
1

Lecture 2: Parallel Programs

• Topics: consistency, parallel applications, 
parallelization process
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Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achievable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• For example, the code below should ensure mutual
exclusion on a sequentially consistent machine

Initially A = B = 0
P1                        P2

A 

�

1 B 

�

1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section
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Relaxing Memory Ordering

• Executing memory accesses in order is extremely slow;
we attempt optimizations � seq consistency is lost

• For example, each processor can be out-of-order; within
P1, the write to A and the read of B are independent
since they refer to different memory locations

• Ooo execution will allow each process to enter CS

Initially A = B = 0
P1                        P2

A 

�

1 B 

�

1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section
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Relaxed Consistency Models

• In order to write correct programs, the programmer must
understand that memory accesses do not always happen
in order

• The consistency model specifies how memory ordering
differs from that of sequential consistency

• If the programmer demands sequential consistency in
places, he/she can impose it with special fence
instructions – a fence ensures that we make progress
only after completing earlier memory accesses

• Fences are slow – a better understanding of the program
and the consistency model can eliminate some fences
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Parallel Application Examples

• Simulating ocean currents

• Simulating evolution of galaxies

• Visualizing complex scenes using raytracing

• Mining data for associations
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Ocean

• Simulates motion of water currents, influenced by wind,
friction, etc. 

• We examine a horizontal cross-section of the ocean at
a time and the cross-section is modeled as a grid of
equidistant points

• At each time step, the value of each variable at each
grid point is updated based on neighboring values and
equations of motion

• Apparently high concurrency
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Barnes-Hut

• Problem studies how galaxies evolve by simulating
mutual gravitational effects of n bodies

• A naïve algorithm computes pairwise interactions in
every time step (O(n2)) – a hierarchical algorithm can
achieve good accuracy and run in O(n log n) by
grouping distant stars

• Apparently high concurrency, but varying star density
can lead to load balancing issues
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Data Mining

• Data mining attempts to identify patterns in transactions

• For example, association mining computes sets of
commonly purchased items and the conditional
probability that a customer purchases a set, given
they purchased another set of products

• Itemsets are iteratively computed – an itemset of size
k is constructed by examining itemsets of size k-1

• Database queries are simpler and computationally less
expensive, but also represent an important benchmark
for multiprocessors
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Parallelization Process

• Ideally, a parallel application must be constructed by
designing a parallel algorithm from scratch

• In most cases, we begin with a sequential version – the
quest for efficient automated parallelization continues…

• Converting a sequential program involves:
� Decomposition of the computation into tasks
� Assignment of tasks to processes
� Orchestration of data access, communication, and

synchronization
� Mapping or binding processes to processors
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Partitioning

• Decomposition and Assignment are together called
partitioning – partitioning is algorithmic, while orchestration
is a function of the programming model and architecture

• The number of tasks at any given time is the level of
concurrency in the application – the average level of
concurrency places a bound on speedup (Amdahl’s Law)

• To reduce inter-process communication or load imbalance,
many tasks may be assigned to a single process – this
assignment may be either static or dynamic

• We will assume that processes do not migrate (fixed
mapping) in order to preserve locality
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Parallelization Goals

Put related processes on same processor

Exploit locality in network topology

YesMapping

Reduce communication via data locality

Reduce communication and synch cost
Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

YesOrchestration

Balance workload

Reduce communication volume

Mostly noAssignment

Expose enough concurrencyMostly noDecomposition

Major Performance GoalsArchitecture-
Dependent?

Step
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Case Study: Ocean Kernel

• Gauss-Seidel method: sweep through the entire 2D array
and update each point with the average of its value and
its neighboring values; repeat until the values converge

• Since we sweep from top to bottom and left to right, the
averaging step uses new values for the top and left
neighbors, and old values for the bottom and right
neighbors
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Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i 

�

1 to n do
for j 

�

1 to n do
temp = A[i,j];
A[i,j] 

�

0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Concurrency

• Need synch after every anti-diagonal

• Potential load imbalance
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Algorithmic Modifications

• Red-Black ordering: the grid is colored red and black
similar to a checkerboard; sweep through all red points,
then sweep through all black points; there are no
dependences within a sweep

• Asynchronous updates: ignore dependences within a
sweep � you may or may not get the most recent value

• Either of these algorithms expose sufficient concurrency,
but you may or may not converge quickly
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Assignment

• With the asynchronous method, each process can be
assigned a subset of all rows

• What is the degree of concurrency?

• What is the communication to computation ratio
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Orchestration

• Orchestration is a function of the programming model and
architecture

• Consider the shared address space model – by using the
following primitives, the program appears very similar to
the sequential version:
� CREATE: creates p processes that start executing at

procedure proc
� LOCK and UNLOCK: acquire and release mutually

exclusive access
� BARRIER: global synchronization: no process gets

past the barrier until n processes have arrived
� WAIT_FOR_END: wait for n processes to terminate
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A 

�

G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i 

�

mymin to mymax
for j 

�
1 to n do

…
endfor

endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
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Title

• Bullet


