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Lecture 19: Transactional Memories III

Papers:
• Colorama: Architectural Support for Data-Centric

Synchronization, HPCA’07, Illinois
• Bulk Disambiguation of Speculative Threads in

Multiprocessors, ISCA’06, Illinois
• Unbounded Transactional Memory, HPCA’05, MIT
• An Integrated Hardware-Software Approach to
Flexible Transactional Memory, ISCA’07, Rochester
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TCC Vs. LogTM

• Versioning: 
TCC takes advantage of caches to maintain versions;
requires write-thru at commit (write-back will require
a separate buffer to keep track of the old value)

LogTM almost always makes a copy (hopefully in a
write buffer, with spills into cache), allows: writeback
policy, transaction working set to spill out of cache
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TCC Vs. LogTM

• Conflict detection: 
TCC implements lazy conflict detection: aborted
transactions need not broadcast their writes; more
wasted work for transactions that abort; easier to
implement conflict resolution (since one of the
transactions will go on to commit)

LogTM implements eager conflict detection:
writes by aborted transactions are also “seen”;
conflicting transactions have to just wait, not abort;
conflicts may lead to deadlock/livelock and sw
resolution
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TCC Vs. LogTM

• Complexity / Scalability: 
TCC is conceptually simpler as it is focused on the
common case (in my opinion); parallel commits are
largely distributed (except the TID vendor)

LogTM can handle large transactions (introduces
log management, sticky states, etc.); built upon a
directory-based protocol and hence mostly
distributed (conflicts need resolution by a central agent
if they persist)

Which one leads to more messages?
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Colorama

• Novel architecture built upon an underlying TM system

• Hypothesis: it is easier for the programmer to identify
regions of data that must be handled by a single
thread in a consistent manner (data centric
synchronization – DCS) rather than regions of code
that must execute atomically

• The former requires local reasoning, while the latter
requires non-local reasoning

• Hence, programmer assigns colors to data structures and
the hardware introduces TM-begin/end around accesses to
such elements
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Examples

• Color assigns a new color to an address range
• Colorprop adds another element to an existing color
• Need not insert TM-begin/end in each function that deals with these structures
• Easy for static data, harder for dynamically created data structures
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Examples

• Task queue: each task points to a bucket of data; the data in a bucket is
read/updated before/after the task has been queued

• The task queue data structures must be updated in a consistent manner
• The updates to data in a bucket need not be co-ordinated with other updates
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Examples

• MySQL data structure: an array of records
• In lock-based code, an element (locks_in_mem) in each record is protected
by a single global lock, the remaining elements (info) in each record are 
protected by per-record local locks

• The locks_in_mem elements are all colored the same; the info in each
record is assigned a per-record color



9

Entry/Exit Points

• The TM-begin/end should be placed around a series of
accesses to elements of a single color

• TM-begin is introduced on the first access

• TM-end is introduced when that subroutine ends

• The programmer has to be aware of this exit policy to
write correct programs (personal opinion: even DCS
has to be code aware and reasoning is still somewhat
non-local)
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Interpreting the Exit Policy
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Interpreting the Exit Policy
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Hardware Requirements

• Hardware maintains a table of assigned colors and address
ranges; a TM-begin is triggered every time a new color is
accessed; the CAB and CRB help track the TM-ends that
must be triggered on subroutine return
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Bulk Disambiguation

• In a TM (or TLS) system, write addresses are broadcast
at commit time; other nodes snoop and abort themselves
if any of the write addresses match an address in their
read set

• The process can be simplified by just sending a
signature and comparing signatures to detect conflicts

• The process may lead to false conflicts; worsens
performance, does not compromise correctness
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Bloom Filters

• Bloom filters indicate set membership; if the bits
corresponding to an address are set, the address may
or may not belong to the set; if any of the bits is zero,
the address is not part of the set

• Set intersection is simply
a bit-wise AND

• If any of the Vi fields is
zero, the intersection
yielded a null set

• If one of the Ci fields is the
cache set index, on a
conflict, we can invalidate
the corresponding cache sets
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Signature Results
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UTM (Unbounded) and LTM (Large)

• Based on the premise that large transactions must also
be handled gracefully (as long as the overheads are not
too much when handling small transactions)

• UTM: complex design with logs and linked lists (complex
because transactions/logs as large as virtual memory are
being allowed)

• LTM: transactions/logs can be as large as physical memory
and a transaction cannot persist beyond a context
timeslice
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LTM Architecture

• Does not use logs (lazy versioning): the cache maintains 
speculative write state; if the cache overflows, an overflow
bit is set and the evicted cache line is placed in a hash 
table in memory

• If there is a cache miss and the overflow bit is set, memory
must be looked up to find the data

• In essence, it gives the illusion that a really large cache
exists and part of this cache is actually in memory; if the
hash table fills up, the transaction is aborted and re-started
after the OS allocates a larger hash table

• Employs eager conflict detection
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Taxonomy
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Rochester TM

• Hardware assists that speed up a software TM
implementation

• Software TM imposes high overheads and policies 
(lazy/eager) can significantly impact performance

• Software-managed logs and software-managed checks
for conflicts at commit time

• A hardware assist such as alert-on-update causes a
cache coherence action to trigger a software handler
to deal with the conflict rightaway
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Policies in STM

• Lazy incurs more book-keeping overhead
• Eager incurs more conflicts and aborts
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Title

• Bullet
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