
Rethinking DRAM Design and Organization for
Energy-Constrained Multi-Cores

Aniruddha N. Udipi
University of Utah
Salt Lake City, UT

udipi@cs.utah.edu

Naveen Muralimanohar
Hewlett-Packard Laboratories

Palo Alto, CA
naveen.murali@hp.com

Niladrish Chatterjee
University of Utah
Salt Lake City, UT

nil@cs.utah.edu

Rajeev Balasubramonian
University of Utah
Salt Lake City, UT

rajeev@cs.utah.edu

Al Davis
University of Utah
Salt Lake City, UT

ald@cs.utah.edu

Norman P. Jouppi
Hewlett-Packard Laboratories

Palo Alto, CA
norm.jouppi@hp.com

ABSTRACT

DRAM vendors have traditionally optimized the cost-per-
bit metric, often making design decisions that incur en-
ergy penalties. A prime example is the overfetch feature in
DRAM, where a single request activates thousands of bit-
lines in many DRAM chips, only to return a single cache
line to the CPU. The focus on cost-per-bit is questionable
in modern-day servers where operating costs can easily ex-
ceed the purchase cost. Modern technology trends are also
placing very different demands on the memory system: (i)
queuing delays are a significant component of memory ac-
cess time, (ii) there is a high energy premium for the level of
reliability expected for business-critical computing, and (iii)
the memory access stream emerging from multi-core systems
exhibits limited locality. All of these trends necessitate an
overhaul of DRAM architecture, even if it means a slight
compromise in the cost-per-bit metric.

This paper examines three primary innovations. The first
is a modification to DRAM chip microarchitecture that re-
tains the traditional DDRx SDRAM interface. Selective Bit-
line Activation (SBA) waits for both RAS (row address) and
CAS (column address) signals to arrive before activating ex-
actly those bitlines that provide the requested cache line.
SBA reduces energy consumption while incurring slight area
and performance penalties. The second innovation, Single
Subarray Access (SSA), fundamentally re-organizes the lay-
out of DRAM arrays and the mapping of data to these arrays
so that an entire cache line is fetched from a single subarray.
It requires a different interface to the memory controller,
reduces dynamic and background energy (by about 6X and
5X), incurs a slight area penalty (4%), and can even lead
to performance improvements (54% on average) by reduc-
ing queuing delays. The third innovation further penalizes
the cost-per-bit metric by adding a checksum feature to each
cache line. This checksum error-detection feature can then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

be used to build stronger RAID-like fault tolerance, includ-
ing chipkill-level reliability. Such a technique is especially
crucial for the SSA architecture where the entire cache line
is localized to a single chip. This DRAM chip microarchi-
tectural change leads to a dramatic reduction in the energy
and storage overheads for reliability. The proposed architec-
tures will also apply to other emerging memory technologies
(such as resistive memories) and will be less disruptive to
standards, interfaces, and the design flow if they can be in-
corporated into first-generation designs.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories—
Dynamic memory (DRAM); B.3.2 [Memory Structures]:
Design Styles—Primary memory ; B.8.1 [Performance and
Reliability]: Reliability, Testing and Fault-Tolerance; C.5.5
[Computer System Implementation]: Servers

General Terms

Design, Performance, Reliability

Keywords

DRAM Architecture, Energy-efficiency, Locality, Chipkill,
Subarrays

1. INTRODUCTION
The computing landscape is undergoing a major change,

primarily enabled by ubiquitous wireless networks and the
rapid increase in the usage of mobile devices which access the
web-based information infrastructure. It is expected that
most CPU-intensive computing may either happen in servers
housed in large datacenters, e.g., cloud computing and other
web services, or in many-core high-performance computing
(HPC) platforms in scientific labs. In both situations, it
is expected that the memory system will be problematic in
terms of performance, reliability, and power consumption.

The memory wall is not new: long DRAM memory laten-
cies have always been a problem. Given that little can be
done about the latency problem, DRAM vendors have cho-
sen to optimize their designs for improved bandwidth, in-
creased density, and minimum cost-per-bit. With these ob-
jectives in mind, a few DRAM architectures, standards, and

interfaces were instituted in the 1990s and have persisted
since then. However, the objectives in datacenter servers
and HPC platforms of the future will be very different than
those that are reasonable for personal computers, such as
desktop machines. As a result, traditional DRAM architec-
tures are highly inefficient from a future system perspective,
and are in need of a major revamp. Consider the following
technological trends that place very different demands on
future DRAM architectures:

• Energy: While energy was never a first-order design con-
straint in prior DRAM systems, it has certainly emerged
as the primary constraint today, especially in datacen-
ters. Energy efficiency in datacenters has already been
highlighted as a national priority [50]. Many studies at-
tribute 25-40% of total datacenter power to the DRAM
system [11, 33, 34, 37]. Modern DRAM architectures are
ill-suited for energy-efficient operation because they are
designed to fetch much more data than required. This
overfetch wastes dynamic energy. Today’s DRAMs em-
ploy coarse-grained power-down tactics to reduce area and
cost, but finer grained approaches can further reduce back-
ground energy.

• Reduced locality: Single-core workloads typically exhibit
high locality. Consequently, current DRAMs fetch many
kilobytes of data on every access and keep them in open
row buffers so that subsequent requests to neighboring
data elements can be serviced quickly. The high degree
of multi-threading in future multi-cores [42] implies that
memory requests from multiple access streams get multi-
plexed at the memory controller, thus destroying a large
fraction of the available locality. The severity of this prob-
lem will increase with increased core and memory con-
troller counts that are expected for future microproces-
sor chips. This trend is exacerbated by the increased use
of aggregated memory pools (“memory blades” that are
comprised of many commodity DIMMs) that serve sev-
eral CPU sockets in an effort to increase resource utiliza-
tion [34]. This mandates that future DRAM architectures
place a lower priority on locality and a higher priority on
parallelism.

• Queuing Delays: For several years, queuing delays at the
memory controller were relatively small because a single
core typically had relatively few pending memory oper-
ations and DRAM systems were able to steeply increase
peak memory bandwidth every year [20]. In the future,
the number of pins per chip is expected to grow very
slowly. The 2007 ITRS Road-map [26] expects a 1.47x
increase in the number of pins over an 8-year time-frame
– over the same period, Moore’s Law dictates at least a
16x increase in the number of cores. This implies that
requests from many cores will be competing to utilize the
limited pin bandwidth. Several studies have already high-
lighted the emergence of queuing delay as a major bottle-
neck [24, 31, 40, 41, 44, 56]. A DRAM architecture that is
geared towards higher parallelism will likely be able to
de-queue requests faster and better utilize the available
limited data bandwidth.

• Efficient Reliability: Recent studies have highlighted the
need for DRAM architectures that are resilient to single
faults or even failure within an entire DRAM chip [8, 46],
especially in datacenter platforms. Because these fault-
tolerant solutions are built upon commodity DRAM chips,

they incur very high overheads in terms of energy and cost.
New DRAM architectures can provide much more efficient
reliability if fault-tolerant features are integrated into the
DRAM chip microarchitecture at design time.

• Lower relevance of DRAM chip area: DRAM vendors
have long optimized the cost-per-bit metric. However,
given that datacenters consume several billion kilowatt
hours of energy every year [50], it has been shown that
the 3-year operating energy costs of today’s datacenters
equal the capital acquisition costs [33]. Therefore, it may
now be acceptable to incur a slightly higher cost-per-bit
when purchasing DRAM as long as it leads to significantly
lower energy footprints during operation.

The design of DRAM devices specifically addressing these
trends has, to the best of our knowledge, not been previously
studied and is now more compelling than ever. We attempt
to fundamentally rethink DRAM microarchitecture and or-
ganization to achieve highly reliable, high performance op-
eration with extremely low energy footprints, all within ac-
ceptable area bounds. In this work, we propose two inde-
pendent designs, both attempting to activate the minimum
circuitry required to read a single cache line.

We make the following three significant contributions:

• We introduce and evaluate Posted RAS in combination
with a Selective Bitline Activation (SBA) scheme. This
entails a relatively simple change to DRAM microarchi-
tecture, with only a minor change to the DRAM interface,
to provide significant dynamic energy savings.

