
1

Lecture 9: Directory-Based Examples II

• Topics: Sequent NUMA-Q case study



2

Sequent NUMA-Q

• Employs a flat cache-based directory protocol between
nodes – IEEE standard SCI (Scalable Coherent Interface)
protocol

• Each node is a 4-way SMP with a bus-based snooping
protocol

• The communication assist includes a large “remote access
cache” – the directory protocol tries to keep the remote
caches coherent, while the snooping protocol ensures that
each processor cache is kept coherent with the remote
access cache



3

Directory Structure

• The physical address identifies the home node – the home
node directory stores a pointer to the head of a linked list –
each cache stores pointers to the next and previous sharer

• A main memory block can be in three directory states:
� Home: (similar to unowned) the block does not exist

in any remote access cache (may be in the home
node’s processor caches, though)

� Fresh: (similar to shared) read-only copies exist in
remote access caches and memory copy is up-to-date

� Gone: (similar to exclusive) writeable copy exists in
some remote cache



4

Cache Structure

• 29 stable states and many more pending/busy states!

• The stable states have two descriptors:
� position in linked list: ONLY, HEAD, TAIL, MID
� state within cache: dirty, clean, fresh, etc.

• SCI defines and implements primitive operations to
facilitate linked list manipulations:
� List construction: add a new node to the list head
� Rollout: remove a node from a list
� Purging: invoked by the head to invalidate all

other nodes



5

Handling Read Requests

• On a read miss, the remote cache sets up a block in busy
state and other requests to the block are not entertained

• The requestor sends a “list construction request” to the
home and the steps depend on the directory state:
� Home: state updated to fresh, head updated to

requestor, data sent to requestor, state at requestor
is set to ONLY_FRESH

� Fresh: head updated to requestor, home responds
with data and pointer to old head, requestor moves to
a different busy state, sends list construction request
to old head, old head moves from HEAD_FRESH to
MID_VALID, sends ack, requestor � HEAD_FRESH



6

Handling Read Requests II

� Gone: home does not reply with data, it remains in Gone
state, sends old head pointer to requestor, requestor
moves to a different busy state, asks old head for data
and “list construction”, old head moves from HEAD_DIRTY
to MID_VALID, returns data, requestor moves to
HEAD_DIRTY (note that HEAD_DIRTY does not mean
exclusive access; the head can write without talking to
the home, but sharers must be invalidated)

� Home keeps forwarding requests to head even if head
is busy – this results in a pending linked list that is
handled as transactions complete



7

Handling Write Requests

• At all times, the head of a list is assumed to have the
latest copy and only the head is allowed to write

• The writer starts by moving itself to the head of the list;
actions depend on the state in the cache:

� HEAD_DIRTY: the home is already in GONE state,
so home is not informed, sharing list is purged (each
list element invalidates itself and informs the
requestor of the next element – simple, but slow –
works well for small invalidation sizes)



8

Handling Write Requests II

� HEAD_FRESH: home directory is updated from FRESH
to GONE, sharing list is purged; if the home directory is
not in FRESH state, some other node’s request is in
flight – the requestor will have to move to the head again
and retry

� ONLY_DIRTY: the write happens without generating any
interconnect traffic



9

Writeback & Replacement

• Replacements are no longer “quiet” as the linked lists
have to be updated – the “rollout” operation is used

• To rollout, a node must set itself to pending, inform the
neighbors, and set itself to invalid – to prevent deadlock
in the case of two neighbors attempting rollout, the node
closer to the tail is given priority

• If the node is the head, it makes the next element the
head and informs home (data is sent only if the head is
the only element in dirty state)



10

Writeback & Replacement II

• If the head is attempting a rollout, it sends a message home,
but the home is pointing to a different head: the old head
will eventually receive a request from the new head – at
this point, the writeback is complete, and the new head
is instead linked with the next node

• To reduce buffering needs, the writeback happens before
the new block is fetched



11

Serialization

• The home serves as the point of serialization – note that
requests are almost never NACKed – requests are 
usually re-directed to the current head – helps avoid
race conditions

• Since requests get queued in a pending list and buffers
are rarely used, the protocol is less prone to 
starvation, unfairness, deadlock, and livelock problems



12

Hierarchical Snooping

Coherence Monitor:
• Tracks remotely allocated, locally cached data (by using a remote access cache)
• Tracks locally allocated, remotely cached data (by using a local state monitor)

P

C

P

C

Coherence
Monitor

Mem

P

C

P

C

Coherence
Monitor

Mem

B1 B1

B2



13

Title

• Bullet


