NDC: Analyzing the Impact of 3D-Stacked Memory+Logic Devies on MapReduce
Workloads

Seth H Pugsley Jeffrey Jestés Huihui Zhang, Rajeev Balasubramoni&rVijayalakshmi Srinivasah
Alper Buyuktosunoglé, Al Davis!, and Feifei Lt

lUniversity of Utah, {pugsley, jestes, huihui, rajeev, dif&ifei}@cs.utah.edu
2IBM T.J. Watson Research Center, {viji, alperb}@us.ibnmco

Abstract engine). Let us consider SAP HANA as a concrete example.

While Processing-in-Memory has been investigated forIt employs a cluster Of_ comqulty ma‘?h'”?‘s as its uno_lerlylng
orage and computation engine, and it relies on the cléect

. .)
decades, it has not been embraced commercially. A numb%fRAM memory space provided by all nodes in the cluster to

of emerging technologies have renewed interest in thistdpi store large data entirelv in memorv. Each node can provide te
particular, the emergence of 3D stacking and the imminent re g y Y- P

lease of Micron’s Hybrid Memory Cube device have made itbytes of memory, and collectively, they deliver an in-meynor

more practical to move computation near memory. Howevep 0rage space that can hold up to hundreds of terabytesaf dat
. L . : . . depending on the size of the cluster [26, 25].

the literature is missing a detailed analysis of a killer #ipp- . . ; .

tion that can leverage a Near Data Computing (NDC) architec- In—memor_y storage of big-data is also being made possible by

ture. This paper focuses on in-memory MapReduce workloa chnology mnovatlons.such as 3D-§tacked memory and mem-

that are commercially important and are especially suitatar ory t_)lades, ar_1d emerging non-volatile cells that focus on im

NDC because of their embarrassing parallelism and largely | proving capacity and persistence. For example, the recees-e .

calized memory accesses. The NDC architecture incorpsrat jence of 3_D-stac|§ed memory_products [54, 51, 60, 24] wil

several simple processing cores on a separate, non-meriery ikely ber?eﬁt such m-memory b!g"?‘ata Wor.kloads.

in a 3D-stacked memory package; these cores can perform Map | "€r€ is great interest in designing architectures thatase

operations with efficient memory access and without hitiireg ~ L0Mized for emerging big-data workloads. For example, a re-

bandwidth wall. This paper describes and evaluates a numbefent Paper [43] designs a custom core and NIC for Memcached.

of key elements necessary in realizing efficient NDC opmrati " this work, we make a similar attempt for in-memory MapRe-
(i) low-EPI cores, (ii) long daisy chains of memory devid@, duce workloads. We take advantage of emerging 3D-stacked

the dynamic activation of cores and SerDes links. Compared tMemory+logic devices (such as Micron's Hybrid Memory Cube
a baseline that is heavily optimized for MapReduce exeaptio ©” HMC [27]) to implement a Near Data Computing (NDC) ar-

the NDC design yields up to 15X reduction in execution timé&hitecture, which is a realizable incarnation of procezsin
and 18X reduction in system energy. memory (PIM). A single board is designed to accommodate sev-

_ eral daisy-chained HMC-like devices, each of which inckide
1. Introduction few low-power cores that have highly efficient access to a few

. — .., . giga-bytes of data on the 3D stack. MapReduce applicatiens a
A large fraction of modern-day computing is performed withi embarrassingly parallel and exhibit highly localized m i

warehouse-scale computers. These systems execute wagklog

. cess patterns, and are therefore very good fits for NDC.
that process large amounts of data, scattered across nek3y di b Y 9oo . .
X . While Memcached has the same behavior on every invocation
and many low-cost commodity machines. A number of frame-

works, such as MapReduce [20], have emerged in recent yea?snd can benefit from customization [43], MapReduce funstion

to facilitate the management and development of big-dat&-wo \(;\Zn stﬁ(lssv St(ha\z:\(te?f!fi]::ci);ns a;: dﬂ;gﬁfg:s :)e?il::sepdrobgrin;iﬁw?g\',v
loads. While currentincarnations of these systems relyisksd y P y 9

for most data accesses, there is a growing trend towardmglac Energy _Per Ins_truct|on general-pu_rpose cores, by |mpl¢ln@n
long daisy chains of memory devices, and by dynamically ac-

a large fraction of the data in memory, e.g., Memcached [5]{ . . ; : :
i ivating cores and off-chip SerDes links. Our work is thetfirs
RAMCloud [49], and Spark [62]. The RAMCloud project thorough quantitative study analyzing the effect of HMKzIi

shows that if a workload is limited more by data bandwidtimtha : .
by capacity, it is better to store the data in a distributednme devices for in-memory Map-Reduce workloads. We lay the
' foundation for future studies that can further explore th2QN

ory platform than in a distributed HDD/SSD platform. There . : - _
are therefore many big-data workloads that exhibit lowest co arch|tecture and apply I.t to other big-data Wo_rkloads t
high degrees of parallelism and memory locality.

and higher performance with in-memory storage [49]. This is
also evidentin the commercial world, e.g., SAS in-memowm-an o MapReduce Background

lytics [58], SAP HANA in-memory computing and in-memory

database platform [57], and BerkeleyDB [14] (used in numerMapReduce workloads are applied to databases, and are com-
ous embedded applications that require a key-value-likkage prised of two phases. The Mapper is assigned to work on a slice

of the database, called a database split. In this paper,sues Pins | Bandwidth | Power
128 MB database splits. The Mapper performs its function on DDR3 | 143 | 12.8GB/s| 6.2W
this split and prepares the result to be handed off to a Reduce DDR4 | 148 | 25.6 GB/s| 8.4W
Each Reducer takes as its input a portion of the output from HMC | 128 | 80.0GB/s | 13.4W

each Mapper, and performs its function on this set to produce

. . . Table 1: Memory Technology Comparison.
the final output. Next, we go into some detail about each step.

2.1. Mapper boost processor pin bandwidth lead to higher power consump-

Map. The Mapper applies the Map function to all records in thetion and limit per-pin memory capacity, thus it is hard to sim

input split, typically producing key-value pairs as outfratm ta_neously support higher memory capacity and memory band-
this stage. This is a linear scan of the input split, so thissgh width. . o)
is highly bandwidth intensive. The computational compiexi Recently, Micron has announced the imminent release of its
varies across workloads. Hybrid Memory Cube (HMC) [51]. The HMC uses 3D die-
Sort. The Mapper next sorts the set of key-value pairs by theiptacking to implement multiple DRAM dies and an interface
keys, with an in-place quick sort logic chip on the same package. TSVs are used to ship data from

the DRAM dies to the logic chip. The logic chip implements

Combine. The Combine phase is applied to the local outputh. h-speed signaling circuits so it can interface with aeasor
of the Mapper, and can be viewed as a local Reduce function 3"-SP 'gnaling circul ! ! Wi R

This phase involves a linear scan through the sorted ougiat d chip through fast, narrow links.
applying the Reduce function to each key (with its assodiate 3.2. Analyzing an HMC-Based Design

set of values) in the output set. .)
In Table 1, we provide a comparison between DDR3, DDRA4,

Partition. The Mapper’s final action is to divide its sorted-and- d HMC-stvle baseline desi it f b idt
combined output into a number of partitions equal to the neirmb ana RVL-slyle baseline designs, in terms of power, banawl
ﬁnd pin-count. This comparison is based on data and assump-

of Reducers in the system. Each Reducer gets part of thetoutp

i : ided by Micron [27, 36].
from each Mapper. This is done by another linear scan of thdons provi 7 . . .
output, copying each item into its correct partition. HMC is optimized for high-bandwidth operation and tar-

gets workloads that are bandwidth-limited. HMC has better

2.2. Reducer bandwidth-per-pin, and bandwidth-per-watt charactiesghan
either DDR3 or DDR4. We will later show that the MapReduce

Shuffle and Sort. The Reducer’s first job is to gather all of applications we consider here are indeed bandwidth-linite

its input from the various Mapper output partitions, whigk a and will therefore best run on systems that maximize banwid
scattered throughout the system, into a single, sorted B8t for a given pin and power budget.