• We propose and evaluate a reorganization of DRAM chips
and their interface, so that cache lines can be read via
a Single Subarray Access (SSA) in a single DRAM chip.
This approach trades off higher data transfer times for
greater (dynamic and background) energy savings.

• In order to provide chipkill-level reliability [18, 35] even
though we are reading a cache line out of a single DRAM
device, we propose adding a checksum to each cache line
in the SSA DRAM to provide error detection. We then
evaluate the use of RAID techniques to reconstruct cache
lines in the event of a chip failure.

While this study focuses on DRAM as an evaluation vehi-
cle, the proposed architectures will likely apply just as well
to other emerging storage technologies, such as phase change
memory (PCM) and spin torque transfer RAM (STT-RAM).

2. BACKGROUND AND MOTIVATION

2.1 DRAM Basics and Baseline Organization
We first describe the typical modern DRAM architec-

ture [27]. For most of the paper, our discussion will focus
on the dominant DRAM architecture today: JEDEC-style
DDRx SDRAM, an example is shown in Figure 1.

Modern processors [45, 48, 54] often integrate memory con-
trollers on the processor die. Each memory controller is
connected to one or two dedicated off-chip memory chan-
nels. For JEDEC standard DRAM, the channel typically
has a 64-bit data bus, a 17-bit row/column address bus,
and an 8-bit command bus [38]. Multiple dual in-line mem-
ory modules (DIMMs) can be accessed via a single memory
channel and memory controller. Each DIMM typically com-
prises multiple ranks, each rank consisting of a set of DRAM

Array

1/8th f th… 1/8th of the

row buffer

One word ofOne word of

data output

Rank

DRAM

chip or

deviceBank

DIMM

O hi

Memory bus or channel

On chip

Memory

Controller

Figure 1: An example DDRx SDRAM architecture with
1 DIMM, 2 ranks, and 8 x4 DRAM chips per rank.

chips. We will call this a rank-set. Exactly one rank-set is
activated on every memory operation and this is the small-
est number of chips that need to be activated to complete
a read or write operation. Delays on the order of a few
cycles are introduced when the memory controller switches
between ranks to support electrical bus termination require-
ments. The proposed DRAM architecture is entirely focused
on the DRAM chips, and has neither a positive or negative
effect on rank issues. Figure 1 shows an example DIMM
with 16 total DRAM chips forming two rank-sets.

Each DRAM chip has an intrinsic word size which corre-
sponds to the number of data I/O pins on the chip. An xN
DRAM chip has a word size of N , where N refers to the
number of bits going in/out of the chip on each clock tick.
For a 64-bit data bus and x8 chips, a rank-set would require
8 DRAM chips (Figure 1 only shows 8 x4 chips per rank-set
to simplify the figure). If the DIMM supports ECC, the data
bus expands to 72-bits and the rank-set would consist of 9
x8 DRAM chips. When a rank is selected, all DRAM chips
in the rank-set receive address and command signals from
the memory controller on the corresponding shared buses.
Each DRAM chip is connected to a subset of the data bus;
of the 64-bit data packet being communicated on the bus on
a clock edge, each x8 chip reads/writes an 8-bit subset.

A rank is itself partitioned into multiple banks, typically
4-16. Each bank can be concurrently processing a different
memory request, thus affording a limited amount of mem-
ory parallelism. Each bank is distributed across the DRAM
chips in a rank; the portion of a bank in each chip will be re-
ferred to as a sub-bank. The organization of a sub-bank will
be described in the next paragraph. When the memory con-
troller issues a request for a cache line, all the DRAM chips
in the rank are activated and each sub-bank contributes a
portion of the requested cache line. By striping a cache line
across multiple DRAM chips, the available pin and channel
bandwidth for the cache line transfer can be enhanced. If
the data bus width is 64 bits and a cache line is 64 bytes, the
cache line transfer happens in an burst of 8 data transfers.

If a chip is an xN part, each sub-bank is itself partitioned
into N arrays (see Figure 1). Each array contributes a single
bit to the N-bit transfer on the data I/O pins for that chip
on a clock edge. An array has several rows and columns of

single-bit DRAM cells. A cache line request starts with a
RAS command that carries the subset of address bits that
identify the bank and the row within that bank. Each array
within that bank now reads out an entire row. The bits read
out are saved in latches, referred to as the row buffer. The
row is now considered opened. The page size or row buffer
size is defined as the number of bits read out of all arrays
involved in a bank access (usually 4-16 KB). Of these, only
a cache line worth of data (identified by the CAS command
and its associated subset of address bits) is communicated
on the memory channel for each CPU request.

Each bank has its own row buffer, so there can potentially
be 4-16 open rows at any time. The banks can be accessed in
parallel, but the data transfers have to be serialized over the
shared data bus. If the requested data is present in an open
row (a row buffer hit), the memory controller is aware of
this, and data can be returned much faster. If the requested
data is not present in the bank’s row buffer (a row buffer
miss), the currently open row (if one exists) has to first be
closed before opening the new row. To prevent the closing
of the row from being on the critical path for the next row
buffer miss, the controller may adopt a close-page policy that
closes the row right after returning the requested cache line.
Alternatively, an open-page policy keeps a row open until the
bank receives a request for a different row.

As an example system, consider a 4 GB system, with two
2 GB ranks, each consisting of eight 256 MB x8, 4-bank
devices, serving an L2 with a 64 byte cache line size. On
every request from the L2 cache, each device has to provide
8 bytes of data. Each of the 4 banks in a 256 MB device is
split into 8 arrays of 8 MB each. If there are 65,536 rows
of 1024 columns of bits in each array, a row access brings
down 1024 bits per array into the row buffer, giving a total
row buffer size of 65,536 bits across 8 chips of 8 arrays each.
The page size is therefore 65,536 bits (8 KBytes) and of
these, only 64 Bytes are finally returned to the processor,
with each of the eight chips being responsible for 64 bits of
the cache line. Such a baseline system usually significantly
under-utilizes the bits it reads out (in the above example,
only about 0.8% of the row buffer bits are utilized for a
single cache line access) and ends up unnecessarily activating
various circuits across the rank-set.

2.2 Motivational Data
Recent studies have indicated the high energy needs of

datacenters [50] and that memory contributes up to 40% of
total server power consumption [11, 33, 37]. We start with a
workload characterization on our simulation infrastructure
(methodology details in Section 4.1). Figure 2 shows the
trend of steeply dropping row-buffer hit rates as the number
of threads simultaneously accessing memory goes up. We
see average rates drop from over 60% for a 1 core system
to 35% for a 16 core system. We also see that whenever a
row is fetched into the row-buffer, the number of times it is
used before being closed due to a conflict is often just one
or two (Figure 3). This indicates that even on benchmarks
with high locality and good average row buffer hit rates (for
example, cg), a large number of pages still don’t have much
reuse in the row-buffer. These trends have also been ob-
served in prior work on Micro-Pages [47]. This means that
the energy costs of activating an entire 8 KB row is amor-
tized over very few accesses, wasting significant energy.

10

20

30

40

50

60

70

80

90

100
o
w

 b
u
ff
e
r
h
it

 r
a
te

 (
%
)

1 Core

4 Core

0

10

20

30

40

50

60

70

80

90

100
R
o
w

 b
u
ff
e
r
h
it

 r
a
te

 (
%
)

1 Core

4 Core

16 Core

Figure 2: Row buffer hit rate trend

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e
rc
e
n
ta
g
e

 o
f
R
o
w

 F
e
tc
h
e
s

Use Count >3

Use Count 3

Use Count 2

Use Count 1

RB Hit rate (%)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e
rc
e
n
ta
g
e

 o
f
R
o
w

 F
e
tc
h
e
s

Use Count >3

Use Count 3

Use Count 2

Use Count 1

RB Hit rate (%)

Figure 3: Row use count for 8 cores

3. PROPOSED ARCHITECTURE
We start with the premise that the traditional row-buffer

locality assumption is no longer valid, and try to find an
energy-optimal DRAM design with minimal impacts on area
and latency. Our first novel design (Selective Bitline Acti-
vation, Section 3.1) requires minor changes to DRAM chip
microarchitecture, but is compatible with existing DRAM
standards and interfaces. The second novel design (Single
Subarray Access, Section 3.2) requires non-trivial changes
to DRAM chip microarchitecture and its interface to the
memory controller. Section 3.3 describes our novel chipkill
solution for the proposed architecture.

