
High-Throughput, Formal-Methods-Assisted
Fuzzing for LLVM

Yuyou Fan
University of Utah

USA
yuyou.fan@utah.edu

John Regehr
University of Utah

USA
regehr@cs.utah.edu

Abstract—It is very difficult to thoroughly test a
compiler, and as a consequence it is common for
released versions of production compilers to contain
bugs that cause them to crash and to emit incorrect
object code. We created alive-mutate, a mutation-based
fuzzing tool that takes test cases written by humans
and randomly modifies them, based on the hypothesis
that while compiler developers are fundamentally good
at writing tests, they also tend to miss corner cases.
Alive-mutate is integrated with the Alive2 translation
validation tool for LLVM, which is useful because it
checks the behavior of optimizations for all possible
values of input variables. Alive-mutate is also integrated
with the LLVM middle-end, allowing it to perform
mutations, optimizations, and formal verification of the
optimizations all within a single program—avoiding
numerous sources of overhead. Alive-mutate’s fuzzing
throughput is 12x higher, on average, than a fuzzing
workflow that runs mutation, optimization, and formal
verification in separate processes. So far we have used
alive-mutate to find and report 33 previously unknown
bugs in LLVM.

I Introduction

In principle, compilers are highly amenable to
formal verification: they translate a semantically un-
ambiguous source language into a semantically un-
ambiguous target language. In practice, production-
grade compilers are large, complex, and are often
implemented in unsafe, imperative programming lan-
guages. Full formal verification of multi-million line
artifacts like GCC and LLVM remains beyond the
state of the art. An alternative verification technology,
translation validation, can be used to prove that a
single execution of a compiler functioned correctly.
Translation validation can be applied to existing
production compilers because the verification tool
only has to reason about the original and compiled
code: the compiler implementation can be entirely
ignored. However, when translation validation is used
as part of a compiler bug-finding campaign, it must be
coupled with a source of inputs such as a collection
of application code or a fuzzer. In this paper, we
present alive-mutate: a new mutation-based fuzzer for
code in the LLVM intermediate representation (IR)
that, coupled with the Alive2 translation validation
tool [9], is effective at finding optimization bugs; it

has helped us find 33 previously unknown bugs so
far.

Our new mutation engine is based on two basic
ideas. First, we have observed that it is a fairly
common occurrence for an existing test case to come
close to triggering a bug, but to miss the mark
somehow. In other words, while compiler developers
are very good at writing tests that stress-test different
facets of an optimization, they sometimes miss corner
cases. Therefore, our strategy is to randomly modify
previously-written unit tests in order to explore a
neighborhood of the program space near each test,
in order to cast a wider net and hopefully trigger
subtle errors. Unlike a metamorphic testing technique
such as EMI [7], which is required to preserve some
or all of the original code’s semantics, alive-mutate
does not need to be semantics-preserving. Rather, it
is the LLVM optimization passes that must have this
property.

Our second motivating idea is that high throughput
is important for a mutation-based fuzzing campaign.
This is because, while some bugs reveal themselves
easily, other bugs are extremely difficult to trigger
during testing, and these bugs tend to be the ones
that remain in a software system once the easy bugs
have been discovered and fixed. A high-throughput
testing tool can find more of these bugs than a
slow tool can. Figure 2 shows a traditional fuzzing
workflow with associated overheads including context
switching and file I/O. To this end, alive-mutate runs
in the same process as the LLVM optimizers and
also Alive2, allowing the mutate-optimize-verify loop
to amortize away almost all sources of overhead
such as parsing, printing, file I/O, process creation
and destruction, and context switches. Alive-mutate’s
testing throughput is about 12 times as fast, on
average, when compared to a workflow that runs
mutation, optimization, and verification in separate
UNIX processes.

To see how alive-mutate can reveal a compiler bug,
consider Figure 1, which shows three versions of
a function from LLVM’s unit test suite. The first,
Listing 1, is the original code; of course it is not

Listing 1. One of LLVM’s unit tests

define i32 @t1_ult_slt_0(i32 %x,
i32 %low,
i32 %high) {

%t0 = icmp slt i32 %x, -16
%t1 = select i1 %t0, i32 %low,

i32 %high
%t2 = add i32 %x, 16
%t3 = icmp ult i32 %t2, 144
%r = select i1 %t3, i32 %x, i32 %t1
ret i32 %r

}

Listing 2. The test, after mutation by alive-mutate. Changes are
shown in bold.

define i32 @t1_ult_slt_0(i32 %x,
i32 %low,
i32 %high) {

%t0 = icmp slt i32 %x, 0
%t1 = select i1 %t0, i32 %low,

i32 %high
%t2 = icmp ult i32 %x, 65536
%1 = xor i1 %t2, true
%r = select i1 %1, i32 %x, i32 %t1
ret i32 %r

}

Listing 3. The mutated function, after being optimized by the then-
current version of LLVM’s InstCombine pass in January 2022. This
optimization was unsound. We reported this bug and it was fixed
by the LLVM developers.

define i32 @t1_ult_slt_0(i32 %x,
i32 %low,
i32 %high) {

%1 = icmp slt i32 %x, 0
%2 = icmp sgt i32 %x, 65535
%3 = select i1 %1, i32 %low, i32 %x
%4 = select i1 %2, i32 %high, i32 %3
ret i32 %4

}

Fig. 1. An example of a bug discovered with the help of alive-
mutate

miscompiled by LLVM, or else this would have been
flagged as a regression during normal testing. The
second, Listing 2, has been mutated by alive-mutate; a
literal constant has been changed, instruction %t2 has
been moved after %t3 (updating the definition used in
%t3), and the and instruction has been changed to an
xor. The third function, Listing 3, was produced by
optimizing the mutated function using LLVM’s Inst-
Combine optimization pass. InstCombine performs a
wide variety of peephole-style optimizations. This op-
timization is incorrect: given the inputs x=2, low=1,
and high=1, the mutated function returns 1 while
the optimized function returns 2. We reported this bug
to the LLVM developers and it was rapidly fixed.