This is done by a merge of all the already-sorted partitiobs i
a single input set (a merge sort). 4. Related Work

Reduce. Finally, the Reducer applies the Reduce function o5 Processing-in-Memory: Between 1995-2005, multiple
all of the keys (with their associated sets of values) inorsesl research teams built 2D PIM designs and prot,otypes g,

input set. Th|§ involves a linear scan of its input, applying [32, 50, 38, 48]) and confirmed that there was potential feagr
Reduce function to each item. speedup in certain application classes, such as media &9, 3
2.3. Computational Requirements irregular computations [15, 32], link discovery algorithfd 0],
query processing [32, 47, 38], etc.
Mappers and Reducers have different computational and-band None of this prior work has exploited 3D stacking. While
width needs. The Map phase is largely bandwidth constrained few have examined database workloads, none have leveraged
and consumes the bulk of the execution time for our workloadshe MapReduce framework to design the application and to map
It would therefore be beneficial to execute the Mapper on praasks automatically to memory partitions. MapReduce iguai
cessors that have high levels of memory bandwidth, and ndiecause the Map phase exhibits locality and embarrassing pa

necessarily high single-thread performance. allelism, while the Reduce phase requires high-bandwialth r
dom memory access. We show that NDC with a 3D-stacked
3. Memory System Background logic+memory device is a perfect fit because it can handle bot
) phases efficiently. We also argue that dynamic activation of
3.1. Moving from DDRS3 to HMC cores and SerDes links is beneficial because each phase uses

In a conventional memory system, a memory controller orft differer_lt setof cores and interconnects. This comped_'emy
the processor is connected to dual in-line memory modulel?” NDC is made possible by the convergence of emerging tech-
(DIMMs) via an off-chip electrical DDR3 memory channel 1009y (3D stacking), workloads (big-data analytics), anat

(bus). Modern processors have as many as four memory cofiire programming models (MapReduce).
trollers and four DDR3 memory channels [4]. Processor pir3D Stacking: A number of recent papers have employed 3D
counts have neared scaling limits [35]. Efforts to contihua stacking of various memory chips on a processor chip (e.g.,

[44, 45, 46, 22, 59, 61, 28, 40]) to reduce memory latencies. | Energy Efficient/ ND Core|

Even a stack of 4 DRAM chips can only offer a maximum ca- Process 32nm
pacity of 2 GB today. Hence, in the high-performance domain, Power 80 mw
such memory chips typically serve as a cache [37] and must be Frequency 1GHz
backed up by a traditional main memory system. Loh [44] de- Core Type single-issue in-ordef
scribes various design strategies if the memory chips were t Caches 32KBland D
be used as main memory. Kim et al. [40] and Fick et al. [28] Area (incl. caches 0.51mn?
build proof-of-concept 3D-stacked devices that have 64&%or | EE Core Chip Multiprocesso|r
on the bottom die and small SRAM caches on the top die. Core Count 512
These works do not explore the use of similar future devices Core Power 41.0W

for big-data processing. None of this prior work aggregates NOC Power 36.0 W
several 3D-stacked devices on a single board to cost-midct LLC and IMC 20.0 W
execute big-data workloads. The 3D-Maps prototype has mea- Total CMP Power| 97.0 W

sured the bandwidth and power for some kernels, includiag th
histogram benchmark that resembles the data access paittern
some Map phases [40]. Industrial 3D memory prototypes and .)
products include those from Samsung [55, 54], Elpida [23, 24 er_ed _doyvn because of their long wak_e—up times. So the HMC
Tezzaron [60], and Micron [3, 51]. Many of these employ a'Vill dissipate at least 6 W even when idle. _

logic controller at the bottom of the stack with undisclofiemt- We begin by considering a server where a CPU is attached to
tionality. Tezzaron plans to use the bottom die for self-4esi 4 HMC devices with 8 total links. Each HMC has a capacity of
soft/hard error tolerance [60]. Micron has announced amrést 4 GB (8 DRAM layers each with 4 Gb capacity). This system

in incorporating more sophisticated functionality on toetom ha@s @ memory bandwidth of 320 GB/s (40 GB/s per link) and
die [9]. a total memory capacity of 16 GB. Depending on the applica-

tion, the memory capacity wall may be encountered before the
Custom Architectures for Big-Data Processing: Some pa- memory bandwidth walll.
pers have argued that cost and energy efficiency are optimize \emory capacity on the board can be increased by using a
for cloud workloads by using many “wimpy” processors and réfeyy Jinks on an HMC to connect to other HMCs. In this pa-
placing disk access with Flash or DRAM access [42, 11, 49, 16her, we restrict ourselves to a daisy-chain topology to trans
Chang et al. [52, 17] postulate the Nanostore idea, where a 3gh HMC network. Daisy chains are simple and have been used
stack of non-volatile memory is bonded to a CPU. They evaly, gther memory organizations, such as the FB-DIMM. We as-
uate specific design points that benefit from fast NVM accesgyme that the processor uses its eight links to connect o fou
(relative to SSD/HDD) and a shallow memory hierarchy. Limyncs (two links per HMC), and each HMC connects two of
et al. [43] customize the core and NIC to optimize Memcachegs |inks to the next HMC in the chain (as seen in Figure 1b).
execution. Guo et al. [31, 30] design associative TCAM areel hile daisy chaining increases the latency and power oaerhe
ators that help reduce data movement costs in applicati@ts t for every memory access, it is a more power-efficient apgroac
require key-value pair retrieval. The design relies on@wst than increasing the number of system boards.
memory chips and emerging resistive cells. Phoenix [53]is a gq power-efficient execution of embarrassingly-parallel
programming APl and runtime that implements MapReduce fof,qrkjoads like MapReduce, it is best to use as large a number
shared-memory systems. The Mars framework does the samg o energy-per-instruction (EPI) cores as possible sTill
for GPUs [33]. DeKruijf and Sankaralingam evaluate MapResaximize the number of instructions that are executed piejo
duce efficiency on the Cell Processor [21]. A recent IBM papennq will also maximize the number of instructions executed p
describes how graph processing applications can be efficien it time, within a given power budget. According to the anal
executed on a Blue Gene/Q platform [19]. ysis of Azizi et al. [13], at low performance levels, the Iate
EPI is provided by a single-issue in-order core. This is atst
sistent with data on ARM processor specification sheets. We
therefore assume an in-order core similar to the ARM Cortex
A5 [1].
A Micron study [36] shows that energy per bit for HMC access Parameters for a Cortex A5-like core, and a CMP built out
is measured at 10.48 pJ, of which 3.7 pJ is in the DRAM layer®f many such cores, can be found in Table 2. Considering that
and 6.78 pJ is in the logic layer. If we assume an HMC devicdarge server chips can be over 46017 in size. We assume
with four links that operate at their peak bandwidth of 160§B that 512 such cores are accommodated on a server chip (leav-
the HMC and its links would consume a total of 13.4 W. Abouting enough room for interconnect, memory controllers,)etc.
43% of this power is in the SerDes circuits used for high-dpeeTo construct this table, we calculated the power consumed by
signaling [36, 56]. In short, relative to DDR3/DDR4 devices on-chip wires to support its off-chip bandwidth, not indiugl
the HMC design is paying a steep power penalty for its superiothe overheads for the intermediate routers [39], we catedla
bandwidth. Also note that SerDes links cannot be easily powthe total power consumed by the on-chip network [41], and fac