3.1 Selective Bitline Activation (SBA)
In an effort to mitigate the overfetch problem with min-

imal disruption to existing designs and standards, we pro-
pose the following two simple modifications: (i) we activate
a much smaller segment of the wordline and (ii) we acti-
vate only those bitlines corresponding to the requested cache
line. Note that we will still need a wire spanning the array
to identify the exact segment of wordline that needs to be
activated but this is very lightly loaded and therefore has
low delay and energy. Thus, we are not changing the way
data gets laid out across DRAM chip arrays, but every ac-
cess only brings down the relevant cache line into the row
buffer. As a result, the notion of an open-page policy is now
meaningless. After every access, the cache line is immedi-
ately written back. Most of the performance difference from
this innovation is because of the shift to a close-page policy:
for workloads with little locality, this can actually result
in performance improvements as the page precharge after
write-back is taken off the critical path of the subsequent
row buffer miss. Next, we discuss the microarchitectural
modifications in more detail.

RX0 RX1 RX2

METAL
MEMORY ARRAYS MEMORY ARRAYS

SWL

MWL0

SWL SWL

METAL

POLY-Si
BITLINES BITLINES BITLINES BITLINES

SWL

MWL1

SWL SWL

MWL1

SWL SWL SWL

MWL – Main Wordline SWL – Sub Wordline RX – Region Select
Figure courtesy “VLSI
Memory Chip Design”,
K It h

g
K. Itoh

Figure 4: Hierarchical wordline with region select.

Memory systems have traditionally multiplexed RAS and
CAS commands on the same I/O lines due to pin count
limitations. This situation is unlikely to change due to tech-
nological limitations [26] and is a hard constraint for DRAM
optimization. In a traditional design, once the RAS arrives,
enough information is available to activate the appropriate
wordline within the array. The cells in that row place their
data on the corresponding bitlines. Once the row’s data is
latched into the row buffer, the CAS signal is used to return
some fraction of the many bits read from that array. In our
proposed design, instead of letting the RAS immediately ac-
tivate the entire row and all the bitlines, we wait until the
CAS has arrived to begin the array access. The CAS bits
identify the subset of the row that needs to be activated and
the wordline is only driven in that section. Correspondingly,
only those bitlines place data in the row buffer, saving the
activation energy of the remaining bits. Therefore, we need
the RAS and the CAS before starting the array access. Since
the RAS arrives early, it must be stored in a register until
the CAS arrives. We refer to this process as Posted-RAS1.
Because we are now waiting for the CAS to begin the ar-
ray access, some additional cycles (on the order of 10 CPU
cycles) are added to the DRAM latency. We expect this im-
pact (quantified in Section 4) to be relatively minor because
of the hundreds of cycles already incurred on every DRAM
access. Note again that this change is compatible with ex-
isting JEDEC standards: the memory controller issues the
same set of commands, we simply save the RAS in a register
until the CAS arrives before beginning the array access.

The selective bitline activation is made possible by only
activating a small segment of the wordline. We employ hier-
archical wordlines to facilitate this, at some area cost. Each
wordline consists of a Main Wordline (MWL), typically run
in first-level metal, controlling Sub-Wordlines (SWL), typ-
ically run in poly, which actually connect to the memory
cells (see Figure 4). The MWL is loaded only by a few
“AND”gates that enable the sub-wordlines, significantly re-
ducing its capacitance, and therefore its delay. “Region Se-
lect (RX)” signals control activation of specific SWLs.

Hierarchical wordlines have been previously proposed for
DRAMs [25] to reduce delay (rather than energy). Until
now, other techniques (metal shunted wordlines [28], for in-
stance) partially achieved what has been perceived as the

1Many memory controllers introduce a gap between the is-
sue of the RAS and CAS so that the CAS arrives just as
the row buffer is being populated and the device’s Trcd con-
straint is satisfied [27]. Some memory systems send the CAS
immediately after the RAS. The CAS is then saved in a reg-
ister at the DRAM chip until the row buffer is ready. This
is referred to as Posted-CAS [29]. We refer to our scheme
as Posted-RAS because the RAS is saved in a register until
the arrival of the CAS.

advantage of hierarchical wordlines: significant reductions
in wordline delay. In a shunted wordline, a metal wordline
is stitched to the low-pitch poly wordline at regular inter-
vals by metal-poly contacts. This reduces the wordline de-
lay by limiting the high resistance poly to a small distance
while saving area by having only a few metal-poly contacts.
The increased area costs of hierarchical wordlines have there-
fore not been justifiable thus far. Now, with the increasing
importance of energy considerations, we believe that using
hierarchical wordlines is not only acceptable, but actually
necessary. Note that wordlines do not contribute as much
to overall DRAM energy, so this feature is important not for
its wordline energy savings, but because it enables selective
bitline activation. In our proposed design, a subset of the
CAS address is used to trigger the RX signal, reducing the
activation area and wordline/bitline energy. Note that since
the MWL is not directly connected to the memory cells,
the activation of the MWL across the array does not result
in destruction of data, since only the small subset of cells
connected to the active SWL read their data out.

We incorporated an analytical model for hierarchical word-
lines into CACTI 6.5 [39, 49] (more details in Section 4.1)
to quantify the area overhead. For the specific DRAM part
described in Section 4.1, we observed that an area overhead
of 100% was incurred when enough SWLs were introduced
to activate exactly one cache line in a bank. This is because
of the high area overhead introduced by the AND gate and
RX signals for a few memory cells. While this results in
activating a minimum number of bitlines, the cost may be
prohibitive. However, we can trade-off energy for lower cost
by not being as selective. If we were to instead read out 16
cache lines, the SWLs become 16 times longer. This still
leads to high energy savings over the baseline, and a more
acceptable area overhead of 12%. Most of our results in Sec-
tion 4 pertain to this model. Even though we are reading
out 16 cache lines, we continue to use the close-page policy.

In summary, the SBA mechanism (i) reduces bitline and
wordline dynamic energy by reading out a limited number
of cache lines from the arrays (to significantly reduce over-
fetch), (ii) impacts performance (negatively or positively)
by using a close-page policy, (iii) negatively impacts perfor-
mance by waiting for CAS before starting array access, (iv)
increases area and cost by requiring hierarchical wordlines,
and finally (v) does not impact the DRAM interface. As we
will discuss subsequently, this mechanism does not impact
any chipkill solutions for the DRAM system because the
data organization across the chips has not been changed.

3.2 Single Subarray Access (SSA)
While the SBA design can eliminate overfetch, it is still

an attempt to shoehorn in energy optimizations in a man-
ner that conforms to modern-day DRAM interfaces and data
layouts. Given that we have reached an inflection point, a
major rethink of DRAM design is called for. An energy-
efficient architecture will also be relevant for other emerging
storage technologies. This sub-section defines an energy-
optimized architecture (SSA) that is not encumbered by ex-
isting standards.

Many features in current DRAMs have contributed to bet-
ter locality handling and low cost-per-bit, but also to high
energy overhead. Arrays are designed to be large structures
so that the peripheral circuitry is better amortized. While
DRAMs can allow low-power sleep modes for arrays, the

ONE DRAM CHIP

ADDR/CMD BUS 64 Bytes

Subarray

ONE DRAM CHIP

DIMM

...
Subarray

Bitlines

Row buffer

DIMM

8 8

Row buffer

8 8 8 8 88
DATA BUS

MEMORY CONTROLLER

Bank Interconnect

I/O

Figure 5: SSA DRAM Architecture.

large size of each array implies that the power-down granu-
larity is rather coarse, offering fewer power-saving opportu-
nities. Since each DRAM chip has limited pin bandwidth, a
cache line is striped across all the DRAM chips on a DIMM
to reduce the data transfer time (and also to improve relia-
bility). As a result, a single access activates multiple chips,
and multiple large arrays within each chip.

