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Lecture 3: Coherence Protocols

• Topics: message-passing programming model, coherence
protocol examples
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Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i 

�

1 to n do
for j 

�

1 to n do
temp = A[i,j];
A[i,j] 

�

0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A 

�

G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i 

�

mymin to mymax
for j 

�
1 to n do

…
endfor

endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
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Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA 

�

malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0) 

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 

�

1 to nn do
for j 

�

1 to n do
…

endfor
endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 

�

1 to nprocs-1 do
RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if  (mydiff < TOL)  done = 1;
for i 

�

1 to nprocs-1  do
SEND(done, 1, I, DONE);

endfor
endif

endwhile
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Message Passing Model

• Note that each process has two additional rows to store
data produced by its neighbors

• Unlike the shared memory model, execution is deterministic
-- two executions will produce the same result

• A send-receive match is a synchronization event – hence,
we no longer need locks while updating the diff counter,
or barriers while allowing processes to proceed with the
next iteration
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Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
only when the RECEIVE has completed – will it work for
the program on the previous slide?

• Blocking Asynchronous: SEND returns control back to the
program after the OS has copied the message into its space
-- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
control immediately – the message will get copied at some
point, so the process must overlap some other computation
with the communication – other primitives are used to
probe if the communication has finished or not
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Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
reads by other processors – write propagation

• two writes to the same location by two processors are
seen in the same order by all processors – write 
serialization
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

�Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies
�Write-update: when a processor writes, it updates other

shared copies of that block
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Protocol-I   MSI

• 3-state write-back invalidation bus-based snooping protocol

• Each block can be in one of three states – invalid, shared,
modified (exclusive)

• A processor must acquire the block in exclusive state in
order to write to it – this is done by placing an exclusive
read request on the bus – every other cached copy is
invalidated

• When some other processor tries to read an exclusive
block, the block is demoted to shared
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Design Issues, Optimizations

• When does memory get updated?
� demotion from modified to shared?
� move from modified in one cache to modified in another?

• Who responds with data?  – memory or a cache that has
the block in exclusive state – does it help if sharers respond?

• We can assume that bus, memory, and cache state
transactions are atomic – if not, we will need more states

• A transition from shared to modified only requires an upgrade
request and no transfer of data

• Is the protocol simpler for a write-through cache?
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4-State Protocol

• Multiprocessors execute many single-threaded programs

• A read followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

• Note that we can optimize protocols by adding more
states – increases design/verification complexity
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MESI Protocol

• The new state is exclusive-clean – the cache can service
read requests and no other cache has the same block

• When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

• When a processor makes a read request, it must detect
if it has the only cached copy – the interconnect must
include an additional signal that is asserted by each
cache if it has a valid copy of the block
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Design Issues

• When caches evict blocks, they do not inform other
caches – it is possible to have a block in shared state
even though it is an exclusive-clean copy

• Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

• The protocol can be improved by adding a fifth
state (owner – MOESI) – the owner services reads
(instead of memory)
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Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be
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4 States

• No invalid state

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic



16

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems
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Examples

P1 P2
MSI MESI Dragon MSI     MESI     Dragon

• P1: Rd  X
• P1: Wr  X
• P2: Rd  X
• P1: Wr  X
• P1: Wr  X
• P2: Rd  X
• P2: Wr  X

Total transfers:
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Title

• Bullet


