
1

Lecture 8: Directory-Based Examples

• Topics: SGI Origin 2000 case study



2

SGI Origin 2000

• Flat memory-based directory protocol

• Uses a bit vector directory representation

• Two processors per node, but there is no snooping
protocol within a node – combining multiple processors
in a node reduces cost

P

L2

CA

M/D

P

L2

Interconnect



3

Protocol States

• Each memory block has seven states

• Three stable states: unowned, shared, exclusive (either
dirty or clean)

• Three busy states indicate that the home has not
completed the previous request for that block 
(read, read-excl or upgrade, uncached read)

• Poison state – used for lazy TLB shootdown



4

Handling Reads

• When the home receives a read request, it looks up
memory (speculative read) and directory in parallel

• Actions taken for each directory state:
� shared or unowned: memory copy is clean, data

is returned to requestor, state is changed to excl if
there are no other sharers

� busy: a NACK is sent to the requestor
� exclusive: home is not the owner, request is fwded

to owner, owner sends data to requestor and home



5

Inner Details of Handling the Read

• The block is in exclusive state – memory may or may not
have a clean copy – it is speculatively read anyway

• The directory state is set to busy-exclusive and the
presence vector is updated

• In addition to fwding the request to the owner, the memory
copy is speculatively forwarded to the requestor
� Case 1: excl-dirty: owner sends block to requestor

and home, the speculatively sent data is over-written
� Case 2: excl-clean: owner sends an ack (without data)

to requestor and home, requestor waits for this ack
before it moves on with speculatively sent data



6

Inner Details II

• Why did we send the block speculatively to the requestor
if it does not save traffic or latency?
� the R10K cache controller is programmed to not

respond with data if it has a block in excl-clean state
� when an excl-clean block is replaced from the cache,

the directory need not be updated – hence, directory
cannot rely on the owner to provide data and
speculatively provides data on its own



7

Handling Write Requests

• The home node must invalidate all sharers and all
invalidations must be acked (to the requestor), the 
requestor is informed of the number of invalidates to expect

• Actions taken for each state:
� shared: invalidates are sent, state is changed to

excl, data and num-sharers is sent to requestor,
the requestor cannot continue until it receives all acks
(Note: the directory does not maintain busy state,
subsequent requests will be fwded to new owner
and they must be buffered until the previous write
has completed)



8

Handling Writes II

• Actions taken for each state:
� unowned: if the request was an upgrade and not a

read-exclusive, is there a problem?
� exclusive: is there a problem if the request was an

upgrade? In case of a read-exclusive: directory is
set to busy, speculative reply is sent to requestor,
invalidate is sent to owner, owner sends data to
requestor (if dirty), and a “transfer of ownership”
message (no data) to home to change out of busy

� busy: the request is NACKed and the requestor
must try again



9

Handling Write-Back

• When a dirty block is replaced, a writeback is generated
and the home sends back an ack 

• Can the directory state be shared when a writeback is
received by the directory?

• Actions taken for each directory state:
� exclusive: change directory state to unowned and

send an ack
� busy: a request and the writeback have crossed

paths: the writeback changes directory state to
shared or excl (depending on the busy state),
memory is updated, and home sends data to
requestor, the intervention request is dropped



10

Serialization

• Note that the directory serializes writes to a location, but
does not know when a write/read has completed at any
processor

• For example, a read reply may be floating on the network
and may reach the requestor much later – in the meantime,
the directory has already issued a number of invalidates,
the invalidate is overwritten when the read reply finally
shows up – hence, each node must buffer its requests
until outstanding requests have completed



11

Serialization - II

• Assume that a dirty block is being passed from P1 to
another writer P2, the “ownership transfer” message from 
P1 to home takes a long time, P2 receives its data and
carries on, P2 does a writeback, directory moves from
busy to exclusive (P2) and sends data back to P2, P2
will drop it – hence, writebacks from outstanding request
needs to be handled differently (with a NACK)



12

Directory Structure

• The system supports either a 16-bit or 64-bit directory
(fixed cost)

• For small systems, the directory works as a full bit
vector representation

• For larger systems, a coarse vector is employed – each
bit represents p/64 nodes

• State is maintained for each node, not each processor –
the communication assist broadcasts requests to both
processors



13

Page Migration

• Each page in memory has an array of counters to detect
if a page has more misses from a node other than home

• When a page is moved to a different physical memory
location, the virtual address remains the same, but the
page table and TLBs must be updated

• To reduce the cost of TLB shootdown, the old page sets
its directory state to poisoned – if a process tries to access
this page, the OS intervenes and updates the translation



14

Title

• Bullet



15

Title

• Bullet