Overview: To overcome the above drawbacks and minimize
energy, we move to an extreme model where an entire cache
line is read out of a single small array in a single DRAM
chip. This small array is henceforth referred to as a “sub-
array”. Figure 5 shows the entire memory channel and how
various sub-components are organized. The subarray is as
wide as a cache line. Similar to SBA, we see a dramatic re-
duction in dynamic energy by only activating enough bitlines
to read out a single cache line. Further, remaining inactive
subarrays can be placed in low-power sleep modes, saving
background energy. The area overhead of SSA is lower than
that of SBA since we divide the DRAM array at a much
coarser granularity.

If the DRAM chip is an x8 part, we either need to provide
8 wires from each subarray to the I/O pins or provide a single
wire and serialize the transfer. We adopt the former option
and as shown in Figure 5, the subarrays place their data
on a shared 8-bit bus. In addition, since the entire cache
line is being returned via the limited pins on a single chip,
it takes many more cycles to effect the data transfer to the
CPU. Thus, the new design clearly incurs a higher DRAM
latency because of slow data transfer rates. It also only
supports a close-page policy, which can impact performance
either positively or negatively. On the other hand, the design
has much higher concurrency, as each DRAM chip can be
simultaneously servicing a different cache line. Since each
chip can implement several independent subarrays, there can
also be much higher intra-chip or bank-level concurrency.
We next examine our new design in greater detail.

Memory Controller Interface: Just as in the baseline,
a single address/command bus is used to communicate with
all DRAM chips on the DIMM. The address is provided in
two transfers because of pin limitations on each DRAM chip.
This is similar to RAS and CAS in a conventional DRAM,
except that they need not be called as such (there isn’t a
column-select in our design). The address bits from both
transfers identify a unique subarray and row (cache line)
within that subarray. Part of the address now identifies the
DRAM chip that has the cache line (not required in conven-
tional DRAM because all chips are activated). The entire

address is required before the subarray can be identified or
accessed. Similar to the SBA technique, a few more cycles
are added to the DRAM access latency. An additional re-
quirement is that every device has to be capable of latching
commands as they are received to enable the command bus
to then move on to operating a different device. This can
easily be achieved by having a set of registers (each capable
of signaling one device) connected to a demultiplexer which
reads commands off the command bus and redirects them
appropriately. The data bus is physically no different than
the conventional design: for an xN DRAM chip, N data bits
are communicated between the DRAM chip and the memory
controller every bus cycle. Logically, the N bits from every
DRAM chip on a DIMM rank were part of the same cache
line in the conventional design; now they are completely in-
dependent and deal with different cache lines. Therefore, it
is almost as if there are eight independent narrow channels
to this DIMM, with the caveat that they all share a single
address/command bus.

Subarray Organization: The height of each subarray (i.e.
the number of cache lines in a given subarray) directly de-
termines the delay/energy per access within the subarray.
Many small subarrays also increase the potential for par-
allelism and low-power modes. However, a large number
of subarrays implies a more complex on-die network and
more energy and delay within this network. It also en-
tails greater overhead from peripheral circuitry (decoders,
drivers, senseamps, etc.) per subarray which directly im-
pacts area and cost-per-bit. These are basic trade-offs con-
sidered during DRAM design and even incorporated into
analytical cache models such as CACTI 6.5 [39, 49]. Fig-
ure 5 shows how a number of subarrays in a column share
a row buffer that feeds the shared bus. The subarrays shar-
ing a row buffer are referred to as a bank, and similar to
the conventional model, a single bank can only be dealing
with one access at a time. Our SSA implementation models
hierarchical bitlines in which data read from a subarray are
sent to the row buffer through second level bitlines. To dis-
tribute load and maximize concurrency, data is interleaved
such that consecutive cache lines are first placed in different
DRAM chips and then in different banks of the same chip.
To limit the impact on area and interconnect overheads, if
we assume the same number of banks per DRAM chip as
the baseline, we still end up with a much higher number of
total banks on the DIMM. This is because in the baseline
organization, the physical banks on all the chips are sim-
ply parts of larger logical banks. In the SSA design, each
physical bank is independent and a much higher degree of
concurrency is offered. Our analysis with a heavily extended
version of CACTI 6.5 showed that the area overhead of SSA
is only 4%.

Since subarray widths are only 64 bytes, sequential refresh
at this granularity will be more time-consuming. However,
it is fairly easy to refresh multiple banks simultaneously, i.e.,
they simply act as one large bank for refresh purposes. In
addition, there exist simple techniques to perform refresh
that keep the DRAM cell’s access transistor on long enough
to recharge the storage capacitor immediately after a de-
structive read, without involving the row-buffer [27].

Power-Down modes: In the SSA architecture, a cache
line request is serviced by a single bank in a single DRAM
chip, and only a single subarray within that bank is acti-

vated. Since the activation “footprint” of the access is much
smaller in the SSA design than in the baseline, there is the
opportunity to power-down a large portion of the remaining
area that may enjoy longer spells of inactivity. Datasheets
from Micron [38] indicate that modern chips already support
multiple power-down modes that disable various circuitry
like the input and output buffers or even freeze the DLL.
These modes do not destroy the data on the chip and the
chip can be reactivated with a latency penalty proportional
to the amount of circuitry that has been turned off and the
depth of the power-down state. We adopt a simple strategy
for power-down: if a subarray has been Idle for I cycles, it
goes into a power-down mode that consumes P times less
background power than the active mode. When a request
is later sent to this subarray, a W cycle latency penalty is
incurred for wake-up. The results section quantifies the per-
formance and power impact for various values of I , P , and
W .

Impact Summary: In summary, the proposed organiza-
tion targets dynamic energy reduction by only activating a
single chip and a single subarray (with short wordlines and
exactly the required number of bitlines) when accessing a
cache line. Area overhead is increased, compared to con-
ventional DRAM, because each small subarray incurs the
overhead of peripheral circuitry and because a slightly more
complex on-die interconnect is required. Background energy
can be reduced because a large fraction of the on-chip real es-
tate is inactive at any point and can be placed in low-power
modes. The interface between the memory controller and
DRAM chips has been changed by effectively splitting the
channel into multiple smaller width channels. The impact
on reliability is discussed in the next sub-section. Perfor-
mance is impacted favorably by having many more banks per
DIMM and higher concurrency. Similar to the baseline, if
we assume that each chip has eight banks, the entire DIMM
now has 64 banks. Performance may be impacted positively
or negatively by adopting a close-page policy. Performance
is negatively impacted because the cache line is returned to
the memory controller via several serialized data transfers
(an x8 part will take 64 transfers to return a 64 byte cache
line). A negative impact is also incurred because the subar-
ray access can begin only after the entire address is received.

We believe that SSA is superior to SBA, although it re-
quires a larger re-design investment from the DRAM com-
munity. Firstly, in order to limit the area overhead of hierar-
chical wordlines, SBA is forced to fetch multiple cache lines,
thus not completely eliminating overfetch. SSA therefore
yields higher dynamic energy savings. By moving from large
arrays in SBA to small subarrays in SSA, SSA also finds
many more opportunities to place subarrays in low-power
states and save leakage energy. In terms of performance,
SSA is hurt by the long data transfer time, and will outdo
SBA in workloads that have a high potential for bank-level
concurrency.

3.3 Chipkill
Recent studies have shown that DRAMs are often plagued

with errors and can lead to significant server downtime in
datacenters [46]. Therefore, a low-power DRAM design tar-
geted at datacenters must be amenable to an architecture
that provides a high standard of reliability. A common ex-
pectation of business-critical server DRAM systems is that
they are able to withstand a single DRAM chip failure. Just

as an entire family of error-resilient schemes can be built for
bit failures (for example, Single Error Correction Double Er-
ror Detection, SECDED), a family of error-resilient schemes
can also be built for chip failure (for example, Single Chip
error Correction Double Chip error Detection, SCCDCD),
and these are referred to as Chipkill [18, 35]. We now focus
on the design of an SCCDCD chipkill scheme; the technique
can be easily generalized to produce stronger flavors of error-
resilience.

