
1

Lecture 4: Synchronization

• Topics: evaluating coherence, synchronization primitives

2

Example

P1 P2
MSI MESI Dragon MSI MESI Dragon

• P1: Rd X
• P1: Wr X
• P2: Rd X
• P1: Wr X
• P1: Wr X
• P2: Rd X
• P2: Wr X

Total transfers:

3

Evaluating Coherence Protocols

• There is no substitute for detailed simulation – high
communication need not imply poor performance if
the communication is off the critical path – for example,
an update protocol almost always consumes more
bandwidth, but can often yield better performance

• An easy (though, not entirely reliable) metric – simulate
cache accesses and compute state transitions – each
state transition corresponds to a fixed amount of
interconnect traffic

4

State Transitions

843.62.300.0022.63M

2.24134.702.50.42S

1.000.0214.000.20E

0.0021.87000.64I

1.680.961.2500NP

MSEINPTo

From

--BusWBNot possibleBusWBBusWBM

BusUpgr--Not possible----S

----------E

BusRdXBusRdBusRd----I

BusRdXBusRdBusRd----NP

MSEINPTo

From

State transitions
per 1000 data

memory references
for Ocean

Bus actions
for each state

transition

5

Cache Misses

• Coherence misses: cache misses caused by sharing of
data blocks – true (two different processes access the
same word) and false (processes access different words
in the same cache line)

• False coherence misses are zero if the block size equals
the word size

• An upgrade from S to M is a new type of “cache miss” as
it generates (inexpensive) bus traffic

6

Block Size

• For most programs, a larger block size increases the
number of false coherence misses, but significantly
reduces most other types of misses (because of locality)
– a very large block size will finally increase conflict misses

• Large block sizes usually result in high bandwidth needs
in spite of the lower miss rate

• Alleviating false sharing drawbacks of a large block size:
� maintain state information at a finer granularity (in

other words, prefetch multiple blocks on a miss)
� delay write invalidations
� reorganize data structures and decomposition

7

Update-Invalidate Trade-Offs

• The best performing protocol is a function of sharing
patterns – are the sharers likely to read the newly
updated value? Examples: locks, barriers, diff

• Each variable in the program has a different sharing
pattern – what can we do?

• Implement both protocols in hardware – let the
programmer/hw select the protocol for each page/block

• For example: in the Dragon update protocol, maintain
a counter for each block – an access sets the counter to
MAX, while an update decrements it – if the counter
reaches 0, the block is evicted

8

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory

• lock: t&s register, location
bnz register, lock
CS
st location, #0

9

Improving Lock Algorithms

• The basic lock implementation is inefficient because the
waiting process is constantly attempting writes � heavy
invalidate traffic

• Test & Set with exponential back-off: if you fail again,
double your wait time and try again

• Test & Test & Set: read the value, if it has not changed,
don’t bother doing the test&set – heavy bus traffic only
when the lock is released

• Different implementations trade-off one of these lock
properties: latency, traffic, scalability, storage, fairness

10

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
with very high flexibility

• LL: read a value and update a table indicating you have
read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
the store will succeed only if the table indicates that no
other process attempted a store since the local LL

• SC implementations may not generate bus traffic if the
SC fails – hence, more efficient than test&test&set

11

Load-Linked and Store Conditional

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

12

Further Reducing Bandwidth Needs

• Even with LL-SC, heavy traffic is generated on a lock
release and there are no fairness guarantees

• Ticket lock: every arriving process atomically picks up a
ticket and increments the ticket counter (with an LL-SC),
the process then keeps checking the now-serving
variable to see if its turn has arrived, after finishing its
turn it increments the now-serving variable – is this
really better than the LL-SC implementation?

• Array-Based lock: instead of using a “now-serving”
variable, use a “now-serving” array and each process
waits on a different variable – fair, low latency, low
bandwidth, high scalability, but higher storage

13

Barriers

• Barriers require each process to execute a lock and
unlock to increment the counter and then spin on a
shared variable

• If multiple barriers use the same variable, deadlock can
arise because some process may not have left the
earlier barrier – sense-reversing barriers can solve this
problem

• A tree can be employed to reduce contention for the
lock and shared variable

• When one process issues a read request, other
processes can snoop and update their invalid entries

14

Barrier Implementation

LOCK(bar.lock);
if (bar.counter == 0)

bar.flag = 0;
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = 1;

}
else

while (bar.flag == 0) { };

15

Sense-Reversing Barrier Implementation

local_sense = !(local_sense);
LOCK(bar.lock);
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {

bar.counter = 0;
bar.flag = local_sense;

}
else {

while (bar.flag != local_sense) { };
}

16

Title

• Bullet

