
1

Lecture 5: Snooping Protocol Design Issues

• Topics: barriers, basic snooping protocol implementation,
multi-level cache hierarchies

2

Barriers

• Barriers require each process to execute a lock and
unlock to increment the counter and then spin on a
shared variable

• If multiple barriers use the same variable, deadlock can
arise because some process may not have left the
earlier barrier – sense-reversing barriers can solve this
problem

• A tree can be employed to reduce contention for the
lock and shared variable

• When one process issues a read request, other
processes can snoop and update their invalid entries

3

Barrier Implementation

LOCK(bar.lock);
if (bar.counter == 0)

bar.flag = 0;
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = 1;

}
else

while (bar.flag == 0) { };

4

Sense-Reversing Barrier Implementation

local_sense = !(local_sense);
LOCK(bar.lock);
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = local_sense;

}
else {

while (bar.flag != local_sense) { };
}

5

Implementing Coherence Protocols

• Correctness and performance are not the only metrics

• Deadlock: a cycle of resource dependencies, where each
process holds shared resources in a non-preemptible
fashion

• Livelock: similar to deadlock, but transactions continue in
the system without each process making forward progress

• Starvation: an extreme case of unfairness

6

Basic Implementation

• Assume single level of cache, atomic bus transactions

• It is simpler to implement a processor-side cache
controller that monitors requests from the processor and
a bus-side cache controller that services the bus

• Both controllers are constantly trying to read tags
� tags can be duplicated (moderate area overhead)
� unlike data, tags are rarely updated
� tag updates stall the other controller

7

Reporting Snoop Results

• Uniprocessor system: initiator places address on bus, all
devices monitor address, one device acks by raising a
wired-OR signal, data is transferred

• In a multiprocessor, memory has to wait for the snoop
result before it chooses to respond – need 3 wired-OR
signals: (i) indicates that a cache has a copy, (ii) indicates
that a cache has a modified copy, (iii) indicates that the
snoop has not completed

• Ensuring timely snoops: the time to respond could be
fixed or variable (with the third wired-OR signal), or the
memory could track if a cache has a block in M state

8

Non-Atomic State Transitions

• Note that a cache controller’s actions are not all atomic: tag
look-up, bus arbitration, bus transaction, data/tag update

• Consider this: block A in shared state in P1 and P2; both
issue a write; the bus controllers are ready to issue an
upgrade request and try to acquire the bus; is there a
problem?

• The controller can keep track of additional intermediate
states so it can react to bus traffic (e.g. S�M, I�M, I�S,E)

• Alternatively, eliminate upgrade request; use the shared
wire to suppress memory’s response to an exclusive-rd

9

Serialization

• Write serialization is an important requirement for
coherence and sequential consistency – writes must be
seen by all processors in the same order

• On a write, the processor hands the request to the cache
controller and some time elapses before the bus
transaction happens (the external world sees the write)

• If the writing processor continues its execution after
handing the write to the controller, the same write order
may not be seen by all processors – hence, the processor
is not allowed to continue unless the write has completed

10

Livelock

• Livelock can happen if the processor-cache handshake
is not designed correctly

• Before the processor can attempt the write, it must
acquire the block in exclusive state

• If all processors are writing to the same block, one of
them acquires the block first – if another exclusive request
is seen on the bus, the cache controller must wait for the
processor to complete the write before releasing the block
-- else, the processor’s write will fail again because the
block would be in invalid state

11

Atomic Instructions

• A test&set instruction acquires the block in exclusive
state and does not release the block until the read and
write have completed

• Should an LL bring the block in exclusive state to avoid
bus traffic during the SC?

• Note that for the SC to succeed, a bit associated with
the cache block must be set (the bit is reset when a
write to that block is observed or when the block is evicted)

• What happens if an instruction between the LL and SC
causes the LL-SC block to always be replaced?

12

Multilevel Cache Hierarchies

• Ideally, the snooping protocol employed for L2 must be
duplicated for L1 – redundant work because of blocks
common to L1 and L2

• Inclusion greatly simplifies the implementation

13

Maintaining Inclusion

• Assuming equal block size, if L1 is 8KB 2-way and L2 is
256KB 8-way, is the hierarchy inclusive? (assume that an
L1 miss brings a block into L1 and L2)

• Assuming equal block size, if L1 is 8KB direct-mapped
and L2 is 256KB 8-way, is the hierarchy inclusive?

• To maintain inclusion, L2 replacements must also evict
relevant blocks in L1

14

Intra-Hierarchy Protocol

• Some coherence traffic needs to be propagated to L1;
likewise, L1 write traffic needs to be propagated to L2

• What is the best way to do implement the above? More
traffic? More state?

• In general, external requests propagate upward from L3 to
L1 and processor requests percolate down from L1 to L3

• Dual tags are not as important as the L2 can filter out
bus transactions and the L1 can filter out processor
requests

15

Title

• Bullet