First, consider a conventional design where each word (say
64 bits) has been appended with an 8-bit ECC code, to pro-
vide SECDED. For a chipkill scheme, each DRAM chip can
only contribute one bit out of the 72-bit word. If a chip were
to contribute any more, chip failure would mean multi-bit
corruption within the 72-bit word, an error that a SECDED
code cannot recover from. Therefore, each 72-bit word must
be striped across 72 DRAM chips. When a 64-byte cache line
is requested, 72 bytes are read out of the 72 DRAM chips,
making sure that each 72-bit word obtains only a single bit
from each DRAM chip. Such an organization was adopted
in the Dell Poweredge 6400/6450 servers [35]. This provides
some of the rationale for current DRAM systems that stripe
a cache line across several DRAM chips. This is clearly en-
ergy inefficient as 72 DRAM chips are activated and a very
small fraction of the read bits are returned to the CPU. It is
possible to reduce the number of DRAM chips activated per
access if we attach ECC codes to smaller words as has been
done in the IBM Netfinity systems [18]. This will have high
storage overhead, but greater energy efficiency. For exam-
ple, in a design attaching an ECC word to 8 bits, say, one
may need five extra DRAM chips per eight DRAM chips on
a single DIMM. ECC gets progressively more efficient as the
granularity at which it is attached is increased.

In the SSA design, we intend to get the entire cache line
from a single DRAM chip access. If this DRAM chip were to
produce corrupted data, there must be a way to re-construct
it. This is a problem formulation almost exactly the same as
that for reliable disks. We therefore adopt a solution very
similar to that of the well-studied RAID [20] solution for
disks, but that has never been previously employed within
a DIMM. Note that some current server systems do employ
RAID-like schemes across DIMMs [2, 6]; within a DIMM,
conventional ECC with an extra DRAM chip is employed.
These suffer from high energy overheads due to the large
number of chips accessed on every read or write. Our ap-
proach is distinct and more energy-efficient. In an example
RAID design, a single disk serves as the“parity”disk to eight
other data disks. On a disk access (specifically in RAID-4
and RAID-5), only a single disk is read. A checksum associ-
ated with the read block (and stored with the data block on
the disk) lets the RAID controller know if the read is correct
or not. If there is an error, the RAID controller re-constructs
the corrupted block by reading the other seven data disks
and the parity disk. In the common error-free case, only one
disk needs to be accessed because the checksum enables self-
contained error detection. It is not fool-proof because the
block+checksum may be corrupted, and the checksum may
coincidentally be correct (the larger the checksum, the lower
the probability of such a silent data corruption). Also, the
parity overhead can be made arbitrarily low by having one
parity disk for many data disks. This is still good enough
for error detection and recovery because the checksum has
already played the role of detecting and identifying the cor-

DIMM DRAM DEVICEDIMM

L0 C L1 C L2 C L3 C L4 C L5 C L6 C L7 C P0 C

L9 L10 L11 L12 L13 L14 L1 P1 L8

DRAM DEVICE

L9 C L10 C L11C L12 C L13 C L14 C L15 C P1 C L8 C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

C L56 C L57 C L58 C L59 C L60 C L61 C L62 C L63 CP7

L – Cache Line C – Local Checksum P – Global Parity

Figure 6: Chipkill support in SSA (only shown for 64
cache lines).

rupted bits. The catch is that writes are more expensive as
every write requires a read of the old data block, a read of
the old parity block, a write to the data block, and a write to
the parity block. RAID-5 ensures that the parity blocks are
distributed among all nine disks so that no one disk emerges
as a write bottleneck.

We adopt the same RAID-5 approach in our DRAM SSA
design (Fig. 6). The DRAM array microarchitecture must
now be modified to not only accommodate a cache line, but
also its associated checksum. We assume an eight bit check-
sum, resulting in a storage overhead of 1.625% for a 64-byte
cache line. The checksum function uses bit inversion so that
stuck-at-zero faults do not go undetected. The checksum is
returned to the CPU after the cache line return and the ver-
ification happens in the memory controller (a larger burst
length is required, not additional DRAM pins). We cannot
allow the verification to happen at the DRAM chip because
a corrupted chip may simply flag all accesses as successfully
passing the checksum test. The DIMM will now have one
extra DRAM chip, a storage overhead of 12.5% for our eval-
uated platform. Most reads only require that one DRAM
chip be accessed. A write requires that two DRAM chips
be read and then written. This is the primary performance
overhead of this scheme as it increases bank contention (note
that an increase in write latency does not impact perfor-
mance because of read-bypassing at intermediate buffers at
the memory controller). We quantify this effect in the re-
sults section. This also increases energy consumption, but
it is still far less than the energy of reliable or non-reliable
conventional DRAM systems.

Most chipkill-level reliability solutions have a higher stor-
age overhead than our technique. As described above, the
energy-efficient solutions can have as high as 62.5% over-
head, the Dell Poweredge solution has a 12.5% overhead
(but requires simultaneous access to 72 DRAM chips), and
the rank-sub-setting DRAM model of Ahn et al. [8] has a
37.5% overhead. The key to our higher efficiency is the lo-
calization of an entire cache line to a single DRAM chip
and the use of checksum for self-contained error detection
at modest overhead (1.625%) plus a parity chip (12.5% for
8-way parity). Even on writes, when four DRAM accesses
are required, we touch fewer DRAM chips and read only a
single cache line in each, compared to any of the prior so-
lutions for chipkill [8, 18, 35]. Therefore, our proposed SSA
architecture with chipkill functionality is better than other
solutions in terms of area cost and energy. As we show in
Section 4, the performance impact of write contention is also
low because of the high degree of bank concurrency afforded
by SSA.

Processor 8-Core OOO, 2GHz
L1 cache Fully Private, 3 cycle

2-way, 32 KB each I and D
L2 cache Fully shared, 10 cycle

8-way, 2 MB, 64B Cache lines
Row-buffer size 8 KB

DRAM Frequency 400 MHz
DRAM Part 256MB, x8

Chips per DIMM 16
Channels 1
Ranks 2
Banks 4

T-rcd, T-cas, T-rp 5 DRAM cyc

Table 1: General parameters

4. RESULTS

4.1 Methodology
We model a baseline, 8-core, out-of-order processor with

private L1 caches and a shared L2 cache. We assume a main
memory capacity of 4 GB organized as shown in Table 1.
Our simulation infrastructure uses Virtutech’s SIMICS [5]
full-system simulator, with out-of-order timing supported by
Simics’ ‘ooo-micro-arch’ module. The ‘trans-staller’ mod-
ule was heavily modified to accurately capture DRAM de-
vice timing information including multiple channels, ranks,
banks and open rows in each bank. Both open- and close-row
page management policies with first-come-first-serve (FCFS)
and first-ready-first-come-first-serve (FR-FCFS) scheduling
with appropriate queuing delays are accurately modeled. We
also model overlapped processing of commands by the mem-
ory controller to hide precharge and activation delays when
possible. We also include accurate bus models for data trans-
fer between the memory controller and the DIMMs. Address
mapping policies were adopted from the DRAMSim [52]
framework and from [27]. DRAM timing information was
obtained from Micron datasheets [38].

Area, latency and energy numbers for DRAM banks were
obtained from CACTI 6.5 [1], heavily modified to include ac-
curate models for commodity DRAM, both for the baseline
design and with hierarchical wordlines. By default, CACTI
divides a large DRAM array into a number of mats with
an H-tree to connect the mats. Such an organization incurs
low latency but requires large area. However, traditional
DRAM banks are heavily optimized for area to reduce cost
and employ very large arrays with minimal peripheral cir-
cuitry overhead. Read or write operations are typically done
using long multi-level hierarchical bitlines spanning the ar-
ray instead of using an H-tree interconnect. We modified
CACTI to reflect such a commodity DRAM implementa-
tion. Note that with a hierarchical bitline implementation,
there is a potential opportunity to trade-off bitline energy
for area by only using hierarchical wordlines at the higher-
level bitline and leaving the first-level bitlines untouched. In
this work, we do not explore this trade-off. Instead, we focus
on the maximum energy reduction possible. The DRAM en-
ergy parameters used in our evaluation are listed in Table 2.
We evaluate our proposals on subsets of the multi-threaded
PARSEC [13], NAS [9] and STREAM [4] benchmark suites.
We run every application for 2 million DRAM accesses (cor-
responding to many hundreds of millions of instructions) and
report total energy consumption and IPC.