Mutator

Optimizer

original LLVM IR file

Alive2

fork + exec
context switch
read file
parse LLVM IR
validate LLVM IR

fork + exec
context switch
read file
parse LLVM IR
validate LLVM IR

turn in-memory IR to text IR
save file
process termination
context switch

fork + exec
context switch
read file
parse LLVM IR
validate LLVM IR

save file
process termination
context switch

turn in-memory IR to text IR

Fig. 2. A mutate-optimize-verify workflow based on discrete
programs encounters numerous sources of overhead, shown in
bold. alive-mutate achieves high throughput by removing these
overheads from its critical path.

II Rationale for a New Fuzzing Tool

Given the availability of powerful, coverage-
guided, mutation-based fuzzers, one might ask why
we decided to implement a new mutator. The
short answer is that off-the-shelf tools are structure-
agnostic: they mutate file formats that they do not
understand, relying on heuristics that have worked
well in the past. This works remarkably well in many
cases, but we found that it did not work well for
LLVM IR.

Going into more detail, we conducted a preliminary
study using Radamsa [6]: a standalone, state-of-the-
art, open-source mutation engine. We found that

Parser and
Preprocessor

Mutator

Optimizer

original LLVM IR file

in-memory IR
representation

perform different
mutations on the IR file

mutated IR

responsible for
optimizing mutated IR
e.g. -O2

Alive2

optimized IR
checks whether the
optimized IR refines the
unoptimized IR

error log

Fig. 3. Alive-mutate’s workflow. The “mutator” component is
new; the other components shown here existed previously. All
components run inside a single UNIX process.

mutating LLVM IR using Radamsa has two problems.
First, the vast majority of mutated LLVM IR files
were invalid and could not be loaded by the compiler.
Second, the mutants that could be loaded by the
compiler were almost all boring, with something like
a variable name or debug metadata being changed.
In short, this approach was almost a complete waste
of CPU time. We have no reason to think any other
structure-blind binary mutator (such as AFL++’s [4])
would do better. LLVM IR files have extremely strict
constraints on validity, and this appears to necessi-
tate a domain-specific mutation approach. Moreover,
LLVM’s internal APIs provide a broad collection
of functionality for inspecting and rewriting its IR.
Using them, alive-mutate can create valid LLVM IR
100% of the time.

III Design and Workflow

Figure 3 gives a high-level overview of alive-
mutate’s workflow. This section describes how it
works.

A. Parsing and Preprocessing

After inspecting its command line arguments,
alive-mutate reads in a file of LLVM IR, which may
be in either the human-readable text format or the

compact binary bitcode format. Alive-mutate then
checks that Alive2 can process each function in the
input file without encountering errors; any function
that cannot be handled by Alive2 (for example, be-
cause it contains an unknown form of metadata) is
removed from the internal list of functions that are
used in subsequent steps. Additionally, any function
whose un-mutated form would cause Alive2 to signal
a translation validation error is dropped: there is no
point mutating these.

Following parsing, alive-mutate preprocesses each
function by computing its dominance tree and scan-
ning it to build a list of literal constants found in
the code, that will be randomly changed later, during
mutation. These steps are done early to avoid slowing
down the main mutation loop.

B. Mutation

Alive-mutate makes a copy of the in-memory IR,
and then selects and applies one or more mutation
operators on each function in the IR, in order to create
a mutated IR module. During the course of mutating
a function, some of the cached information about it,
such as its dominance tree, might be invalidated. To
deal with this, we maintain a two-level data structure:
it maintains a set of information that is specific to
the current mutant, and then the cached information
about the original mutation is considered immutable.
Thus, queries first go to the mutant-specific informa-
tion, falling back to the original version when the
initial lookup fails. This arrangement allows us to
always have correct dominance (and other) informa-
tion for mutated functions, but also supports high
performance by avoiding repeated dominance tree
computations. The specific mutations supported by
alive-mutate are described in Section IV.

C. Optimization

Once a module of mutated LLVM IR is available,
alive-mutate invokes one or more LLVM optimization
passes, as directed by its command line arguments.
This can be a sequence of built-in passes, an out-of-
tree pass loaded from a shared library, or a canned
sequence of passes such as -O1 or -O3.

D. Refinement Check

We invoke Alive2 to see if the optimized IR refines
the unoptimized (but mutated) IR. Whenever the
refinement relation does not hold, a bug has been
found, and we log it into an external log file.

E. Looping and Repeatability

Finally, alive-mutate discards its current mutant
and jumps back to its mutation stage. This entire
loop repeats until LLVM crashes, until our tool has
executed as many iterations as were requested, or else
until a predetermined amount of time has elapsed.

Listing 4. An LLVM function that will serve as a running example
for mutations

define i32 @test9(i32* %p, i32* %q){
%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %q
%c = sub i32 %a, %b
ret i32 %c

}

Listing 5. One function-level attribute and one parameter-level
attribute have been randomly added to the function from Listing 4

define i32 @test9(
i32* dereferenceable(2) %p,
i32* %q) #0 {

%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %q
%c = sub i32 %a, %b
ret i32 %c

}

attributes #0 = { nofree }

These behaviors are specified using command line
options.