Table 2: Energy Efficient Core (EECore) and baseline system

5. Near Data Computing Architecture

5.1. High Performance Baseline

8x DRAM dies

~

128 MB
Database Split

Logic layer &
NDC cores 64 MB
Output Buffers

Vertical memory slice

a. A stack of banks comprise a vertical memory slice.

NDC Runtime Code
NDC Runtime Data
. — v
Host Multi-core A 64 MB
Processor NDC App Data
Wﬁi::i;—x NS App Code
-
b. Daisy chains of NDC Stacks connected to the host processor. c. Data layout in an NDC memory slice

Figure 1: The Near Data Computing Architecture.

tored in the power used by the last level caches and memouce workloads exhibit high data locality and can be exetute
controllers [34]. This is a total power rating similar to tltd ~ on the memory device; the Reduce phase also exhibits high dat
other commercial high-end processors [4] locality, but it is still executed on the central host pramchip

The processor can support a peak total throughput of 51Because it requires random access to data. For random data ac
BIPS and 160 GB/s external read memory bandwidth, i.egesses, average hop countis minimized if the requestsateyi
a peak bandwidth of 0.32 read bytes/instruction can be suit a central location, i.e., at the host processor. NDC im@so
tained. On such a processor, if the application is computeerformance by reducing memory latency and by overcoming
bound, then we can build a simpler memory system with DDR3he bandwidth wall. We further show that the proposed design
or DDR4. Our characterization of MapReduce applicationscan reduce power by disabling expensive SerDes circuitten t
shows that the applications are indeed memory-bound. Euk re memory device and by powering down the cores that are inac-
bandwidth requirements of our applications range from 0.47ive in each phase. Additionally, the NDC architecture ssal
bytes/instruction to 5.71 bytes/instruction. So the HM@les more elegantly as more cores and memory are added, favorably
memory system is required. impacting cost.

We have designed a baseline server that is optimized for i8D NDC Package.As with an HMC package, we assume that
memory MapReduce workloads. However, this design pays the NDC package contains 8 4 Gb DRAM dies stacked on top of
significant price for data movement: (i) since bandwidthiis v a single logic layer. The logic layer has all the interfacewitry
tal, high-speed SerDes circuits are required at the tratesmi required to communicate with other devices, as in the HMC. In
and receiver, (ii) since memory capacity is vital to manykvor addition, we introduce 16 simple processor cores (NeaaDat
loads, daisy-chained devices are required, increasinguhe Cores, or NDCores).
ber of SerDes hops to reach the memory device, (jii) since aBp Vertical Memory Slice. In an HMC design, 32 banks are
the computations are aggregated on large processor ciigs, | used per DRAM die, each with capacity 16 MB (when assum-
on-chip networks have to be navigated to reach the few highng a 4 Gb DRAM chip). When 8 DRAM die are stacked on top
speed memory channels on the chip. of each other, 16 banks align vertically to comprise one 3B ve
5.2 NDC Hardware tical memory slic_e, with capacity 256 MB, as seen in !‘:igur? _1a
Note that a vertical memory slice (referred to as a “vault” in
We next show that a more effective approach to handle MapR&MC literature) has 2 banks per die. Each 3D vertical mem-
duce workloads is to move the computation to the 3D-stackedry slice is connected to an NDCore below on the logic layer
devices themselves. We refer to this as Near Data Computingy Through-Silicon Vias (TSVs). Each NDCore operates ex-
to differentiate it from the processing-in-memory progetiiat clusively on 256 MB of data, stored in 16 banks directly above
placed logic and DRAM on the same chip and therefore hadt. NDCores have low latency, high bandwidth access to their
difficulty with commercial adoption. 3D slice of memory. In the first-generation HMC, there are

While the concept of NDC will be beneficial to any mem-1866 TSVs, of which, 512 are used for data transfers at 2 Gb/s
ory bandwidth-bound workload that exhibits locality andti each [36].
parallelism, we use MapReduce as our evaluation platform ilNDCores. Based on our analysis earlier, we continue to use
this study. Similar to the baseline, a central host progesih low-EPI cores to execute the embarrassingly parallel Ma@seh
many EECores is connected to many daisy-chained memory dé/e again assume an in-order core similar to the ARM Cortex
vices augmented with simple cores. The Map phases of MapRA5 [1]. Each core runs at a frequency of 1 GHz and consumes

80 mW, including instruction and data caches. We are thughat the overall system will consume less energy per wotkloa
adding only 1.28 W total power to the package (and will slyortl task. This is because the energy for data movement has been
offset this with other optimizations). Given the spatiatdtity = greatly reduced. The new design consumes lower power than
in the Map phase, we assume a prefetch mechanism that fetchiee baseline by disabling half the SerDes circuits. Fastecie

five consecutive cache lines on a cache miss. We also apption times will also reduce the energy for constant comp&en
this prefetching optimization to all baseline systemsagshot (clock distribution, leakage, etc.).

