Lecture 29: Interconnection Networks

Papers:
e Express Virtual Channels: Towards the Ideal
Interconnection Fabric, ISCA’07, Princeton
e Interconnect Design Considerations for Large NUCA
Caches, ISCA’07, Utah

Reminders:
» Take-home final (20%): available this weekend, due
May 10t
* Project (50%): due May 10™; peer-review due May 12t
* Project reports: conference paper style, at least
4 pages double-column; abstract, intro, background,

proposal, methodology, results, related work, conclusions
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Router Pipeline

* Four typical stages:
= RC routing computation: compute the output channel
= VA virtual-channel allocation: allocate VC for the head flit
= SA switch allocation: compete for output physical channel
= ST switch traversal: transfer data on output physical channel

Cycle 1 2 3 4 5 6 7
Head flit OO O O
Body flit 1 . . . .
Body flit 2
- O— OO0 0O
Tail flit
O— OO0 0O



Express Physical Channels

* Express channels connect non-adjacent nodes — flits traveling a long distance
can use express channels for most of the way and navigate on local channels
near the source/destination (like taking the freeway)

» Helps reduce the number of hops

* The router in each express node is much bigger now




Express Virtual Channels

* To a large extent, maintain the same physical structure as a
conventional network (changes to be explained shortly)

« Some virtual channels are treated differently: they go through a
different router pipeline and can effectively avoid most router

overheads
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(b) VCs acquired from nodes 01 to 56




Router Pipelines

* If Normal VC (NVC):
= at every router, must compete for the next VC and for the switch
= will get buffered in case there is a conflict for VA/SA

* If EVC (at intermediate bypass router):
= need not compete for VC (an EVC is a VC reserved across
multiple routers)
= similarly, the EVC is also guaranteed the switch (only 1 EVC can
compete for an output physical channel)
= since VA/SA are guaranteed to succeed, no need for buffering
= simple router pipeline: incoming flit directly moves to ST stage

* If EVC (at EVC source/sink router):
= must compete for VC/SA as in a conventional pipeline
= pbefore moving on, must confirm free buffer at next EVC router
5



Bypass Router Pipelines

* Non aggressive pipeline in a bypass node: an express flit simply
goes through the crossbar and then on the link; the prior SA stage
must know that an express flit is arriving so that the switch control
signals can be appropriately set up; this requires the flit to be
preceded by a single-bit control signal (similar to cct-switching, but
much cheaper)

» Aggressive pipeline: the express flit avoids the switch and heads
straight to the output channel (dedicated hardware)... will still need
a mechanism to control ST for other flits



Dynamic EVCs

* Any node can be an EVC source/sink

 The EVC can have length 2 to |
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VC Allocation

* All the VCs at a router are now partitioned into | bins

max

« More buffers for short-hop EVCs

* Flow control credits have to propagate | .., nhodes upstream

max

« Can also dynamically allocate buffers to EVCs (although
one buffer must be reserved per EVC to avoid deadlock)

 EVCs can potentially starve NVCs at bypass nodes: if a
bypass node is starved for n cycles, it sends a token
upstream to prevent EVC transmission for the next p cycles
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|deal Network

 Fully-connected: every node has a dedicated link to every other node

. . . N N ]
¢ BlseCtlon bandWIdth: Ledge — 2 . ? . ? . I/Iﬁrjt}-'itch. * Cwidth

* For a 7x7 network, L,y Will be 69mm and chip area will be 4760mm?

(for a single metal layer)

* An ideal network will provide the least latency, least power, and
highest throughput, but will have an inordinate overhead, as
specified above



Approaching the ldeal Network
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Results

Table 1: Baseline process and network parameters

Table 2: EVC-specific parameters

lechnology 60 nm
Vid 1.1V
1V'thresho€d 0.17 V
Frequency 3GHz
Topology T-ary 2-mesh
Routing Dimension-ordered (DOR)
Iraftic Uniform random
Number of router ports 5
VUs per port 3
Buffers per port 24
Flit size/channel width (¢, ;q¢p ) 128 bits
Link length 1 mm
Wire pitch (W itch) 0.45um

Latency (cycles)

Normalized energy

0.1 0..2 D..S Dl.d D..E- DIE D..? D..S
Injected load (fraction of capacity)

== haseline ===static EVC ===dynamic EVC
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EVC pipeline Aggressive express pipeline
Bufler management dynamic
Buffers per port 24
Static EVC-specific parameters
EVC length 2 hops
NVCs per port 4
EVCs per port 4
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Figure 11: Uniform random traffic results

* Roughly 40% of all nodes are bypassed
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Improving NUCA Methodologies

» Design space exploration: iterate

over bank counts, organizations,
and destinations to compute the

optimal cache structure
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Forms of Heterogeneity

« Different networks for data and address — the latter has lower
bandwidth demands and can employ faster wires on higher metal layers

 Parts of the address are more critical: the index bits are transmitted
on low-latency links so that cache access can begin early — the rest
of the address arrives in time for tag comparison

i LR

Figure 1. Wire types: B wires (a), L wires (b), W wires (c),

and PW wires (d). B, L, and W wires differ in width and

spacing. PW wires are \W wires with a reduced size and 14
number of repeaters.



Hybrid Network Topology

Core

L2
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Router

Shared bus

Shared bus

Shared bus
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Title

* Bullet
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