Alive-mutate ensures that its runs are repeatable
by logging an individual PRNG seed that led to
the creation of each specific mutant. Also, it has a
command-line argument for saving mutated IR files
to disk where they can be subsequently analyzed. In a
typical workflow, we run alive-mutate without saving
files, to make fuzzing as fast as possible. Then, when
an error is discovered, we re-run with the same seed
but with file-saving turned on, in order to capture the
IR file that triggers whatever bug had been previously
encountered.

IV Supported Mutations

Alive-mutate supports mutations at the level of
functions, basic blocks, and instructions. This section
describes them in detail. Throughout, we will use
@test9 in Listing 4 as a running example.

A. Mutating Attributes

LLVM functions and parameters may be annotated
with attributes that either force or permit the compiler
to treat them specially. For example, in LLVM “a
pointer is captured by the call if it makes a copy
of any part of the pointer that outlives the call.”1

The nocapture parameter attribute asserts to the
compiler that that parameter is not captured. At the
function level, the nofree attribute asserts to the
compiler that the function “does not, directly or tran-
sitively, call a memory-deallocation function (free,

1https://llvm.org/docs/LangRef.html#parameter-attributes

Listing 6. The inlining mutation takes the function from Listing 4
and inlines a function other than the intended callee

define void @f(i32* %ptr){
store i32 42, i32* ptr
ret void

}

define i32 @test9(i32* %p, i32* %q) {
%a = load i32, i32* %q, align 4
store i32 42, i32* %p, align 4
%b = load i32, i32* %q, align 4
%c = sub i32 %a, %b
ret i32 %c

}

Listing 7. The function from Listing 4 with a function call
removed

define i32 @test9(i32* %p, i32* %q){
%a = load i32, i32* %q
call void clobber(i32* %p)
%b = load i32, i32* %q
%c = sub i32 %a, %b
ret i32 %c

}

for example) on a memory allocation which existed
before the call.”2 Attributes are a fruitful source
of compiler bugs because it is easy for compiler
developers to forget to consistently enforce their spe-
cial semantics. Alive-mutate randomly toggles these
attributes. Listing 5 shows an example; the first
argument now guarantees that at least two bytes may
be accessed by dereferencing it, and also the function
promises not to free any previously allocated memory
cells.

B. Inlining

LLVM, like other optimizing compilers, relies
heavily on function inlining. We abuse its inliner
for mutation testing by asking it to inline functions
other than the intended inlining target, based on the
hypothesis that this will perhaps create interesting
results, when a function with a compatible signature
is available. Listing 6 shows an example.

C. Removing Function Calls

Alive-mutate randomly removes “void” function
calls; Listing 7 shows an example.

D. Shuffling Instructions

When a sequence of consecutive instructions lacks
mutual internal dependencies, the instructions can be
shuffled without breaking LLVM’s SSA invariants.
Alive-mutate randomly performs this shuffling. Alive-
mutate precomputes maximal ranges of shufflable

2https://llvm.org/docs/LangRef.html#function-attributes

https://llvm.org/docs/LangRef.html#parameter-attributes
https://llvm.org/docs/LangRef.html#function-attributes

Listing 8. The original version of @test9 had three non-dependent
instructions in the order a, call, b; in this mutant they have
been shuffled to be b, call, a

define i32 @test9(i32* %p, i32* %q){
%b = load i32, i32* %q
call void @clobber(i32* %p)
%a = load i32, i32* %q
%c = sub i32 %a, %b
ret i32 %c

}

Listing 9. In this mutant, %c has been replaced with a new
instruction and its usage is updated as well

define i32 @test9(i32* %p, i32* %q){
%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %q
%1 = mul nuw nsw i32 %b, %a
ret i32 %1

}

instructions during its initialization phase so that
this mutation can be performed rapidly, when it is
randomly selected. Listing 8 shows an example of
shuffling. Because the first three instructions do not
depend on each other, they could be rearranged freely.

E. Mutations on Arithmetic Instructions

Arithmetic operations make up a substantial frac-
tion of many programs. Since LLVM optimizes them
heavily, we mutate them fairly aggressively. Alive-
mutate randomly:

• Changes the operation, for example turning an
addition into a left-shift

• Swaps the two operands, for binary instructions
• Toggles any flags associated with an operation,

such as the “no signed wrap” and “no unsigned
wrap” flags that are present on the addition,
subtraction, and multiplication instructions

• Replaces literal constants with randomly chosen
values

Listing 9 shows an example; the original %c is
replaced with a mul instruction with both math flags
turned on, and the original operands are swapped.
We consider LLVM’s GetElementPointer (GEP) in-
struction to be arithmetic, even though it does pointer
arithmetic.

F. Mutating Uses

A primitive that alive-mutate makes heavy use of
is “for a given program point, randomly generate a
dominating SSA value with compatible type.” These
conditions are necessary and sufficient for replacing
an arbitrary SSA value in an LLVM function with
a different value, without breaking any SSA invari-
ants. This value might be one that already exists

Listing 10. An example of replacing a use of %c with a new
random generated binary instruction

define i32 @test9(i32* %p, i32* %q){
%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %q
%c = sub i32 %a, %b
%1 = ashr i32 %b, 10691696680
ret i32 %1

}

Listing 11. An example of replacing one of %b’s arguments with a
random SSA value, which ends up being a fresh function parameter

define i32 @test9(i32* %p,
i32* %q, i32* %0){

%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %0
%c = sub i32 %a, %b
ret i32 %c

}

within the function (e.g., a function argument, or
the result of some instruction), it might be a fresh
literal constant, or it might be a fresh randomly
generated instruction—whose operands are chosen
by recursively invoking this same primitive. Alive-
mutate randomly replaces SSA uses with values
chosen by this primitive. Listings 10 and 11 contain
examples.