just NDC, and it helps the baseline systems more than the NDC

system, due to their higher latency memory access time. 5.3. NDC Software

Host CPUs and 3D NDC Packages. User Programmability. Programming for NDC is similar to
Because the host processor socket has random access to the programming process for MapReduce on commodity clus-
entire memory space, we substitute the Shuffle phase with a Rgrs. The user supplies Map and Reduce functions. Behind the
duce phase that introduces a new level of indirection foa datscenes, the MapReduce runtime coordinates and spawns-the ap
access. When the Reduce phase touches an object, it isdetcheropriate tasks.
from the appropriate NDC device (the device where the objecbata Layout. Each 3D vertical memory slice has 256 MB total
was produced by a Mapper). This is a departure from the typeapacity, and each NDCore has access to one slice of data. For
cal Map, Shuffle, and Reduce pattern of MapReduce workloadsur workloads, we populate an NDCore’s 256 MB of space with
but minimizes data movement when executing on a central host single 128 MB database split, 64 MB of output buffer space,
CPU. The Reduce tasks are therefore executed on the host pe;d 64 MB reserved for code and stack space, as demanded
cessor socket and its 512 EECores, with many random datsy the application and runtime. Each of these three reg®ns i
fetches from all NDC devices. NDC and both baselines followtreated as large superpages. The first two superpages can be a
this model for executing the Reduce phase. cessed by their NDCore and by the central host processor. The
Having full-fledged traditional processor sockets on thethird superpage can only be accessed by the NDCore. The logi-
board allows the system to default to the baseline systemsia ¢ cal data layout for one database split is shown in Figure 1c.
the application is not helped by NDC. The NDCores can remaitMapReduce Runtime.Runtime software is required to orches-
simple as they are never expected to handle OS functiormlity trate the actions of the Mappers and Reducers. Portionsof th
address data beyond their vault. The overall system amhiteMapReduce runtime execute on the host CPU cores and por-
ture therefore resembles the optimized HMC baseline we cotions execute on the NDCores, providing functionalitiesyve
structed in Section 5.1. Each board has two CPU sockets. Eagimilar to what might be provided by Hadoop. The MapReduce
CPU socket has 512 low-EPI cores (EECores). Each socket hagntime can serve as a lighweight OS for an NDCore, ensuring
eight high-speed links that connect to four NDC daisy-chain that code and data do not exceed their space allocations, and
Thus, every host CPU core has efficient (and conventional) apossibly re-starting a Mapper on a host CPU core if there is an
cess to the board’s entire memory space, as required by the Reserviceable exception or overflow.
duce function.)
Power Optimizations. Given the two distinct phases of MapRe- 6. Evaluation
duce workloads, the cores running the Map and Reduce phasg
will never be active at the same time. If we assume that the
cores can be power-gated during their inactive phasesviite 0 |n this work, we compare an NDC-based system to two base-
all power consumption can be kept in check. line systems. The first system uses a traditional out-oéword
Further, we maintain power-neutrality within the NDC pack-(0o0) multi-core CPU, and the other uses a large number of
age. This ensures that we are not aggravating thermal coenergy-efficient cores (EECores). Both of these procegpest
straints in the 3D package. In the HMC package, about 5.7 Wre used in a 2-socket system connected to 256 GB of HMC
can be attributed to the SerDes circuits used for extermal co memory capacity, which fits 1024 128 MB database splits. All
munication. HMC devices are expected to integrate 4-8 rater evaluated systems are summarized in Table 3.
links and we've argued before that all of these links areirequ 6.1.1. 00O SystenOn this system, both the Map and Reduce
in an optimal baseline. However, in an NDC architecturegext phases of MapReduce run on the high performance CPU cores
nal bandwidth is not as vital because it is only required B th on the two host sockets. Each of the 16 00O cores must sequen-
relatively short Reduce phase. To save power, we theregsre p tially process 64 of the 1024 input splits to complete the Map
manently disable 2 of the 4 links on the HMC package. Thisphase. As a baseline, we assume perfect performance scaling
2.85 W reduction in SerDes power offsets the 1.28 W powefor more cores, and ignore any contention for shared ressurc
increase from the 16 NDCores. other than memory bandwidth, to paint this system configura-
The cores incur a small area overhead. Each core occupi¢isn in the best light possible.
0.51mn? in 32 nm technology. So the 16 cores only incur a6.1.2. EECore SystenEach of the 1024 EECores must com-
7.6% area overhead, which could also be offset if some HMGute only one each of the 1024 input splits in a MapReduce
links were outright removed rather than just being disabled workload. Although the frequency of each EECore is much
Regardless of whether power-gating is employed, we expedpvwer than an OoO core, and the IPC of each EECore is lower

3. Evaluated Systems

Out-of-Order Systen|

CPU configuration
Core parameters

2x 8 cores, 3.3 GHz
4-wide out-of-order
128-entry ROB

L1 Caches 32 KB land D, 4 cycle
L2 Cache 256 KB, 10 cycle
L3 Cache 2 MB, 20 cycle
NDC Cores —
| EECore Systenj

CPU configuration
Core parameters
L1 Caches
NDC Cores

2x 512 cores, 1 GHz
single-issue in-order
32 KB landD, 1 cycle

| NDC System|

CPU configuration
Core parameters
L1 Caches
NDC Cores

2x 512 cores, 1 GHz

single-issue in-order

32 KB land D, 1 cycle
1024

6.3. Methodology

We use a multi-stage CPU and memory simulation infrastruc-
ture to simulate both CPU and DRAM systems in detail.

To simulate the CPU cores (000, EE, and NDC), we use the
Simics full system simulator [8]. To simulate the DRAM, we
use the USIMM DRAM simulator [18], which has been modi-
fied to model an HMC architecture. We assume that the DRAM
core latency (Activate + Precharge + ColumnRead) is 40 ns.
Our simulations model a single Map or Reduce thread at a time
and we assume that throughput scales linearly as more cores
are used. While NDCores have direct access to DRAM banks,
EECores must navigate the memory controller and SerDes link
on their way to the HMC device. Since these links are shared
by 512 cores, it is important to correctly model contention a
the memory controller. A 512-core Simics simulation is not
tractable, so we use a trace-based version of the USIMM simul
tor. This stand-alone trace-based simulation models otinte

Table 3: System parameters. when the memory system is fed memory requests from 512
Mappers or 512 Reducers. These contention estimates are the

fed into the detailed single-thread SIMICS simulation.

than an OoO core, the EECore system still has the advantage ofwe wrote the code for the Mappers and Reducers of our
massive parallelism, and we show in our results that thiseta five workloads in C, and then compiled them using GCC ver-
win for the EECore system by a large margin. sion 3.4.2 for the simulated architecture. The instructitr

of these workloads is strictly integer-based. For each {eark
6.1.3. NDCore SystemWe assume the same type and W ! Icly Integ

.we have also added 1 ms execution time overheads for begin-
power/frequency cores for NDCores as EECores. The only d'ﬁing a new Map phase, transitioning between Map and Reduce
ference in their performance is the way they connect to mgmor i

. hases, and for completing a job after the Reduce phase. This
EECores must share a I|_nk to_the system .Of connected HM_C onservatively models the MapReduce runtime overheads and
but each NDCore has a direct link to its dedicated memory wit

) i . th t of cache flushes betw h .
very high bandwidth, and lower latency. This means NDCores © cost of cache Tlshes between phases

will have higher performance than EECores. We evaluate the power and energy consumed by our systems

In order to remain power neutral compared to the EECore Syggkmg into account workload execution times, memory band-

tem, each HMC device in the NDC system has half of its 4 dat%vqlgtrr:{eaggrpr;)c;sesn(])razotr)e;if;ctl\élt)(j;f;lttist.h\(lavizhzaézurlna;ef :ﬁﬁg’ eower
links disabled, and therefore can deliver only half the lvéidth y sy geq b

