
1

Lecture 13: LRC & Interconnection Networks

• Topics: LRC implementation, interconnection characteristics

2

Shared Virtual Memory

Rd y Rd y

Wr x Wr x

Rd y synch

synch

Traffic with hardware CC

Traffic with software CC

3

Eager Release Consistency

• Invalidates/Updates are sent out to the list of sharers
when a processor executes a release

acq wr x rel

wr x rel

acq wr x rel

4

Lazy Release Consistency

• Invalidates/Updates are sought when a processor
executes an acquire – fewer messages, higher
implementation complexity

acq wr x rel

wr x rel

acq wr x rel

5

Causality

• Acquires and releases pertain to specific lock variables

• When a process executes an acquire, it should receive all
updates that were seen before the corresponding release
by the releasing processor

• Therefore, each process must keep track of all write
notices (modifications to each shared page) that were
applied at every synchronization point

6

Example

P1 P2 P3 P4
A1

A4
R1

R4
A1

A2
A3

R1
R3

R2
A3

A5
R3

R5
A1
R1

A1

7

Example

P1 P2 P3 P4
A1

A4
R1

R4
A1

A2
A3

R1
R3

R2
A3

A5
R3

R5
A1
R1

A1

8

Implementation

• Each pair of synch operations in a process defines an
interval

• A partial order is defined on intervals based on release-
acquire pairs

• For each interval, a process maintains a vector timestamp
of “preceding” intervals: the vector stores the last preceding
interval for each process

• On an acquire, the acquiring process sends its vector
timestamp to the releasing process – the releasing process
sends all write notices that have not been seen by acquirer

9

LRC Performance

• LRC can reduce traffic by more than a factor of two for
many applications (compared to ERC)

• Programmers have to think harder (causality!)

• High memory overheads at each node (keep track of
vector timestamps, write notices) – garbage collection
helps significantly

• Memory overheads can be reduced by eagerly propagating
write notices to processors or a home node – will change
the memory model again!

10

Interconnection Networks

• Recall: fully connected network, arrays/rings, meshes/tori,
trees, butterflies, hypercubes

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree :
Number of links :
Pins per node :

Avg. routing distance:
Diameter :
Bisection bandwidth :

N
2d
Nd
2wd

d(k-1)/2
d(k-1)
2wkd-1

Should we minimize or maximize dimension?

11

Dimension

• For a fixed machine size N, low-dimension networks have
significantly higher latencies for a packet – scalable
machines should employ high dimensionality (high cost!)

• For a fixed number of pins, message latency decreases at
first, then increases (as we increase dimensionality)

• What if we keep constant bisection bandwidth?

• Lower dimensions also reduce wire length

Number of switches :
Switch degree :
Number of links :
Pins per node :

Avg. routing distance:
Diameter :
Bisection bandwidth :

N
2d
Nd
2wd

d(k-1)/2
d(k-1)
2wkd-1

12

Title

• Bullet