G. Moving an Instruction

Moving an instruction around requires handling
various conditions. For example, if B uses A, and
we try to move B before A, then we must change A
to some other available SSA value. Similarly, if we
try to move A after B, we will have to update B’s
use of A. We handle both of these cases using the
previously-mentioned primitive for randomly choos-
ing (or creating) a dominating, type-compatible SSA
value.

Listing 12 shows an example of moving an instruc-
tion forwards. Because %c uses both %a and %b, they
are inaccessible after moving %c, and alive-mutate
must find substitutes for them. In this example, one
use is replaced with %0, which comes from a fresh
function parameter; the other use is replaced with
randomly generated constant.

H. Changing Bitwidths

Some of LLVM’s optimizations are sensitive to
bitwidth, and we wanted to stress-test these. However,
randomly changing bitwidths is fairly tricky, because
LLVM’s type system insists, for example, that both of
the arguments to, and the result of, a binary arithmetic
instruction all have the same width. Thus, changing

Listing 12. %c is moved to the top and its both usages are replaced
with a function parameter and a random constant

define i32 @test9(i32* %p,
i32* %q, i32* %0){

%c = sub i32 1280583335, %0
%a = load i32, i32* %q
call void @clobber(i32* %p)
%b = load i32, i32* %q
ret i32 %c

}

A

B uses A C uses A D uses A

E uses C

Fig. 4. Example: SSA use tree of a variable A before changing
bitwidth

A'

B uses A C' uses A'D uses A

E' uses C'

Truncate
or ExtendA

Fig. 5. Example: SSA use tree of a variable A after updating A,
C and E

Listing 13. %c is replaced with %new0, the same operation but
on size i26 (a 26-bit integer) instead of i32. Both operands are
truncated.

define i32 @test9(ptr %p, ptr %q) {
%a = load i32, ptr %q, align 4
call void @clobber(ptr %p)
%b = load i32, ptr %q, align 4
%old0 = sub i32 %a, %b
%1 = trunc i32 %a to i26
%2 = trunc i32 %b to i26
%new0 = sub i26 %1, %2
%last = zext i26 %new0 to i32
ret i32 %last

}

the width of a single SSA value tends to have a
contagious effect on a function, necessitating updates
to the widths of several, or many, other values. In the
worst case, we would need to resize all children in
a use tree, and we wanted to avoid that. Therefore,
we only change the bitwidth of a selected path from
a root node to a random leaf node.

For example, Figure 4 shows a hypothetical SSA
use tree for a variable A, where all of A, B, C, D and
E have the same bitwidth. Assume that we randomly
choose a path A, C, E where we want to change
the bitwidth starting from A. To do this, we create
a new version of A that is either truncated or sign
extended or zero extended to some other width, and
then propagate the new widths along the path to E.
Figure 5 shows the use tree after these updates have
been performed.

Listings 13 is a concrete example on definition
%c from i32 to i26. It uses two values %a and
%b and its only user is a terminator instruction,
%ret, without introducing new definitions. As a
result, we perform two truncations, %1 and %2, on
both operands and an extension %last back to i32
when it reaches the terminator. Value %c is replaced
by %new0 with the same operation but on truncated
values.

A complication is that certain LLVM instructions
only work for certain widths. For example, the
bswap intrinsic only supports 16, 32, or 64 bit
arguments. Similarly, the icmp instruction can only
produce a 1-bit output. Therefore, we only consider
fully bitwidth-polymorphic binary instructions in use
paths to be eligible for bitwidth changes.

I. Applying Multiple Mutations

So far, we introduced different kinds of mutations.
When running Alive-mutate, we select a subset of
applicable mutations and perform them sequentially.

Listings 14 shows an example of applying two
mutations to the same function. It first moves %c
before %b and updates the uses from %b to %1, a fresh
generated smin function. Next, %c itself is changed

Listing 14. Multiple mutations are applied at once

define i32 @test9(ptr %p, ptr %q) {
%a = load i32, ptr %q, align 4
call void @clobber(ptr %p)
%1 = call i32

@llvm.smin.i32(i32 375689115,
i32 %a)

%2 = mul nsw i32 %a, %1
%b = load i32, ptr %q, align 4
ret i32 %2

}

from a sub instruction to a mul associated with nuw
and nsw flag.

V Experimental Results

We evaluate alive-mutate in two ways. First, we
look at its ability to find previously unknown defects
in the LLVM compiler. Second, we evaluate our claim
that it is “high throughput.”

A. Fuzzing the LLVM Compiler

LLVM has an extensive unit test suite containing
29,243 files in the LLVM intermediate representation.
This suite includes regression tests that are added
as compiler bugs are fixed, and also tests written
alongside optimizations that are designed to increase
developers’ confidence in their new code. Although
this test suite is extensive and useful, buggy commits
still escape it, and make it into the source tree, and
into released versions of LLVM.