) . : used by each logic layer in each HMC, including SerDes links,
to the host CPU, negatively impacting Reduce performance. the DRAM array background power, and power used to access

the DRAM arrays for reads and writes. We assume that the
four SerDes links consume a total of 5.78 W per HMC, and the
remainder of the logic layer consumes 2.89 W [56]. Total max-
We evaluate the Map and Reduce phases of 5 different MapRierum DRAM array power per HMC is assumed to be 4.7 W
duce workloads, namely Group-By AggregatioBrgupBy, for 8 DRAM die [36]. We approximate background DRAM ar-
Range AggregatiorRangeAgy Equi-Join AggregationHqui- ray power at 10% of this maximum value [6], or 0.47 W, and
Join), Word Count FrequencyWordCoun}, and Sequence the remaining DRAM power is dependent on DRAM activity.
Count FrequencyS3equenceCount GroupBy and EquiJoin Energy is consumed in the arrays on each access at the rate of
both involve a sort, a combine, and a partition in their Mapan additional 3.7 pJ/bit (note that the HMC implements narro
phase, in addition to the Map scan, but fRangeAggvork- rows and a close page policy [36]). For data that is moved to
load is simply a high-bandwidth Map scan through the 64 MBthe processor socket, we add 4.7 pJ/bit to navigate the lgloba
database split. These first three workloads use 50 GB of the&ires between the memory controller and the core [39]. This i
1998 World Cup website log [12]WordCountand Sequence- a conservative estimate because it ignores intermediatmgo
Counteach find the frequency of words or sequences of wordelements, and favors the EECore baseline. For the core power
in large HTML files, and as input we use 50 GB of Wikipedia estimates, we assume that 25% of the 80 mW core peak power
HTML data [7]. These last two workloads are more computaean be attributed to leakage (20 mW). The dynamic power for
tionally intensive than the others because they involvegars- the core varies linearly between 30 mW and 60 mW, based on
ing and not just integer compares when sorting data. IPC (since many circuits are switching even during stalleyc

6.2. Workloads

Execution Time Single Mapper Execution Time All Mappers

250 m 000 = EE mNDC P m 000 = EE mNDC
1600
200 1400
z _. 1200
2150 2
= [}
E 2 1000
=
100 800
600
&8 400
. 'l = = | 200
RangeAgg GroupBy EquiJoin WordCount SequenceCount 0 m._. B | .
Normalized Execution Time Single Mapper RangeAgg GroupBy EquiJoin WordCount ~ SequenceCount
. B 000 = EE mNDC Normalized Execution Time All Mappers
0 m 000 mEE mNDC
0.9
0.8 o
8
o 0.7 R
06 E7
- [
E g5
£ o4 E
= 0.3 Z 4
02 <
sl n 2
I ' m | 1
RangeAgg GroupBy EquiJoin WordCount ~ SequenceCount o | — — - -
Figure 2: Execution times of a single Mapper task, measured i n RangeAgg GroupBy Equidoin WordCount SequenceCount
absolute time (top), and normalized to EE execution Figure 3: Execution times of all Mapper tasks, measured in ab -
time (bottom). solute time (top), and normalized to EE execution time
(bottom).

7. Performance Results
o cores 64-to-1, so each 000 processor must sequentiallyixec
7.1. Individual Mapper Performance 64 Mapper tasks.

We first examine the performance of a single thread working Because of this, the single-threaded performance advantag
on a single input split in each architecture. Figure 2 shdwes t Of the 000 cores becomes irrelevant, and both EE and NDC

execution latency of a single mapper for each workload. systems are able to outperform the OoO system by a wide mar-

We show both normalized and absolute execution times t@in- AS seen in Figure 3, compared to the OoO system, the
show the scale of each of these workloads. When executingE SyStém reduces Map phase execution times from 69.4%

on an EECore, &angeAggdviapper task takes on the order of (RaNgeAgy up to 89.8% WordCoun}. The NDC system im-
milliseconds to complet&roupByandEquidointake on the or- Proves upon the EE system by further reducing executiorstime
der of seconds to complete, awtbrdCountndSequenceCount 10M 23.7% WordCoun}, up to 93.2% RangeAgy
take on the order of minutes to _complete. 7 3. Bandwidth

RangeAggGroupByYy andEquiJoinhave lower compute re-
quirements thatWordCountand SequenceCounso in these The NDC system is able to improve upon the performance of
workloads, because of its memory latency advantage, an Nihe OoO and EE systems because it is not constrained by HMC
Core is able to nearly match the performance of an O0O corgnk bandwidth during the Map phase. Figure 4 shows the read
The EECore system falls behind in executing a single Mappesnd write bandwidth for each 2-socket system, as well as a bar
task compared to both OoO and NDCores, because its HMgepresenting the maximum HMC link bandwidth, which sets an
link pandwidth is maxed out for some workloads, as seen Impper bound for the performance of the Oo0O and EE systems.
Section 7.3. The 000 system is unable to ever come close to saturating
the available bandwidth of an HMC-based memory system. The
EE system is able to effectively use the large amounts of-avai
Map phase execution continues until all Mapper tasks hage be able bandwidth, but because the bandwidth is a limited mesou
completed. In the case of the EE and NDC systems, the numbémputs a cap on the performance potential of the EE syster. Th
of Mapper tasks and processor cores is equal, so all Mapp&DC system is not constrained by HMC link bandwidth, and is
tasks are executed in parallel, and the duration of the Map@h able to use an effective bandwidth many times that of therothe
is equal to the time it takes to execute one Mapper task. Isystems. While the two baseline systems are limited to a-maxi
the case of the 000 system, Mapper tasks outnumber processoum read bandwidth of 320 GB/s, the NDC system has a maxi-

7.2. Map Phase Performance

Mapper Read Bandwidth
B 000 W EE mNDC ' 320 GB/s Limit

1000
500
,ollv _slln ol _uiln _ull

RangeAgg GroupBy EquiJoin WordCount SequenceCount

Bandwidth (GB/s)
- N
o =]
S S
S S

Mapper Write Bandwidth

B 000 mEE mNDC © 320 GB/s Limit
600

500

200
N I I
0 | | - — |

RangeAgg GroupBy EquiJoin WordCount SequenceCount

N
o
o

Bandwidth (GB/s)
w
o
o

Figure 4: Bandwidth usage during Map phase for an entire 2-
socket system. Maximum HMC link read and write
bandwidth are each 320 GB/s for the system.

Normalized Execution Times
W Reduce = Map

9 I

5
4
3 .
2
1 —_— — - - =
0 - -
o w o o w o o w o o w o o w o
w w w w w
IS 2 IS 2 IS 2 IS 2 IS 2
RangeAgg GroupBy EquiJoin WordCount SequenceCount

Figure 5: Execution time for an entire MapReduce job normal-
ized to the EE system.

7.4. MapReduce Performance

So far we have focused on the Map phase of MapReduce work-
loads, because this phase typically dominates executios, ti
and represents the best opportunity for improving the dvera
execution time of MapReduce workloads. Figure 5 shows how
execution time is split between Map and Reduce phases for eac
workload, and shows the relative execution times for eash sy
tem.