Component Dynamic
Energy(nJ)

Decoder + Wordline
+ Senseamps - Baseline 1.429

Decoder + Wordline
+ Senseamps - SBA 0.024
Decoder + Wordline
+ Senseamps - SSA 0.013
Bitlines - Baseline 19.282

Bitlines - SBA/SSA 0.151
Termination Resistors
Baseline/SBA/SSA 7.323

Output Drivers 2.185
Global Interconnect
Baseline/SBA/SSA 1.143

Low-power mode Background
Power (mW)

Active 104.5
Power Down (3 mem. cyc) 19.0

Self Refresh (200 mem. cyc) 10.8

Table 2: Energy parameters

4.2 Results
We first discuss the energy advantage of the SBA and SSA

schemes. We then evaluate the performance characteristics
and area overheads of the proposed schemes relative to the
baseline organization.

4.2.1 Energy Characteristics

Figure 7 shows the energy consumption of the close-page
baseline, SBA, and SSA, normalized to the open-page base-
line. The close-page baseline is clearly worse in terms of en-
ergy consumption than the open-page baseline simply due to
the fact that even accesses that were potentially row-buffer
hits (thus not incurring the energy of activating the entire
row again) now need to go through the entire activate-read-
precharge cycle. We see an average increase in energy con-
sumption by 73% on average, with individual benchmark
behavior varying based on their respective row-buffer hit
rates. We see from Figure 8 (an average across all bench-
marks) that in the baseline organizations (both open and
close row), the total energy consumption in the device is
dominated by energy in the bitlines. This is because every
access to a new row results in a large number of bitlines get-
ting activated twice, once to read data out of the cells into
the row-buffer and once to precharge the array.

Moving to the SBA or SSA schemes eliminates a huge por-
tion of this energy component. By waiting for the CAS sig-
nal and only activating/precharging the exact cache line that
we need, bitline energy goes down by a factor of 128. This
results in a dramatic energy reduction on every access. How-
ever, as discussed previously, prohibitive area overheads ne-
cessitate coarser grained selection in SBA, leading to slightly
larger energy consumption compared to SSA. Compared to
a baseline open-page system, we see average dynamic mem-
ory energy savings of 3X in SBA and over 6.4X in SSA.
Note that the proposed optimizations result in energy re-
duction only in the bitlines. The energy overhead due to
other components such as decoder, pre-decoder, inter-bank
bus, bus termination, etc. remains the same. Hence, their
contribution to the total energy increases as bitline energy
goes down. Localizing and managing DRAM accesses at

0.50

1.00

1.50

2.00

2.50
e

 D
R
A
M

 E
n
e
rg
y

 C
o
n
su
m
p
ti
o
n

Baseline

Open Row

Baseline

Close Row

SBA

0.00

0.50

1.00

1.50

2.00

2.50
R
e
la
ti
v
e

 D
R
A
M

 E
n
e
rg
y

 C
o
n
su
m
p
ti
o
n

Baseline

Open Row

Baseline

Close Row

SBA

SSA

Figure 7: DRAM dynamic energy consumption

20%

30%

40%

50%

60%

70%

80%

90%

100%
Termination

Resistors

Global

Interconnect

Bitlines

Decoder +

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BASELINE

(OPEN PAGE,

FR!FCFS)

BASELINE

(CLOSED

ROW, FCFS)

SBA SSA

Termination

Resistors

Global

Interconnect

Bitlines

Decoder +

Wordline +

Senseamps

Figure 8: Contributors to DRAM dynamic energy

a granularity as fine as a subarray allows more opportu-
nity to put larger parts of the DRAM into low-power states.
Current DRAM devices support multiple levels of power-
down, with different levels of circuitry being turned off, and
correspondingly larger wake-up penalties. We evaluate two
simple low-power modes with P (Power savings factor) and
W (Wakeup) values calculated based on numbers shown in
Table 2, obtained from the Micron datasheet and power sys-
tem calculator [3, 38]. In the deepest sleep mode, Self Re-
fresh, P is 10 and W is 200 memory cycles. A less deep
sleep mode is Power Down, where P is 5.5, but W is just
3 memory cycles. We vary I (Idle cycle threshold) as mul-
tiples of the wake-up time W . Figures 9 and 10 show the
impact of these low-power states on performance and en-
ergy consumption in the SSA organization. We see that the
more expensive Self Refresh low-power mode actually buys
us much lower energy savings compared to the more effi-
cient Power Down mode. As we become less aggressive in
transitioning to low-power states (increase I), the average
memory latency penalty goes down, from just over 5% to
just over 2% for the “Power-down” mode. The percentage of
time we can put subarrays in low-power mode correspond-
ingly changes from almost 99% to about 86% with energy
savings between 81% and 70%. The performance impacts
are much larger for the expensive Self-Refresh mode, going
from over 400% at a very aggressive I to under 20% in the
least aggressive case. Correspondingly, banks can be put in
this state between 95% and 20% of the time, with energy
savings ranging from 85% to 20%. Naturally, these power
down modes can be applied to the baseline architecture as
well. However, the granularity at which this can be done is
much coarser, a DIMM bank at best. This means that there
are fewer opportunities to move into low-power states. As

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

ce
n
ta
g
e

 I
n
cr
e
a
se

 i
n

M
e
m
o
ry

 L
a
tn
e
cy

Self

Refresh

Power

Down

!50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

10 100 1000

P
e
rc
e
n
ta
g
e

 I
n
cr
e
a
se

 i
n

M
e
m
o
ry

 L
a
tn
e
cy

Threshold Value (x Wakeup time)

Self

Refresh

Power

Down

Figure 9: Memory latency impact of using low-power
states

20

30

40

50

60

70

80

90

100

e
n
ta
g
e

 R
e
d
u
ct
io
n

 i
n

a
ck
g
ro
u
n
d

 E
n
e
rg
y Self

Refresh

Power

Down

0

10

20

30

40

50

60

70

80

90

100

10 100 1000
P
e
rc
e
n
ta
g
e

 R
e
d
u
ct
io
n

 i
n

B
a
ck
g
ro
u
n
d

 E
n
e
rg
y

Threshold Value (x Wakeup time)

Self

Refresh

Power

Down

Figure 10: Energy reduction using low-power states

a comparison, we study the application of the low-overhead
“Power Down” state to the baseline. We find that on aver-
age, even with an aggressive sleep threshold, banks can only
be put in this mode about 80% of the time, while incurring a
penalty of 16% in terms of added memory latency. Being less
aggressive dramatically impacts the ability to power down
the baseline, with banks going into sleep mode only 17% of
the time with a minimal 3% latency penalty. As another
comparison point, we consider the percentage of time sub-
arrays or banks can be put in the deepest sleep Self Refresh
mode in SSA vs. the baseline, for a constant 10% latency
overhead. We find that subarrays in SSA can go into deep
sleep nearly 18% of the time whereas banks in the baseline
can only go into deep sleep about 5% of the time.

4.2.2 Performance Characteristics

Employing either the SBA or SSA schemes impacts mem-
ory access latency (positively or negatively) as shown in Fig-
ure 11. Figure 12 then breaks this latency down into the av-
erage contributions of the various components. One of the
primary factors affecting this latency is the page manage-
ment policy. Moving to a close-page policy from an open-
page baseline actually results in a drop in average memory
latency by about 17% for a majority (10 of 12) of our bench-
marks. This has favorable implications for SBA and SSA
which must use a close-page policy. The remaining bench-
marks see an increase in memory latency by about 28% on
average when moving to close-page. Employing the“Posted-
RAS” scheme in the SBA model causes an additional small
latency of just over 10% on average (neglecting two outliers).