We conducted a testing campaign where, over
a period of about a year, we would build alive-
mutate against the then-top-of-tree version of LLVM,
run it for a while, and then inspect its results and
report any bugs that it had found. In some cases,
we also ran across bugs or other shortcomings in
alive-mutate that we then fixed. During this testing
campaign we focused both on LLVM’s “middle-end”
optimizations passes, using the set of passes implied
by the -O2 command line flag, and we also tested
LLVM’s AArch64 (64-bit ARM) backend. To test the
AArch64 backend, we used an experimental branch
of Alive2 that lifts 64-bit ARM assembly code back
to LLVM IR, before performing a refinement check
between the original (mutated) LLVM IR and the
lifted LLVM IR. We found 33 bugs that can be
divided into two categories:

• 19 bugs leading to incorrect code generation—
i.e., flagged by Alive2 as refinement failures, and

• 14 bugs leading to abnormal termination of the
optimizer—i.e., segmentation faults or assertion
violations.

Table I summarizes the bugs that we found.
LLVM’s AArch64 backend was a fruitful source of
bugs, but several of the bugs that we found in it ended

Listing 15. Code that triggered a crash bug in InstCombine

define i8 @smax_offset(i8 %x) {
%1 = add nuw nsw i8 50, %x
%m = call i8 @llvm.smax.i8(i8 %1,

i8 -124)
ret i8 %m

}

Listing 16. Code that triggered a crash bug in the AlignmentFro-
mAssumptions pass

declare void @llvm.assume(i1 noundef)

define i8 @align_non_pow2(ptr %p){
call void @llvm.assume(i1 true)

["align"(ptr %p, i64 123)]
%v = load i8, ptr %p
ret i8 %v

}

up being defects in architecture-independent parts
of LLVM’s code generation infrastructure. In other
words, these bugs could have affected architectures
other than 64-bit ARM code; we simply happened to
find them using the AArch64 backend. Additionally,
InstCombine, the pass that contains many of LLVM’s
middle-end peephole optimizations, contained a num-
ber of bugs. This finding echoes an earlier one; in
2011, InstCombine was the single buggiest LLVM
component, according to Csmith [12].

Listing 15 corresponds to bug 52884 in the table;
it shows a function that caused the InstCombine
pass to crash. A compiler developer mentioned that
“InstCombine is expecting InstSimplify to squash the
pattern before it gets too far, but the analysis got
thwarted by having both nuw and nsw on the add.”

Listing 16 corresponds to bug 64687. In this case,
an align in the operand bundle to the assume call
specifies 123-byte alignment for %p. According to
the LLVM Language Reference,3 alignments that are
not powers of two are allowed in certain situations.
However, an optimization pass incorrectly assumed
that all alignments are powers-of-two, leading to a
crash.

Listing 17, which corresponds to bug 59836 in
the table, triggered a miscompilation in InstCombine.
A developer assumed that when two zero-extended
values were multiplied together, the result could not
overflow, resulting in an optimization that caused this
function to return false. However, Alive2 found a
counterexample when %x is 3363831808, in which
case an overflow occurs. Thus, the version of the code
optimized by InstCombine was wrong.

Listing 18 corresponds to bug 55129 in Table I.
This bug happened because the backend attempted to

3https://llvm.org/docs/LangRef.html#assume-operand-bundles

https://github.com/llvm/llvm-project/issues/52884
https://github.com/llvm/llvm-project/issues/64687
https://github.com/llvm/llvm-project/issues/59836
https://github.com/llvm/llvm-project/issues/55129
https://llvm.org/docs/LangRef.html#assume-operand-bundles

TABLE I
LLVM BUGS FOUND USING ALIVE-MUTATE

Issue ID Component Status Type Description
53252 InstCombine fixed miscompilation didn’t update predicate in function ’canonicalizeClam-

pLike’
50693 InstCombine fixed miscompilation missing a simplification of the opposite shifts of -1
53218 NewGVN fixed miscompilation need to merge IR flags of the removed instruction into

the leader
55003 AArch64 backend fixed miscompilation need to combine GSHL, GASHR, GSHL of undef

shifts to undef
55201 AArch64 backend fixed miscompilation when matching a disguised rotate by constant should

apply LHSMask/RHSMask
55129 AArch64 backend fixed miscompilation zero-width bitfield extracts to emit 0
55271 multiple backends fixed miscompilation missing a freeze to ISD::ABS expansion
55284 AArch64 backend fixed miscompilation an or+and miscompile within GlobalISel
55287 AArch64 backend fixed miscompilation an urem+udiv miscompilation within GlobalISel
55296 multiple backends fixed miscompilation didn’t clear promoted bits before urem on shift amount
55342 AArch64 backend fixed miscompilation sext and zext selection in promoted constant
55484 multiple backends fixed miscompilation wrong match in in MatchBSwapHWordLow
55490 AArch64 backend fixed miscompilation another sext and zext selection in promoted constant
55627 AArch64 backend fixed miscompilation refine sext and zext selection
55833 AArch64 backend fixed miscompilation conflict between the selection code in tryBitfieldEx-

tractOp and isDef32
58109 AArch64 backend fixed miscompilation wrong code generation in usub.sat
58321 AArch64 backend open miscompilation miscompilation of a frozen poison
58431 AArch64 backend fixed miscompilation wrong GZEXT selection GISel
59836 InstCombine fixed miscompilation precondition of a peephole optimization is too weak
52884 InstCombine fixed crash analysis got thwarted by having both ”nuw” and ”nsw”

on the add
51618 newGVN open crash PHI nodes with undef input
56377 VectorCombine fixed crash created shuffle for extract-extract pattern on scalable

