Parallel Algorithms IV

• Topics: image analysis algorithms
Component Labeling

- Given a 2d array of N pixels holding 0 or 1, assign labels to all 1-pixels so that connected pixels have the same label.

- Trivial algorithm: assign the co-ordinates of each pixel as its label and repeatedly re-label contiguous pixels by the smaller co-ordinate until no re-labeling occurs.

- Execution time: $O(N)$
Worst-Case Execution Time
Recursive Algorithm

An $O(\sqrt{N})$ step recursive algorithm on a $\sqrt{N} \times \sqrt{N}$ array, where N is a power of 2.

Phase 1 Divide the array into four quadrants and complete labeling within each quadrant (by recursive calls).

Phase 2 *Relabel* by joining horizontally adjacent quadrants.

Phase 3 *Relabel* by joining vertically adjacent quadrants.
Example
Complexity Analysis

• Let $T(m)$ be the run-time of the algorithm on an $m \times m$ array. Let the run-time of phases 2 and 3 be cm

 $$T(m) = cm + T(m/2)$$

 Therefore, $T(m) = 2cm = O(\sqrt{N})$

• Executing phases 2 and 3 in $O(m)$ time steps:
 ▪ There are totally m different labels on the boundaries
 ▪ Use the $m \times m$ matrix to represent the adjacency matrix for the boundary labels
 ▪ Use transitive closure to compute which labels are reachable from each label
 ▪ The new set of labels is communicated to all pixels in a pipelined manner
Hough Transform

Split the $M \times M$ pixels into bands of 1-pixel width at the angle of θ, where the lower-left corner is on the boundary.

Then for each band count the number of 1 pixels whose center belongs to it.
Example

- The width of each band equals the width of a pixel
Algorithm

Assign a counter to each band, and let it travel from the leftmost pixel to the rightmost pixel in the band. When encountering a 1, increment the count. The possible next position is one of the up, the right, or the upper-right contiguous cell. The next position is computable from θ and the locations of the starting cell and the current cell. The running time is $O(M)$.

Running the algorithm one after another R times, we can compute the Hough transformation with respect to R angles in $O(R + M)$ steps.
Example
Convex Hull

• For a set of points S in a plane, the convex hull is the smallest convex polygon that contains all points in S
Algorithm on an N-Cell Linear Array

Sort the points, where \((x, y) < (u, v)\) if \(x < u\) or \(x = u\) and \(y < v\). Let \(p_i = (x_i, y_i)\) be the point in the \(i\)th cell. Clearly, \(p_1\) and \(p_N\) belong to the hull.

Then compute the points in the upper hull as well as those in the lower hull.

For each \(i, j, 1 \leq i < j \leq N\), \(\theta_{i,j} = \text{def} \) the angle of the line \(p_i p_j\) with respect to the negative vertical line.

Define \(r(i)\) to be the \(k\) such that \(\theta_{i,k}\) is the largest of all \(\theta_{i,j}, i + 1 \leq j \leq N\).
Example for Lower Hull Point
Algorithm Complexity

The algorithm:

1. Sort the points using odd-even sort.
2. For each i, compute $r(i)$ with the parallel maximum computation.
3. For each i, check whether $(\forall j < i)[r(j) \leq i]$ using the parallel minimum computation.

The running time is $O(N)$.
Reducing Complexity

• If the image is represented by an N x N matrix, we may have as many as N^2 points, leading to O(N^2) complexity for the convex hull computation.

• However, for any column (except the right and left ends), only the highest and lowest 1-pixels can be part of the convex hull – by restricting the computation to only these points, the complexity is reduced to O(N)
Title

• Bullet