
1

Lecture 12: Hardware/Software Trade-Offs

• Topics: COMA, Software Virtual Memory

2

Capacity Limitations

In a Sequent NUMA-Q design above,
• A remote access is involved if data cannot be found in the remote

access cache
• The remote access cache and local memory are both DRAM

Can we expand cache and reduce local memory?

P

C

P

C

Coherence
Monitor

Mem

P

C

P

C

Coherence
Monitor

Mem

B1 B1

B2

3

Cache-Only Memory Architectures

• COMA takes the extreme approach: no local memory and
a very large remote access cache

• The cache is now known as an “attraction memory”

• Overheads/issues that must be addressed:
� Need a much larger tag space
� More care while evicting a block
� Finding a clean copy of a block

• Easier to program – data need not be pre-allocated

4

COMA Performance

• Attraction memories reduce the frequency of remote
accesses by reducing capacity/conflict misses

• Attraction memory access time is longer than local memory
access time in the CC-NUMA case (since the latter does
not involve tag comparison)

• COMA helps programs that have frequent capacity misses
to remotely allocated data

5

COMA Implementation

• Even though the memory block has no fixed home, the
directory can continue to remain fixed – on a miss or on
a write, contact directory to identify valid cached copies

• In order to not evict the last block, one of the sharers has
the block in “master” state – while replacing the master
copy, a message must be sent to the directory – the
directory attempts to find another node that can
accommodate this block in master state

• For high performance, the physical memory allocated to
an application must be smaller than attraction memory
capacity, and attraction memory must be highly associative

6

Reducing Cost

• Hardware cache coherence involves specialized
communication assists – cost can be reduced by using
commodity hardware and software cache coherence

• Software cache coherence: each processor translates the
application’s virtual address space into its own physical
memory – if the local physical memory does not exist
(page fault), a copy is made by contacting the home node
– a software layer is responsible for tracking updates and
propagating them to cached copies – also known as
shared virtual memory (SVM)

7

Shared Virtual Memory Performance

• Every communication is expensive – involves OS,
message-passing over slower I/O interfaces, protocol
processing happens at the processor

• Since the implementation is based on the processor’s
virtual memory support, granularity of sharing is a page
� high degree of false sharing

• For a sequentially consistent execution, false sharing
leads to a high degree of expensive communication

8

Relaxed Memory Models

• Relaxed models such as release consistency can reduce
frequency of communication (while increasing programming
effort)

• Writes are not immediately propagated, but have to wait
until the next synchronization point

• In hardware CC, messages are sent immediately and
relaxed models prevent the processor from stalling; in
software CC, relaxed models allow us to defer message
transfers to amortize their overheads

9

Hardware and Software CC

• Relaxed memory models in hardware cache coherence hide latency
from processor

�

false sharing can result in significant network traffic

• In software cache coherence, the relaxed memory model sends messages
only at synchronization points, reducing the traffic because of false sharing

Rd y Rd y

Wr x Wr x

Rd y synch

synch

Traffic with hardware CC

Traffic with software CC

10

Eager Release Consistency

• When a processor issues a release operation, all writes
by that processor are propagated to other nodes (as
updates or invalidates)

• When other processors issue reads, they encounter a
cache miss (if we are using an invalidate protocol), and
get a clean copy of the block from the last writer

• Does the read really have to see the latest value?

11

Lazy Release Consistency

• RCsc guarantees SC between special operations

• P2 must see updates by P1 only if P1 issued a release,
followed by an acquire by P2

• In LRC, updates/invalidates are visible to a processor only
after it does an acquire – it is possible that some processors
will never see the update (not true cache coherence)

• LRC reduces the amount of traffic, but increases the
latency and complexity of an acquire

12

LRC Vs. ERC Vs. Hardware-RC

P1 P2

lock L1;
ptr = non_null_value;
unlock L1; while (ptr == null) { };

lock L1;
a = ptr;
unlock L1;

13

Multiple Writer Protocols

• It is important to support two concurrent writes to different
words within a page and to merge the writes at a later point

• Each process makes a twin copy of the page before it
starts writing – updates are sent as a diff between the old
and new copies – after an acquire, a process must get
diffs from all releasing processes and apply them to its
own copy of the page

• If twins are kept around for a long time, storage overhead
increases – it helps to have a home location of the page
that is periodically updated with diffs

14

Simple COMA

• SVM takes advantage of virtual memory to provide easy
implementations of address translation, replication, and
replacement

• These can be applied to the COMA architecture

• Simple COMA: if virtual address translation fails, the OS
generates a local copy of the page; when the page is
replaced, the OS ensures that the data is not lost; if data
is not found in attraction memory, hardware is responsible
for fetching the relevant cache block from a remote node
(note that physical address must be translated back to
virtual address)

15

Title

• Bullet