vector
56463 InstCombine fixed crash calling a function with a bad signature
56945 ConstantFolding fixed crash the dyn cast to a ConstantInt would fail with a poison

input
56968 InstSimplify fixed crash uncovered condition in detecting a poison shift
56981 ConstantFolding fixed crash assertion is too strong
58423 AArch64 backend fixed crash CSEMIRBuilder reuse removed instructions
58425 AArch64 backend fixed crash udiv did not reach the legalizer
59757 TargetLibraryInfo fixed crash signature for fprintf is wrong
64687 AlignmentFromAssumptions fixed crash missing a corner case
64661 MoveAutoInit fixed crash the assertion is too strong
72035 SROA open crash wrong code in AllocaSliceRewriter
72034 VectorCombine fixed crash wrong code in scalarizeVPIntrinsic

Listing 17. A miscompilation in pattern (zext a) * (zext b)

define i1 @pr4917_4(i32 %x) {
entry:

%r = zext i32 %x to i64
%0 = trunc i64 %r to i34
%new0 = mul i34 %0, %0
%last = zext i34 %new0 to i64
%res = icmp ule i64 %last,

4294967295
ret i1 %res

}

coalesce a logical “and” operation and a shift into a
single AArch64 ubfx instruction. However, in this
particular situation, that coalescing was incorrect.

Finally, Listing 19, which corresponds to
Bug 55342, was caused when compiler developers
missed a case when performing a type promotion.

Listing 18. Code that triggered a miscompilation bug in LLVM’s
AArch64 backend

define i64 @lsr_zext_i1_i64(i1 %b) {
%1 = zext i1 %b to i64
%2 = lshr i64 %1, 1
ret i64 %2

}

Listing 19. Another function that triggered a miscompilation in
LLVM’s AArch64 backend

define i32 @f() {
%1 = sub i8 -66, 0
%2 = icmp ugt i8 -31, %1
%3 = select i1 %2, i32 1, i32 0
ret i32 %3

}

https://github.com/llvm/llvm-project/issues/53252
https://github.com/llvm/llvm-project/issues/50693
https://github.com/llvm/llvm-project/issues/53218
https://github.com/llvm/llvm-project/issues/55003
https://github.com/llvm/llvm-project/issues/55201
https://github.com/llvm/llvm-project/issues/55129
https://github.com/llvm/llvm-project/issues/55271
https://github.com/llvm/llvm-project/issues/55284
https://github.com/llvm/llvm-project/issues/55287
https://github.com/llvm/llvm-project/issues/55296
https://github.com/llvm/llvm-project/issues/55342
https://github.com/llvm/llvm-project/issues/55484
https://github.com/llvm/llvm-project/issues/55490
https://github.com/llvm/llvm-project/issues/55627
https://github.com/llvm/llvm-project/issues/55833
https://github.com/llvm/llvm-project/issues/58109
https://github.com/llvm/llvm-project/issues/58321
https://github.com/llvm/llvm-project/issues/58431
https://github.com/llvm/llvm-project/issues/59836
https://github.com/llvm/llvm-project/issues/52884
https://bugs.llvm.org/show_bug.cgi?id=51618
https://github.com/llvm/llvm-project/issues/56377
https://github.com/llvm/llvm-project/issues/56463
https://github.com/llvm/llvm-project/issues/56945
https://github.com/llvm/llvm-project/issues/56968
https://github.com/llvm/llvm-project/issues/56981
https://github.com/llvm/llvm-project/issues/58423
https://github.com/llvm/llvm-project/issues/58425
https://github.com/llvm/llvm-project/issues/59757
https://github.com/llvm/llvm-project/issues/64687
https://github.com/llvm/llvm-project/issues/64661
https://github.com/llvm/llvm-project/issues/72035
https://github.com/llvm/llvm-project/issues/72034
https://github.com/llvm/llvm-project/issues/55342

B. Throughput Experiment

A primary design goal for alive-mutate was for it
to be fast. To check if it is, we compared it against
the baseline fuzzing approach (depicted in Figure 2),
where mutation, optimization, and translation val-
idation are performed separately, instead of being
integrated into the same program.

We randomly selected 200 LLVM IR files, each
of them smaller than 2 KB, from the unit tests for
LLVM’s InstCombine pass. Out of these, we dis-
carded six that triggered Alive2 errors, leaving 194
files to be used in the experiment. Then, for each
of these files, we measured how long it took for
alive-mutate and for the baseline approach to perform
the same amount of mutation testing. For the alive-
mutate case, we simply asked it to generate, optimize,
and perform translation validation for 1000 mutated
versions of the code in the file. For the baseline case,
we wrote a loop in Python that repeated the following
operations 1000 times:

1) mutate the file using a standalone version of
alive-mutate

2) optimize the file using LLVM’s standalone opt
tool

3) perform translation validation using the stan-
dalone alive-tv tool

We ensured that the actual work performed under
both conditions were exactly the same by seeding
the PRNG in alive-mutate appropriately. We found
that, on average, alive-mutate is about 12x faster than
performing the same tasks using standalone tools.

In the best case (a file that contained very small
functions and required Alive2 to do very little work),
alive-mutate was 786 times faster than the combina-
tion of standalone tools. On the other hand, in the
worst case (a file that caused Alive2 to spend a large
amount of time doing SMT solving), alive-mutate
was only 1% faster than the standalone tools—in this
case the overheads due to file and process manage-
ment did not constitute a significant fraction of the
overall execution time.