The O00 and EE systems use the same processing cores for
both Map and Reduce phases, but the NDC system uses ND-
Cores for executing the Map phase, and EECores for executing
the Reduce phase. Performance improves for both Map and
Reduce phases when moving from the OoO system to the EE
system, but only Map phase performance improves when mov-
ing from the EE system to the NDC system. Reduce phase per-
formance degrades slightly for the NDC system since half the
SerDes links are disabled (to save power).

Overall, compared to the O00O system, the EE system is able
to reduce MapReduce execution time from 69.4%60UpBY),
up to 89.8% \WordCoun}. NDC further reduces MapReduce
execution times compared to the EE system from 12 \Bfr¢-
Coun), up to 93.2% RangeAgy

7.5. Energy Consumption

We consider both static and dynamic energy in evaluatingthe
ergy and power consumption of EE and NDC systems. Figure 6
shows the breakdown in energy consumed by the memory sub-
system, and the processing cores. Figure 6a shows the energy
savings when moving from an EE system to an NDC system that
uses a full complement of HMC links (NDC FL). Compared to
the EE system, the NDC FL system reduces energy consumed to
complete an entire MapReduce task from 28.2861dCoun},
up to 92.9% RangeAgyy The processor and memory energy
savings primarily come from completing the tasks more gyick
Figure 6b assumes NDC FL as a baseline and shows the ef-
fect of various power optimizations. NDC Half Links is the
NDC system configuration we use in all of our other perfor-
mance evaluations, and is able to reduce energy consumed by
up to 23.1% RangeAgycompared to NDC Full Links. Dis-
abling half the links reduces performance by up to 22.6% be-
cause it only affects the Reduce phase (as seen in the dark bar
in Figure 5). NDC-PD is a model that uses all the SerDes links,
but places unutilized cores in power-down modes. So NDCores
are powered down during the Reduce phase and EECores are
powered down during the Map phase. We assume that a tran-
sition to low-power state incurs a 1.0 ms latency and results
in core power that is 10% of the core peak power. Note that
the transition time is incurred only once for each workload a

mum aggregate TSV bandwidth of 8 TB/s. In fact, this is the keyis a very small fraction of the workload execution time, whic
attribute of the NDC architecture — as more memory devioes arranges between dozens of milliseconds to several minutes. T
added to the daisy-chain, the bandwidth usable by NDCores itechnique is able to reduce overall system energy by up @94.0.
creases. On the other hand, as more memory devices are add&e&quenceCountFinally, combining the Half Links optimiza-
to the EE baseline, memory bandwidth into the two processaion with core power-down allows for energy savings of 14.7%

sockets is unchanged.

(GroupBy) to 28.3% RangeAgy

Normalized Energy Consumption HMC Device Power
ENDC Cores “ DRAM Arrays M Logic Layer

; B Memory Energy ™ Processor Energy 10
0.9 9
0.8 8
It INILEINL
0.6 s
%6
0.5 [}
H
0.4 &°
03 4
0.2 3
0.1 I 2
0 [|
1n) - w — w — w — w - 1
w w [T [T w o
%) %) %) %) %)
[a} [a} [a) [a] [a) 0
z z b4 b4 z EE NDC EE NDC EE NDC EE NDC EE NDC
RangeAgg GroupBy EquiJoin WordCount SequenceCount RangeAgg GroupBy EquiJoin WordCount SequenceCount
Normalized Energy Consumption Figure 7: Breakdown of power consumed inside an HMC stack
m Memory Energy ™ Processor Energy for both EE and NDC systems. The HMC in the EE sys-

tem contains no NDC cores, and the HMC in the NDC

0.9 .
08 system uses half the number of data links.
0.7 Hagi B |
0.6 ‘
0.5 ! ks .
T |
04 . W
0.3 ' -: -
=

0.2
0.1

NDC Full Links
NDC Half Links
NDC PD

NDC HL+PD
NDC Full Links
NDC Half Links
NDC PD

NDC HL+PD
NDC Full Links
NDC Half Links
NDC PD

NDC HL+PD
NDC Full Links
NDC Half Links
NDC PD

NDC HL+PD
NDC Full Links
NDC Half Links
NDC PD

NDC HL+PD

EquiJoin WordCount SequenceCount

@
&
15}
=
T
@©
<

RangeAgg

Figure 6: Energy consumed by the memory and processing re-
sources. Top figure normalized to EE processor en-
ergy; bottom figure normalized to NDC FL processor
energy.

7.6. HMC Power Consumption and Thermal Analysis Figure 8: Heatmap of the logic layer in the NDC system (best
. . . viewed in color).
In addition to a system-level evaluation of energy consumnpt

we also consider the power consumption of an individual HMCactivity, because each HMC device can contribute on average
device. In the EE system, the HMC device is comprised of anly 1/8th the bandwidth supported by the SerDes links. The
logic layer, including 4 SerDes links, and 8 vertically $a¢ NDC architecture, on the other hand, is able to keep the DRAM
DRAM dies. An NDC HMC also has a logic layer and 8 DRAM arrays busier by utilizing the available TSV bandwidth. e
dies, but it only uses 2 SerDes links and also includes 16 ND@e NDC HMC device consumes up to 16.7% lower power than
cores. As with the energy consumption evaluation, we cansid the baseline HMC device.
core and DRAM activity levels in determining HMC device We also evaluated the baseline HMC and NDC floorplans
power. Figure 7 shows the contribution of HMC power fromwith Hotspot 5.0 [2], using default configuration paramster
the logic layer, the DRAM arrays, and NDC cores, if present. an ambient temperature of 4& inside the system case, and
The baseline HMCs do not have any NDC cores, so they se& heat spreader of thickness 0.25 mm. We assumed that each
no power contribution from that source, but they do havedwic DRAM layer dissipates 0.59 W, spread uniformly across its
the number of SerDes links, which are the single largest corarea. The logic layer's 8.67 W is distributed across varimits
sumer of power in the HMC device. based on HMC'’s power breakdown and floorplan reported by
The NDC design saves some power by trading 2 SerDes linkSandhu [56]. We assumed that all 4 SerDes links were active.
for 16 NDCores. However, we also see an increase in DRAM-or each NDCore, we assumed that 80% of its 80 mW power is
array power in NDC. In the EECore baseline, host processor pidissipated in 20% of its area to model a potential hotspdtiwit
bandwidth is shared between all HMCs in the chain, and no onthe NDCore. Our analysis showed a negligible increase in de-
HMC device is able to realize its full bandwidth potentiahi vice peak temperature from adding NDCores. This is shown
leads to a low power contribution coming from DRAM array by the logic layer heatmap in Figure 8; the SerDes units have

much higher power densities than the NDCore, so they cont4]
tinue to represent the hottest units on the logic chip. Waezar
out a detailed sensitivity study and observed that the NEBE€or [15]
emerge as hotspots only if they consume over 200 mW eacHB]
The DRAM layers exceed 85C (requiring faster refresh) only
if the heat spreader is thinner than 0.1 mm. a7
8. Conclusions

