Lecture 29: Interconnection Networks

Papers:

- Express Virtual Channels: Towards the Ideal Interconnection Fabric, ISCA'07, Princeton
- Interconnect Design Considerations for Large NUCA Caches, ISCA'07, Utah

Reminders:

- Take-home final (20%): available this weekend, due May 10th
- Project (50%): due May 10th; peer-review due May 12th
- Project reports: conference paper style, at least 4 pages double-column; abstract, intro, background, proposal, methodology, results, related work, conclusions

Router Pipeline

• Four typical stages:

- RC routing computation: compute the output channel
- VA virtual-channel allocation: allocate VC for the head flit
- SA switch allocation: compete for output physical channel
- ST switch traversal: transfer data on output physical channel

Express Physical Channels

- Express channels connect non-adjacent nodes flits traveling a long distance can use express channels for most of the way and navigate on local channels near the source/destination (like taking the freeway)
- Helps reduce the number of hops
- The router in each express node is much bigger now

Express Virtual Channels

- To a large extent, maintain the same physical structure as a conventional network (changes to be explained shortly)
- Some virtual channels are treated differently: they go through a different router pipeline and can effectively avoid most router overheads

- If Normal VC (NVC):
 - at every router, must compete for the next VC and for the switch
 - will get buffered in case there is a conflict for VA/SA
- If EVC (at intermediate bypass router):
 - need not compete for VC (an EVC is a VC reserved across multiple routers)
 - similarly, the EVC is also guaranteed the switch (only 1 EVC can compete for an output physical channel)
 - since VA/SA are guaranteed to succeed, no need for buffering
 - simple router pipeline: incoming flit directly moves to ST stage
- If EVC (at EVC source/sink router):
 - must compete for VC/SA as in a conventional pipeline
 - before moving on, must confirm free buffer at next EVC router

- Non aggressive pipeline in a bypass node: an express flit simply goes through the crossbar and then on the link; the prior SA stage must know that an express flit is arriving so that the switch control signals can be appropriately set up; this requires the flit to be preceded by a single-bit control signal (similar to cct-switching, but much cheaper)
- Aggressive pipeline: the express flit avoids the switch and heads straight to the output channel (dedicated hardware)... will still need a mechanism to control ST for other flits

- Any node can be an EVC source/sink
- The EVC can have length 2 to I_{max}

(a) Dynamic EVCs along the X dimension (assuming $l_{max} = 3$)

- All the VCs at a router are now partitioned into I_{max} bins
- More buffers for short-hop EVCs
- Flow control credits have to propagate I_{max} nodes upstream
- Can also dynamically allocate buffers to EVCs (although one buffer must be reserved per EVC to avoid deadlock)
- EVCs can potentially starve NVCs at bypass nodes: if a bypass node is starved for *n* cycles, it sends a token upstream to prevent EVC transmission for the next *p* cycles

Ideal Network

- Fully-connected: every node has a dedicated link to every other node
- Bisection bandwidth: $L_{edge} = 2 \cdot \frac{N}{2} \cdot \frac{N}{2} \cdot W_{pitch} \cdot c_{width}$
- For a 7x7 network, L_{edge} will be 69mm and chip area will be 4760mm² (for a single metal layer)
- An ideal network will provide the least latency, least power, and highest throughput, but will have an inordinate overhead, as specified above

Approaching the Ideal Network

Results

Leaste at Desenne Precess and network parameters	
Technology	$65 \ nm$
V_{dd}	1.1 V
$V_{threshold}$	0.17 V
Frequency	3 GHz
Topology	7-ary 2-mesh
Routing	Dimension-ordered (DOR)
Traffic	Uniform random
Number of router ports	5
VCs per port	8
Buffers per port	24
Flit size/channel width (c_{width})	128 bits
Link length	1 mm
Wire pitch (W_{pitch})	$0.45 \mu m$

Table 1: Baseline process and network parameters

Table 2: EVC-specific parameters

Table 2. LVC-specific parameters	
EVC pipeline	Aggressive express pipeline
Buffer management	dynamic
Buffers per port	24
Static EVC-specific parameters	
EVC length	2 hops
NVCs per port	4
EVCs per port	4
Dynamic EVC-specific parameters	
l_{max}	2
NVCs per port	2
EVCs per bin	6
Starvation-avoidance parameters	
n	20
p	3

(c) Energy saving from different router components

Figure 11: Uniform random traffic results

• Roughly 40% of all nodes are bypassed

Non-Uniform Cache Access

(a) CMP Substrate: 16 CPUs 8x8 Banks

From Beckmann et al. (MICRO'04) and Huh et al. (ICS'05)

Improving NUCA Methodologies

 Design space exploration: iterate over bank counts, organizations, and destinations to compute the optimal cache structure

4096

- Different networks for data and address the latter has lower bandwidth demands and can employ faster wires on higher metal layers
- Parts of the address are more critical: the index bits are transmitted on low-latency links so that cache access can begin early – the rest of the address arrives in time for tag comparison

Figure 1. Wire types: B wires (a), L wires (b), W wires (c), and PW wires (d). B, L, and W wires differ in width and spacing. PW wires are W wires with a reduced size and number of repeaters.

Hybrid Network Topology

Bullet