VI Related Work

Domain-independent fuzzers, such as AFL [13]
and AFL++ [4], have been highly successful in
finding security-related defects in software systems.
Similarly, Radamsa [6] is a format-independent muta-
tion tool that has been successful in finding security-
related defects. Tools like this, however, have not
been nearly as successful in finding bugs in com-
pilers.

Because LLVM’s correctness is critically impor-
tant to projects such as Android, iOS, and macOS,
it has been specifically targeted by a number of
previous testing tools. For example, LLVM has an
instruction selection fuzzer [1] that is assisted by a

random LLVM IR generator llvm-mutate [11], which
supports four mutations including those that insert
and remove instructions. Another structured fuzzer
by Rong [10] found a number of crash bugs in
LLVM. SRCIROR [5] is a mutation tool for LLVM
that supports modifying arithmetic operators, integer
constants, integer comparisons, and bitwise operators.
Mull [2] supports six mutations on integer-typed
values including negating conditions, changing arith-
metic operators, and replacing a function call with
an integer constant. FLUX [8] is the only mutation-
based tool for LLVM that we are aware of that uses
Alive2; it focuses on crossover mutations such as
inlining one function into another, and connecting a
collection of un-mutated functions into a sequence.
In contrast with these existing tools, alive-mutate has
nine distinct mutations that it performs, including
several—changing the bitwidth of instructions, tog-
gling undefined behavior flags, and replacing an SSA
value with a randomly chosen dominating value—that
are not implemented in any of the other tools. As far
as we know, alive-mutate’s design point, combining
aggressive mutations with formal methods support
and a throughput-oriented design, in unique.

VII Conclusion

We designed and implemented alive-mutate, a
mutation-based fuzzing tool for the LLVM compiler
that builds upon the Alive2 translation validation tool.
Alive-mutate takes test cases written by humans and
rapidly generates many similar test cases, in hopes
of finding corner-case bugs in compiler optimization
passes. So far it has found 33 previously unknown
bugs in LLVM, 19 of which caused it to silently
miscompile code.

Appendix

A. Abstract

This appendix describes how to build alive-mutate,
how to use it to mutate any valid LLVM IR file, and
how to reproduce the throughput experiment in our
paper.

B. Artifact Check-list (Meta-information)

• Program: alive-mutate
• Compilation: g++ ≥ 10
• Run-time environment: Ubuntu 22.04, re2c,

Z3, LLVM
• Hardware: Reasonably modern x86-64 machine

running Ubuntu 22.04
• Output: Possible bugs, performance results
• Experiments: Running benchmarking scripts
• Disk space required: about 20 GB (including

LLVM dependency)
• Time needed to prepare workflow: about 2

hours

Listing 20. An example output from a throughput experiment

Total: 1
Alive-mutate lst:[(0.9584662914276123,

’test.ll’)]
Discrete tools lst:[(8.755630254745483,

’test.ll’)]
perf lst:[(9.135042445472115, ’test.ll’)]
Avg perf:9.135042445472115
Total not-verified:0
Not-verified files:[]
Total invalid file:0
Invalid files:[]

• Time needed to complete experiments: about
4 hours

• Availability: https://github.com/Hatsunespica/
alive2/tree/CGO-2024-artifact

• Code licenses: MIT
• Workflow framework used: Python scripts
• Archived: 10.5281/zenodo.10205321 [3]

C. Description

1) How delivered
Our source code is available on Github:

https://github.com/Hatsunespica/alive2/tree/
CGO-2024-artifact

2) Hardware Dependencies
An x86-64 machine running Ubuntu Linux 22.04

is required
3) Software Dependencies
The Ubuntu package manager should be used to

install Z3 and re2c. LLVM is also a dependency, but
pre-compiled versions will not work; LLVM must be
compiled following specific instructions in the Alive2
repository.

D. Installation

Please see the README at https://github.com/
Hatsunespica/alive2/tree/CGO-2024-artifact for de-
tailed installation instructions. Additionally, this blog
post contains detailed instructions that may be help-
ful.

E. Experiment Workflow

1) Fuzzing LLVM IR Files
• Run the script run.sh

repo path/benchmark/fuzzing
• Add any valid LLVM IR files to

repo path/benchmark/fuzzing/tests and execute
run.sh again.

• All mutants will be written to
repo path/benchmark/fuzzing/tmp

2) Throughput Experiment
• Run bench.py under

repo path/benchmark/throughput
• The user can add any valid LLVM IR files to

repo path/benchmark/throughput/tests and exe-
cute bench.py again.

• All result will be written to
repo path/benchmark/throughput/res.txt

F. Evaluation and Expected Result

1) Fuzzing LLVM IR files
All mutants can be found at

repo path/benchmark/fuzzing/tmp. They are slightly
different from the original tests. For example, if you
generate ten mutants for test.ll, those mutants will
be named as test0.ll, test1.ll, and until test9.ll.

2) Throughput Experiment
All results will be written to

repo path/benchmark/throughput/res.txt. It will
includes the number of total input files, the
performance improvement on each input and the
average inputs. For example, if we run our throughput
experiment with only one test.ll, a possible record is
shown in Listing 20 in res.txt. For Alive-mutate lst
and Discrete tools lst, it includes the test case and
seconds consumed. The perf lst shows the ratio of
performance improvement for that test file. Finally,
it also includes a list of files failed to pass the
verification.

