
1

Lecture 16: Parallel Algorithms I

• Topics: sort and matrix algorithms

2

Processor Model

• High communication latencies � pursue coarse-grain
parallelism (the focus of the course so far)

• For upcoming lectures, focus on fine-grain parallelism

• VLSI improvements � enough transistors to accommodate
numerous processing units on a chip and (relatively) low
communication latencies

• Consider a special-purpose processor with thousands of
processing units, each with small-bit ALUs and limited
register storage

3

Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs
will require minor modifications)

• At each clock, processors receive inputs from neighbors,
perform computations, generate output for neighbors, and
update local storage

input

output

4

Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “∗”, which is
bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

5

Sorting Example

6

Result Output

• The output process begins when a processor receives
a non-∗, followed by a “∗”

• Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?

7

Output Example

8

Bit Model

• The bit model affords a more precise measure of
complexity – we will now assume that each processor
can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k
2-d array of bit processors

9

Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically – after at most 2k steps, each processor
knows which number must be moved to the right – 2kN
steps in the worst case

• Strategy 2: Use a tree to communicate information on
which number is greater – after 2logk steps, each processor
knows which number must be moved to the right – 2Nlogk
steps

• Can we do better?

10

Strategy 2: Column of Trees

11

Pipelined Comparison

Input numbers: 3 4 2
0 1 0
1 0 1
1 0 0

12

Complexity

• How long does it take to sort N k-bit numbers?
(2N – 1) + (k – 1) + N (for output)

• (With a 2d array of processors) Can we do even better?

• How do we prove optimality?

13

Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output
with k pins – requires Ω(N) time

• Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) – for
example, N-1 numbers are 011..1 and the last number is
either 00…0 or 10…0 – it takes at least N+k-2 steps for
information to travel across the diameter

• Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
imposes a minimum completion time

14

Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be
in the wrong half, will any algorithm take at least N/2 steps?

15

Counting Algorithm

• It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

• After the root has computed the number of 1’s, this
number is communicated to the leaves – the leaves
accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the
other half (logN-1 bits) – therefore, the algorithm takes
Ω(logN) time

• Careful when estimating lower bounds!

16

Matrix Algorithms

• Consider matrix-vector multiplication:

yi = Σj aijxj

• The sequential algorithm takes 2N2 – N operations

• With an N-cell linear array, can we implement
matrix-vector multiplication in O(N) time?

17

Matrix Vector Multiplication

Number of steps = ?

18

Matrix Vector Multiplication

Number of steps = 2N – 1

19

Matrix-Matrix Multiplication

Number of time steps = ?

20

Matrix-Matrix Multiplication

Number of time steps = 3N – 2

21

Complexity

• The algorithm implementations on the linear arrays have
speedups that are linear in the number of processors – an
efficiency of O(1)

• It is possible to improve these algorithms by a constant
factor, for example, by inputting values directly to each
processor in the first step and providing wraparound edges
(N time steps)

22

Solving Systems of Equations

• Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where Ax = b (assume solution exists)

a11x1 = b1
a21x1 + a22x2 = b2 , and so on…

23

Equation Solver

24

Equation Solver Example

• When an x, b, and a meet at a cell, ax is subtracted from b
• When b and a meet at cell 1, b is divided by a to become x

25

Complexity

• Time steps = 2N – 1

• Speedup = O(N), efficiency = O(1)

• Note that half the processors are idle every time step –
can improve efficiency by solving two interleaved
equation systems simultaneously

26

Title

• Bullet

