Lecture 25: Parallel Algorithms I

- Topics: sort and matrix algorithms

Processor Model

- High communication latencies \rightarrow pursue coarse-grain parallelism (the focus of the course so far)
- For upcoming lectures, focus on fine-grain parallelism
- VLSI improvements \rightarrow enough transistors to accommodate numerous processing units on a chip and (relatively) low communication latencies
- Consider a special-purpose processor with thousands of processing units, each with small-bit ALUs and limited register storage

Sorting on a Linear Array

- Each processor has bidirectional links to its neighbors
- All processors share a single clock (asynchronous designs will require minor modifications)
- At each clock, processors receive inputs from neighbors, perform computations, generate output for neighbors, and update local storage

Control at Each Processor

- Each processor stores the minimum number it has seen
- Initial value in storage and on network is "*", which is bigger than any input and also means "no signal"
- On receiving number Y from left neighbor, the processor keeps the smaller of Y and current storage Z, and passes the larger to the right neighbor

Sorting Example

$$
\begin{aligned}
& \xrightarrow{8,2,5,3,9} * \xrightarrow{*} * \xrightarrow{*} * \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{8,2,5,3} 9 \xrightarrow{*} * * \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{8,2,5} 3 \xrightarrow{9} * \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{8,2} 3 \xrightarrow{5} 9 \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{8} 2{ }^{3} 5^{9} * \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{*} 2 \xrightarrow{8} 3 \xrightarrow{5} 9 \xrightarrow{*} * \xrightarrow{*} * \\
& \xrightarrow{*} 2 \xrightarrow{*} 3 \xrightarrow{8} 5 \xrightarrow{9} * \\
& \xrightarrow{*} 2 \xrightarrow{*} 3 \xrightarrow{*} 5 \xrightarrow{8} 9 \\
& \xrightarrow{*} 2 \xrightarrow{*} 3 \xrightarrow{*} 5 \xrightarrow{*} 8{ }^{9} * \\
& \xrightarrow{*} 2 \xrightarrow{*} 3 \xrightarrow{*} 5 \xrightarrow{*} 8 \xrightarrow{*} 9
\end{aligned}
$$

Result Output

- The output process begins when a processor receives a non-*, followed by a "*"
- Each processor forwards its storage to its left neighbor and subsequent data it receives from right neighbors
- How many steps does it take to sort N numbers?
-What is the speedup and efficiency?

Output Example

- The bit model affords a more precise measure of complexity - we will now assume that each processor can only operate on a bit at a time
- To compare Nk k-bit words, you may now need an Nx k 2-d array of bit processors

Comparison Strategies

- Strategy 1: Bits travel horizontally, keep/swap signals travel vertically - after at most $2 k$ steps, each processor knows which number must be moved to the right -2 kN steps in the worst case
- Strategy 2: Use a tree to communicate information on which number is greater - after 2logk steps, each processor knows which number must be moved to the right - 2 Nlogk steps
- Can we do better?

Strategy 2: Column of Trees

Pipelined Comparison

Input numbers:	3	4	2
	0	1	0
	1	0	1
	1	0	0

Complexity

- How long does it take to sort N k-bit numbers?
$(2 N-1)+(k-1)+N$ (for output)
- (With a 2d array of processors) Can we do even better?
- How do we prove optimality?

Lower Bounds

- Input/Output bandwidth: Nk bits are being input/output with k pins - requires $\Omega(\mathrm{N})$ time
- Diameter: the comparison at processor $(1,1)$ influences the value of the bit stored at processor (N, k) - for example, $\mathrm{N}-1$ numbers are 011.. 1 and the last number is either $00 \ldots 0$ or $10 \ldots 0$ - it takes at least $N+k-2$ steps for information to travel across the diameter
- Bisection width: if processors in one half require the results computed by the other half, the bisection bandwidth imposes a minimum completion time

Counter Example

- N 1-bit numbers that need to be sorted with a binary tree
- Since bisection bandwidth is 2 and each number may be in the wrong half, will any algorithm take at least $\mathrm{N} / 2$ steps?