As seen in Figure 12, for these three models, the queuing
delay is the dominant contributor to total memory access
latency. Prior work [15] has also shown this to be true in

100 00

200.00

300.00

400.00

500.00

600.00

700.00

800.00
C
y
cl
e
s

Baseline

Open Page

Baseline

Close Page

SBA

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00
C
y
cl
e
s

Baseline

Open Page

Baseline

Close Page

SBA

SSA

Figure 11: Average main memory latency

20%

30%

40%

50%

60%

70%

80%

90%

100%
Data Transfer

DRAM Core

Access

Rank Switching

delay (ODT)

Command/Addr

Transfer

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BASELINE

(OPEN PAGE,

FR!FCFS)

BASELINE

(CLOSED

ROW, FCFS)

SBA SSA

Data Transfer

DRAM Core

Access

Rank Switching

delay (ODT)

Command/Addr

Transfer

Queuing Delay

Figure 12: Contributors to total memory latency

many DRAM systems. We therefore see that the additional
latency introduced by the “Posted-RAS” does not signifi-
cantly change average memory access latency.

The SSA scheme, however, has an entirely different bot-
tleneck. Every cache line return is now serialized over just
8 links to the memory controller. This data transfer delay
now becomes the dominant factor in the total access time.
However, this is offset to some extent by a large increase in
parallelism in the system. Each of the 8 devices can now be
servicing independent sets of requests, significantly reduc-
ing the queuing delay. As a result, we do not see a greatly
increased memory latency. On half of our benchmarks, we
see latency increases of just under 40%. The other bench-
marks are actually able to exploit the parallelism much bet-
ter, and this more than compensates for the serialization
latency, with average access time going down by about 30%.
These are also the applications with the highest memory la-
tencies. As a result, overall, SSA in fact outperforms all
other models.

Figure 13 shows the relative IPCs of the various schemes
under consideration. Like we saw for the memory latency
numbers, a majority of our benchmarks perform better with
a close-row policy than with an open-row policy. We see per-
formance improvements of just under 10% on average (ne-
glecting two outliers) for 9 of our 12 benchmarks. The other
three suffered degradations of about 26% on average. These
were the benchmarks with relatively higher last-level cache
miss rates (on the order of 10 every 1000 instructions). Em-
ploying the“Posted RAS”results in a marginal IPC degrada-
tion over close-row baseline, about 4% on average, neglecting
two outlier benchmarks.

The SSA scheme sees a performance degradation of 13%
on average compared to the open-page baseline on the six
benchmarks that saw a memory latency increase. The other

0.50

1.00

1.50

2.00

2.50

N
o
rm

a
li
ze
d

 I
P
C

Baseline

Open Page

Baseline

Close Page

SBA

SSA

0.00

0.50

1.00

1.50

2.00

2.50

N
o
rm

a
li
ze
d

 I
P
C

Baseline

Open Page

Baseline

Close Page

SBA

SSA

SSA +

Chipkill

Figure 13: Normalized IPCs of various organizations

6 benchmarks with a decreased memory access latency see
performance gains of 54% on average. These high numbers
are observed because these applications are clearly limited
by bank contention and SSA addresses this bottleneck. To
summarize, in addition to significantly lowered DRAM ac-
cess energies, SSA occasionally can boost performance, while
yielding minor performance slowdowns for others. We ex-
pect SSA to yield even higher improvements in the future as
ever more cores exert higher queuing pressures on memory
controllers. Figure 13 shows the IPC degradation caused
when we augment SSA with our chipkill solution. Note that
this is entirely because of the increased bank contention dur-
ing writes. On average, the increase in memory latency is
a little over 70%, resulting in a 12% degradation in IPC.
Compared to the non-chipkill SSA, there is also additional
energy consumption on every write, resulting in a 2.2X in-
crease in dynamic energy to provide chipkill-level reliability,
which is still significantly lower than a baseline organization.

4.2.3 System Level Characteristics

To evaluate the system level impact of our schemes, we use
a simple model where the DRAM subsystem consumes 40%
of total system power (32% dynamic and 8% background).
Changes in performance are assumed to linearly impact the
power consumption in the rest of the system, both back-
ground and dynamic. Having taken these into account, on
average, we see 18% and 36% reductions in system power
with SBA and SSA respectively.

5. RELATED WORK
The significant contribution of DRAM to overall system

power consumption has been documented in several stud-
ies [10, 32, 37]. A majority of techniques aimed at conserv-
ing DRAM energy try to transition inactive DRAM chips to
low power states [30] as effectively as possible to decrease
the background power. Researchers have investigated pre-
diction models for DRAM activity [19], adaptive memory
controller policies [23], compiler-directed hardware-assisted
data layout [16], management of DMA and CPU generated
request streams to increase DRAM idle periods [22, 43] as
well as managing the virtual memory footprint and physi-
cal memory allocation schemes [14, 17, 21] to transition idle
DRAM devices to low power modes.

The theme of the other major volume of work aimed at
DRAM power reduction has involved rank-subsetting. In
addition to exploiting low-power states, these techniques at-
tempt to reduce the dynamic energy component of an ac-
cess. Zheng et al. suggest the subdivision of a conventional

DRAM rank into mini-ranks [56] comprising of a subset of
DRAM devices. Ahn et al. [7, 8] propose a scheme where
each DRAM device can be controlled individually via a de-
mux register per channel that is responsible for routing all
command signals to the appropriate chip. In their multi-
core DIMM proposal, multiple DRAM devices on a DIMM
can be combined to form a Virtual Memory Device (VMD)
and a cache line is supplied by one such VMD. They further
extend their work with a comprehensive analytical model to
estimate the implications of rank-subsetting on performance
and power. They also identify the need to have mechanisms
that would ensure chipkill level reliability and extend their
designs with SCCDCD mechanisms. A similar approach was
proposed by Ware et al. by employing high-speed signals
to send chip selects separately to parts of a DIMM in or-
der to achieve dual/quad threaded DIMMs [53]. On the
other hand, Sudan et al. [47] attempt to improve row-buffer
utilization by packing heavily used cache lines into “Micro-
Pages”.

Other DRAM-related work includes design for 3-D archi-
tectures (Loh [36]), and design for systems with photonic
interconnects (Vantrease et al. [51] and Beamer et al. [12]).
Yoon and Erez [55] outline efficient chipkill-level reliability
mechanisms for DRAM systems but work with existing mi-
croarchitectures and data layouts.

However, to the best of our knowledge, our work is the
first to attempt fundamental microarchitectural changes to
the DRAM system specifically targeting reduced energy con-
sumption. Our SBA mechanism with Posted-RAS is a novel
way to reduce activation and can eliminate overfetch. The
SSA mechanism re-organizes the layout of a DRAM chip to
support small subarrays and the mapping of data to only
activate a single subarray. Our chipkill solution that uses
checksum-based detection and RAID-like correction has not
been previous considered and is more effective than those
used for prior DRAM chipkill solutions [8, 18, 35].

6. CONCLUSIONS
We propose two novel techniques to eliminate overfetch

in DRAM systems by activating only the necessary bit-
lines (SBA) and then going as far as to isolate an entire
cache line to a single small subarray on a single DRAM chip
(SSA). Our solutions will require non-trivial initial design
effort on the part of DRAM vendors and will incur minor
area/cost increases. A similar architecture will likely also
be suitable for emerging memory technologies such as PCM
and STT-RAM. The memory energy reductions from our
techniques are substantial for both dynamic (6X) and back-
ground (5X) components. We observe that fetching exactly
a cache line with SSA can improve performance in some
cases (over 50% on average) due to its close-page policy
and also because it helps alleviate bank contention in some
memory-sensitive applications. In other applications that
are not as constrained by bank contention, the SSA policy
can cause performance degradations (13% on average) be-
cause of long cache line data transfer times out of a single
DRAM chip.

Any approach that reduces the number of chips used to
store a cache line also increases the probability of correlated
errors. With SSA, we read an entire cache line out of a
single DRAM array, so the potential for correlated errors
is increased. In order to provide chipkill-level reliability in
concert with SSA, we introduced checksums stored for each

cache line in the DRAM, similar to that provided in hard
drives. Using the checksum we can provide robust error
detection capabilities, and provide chipkill-level reliability
through RAID techniques (however in our case, we use a
Redundant Array of Inexpensive DRAMs). We show that
this approach is more effective in terms of area and energy
than prior chipkill approaches, and only incurs a 12% perfor-
mance penalty compared to an SSA memory system without
chipkill.

