also that the executing
program cannot overwrite any instruction in the CFG. Proof is by
induction over the PC successor relation.

• Base case: PC is at the first instruction of the program, which is
trivially in the CFG.

• Inductive case: If the PC is in the CFG, control flow will transfer
to another instruction in the CFG.

Subcase: Next instruction is reached via standard fallthrough.
Successor is trivially in the CFG.
Subcase: Next instruction is reached via a direct conditional
or unconditional branch. Again, the successor instruction(s)
must be in the CFG. If the program has managed to corrupt
its state via buffer overflow we may jump to the wrong
target, but CFI is not violated.
Subcase: Next instruction is reached via indirect branch.
Here we must look at what C code caused the indirect
branch to be generated. By assumption, the program con-
tains no function pointers or exotic control flow constructs.
Given vanilla C code, most compilers will emit an indirect
branch only to implement a sufficiently large switch state-
ment. As far as we know, all compilers’ jump table imple-
mentations respect CFI even after a program’s state has been
corrupted by a buffer overrun.
Subcase: Next instruction is reached via function call, func-
tion return, interrupt, or interrupt return. By assumption,
none of these instructions are in the CFG.

Although our implementation of CFI handles only a subset of
C programs, it results in more efficient CFI enforcement than any
other CFI technique of which we are aware.

5.3 Future Work
Flattening interrupt handlers Our current implementation flat-
tens main and any interrupt handlers separately. As we noted in
Section 4.7, this prevents us from lifting globals into main when
they are reachable from interrupts. An alternative that we plan to
explore is flattening interrupt-handling code into main. Note, how-
ever, that this scheme does not let us avoid code duplication for
functions that are called from main and also from an interrupt han-
dler: this duplication is required in order to ensure that fresh ver-
sions of local variables are available for interrupt handlers. Flatten-
ing interrupt handlers into main will not work for embedded appli-
cations with reentrant interrupts, which may have multiple concur-
rent activations.

Total stack elimination Although we can eliminate all dynamic
use of the stack for hazard-free C programs, a legacy C compiler
will still devote a register to the stack pointer and (usually) another
to the frame pointer. We would like to modify a compiler for a RISC
architecture to recover these registers for general-purpose use in the
case where a program can be completely flattened.

Selective flattening As we have shown, sometimes over-aggressive
flattening can result in too many register spills, wasting RAM. We
plan to explore fine-tuning our flattener by making it sensitive to
the number of conflicting temporaries it generates. We expect that
there are interesting heuristic choices to make when parameteriz-
ing a selective flattener: it should be sensitive to the shape of the
callgraph, the number of registers in the target architecture, etc.
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6. Related Work
An enormous body of research exists on manipulating program
control flow and optimizing memory layout. Here we compare our
work to some representative examples.

Through Fortran 77, Fortran did not support recursive function
calls: programs could be compiled into stackless object code. More
recent versions of Fortran have supported a stack. In relation to
compilation techniques for functional languages, flattening could
be viewed as an aggressively optimized, local, environmentless
continuation passing style (CPS) [Appel 1992] conversion for non-
recursive programs. Like function inlining [Cooper et al. 1991]
and cloning [Cooper et al. 1993], flattening copies code and alters
control flow in simple ways, with the goal of enabling subsequent
optimizations to do a better job.

Biswas et al. [2004] and Middha et al. [2005] use compiler-
driven techniques to blur the lines between different storage re-
gions. This permits, for example, stacks to overflow into unused
parts of the heap, globals, or other stacks. CRAMES [Yang et al.
2006] saves RAM by applying standard data compression tech-
niques to swapped-out virtual pages, based on the idea that these
pages are likely to remain unused for some time. MEMMU [Bai
et al. 2006] provides on-line compression for systems without a
memory management unit, such as wireless sensor network nodes.
Ozturk et al. [2005] compress data buffers in embedded appli-
cations. Cooprider and Regehr [2007] performed compile-time
RAM compression for TinyOS applications. We believe our work
is largely orthogonal to these previous techniques, which exploit
properties of an application’s data to save memory. In contrast, flat-
tening exploits the structure of a computation to improve memory
layout.

A significant body of literature exists on changing the layout of
objects in memory to improve performance, usually by improving
spatial locality to reduce cache and TLB misses. Good examples
include Chilimbi et al.’s work on cache-conscious structure lay-
out [Chilimbi et al. 1999] and Rabbah and Palem’s work on data
remapping [Rabbah and Palem 2003]. In contrast, in our work lo-
cality is irrelevant: the MCUs that we target have flat RAM with a
uniform access time.

Ananian and Rinard [2003] perform static bitwidth analysis and
field packing for Java objects, with the goal of reducing memory
usage. Zhang and Gupta [2006] use memory profile data to find
limited-bitwidth heap data that can be packed into less space. Lat-
tner and Adve [2005] save RAM through a transformation that
makes it possible to use 32-bit pointers on a per-data-structure ba-
sis, on architectures with 64-bit native pointers. Chanet et al. [2005]
apply whole-program optimization to the Linux kernel at link time,
reducing both RAM and ROM usage. Virgil [Titzer 2006] has a
number of RAM optimizations including reachable members anal-
ysis, reference compression, and moving constant data into ROM.

Barthelmann [2002] describes inter-task register allocation, a
global optimization that saves RAM used to store thread contexts.
Grunwald and Neves [1996] save RAM by allocating stack frames
on the heap, on demand, using whole-program optimization to
reduce the number of stack checks and to make context switches
faster.

7. Conclusions
The high-level result of our work is that relatively simple compila-
tion techniques can reduce the RAM usage of medium-sized micro-
controller applications (1300–14,000 lines of code) by an average
of 20%. This result is important because ultra-low-power micro-
controllers have limited on-chip RAM and many applications are
RAM-bound. On average, flattened applications use 3% less CPU
time. The main cost of our transformation is code size: ROM usage

is increased by an average of 14%. We believe that in many cases,
this RAM/ROM tradeoff is a desirable one. For example, a typical
member of the AVR family of microcontrollers that we use in our
experimental evaluation has 32 times more ROM than RAM.

Our first contribution is the flattening program transformation
which turns function calls into jumps, bypassing the calling con-
vention and increasing the effectiveness of intraprocedural opti-
mizations. Applied aggressively, flattening enables global variable
lifting where variables with global scope can be moved into main’s
local scope. When a program is free of flattening hazards, it can be
completely flattened, resulting in stack elimination since the only
remaining stack frame belongs to main, and it can be statically al-
located.

Our second contribution is to show that flattening exposes
weaknesses in existing compiler optimizations, and to fix some of
these weaknesses. One problem is that flattened versions of func-
tions with multiple callsites confuse typical path-insensitive live
range analyses by adding false paths to a program. We developed
a callgraph-based optimization that takes live range information
from the original, unflattened program and uses it to break con-
flicts in the flattened program. Another problem is that flattening
causes large increases in register pressure, resulting in spilling.
Most compilers deal with spilled variables in a suboptimal way,
treating them as being live for the duration of the enclosing func-
tion. We developed a stack slot optimization to enable collocation
of non-conflicting stack variables.

In summary, we have shown that flattening can save signifi-
cant amounts of RAM for embedded applications. However, to get
the most benefit, coexisting compiler optimization passes must be
specifically strengthened to cope with flattening-induced optimiza-
tion challenges.
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