Counting Algorithm

- It takes $\mathrm{O}(\log \mathrm{N})$ time for each intermediate node to add the contents in the subtree and forward the result to the parent, one bit at a time
- After the root has computed the number of 1 's, this number is communicated to the leaves - the leaves accordingly set their output to 0 or 1
- Each half only needs to know the number of 1's in the other half (logN-1 bits) - therefore, the algorithm takes $\Omega(\operatorname{logN})$ time
- Careful when estimating lower bounds!

Matrix Algorithms

- Consider matrix-vector multiplication:

$$
y_{i}=\Sigma_{j} a_{i j} x_{j}
$$

- The sequential algorithm takes $2 \mathrm{~N}^{2}-\mathrm{N}$ operations
- With an N-cell linear array, can we implement matrix-vector multiplication in $\mathrm{O}(\mathrm{N})$ time?

$$
\begin{array}{cccc}
\boldsymbol{v}_{4} \boldsymbol{v}_{3} \boldsymbol{v}_{2} \boldsymbol{v}_{1} \\
& a_{11} & * & * \\
\hline \boldsymbol{a}_{12} & \boldsymbol{a}_{21} & * & * \\
\hline \boldsymbol{a}_{13} & a_{22} & \boldsymbol{a}_{31} & * \\
\hline \boldsymbol{a}_{14} & \boldsymbol{a}_{23} & \boldsymbol{a}_{32} & \boldsymbol{a}_{41} \\
\hline * & \boldsymbol{a}_{24} & \boldsymbol{a}_{33} & \boldsymbol{a}_{42} \\
\hline * & * & \boldsymbol{a}_{34} & \boldsymbol{a}_{43} \\
\hline * & * & * & \boldsymbol{a}_{44}
\end{array}
$$

Number of steps =?

$$
\begin{array}{cccc}
\boldsymbol{v}_{4} \boldsymbol{v}_{3} \boldsymbol{v}_{2} \boldsymbol{v}_{1} \\
& a_{11} & * & * \\
\boldsymbol{a}_{12} & \boldsymbol{a}_{21} & * & * \\
\hline \boldsymbol{a}_{13} & \boldsymbol{a}_{22} & \boldsymbol{a}_{31} & * \\
\hline \boldsymbol{a}_{14} & \boldsymbol{a}_{23} & \boldsymbol{a}_{32} & \boldsymbol{a}_{41} \\
\hline * & \boldsymbol{a}_{24} & \boldsymbol{a}_{33} & \boldsymbol{a}_{42} \\
\hline * & * & \boldsymbol{a}_{34} & \boldsymbol{a}_{43} \\
\hline * & * & * & \boldsymbol{a}_{44}
\end{array}
$$

Number of steps $=2 \mathrm{~N}-1$

Number of time steps $=$?

Number of time steps $=3 \mathrm{~N}-2$

Complexity

- The algorithm implementations on the linear arrays have speedups that are linear in the number of processors - an efficiency of $\mathrm{O}(1)$
- It is possible to improve these algorithms by a constant factor, for example, by inputting values directly to each processor in the first step and providing wraparound edges (N time steps)

Solving Systems of Equations

- Given an $\mathrm{N} \times \mathrm{N}$ lower triangular matrix A and an N -vector b, solve for x, where $A x=b$ (assume solution exists)

$$
\begin{aligned}
& a_{11} x_{1}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2} \text {, and so on... }
\end{aligned}
$$

Define $t_{1}={ }_{\text {def }} b_{1}, t_{i}={ }_{\text {def }} b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}, 2 \leq$
$i \leq N$. Then $x_{i}=t_{i} / a_{i i}$.

Equation Solver

Define $t_{1}={ }_{\text {def }} b_{1}, t_{i}={ }_{\text {def }} b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}, 2 \leq$ $i \leq N$. Then $x_{i}=t_{i} / a_{i i}$.

Equation Solver Example

- When an x, b, and a meet at a cell, $a x$ is subtracted from b
- When b and a meet at cell $1, b$ is divided by a to become x

Complexity

- Time steps $=2 \mathrm{~N}-1$
- Speedup $=\mathrm{O}(\mathrm{N})$, efficiency $=\mathrm{O}(1)$
- Note that half the processors are idle every time step can improve efficiency by solving two interleaved equation systems simultaneously

Title

- Bullet