7. ACKNOWLEDGMENTS
This work was supported in parts by NSF grants CCF-

0430063, CCF-0811249, CCF-0916436, NSF CAREER award
CCF-0545959, SRC grant 1847.001, and the University of
Utah. The authors would also like to thank Utah Arch
group members Kshitij Sudan, Manu Awasthi, and David
Nellans for help with the baseline DRAM simulator.

8. REFERENCES

[1] CACTI: An Integrated Cache and Memory Access
Time, Cycle Time, Area, Leakage, and Dynamic Power
Model. http://www.hpl.hp.com/research/cacti/.

[2] HP Advanced Memory Protection Technologies -
Technology Brief. http://www.hp.com.

[3] Micron System Power Calculator.
http://www.micron.com/support/part info/powercalc.

[4] STREAM - Sustainable Memory Bandwidth in High
Performance Computers.
http://www.cs.virginia.edu/stream/.

[5] Virtutech Simics Full System Simulator.
http://www.virtutech.com.

[6] M. Abbott et al. Durable Memory RS/6000 System
Design. In Proceedings of International Symposium on
Fault-Tolerant Computing, 1994.

[7] J. Ahn, J. Leverich, R. S. Schreiber, and N. Jouppi.
Multicore DIMM: an Energy Efficient Memory
Module with Independently Controlled DRAMs. IEEE
Computer Architecture Letters, vol.7(1), 2008.

[8] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich,
and R. S. Schreiber. Future Scaling of
Processor-Memory Interfaces. In Proceedings of SC,
2009.

[9] D. Bailey et al. The NAS Parallel Benchmarks.
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[10] L. Barroso. The Price of Performance. Queue,
3(7):48–53, 2005.

[11] L. Barroso and U. Holzle. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan & Claypool, 2009.

[12] S. Beamer et al. Re-Architecting DRAM Memory
Systems with Monolithically Integrated Silicon
Photonics. In Proceedings of ISCA, 2010.

[13] C. Benia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. Technical report,
Department of Computer Science, Princeton
University, 2008.

[14] P. Burns et al. Dynamic Tracking of Page Miss Ratio
Curve for Memory Management. In Proceedings of
ASPLOS, 2004.

[15] V. Cuppu and B. Jacob. Concurrency, Latency, or
System Overhead: Which Has the Largest Impact on
Uniprocessor DRAM-System Performance. In
Proceedings of ISCA, 2001.

[16] V. Delaluz et al. DRAM Energy Management Using
Software and Hardware Directed Power Mode Control.
In Proceedings of HPCA, 2001.

[17] V. Delaluz et al. Scheduler-based DRAM Energy
Management. In Proceedings of DAC, 2002.

[18] T. J. Dell. A Whitepaper on the Benefits of
Chipkill-Correct ECC for PC Server Main Memory.
Technical report, IBM Microelectronics Division, 1997.

[19] X. Fan, H. Zeng, and C. Ellis. Memory Controller
Policies for DRAM Power Management. In
Proceedings of ISLPED, 2001.

[20] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Elsevier, 4th
edition, 2007.

[21] H. Huang, P. Pillai, and K. G. Shin. Design And
Implementation Of Power-Aware Virtual Memory. In
Proceedings Of The Annual Conference On Usenix
Annual Technical Conference, 2003.

[22] H. Huang, K. Shin, C. Lefurgy, and T. Keller.
Improving Energy Efficiency by Making DRAM Less
Randomly Accessed. In Proceedings of ISLPED, 2005.

[23] I. Hur and C. Lin. A Comprehensive Approach to
DRAM Power Management. In Proceedings of HPCA,
2008.

[24] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self
Optimizing Memory Controllers: A Reinforcement
Learning Approach. In Proceedings of ISCA, 2008.

[25] K. Itoh. VLSI Memory Chip Design. Springer, 2001.

[26] ITRS. International Technology Roadmap for
Semiconductors, 2007 Edition.
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[27] B. Jacob, S. W. Ng, and D. T. Wang. Memory
Systems - Cache, DRAM, Disk. Elsevier, 2008.

[28] M. Kumanoya et al. An Optimized Design for
High-Performance Megabit DRAMs. Electronics and
Communications in Japan, 72(8), 2007.

[29] O. La. SDRAM having posted CAS function of
JEDEC standard, 2002. United States Patent,
Number 6483769.

[30] A. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware
Page Allocation. In Proceedings of ASPLOS, 2000.

[31] C. Lee, O. Mutlu, V. Narasiman, and Y. Patt.
Prefetch-Aware DRAM Controllers. In Proceedings of
MICRO, 2008.

[32] C. Lefurgy et al. Energy management for commercial
servers. IEEE Computer, 36(2):39–48, 2003.

[33] K. Lim et al. Understanding and Designing New
Server Architectures for Emerging
Warehouse-Computing Environments. In Proceedings
of ISCA, 2008.

[34] K. Lim et al. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of ISCA,
2009.

[35] D. Locklear. Chipkill Correct Memory Architecture.
Technical report, Dell, 2000.

[36] G. Loh. 3D-Stacked Memory Architectures for
Multi-Core Processors. In Proceedings of ISCA, 2008.

[37] D. Meisner, B. Gold, and T. Wenisch. PowerNap:
Eliminating Server Idle Power. In Proceedings of
ASPLOS, 2009.

[38] Micron Technology Inc. Micron DDR2 SDRAM Part
MT47H256M8, 2006.

[39] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI
6.0. In Proceedings of MICRO, 2007.

[40] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In
Proceedings of MICRO, 2007.

[41] O. Mutlu and T. Moscibroda. Parallelism-Aware
Batch Scheduling: Enhancing Both Performance and
Fairness of Shared DRAM Systems. In Proceedings of
ISCA, 2008.

[42] U. Nawathe et al. An 8-Core 64-Thread 64b
Power-Efficient SPARC SoC. In Proceedings of ISSCC,
2007.

[43] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini.
DMA-Aware Memory Energy Management. In
Proceedings of HPCA, 2006.

[44] B. Rogers et al. Scaling the Bandwidth Wall:
Challenges in and Avenues for CMP Scaling. In
Proceedings of ISCA, 2009.

[45] V. Romanchenko. Quad-Core Opteron: Architecture
and Roadmaps.
http://www.digital-daily.com/cpu/quad core opteron.

[46] B. Schroeder, E. Pinheiro, and W. Weber. DRAM
Errors in the Wild: A Large-Scale Field Study. In
Proceedings of SIGMETRICS, 2009.

[47] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi,
R. Balasubramonian, and A. Davis. Micro-Pages:
Increasing DRAM Efficiency with Locality-Aware
Data Placement. In Proceedings of ASPLOS-XV, 2010.

[48] R. Swinburne. Intel Core i7 - Nehalem Architecture
Dive.
http://www.bit-tech.net/hardware/2008/11/03/intel-
core-i7-nehalem-architecture-dive/.

[49] S. Thoziyoor, N. Muralimanohar, and N. Jouppi.
CACTI 5.0. Technical report, HP Laboratories, 2007.

[50] U.S. Environmental Protection Agency - Energy Star
Program. Report To Congress on Server and Data
Center Energy Efficiency - Public Law 109-431, 2007.

[51] D. Vantrease et al. Corona: System Implications of
Emerging Nanophotonic Technology. In Proceedings of
ISCA, 2008.

[52] D. Wang et al. DRAMsim: A Memory-System
Simulator. In SIGARCH Computer Architecture News,
volume 33, September 2005.

[53] F. A. Ware and C. Hampel. Improving Power and
Data Efficiency with Threaded Memory Modules. In
Proceedings of ICCD, 2006.

[54] D. Wentzlaff et al. On-Chip Interconnection
Architecture of the Tile Processor. In IEEE Micro,
volume 22, 2007.

[55] D. Yoon and M. Erez. Virtualized and Flexible ECC
for Main Memory. In Proceedings of ASPLOS, 2010.

[56] H. Zheng et al. Mini-Rank: Adaptive DRAM
Architecture For Improving Memory Power Efficiency.
In Proceedings of MICRO, 2008.