G. Experiment Customization

1) Fuzzing LLVM IR Files
The script run.sh calls the same alive-mutate com-

mand for every files in tests. Consequently, the user
can change the command to satisfy the requirement.
For example, the user can add –pass=’instcombine’
to perform instcombine optimizations instead of gen-
erate O2 pass. Or can remove –saveAll to let alive-
mutate only saves non correct cases. The user can
type alive-mutate –help to check all arguments it
supports. In addition, the user can replace -n 10 with
-n X where X is the number of mutants the user
wants to generate, or with -t 1 for keeping alive-
mutate running for 1 second. Finally, the user can
add any number of LLVM IR files to tests folder to
run alive-mutate on those files in a batch.

2) Throughput Experiment
The script bench.py executes two workflows men-

tioned in the paper with all files in tests. The user
can add any number of LLVM IR files to see the
comparison on throughput. Besides, the user can
change the COUNT, a global variable to control how
many mutants a test case should generate. In our
experiment, we set the number to 1000. In addition,
we randomly selected 200 IR files with file size less
than 2KB and 200 files with size larger than 2KB.
The user can use any files where they are interested.

https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://github.com/Hatsunespica/alive2/tree/CGO-2024-artifact
https://spica.cloud/2021/06/10/How-to-set-up-Alive2-on-Ubuntu-20-04-LTS-from-scratch/
https://spica.cloud/2021/06/10/How-to-set-up-Alive2-on-Ubuntu-20-04-LTS-from-scratch/

H. Methodology

Submission, reviewing and bodging methodology:
• http://cTuning.org/ae/submission-20190109.

html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging

References
[1] Justin Bogner. Adventures in Fuzzing Instruction

Selection, 2017. https://youtu.be/UBbQ s6hNgg?si=
ceLpoqhWI21dJQaL.

[2] Alex Denisov and Stanislav Pankevich. Mull It Over: Mu-
tation Testing Based on LLVM. In 2018 IEEE International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 25–31, 2018.

[3] Yuyou Fan and John Regehr. Artifact for alive-mutate paper
at cgo 2024, November 2023. https://doi.org/10.5281/zenodo.
10205321.

[4] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc
Heuse. AFL++: Combining Incremental Steps of Fuzzing
Research. In Proceedings of the 14th USENIX Conference
on Offensive Technologies, WOOT’20, USA, 2020. USENIX
Association.

[5] Farah Hariri and August Shi. SRCIROR: A Toolset for
Mutation Testing of C Source Code and LLVM Intermediate
Representation. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineer-
ing, ASE ’18, page 860–863, New York, NY, USA, 2018.
Association for Computing Machinery.

[6] Aki Helin. A Crash Course to Radamsa, 2016. https://gitlab.
com/akihe/radamsa.

[7] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler vali-
dation via equivalence modulo inputs. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, page 216–226, 2014.

[8] Eric Liu. FLUX: Finding Bugs with LLVM IR Based
Unit Test Crossovers. Master’s thesis, University of
Toronto, 2023. https://security.csl.toronto.edu/wp-content/
uploads/2023/06/eliu ms 2023.pdf.

[9] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang
Liu, and John Regehr. Alive2: Bounded Translation Valida-
tion for LLVM. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design
and Implementation, PLDI 2021, page 65–79, New York, NY,
USA, 2021. Association for Computing Machinery.

[10] Peter Rong. Improved Fuzzing of Backend Code Gener-
ation in LLVM, 2022. https://youtu.be/LfpmUxIuKgo?si=
kMOtZIyOTbstc79P.

[11] Eric Schulte. llvm-mutate – mutate LLVM IR, 2013. https:
//eschulte.github.io/llvm-mutate/.

[12] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Find-
ing and understanding bugs in C compilers. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 283–
294, 2011.

[13] Michał Zalewski. American Fuzzy Lop - Whitepaper, 2016.
https://lcamtuf.coredump.cx/afl/technical details.txt.

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://youtu.be/UBbQ_s6hNgg?si=ceLpoqhWI21dJQaL
https://youtu.be/UBbQ_s6hNgg?si=ceLpoqhWI21dJQaL
https://doi.org/10.5281/zenodo.10205321
https://doi.org/10.5281/zenodo.10205321
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://security.csl.toronto.edu/wp-content/uploads/2023/06/eliu_ms_2023.pdf
https://security.csl.toronto.edu/wp-content/uploads/2023/06/eliu_ms_2023.pdf
https://youtu.be/LfpmUxIuKgo?si=kMOtZIyOTbstc79P
https://youtu.be/LfpmUxIuKgo?si=kMOtZIyOTbstc79P
https://eschulte.github.io/llvm-mutate/
https://eschulte.github.io/llvm-mutate/
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Rationale for a New Fuzzing Tool
	Design and Workflow
	Parsing and Preprocessing
	Mutation
	Optimization
	Refinement Check
	Looping and Repeatability

	Supported Mutations
	Mutating Attributes
	Inlining
	Removing Function Calls
	Shuffling Instructions
	Mutations on Arithmetic Instructions
	Mutating Uses
	Moving an Instruction
	Changing Bitwidths
	Applying Multiple Mutations

	Experimental Results
	Fuzzing the LLVM Compiler
	Throughput Experiment

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact Check-list (Meta-information)
	Description
	How delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Fuzzing LLVM IR Files
	Throughput Experiment

	Evaluation and Expected Result
	Fuzzing LLVM IR files
	Throughput Experiment

	Experiment Customization
	Fuzzing LLVM IR Files
	Throughput Experiment

	Methodology

	References