[18]
This paper argues that the concept of Near-Data Computing is
worth re-visiting in light of various technological trend&/e ar-
gue that the MapReduce framework is a good fit for NDC arch
tectures. We present a high-level description of the NDG@-har
ware and accompanying software architecture, which ptesen(20]
the programmer with a MapReduce-style programming modejy)
We first construct an optimized baseline that uses daisinsha 2]
of HMC devices and many energy-efficient cores on a tradi-
tional processor socket. This baseline pays a steep price fo
data movement. The move to NDC reduces the data movemeWt)
cost and helps overcome the bandwidth wall. This helps rduc
overall workload execution time by 12.3% to 93.2%. We alsol?4l
employ power-gating for cores and disable SerDes linksén th
NDC design. This ensures that the HMC devices consume led®d
power than the baseline and further bring down the energy con
sumption. Further, we expect that NDC performance, powef26]
energy, and cost will continue to improve as the daisy chains
are made deeper. [27]

il19]

Acknowledgments [28]

We thank the anonymous reviewers for their many useful sud2°]
gestions. This work was supported in part by NSF grant CNS-

1302663 and IBM Research. [30]
[31]

References [32]

[1] “Cortex-A5 Processor,” http://www.arm.com/produgt®cessors/
cortex-a/cortex-a5.php.

[2] “HotSpot 5.0,” http://lava.cs.virginia.edu/HotSpiadex. htm. (33]

[3] “Hybrid Memory Cube, Micron Technologies,” http://wwmicron.com/ 24
innovations/hmc.html. o) (34]

[4] “Intel Xeon Processor E5-4650 Specifications,” htguklintel.com/
products/64622/. [35]

[5] “Memcached: A Distributed Memory Object Caching Sysfeimitp:// [36]
memcached.org.

[6] “Micron System Power Calculator,” http://www.micramm/products/
support/power-calc. [37]

[7] “PUMA Benchmarks and dataset downloads,” http://webpurdue.edu/
~fahmad/benchmarks/datasets.htm.

[8] “Wind River Simics Full System Simulator,” http://wwwindriver.com/
products/simics/. [38]

[9] “Open-Silicon and Micron Align to Deliver Next-Geneiat Memory
Technology,” 2011, http://www.open-silicon.com/newgets/press-
releases/open-silicon-and-micron-align-to-deliver- extrgeneration- [39]
memory-technology.html.

[10] J. Adibi, T. Barrett, S. Bhatt, H. Chalupsky, J. Chamad aJ. Hall, [40]
“Processing-in-Memory Technology for Knowledge Discgvehlgo-
rithms,” in Proceedings of DaMoN Workshap006. [41]

[11] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayke,Tan, and
V. Vasudevan, “FAWN: A Fast Array of Wimpy Nodes,” roceedings
of SOSP2009. [42]

[12] M. Arlittand T. Jin, “1998 World Cup Web Site Access Lggsttp://www.
acm.org/sigcomm/ITA/, August 1998.

[13] O. Azizi, A. Mahesri, B. Lee, S. Patel, and M. HorowitzErtergy- [43]

Performance Tradeoffs in Processor Architecture and Cilesign: A
Marginal Cost Analysis,” irProceedings of ISCA010.

BerkeleyDB, “Berkeley DB: high-performance embeddeatabase
for key/value data,” http://www.oracle.com/technetwgroducts/
berkeleydb/overview/index.html.

J. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge, “A LOwast, Multi-
threaded Processing-in-Memory System,Pimceedings of WMPR0O0A4.
A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Usingdfl Memory
to Build Fast, Power-efficient Clusters for Data-Intensiveplications,”
in Proceedings of ASPLQ3009.

J. Chang, P. Ranganathan, D. Roberts, T. Mudge, M. SirahK. Lim,
“A Limits Study of the Benefits from Nanostore-based FutuatdDCentric
System Architectures,” ifroceedings of Computing Frontier012.

N. Chatterjee, R. Balasubramonian, M. Shevgoor, SskygA. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: theab
Slmulated Memory Module,” University of Utah, Tech. Rep012,
UUCS-12-002.

F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, Ah&dhury, and
Y. Sabharwal, “Breaking the Speed and Scalability Barfier&sraph Ex-
ploration on Distributed-memory Machines,” Rroceedings of SQ012.
J. Dean and S. Ghemawat, “MapReduce: Simplified Datad2sing on
Large Clusters,” irProceedings of OSDR004.

M. deKruijf and K. Sankaralingam, “MapReduce for thell&E. Archi-
tecture,”IBM Journal of Research and Developmevl. 53(5), 2009.

X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi, “Sinepbut Effec-
tive Heterogeneous Main Memory with On-Chip Memory ConéoSup-
port,” in Proceedings of S010.

Elpida Memory Inc., “News Release: Elpida Completes/édgpment
of Cu-TSV (Through Silicon Via) Multi-Layer 8-Gigabit DRANhttp://
www.elpida.com/pdfs/pr/2009-08-27e.pdf, 2009.

——, “News Release: Elpida, PTI, and UMC Partner on 3D h@&gra-
tion Development for Advanced Technologies Including 28nnttp://
www.elpida.com/en/news/2011/05-30.html, 2011.

F. Farber, S. K. Cha, J. Primsch, C. Bornhdvd, S. Sigg, \4h Lehner,
“SAP HANA Database: Data Management for Modern Businesdiéap
tions,” SIGMOD Recordvol. 40, no. 4, pp. 45-51, 2011.

F. Farber, N. May, W. Lehner, P. GroRe, |. Miller, H. Rauand J. Dees,
“The SAP HANA Database — An Architecture OvervieMEE Data Eng.
Bull., vol. 35, no. 1, pp. 28-33, 2012.

T. Farrell, “HMC Overview: A Revolutionary Approach ®ystem Mem-
ory,” 2012, exhibit at Supercomputing.

D. Fick et al, “Centip3De: A 3930 DMIPS/W Configurable Near-
Threshold 3D Stacked System with 64 ARM Cortex-M3 Cores Pin-
ceedings of ISSCQ012.

J. Gebis, S. Williams, C. Kozyrakis, and D. Pattersod|RAM-1: A
Media-Oriented Vector Processor with Embedded DRAM, Pioceed-
ings of DAG 2004.

Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A Resistive TCAM Adegator for
Data-Intensive Computing,” im Proceedings of MICR(2011.

Q. Guo, X. Guo, R. Patel, E. Ipek, and E. Friedman, “AQVIM: Asso-
ciative Computing with STT-MRAM,” inProceedings of ISCA013.

M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Drgp& LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. FrekhShin,
and J. Park, “Mapping Irregular Applications to DIVA, a Plb&sed Data-
Intensive Architecture,” ilProceedings of SC1999.

B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “MaksMapRe-
duce Framework on Graphics ProcessorsPiaceedings of PAGT008.
J. Howardet al, “A 48-Core 1A-32 Message-Passing Processor with
DVFS in 45nm CMOS,” inProceedings of ISSCQ010.

ITRS, “International Technology Roadmap for Semicoctdrs, 2009 Edi-

tion.”

