
1

Lecture 19: Transactional Memories III

Papers:
• Colorama: Architectural Support for Data-Centric

Synchronization, HPCA’07, Illinois
• Bulk Disambiguation of Speculative Threads in

Multiprocessors, ISCA’06, Illinois
• Unbounded Transactional Memory, HPCA’05, MIT
• An Integrated Hardware-Software Approach to
Flexible Transactional Memory, ISCA’07, Rochester



2

TCC Vs. LogTM

• Versioning: 
TCC takes advantage of caches to maintain versions;
requires write-thru at commit (write-back will require
a separate buffer to keep track of the old value)

LogTM almost always makes a copy (hopefully in a
write buffer, with spills into cache), allows: writeback
policy, transaction working set to spill out of cache



3

TCC Vs. LogTM

• Conflict detection: 
TCC implements lazy conflict detection: aborted
transactions need not broadcast their writes; more
wasted work for transactions that abort; easier to
implement conflict resolution (since one of the
transactions will go on to commit)

LogTM implements eager conflict detection:
writes by aborted transactions are also “seen”;
conflicting transactions have to just wait, not abort;
conflicts may lead to deadlock/livelock and sw
resolution



4

TCC Vs. LogTM

• Complexity / Scalability: 
TCC is conceptually simpler as it is focused on the
common case (in my opinion); parallel commits are
largely distributed (except the TID vendor)

LogTM can handle large transactions (introduces
log management, sticky states, etc.); built upon a
directory-based protocol and hence mostly
distributed (conflicts need resolution by a central agent
if they persist)

Which one leads to more messages?



5

Colorama

• Novel architecture built upon an underlying TM system

• Hypothesis: it is easier for the programmer to identify
regions of data that must be handled by a single
thread in a consistent manner (data centric
synchronization – DCS) rather than regions of code
that must execute atomically

• The former requires local reasoning, while the latter
requires non-local reasoning

• Hence, programmer assigns colors to data structures and
the hardware introduces TM-begin/end around accesses to
such elements



6

Examples

• Color assigns a new color to an address range
• Colorprop adds another element to an existing color
• Need not insert TM-begin/end in each function that deals with these structures
• Easy for static data, harder for dynamically created data structures



7

Examples

• Task queue: each task points to a bucket of data; the data in a bucket is
read/updated before/after the task has been queued

• The task queue data structures must be updated in a consistent manner
• The updates to data in a bucket need not be co-ordinated with other updates



8

Examples

• MySQL data structure: an array of records
• In lock-based code, an element (locks_in_mem) in each record is protected
by a single global lock, the remaining elements (info) in each record are 
protected by per-record local locks

• The locks_in_mem elements are all colored the same; the info in each
record is assigned a per-record color



9

Entry/Exit Points

• The TM-begin/end should be placed around a series of
accesses to elements of a single color

• TM-begin is introduced on the first access

• TM-end is introduced when that subroutine ends

• The programmer has to be aware of this exit policy to
write correct programs (personal opinion: even DCS
has to be code aware and reasoning is still somewhat
non-local)



10

Interpreting the Exit Policy



11

Interpreting the Exit Policy



12

Hardware Requirements

• Hardware maintains a table of assigned colors and address
ranges; a TM-begin is triggered every time a new color is
accessed; the CAB and CRB help track the TM-ends that
must be triggered on subroutine return



13

Bulk Disambiguation

• In a TM (or TLS) system, write addresses are broadcast
at commit time; other nodes snoop and abort themselves
if any of the write addresses match an address in their
read set

• The process can be simplified by just sending a
signature and comparing signatures to detect conflicts

• The process may lead to false conflicts; worsens
performance, does not compromise correctness



14

Bloom Filters

• Bloom filters indicate set membership; if the bits
corresponding to an address are set, the address may
or may not belong to the set; if any of the bits is zero,
the address is not part of the set

• Set intersection is simply
a bit-wise AND

• If any of the Vi fields is
zero, the intersection
yielded a null set

• If one of the Ci fields is the
cache set index, on a
conflict, we can invalidate
the corresponding cache sets



15

Signature Results



16

UTM (Unbounded) and LTM (Large)

• Based on the premise that large transactions must also
be handled gracefully (as long as the overheads are not
too much when handling small transactions)

• UTM: complex design with logs and linked lists (complex
because transactions/logs as large as virtual memory are
being allowed)

• LTM: transactions/logs can be as large as physical memory
and a transaction cannot persist beyond a context
timeslice



17

LTM Architecture

• Does not use logs (lazy versioning): the cache maintains 
speculative write state; if the cache overflows, an overflow
bit is set and the evicted cache line is placed in a hash 
table in memory

• If there is a cache miss and the overflow bit is set, memory
must be looked up to find the data

• In essence, it gives the illusion that a really large cache
exists and part of this cache is actually in memory; if the
hash table fills up, the transaction is aborted and re-started
after the OS allocates a larger hash table

• Employs eager conflict detection



18

Taxonomy



19

Rochester TM

• Hardware assists that speed up a software TM
implementation

• Software TM imposes high overheads and policies 
(lazy/eager) can significantly impact performance

• Software-managed logs and software-managed checks
for conflicts at commit time

• A hardware assist such as alert-on-update causes a
cache coherence action to trigger a software handler
to deal with the conflict rightaway



20

Policies in STM

• Lazy incurs more book-keeping overhead
• Eager incurs more conflicts and aborts



21

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