J. Jeddeloh and B. Keeth, “Hybrid Memory Cube — New DRAIVtH-
tecture Increases Density and Performance3ymposium on VLSI Tech-
nology, 2012.

X. Jiang, N. Madan, L. Zhao, M. Upton, R. lyer, S. MakineD. Newell,

Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive FilBarsed
DRAM Caching for CMP Server Platforms,” iRroceedings of HPCA
2010.

Y. Kang, M. Huang, S. Yoo, Z. Ge, D. Keen, V. Lam, P. Pattnand

J. Torrellas, “FlexRAM: Toward an Advanced Intelligent Mem Sys-
tem,” in Proceedings of ICCDP1999.

S. Keckler, “Life After Dennard and How | Learned to Lotlee Pico-
joule,” Keynote at MICRO, 2011.

D. Kim et al, “3D-MAPS: 3D Massively Parallel Processor with Stacked
Memory,” in Proceedings of ISSCQ012.

P. Kundu, “On-Die Interconnects for Next Generation B3/ in Work-
shop on On- and Off-Chip Interconnection Networks for Moite Sys-
tems (OCIN)2006.

K. Lim et al, “Understanding and Designing New Server Architectures
for Emerging Warehouse-Computing Environments, Piroceedings of
ISCA 2008.

K. Lim, D. Meisner, A. Saidi, P. Ranganathan, and T. V8ehj “Thin
Servers with Smart Pipes: Designing Accelerators for Meined,” in
Proceedings of ISCAR013.

http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://www.arm.com/products/processors/cortex-a/cortex-a5.php
http://lava.cs.virginia.edu/HotSpot/index.htm
http://www.micron.com/innovations/hmc.html
http://www.micron.com/innovations/hmc.html
http://ark.intel.com/products/64622/
http://ark.intel.com/products/64622/
http://memcached.org
http://memcached.org
http://www.micron.com/products/support/power-calc
http://www.micron.com/products/support/power-calc
http://web.ics.purdue.edu/~fahmad/benchmarks/datasets.htm
http://web.ics.purdue.edu/~fahmad/benchmarks/datasets.htm
http://www.windriver.com/products/simics/
http://www.windriver.com/products/simics/
http://www.acm.org/sigcomm/ITA/
http://www.acm.org/sigcomm/ITA/
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.elpida.com/pdfs/pr/2009-08-27e.pdf
http://www.elpida.com/pdfs/pr/2009-08-27e.pdf
http://www.elpida.com/en/news/2011/05-30.html
http://www.elpida.com/en/news/2011/05-30.html

[44] G. Loh, “3D-Stacked Memaory Architectures for Multi-@oProcessors,”
in Proceedings of ISCA008.

[45] G. Loi, B. Agrawal, N. Srivastava, S. Lin, T. SherwooddeK. Banerjee,
“A Thermally-Aware Performance Analysis of Vertically égrated (3-D)
Processor-Memory Hierarchy,” ifroceedings of DAC-43une 2006.

[46] N.Madan, L. Zhao, N. Muralimanohar, A. N. Udipi, R. Baléoramonian,
R. lyer, S. Makineni, and D. Newell, “Optimizing Communiicat and Ca-
pacity in a 3D Stacked Reconfigurable Cache HierarchyPrioceedings
of HPCA 2009.

[47] R.Murphy, P. Kogge, and A. Rodrigues, “The Charactgion of Data In-
tensive Memory Workloads on Distributed PIM Systems Pioceedings
of Workshop on Intelligent Memory Syste@800.

[48] M. Oskin, F. Chong, and T. Sherwood, “Active Pages: A Miodf Com-
putation for Intelligent Memory,” irProceedings of ISCAL998.

[49] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, L&verich,
D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. RosemhIS. Rum-
ble, E. Stratmann, and R. Stutsman, “The Case for RAMClo8dalable
High-Performance Storage Entirely in DRAMSIGOPS Operating Sys-
tems Revieywol. 43(4), 2009.

[50] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. téee
C. Kozyrakis, R. Thomas, and C. Yelick, “A Case for IntelligdDRAM:
IRAM,” IEEE Micro, vol. 17(2), April 1997.

[51] T. Pawlowski, “Hybrid Memory Cube (HMC),” itHotChips 2011.

[52] P. Ranganathan, “From Microprocessors to NanostdRethinking Data-
Centric Systems [EEE ComputerJan 2011.

[53] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, amgyrakis,
“Evaluating MapReduce for Multi-Core and Multiprocessgis@ms,” in
Proceedings of HPCA2007.

[54] Samsung, “Samsung to Release 3D Memory Modules with &béater
Density,” 2010, http://www.computerworld.com/s/ari9200278/
Samsung_to_release_3D_memory_modules_with_50_grdatesity.

[55] Samsung Electronics Corporation, “Samsung EleotonDevelops
World's First Eight-Die Multi-Chip Package for Multimedi@ell Phones,”
2005, (Press release framt p: / / www. sanmsung. com).

[56] G. Sandhu “DRAM Scaling and Bandwidth Challenges,N8F Work-
shop on Emerging Technologies for Interconnects (WED}2.

[57] SAP, “In-Memory Computing: SAP HANA," http://www.sagom/
solutions/technology/in-memory-computing-platform.

[58] SAS, “SAS In-Memory Analytics,” http://www.sas.cosaftware/
high-performance-analytics/in-memory-analytics/.

[59] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architture of
the 3D Stacked MRAM L2 Cache for CMPs,” Proceedings of HPCA
2009.

[60] Tezzaron Semiconductor, “3D Stacked DRAM/Bi-STAR ©xew,”
2011, http://www.tezzaron.com/memory/Overview_3D_[NRAtm.

[61] D. H. Woo et al, “An Optimized 3D-Stacked Memory Architecture by
Exploiting Excessive, High-Density TSV Bandwidth,” Rroceedings of
HPCA 2010.

[62] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, andStoica,
“Spark: Cluster Computing with Working Sets,” Proceedings of Hot-
Cloud 2010.

http://www.computerworld.com/s/article/9200278/Samsung_to_release_3D_memory_modules_with_50_greater_density
http://www.computerworld.com/s/article/9200278/Samsung_to_release_3D_memory_modules_with_50_greater_density
http://www.sap.com/solutions/technology/in-memory-computing-platform
http://www.sap.com/solutions/technology/in-memory-computing-platform
http://www.sas.com/software/high-performance-analytics/in-memory-analytics/
http://www.sas.com/software/high-performance-analytics/in-memory-analytics/
http://www.tezzaron.com/memory/Overview_3D_DRAM.htm

	Introduction
	MapReduce Background
	Mapper
	Reducer
	Computational Requirements

	Memory System Background
	Moving from DDR3 to HMC
	Analyzing an HMC-Based Design

	Related Work
	Near Data Computing Architecture
	High Performance Baseline
	NDC Hardware
	NDC Software

	Evaluation
	Evaluated Systems
	OoO System
	EECore System
	NDCore System

	Workloads
	Methodology

	Performance Results
	Individual Mapper Performance
	Map Phase Performance
	Bandwidth
	MapReduce Performance
	Energy Consumption
	HMC Power Consumption and Thermal Analysis

	Conclusions

