
1

Lecture 18: Transactional Memories II

Papers:
• LogTM: Log-Based Transactional Memory, HPCA’06,

Wisconsin
• LogTM-SE: Decoupling Hardware Transactional Memory

from Caches, HPCA’07, Wisconsin

2

LogTM

• Underlying conventional directory-based protocol

• Eager Versioning: writes happen “in place”, old values
are stored away in virtual memory (hence, can handle
large transactions), old values will be reinstated in case
of an abort (expensive abort), not much to be done on a
commit (fast commit)

• Eager Conflict Detection: coherence permissions are
acquired immediately, a conflict is signaled if the latest
value is obtained from a transaction that has not yet
committed the write

3

Handling Reads

• P2 detects that someone is trying to read a value in its uncommitted
write set; P2 not ready to make A available (has other work that it
wants to finish “atomically”); sends a “conflict” message to requestor

P1 P2
Wr-set: ARd A

Dir
A: M @ P2

Rdreq
Rqfwd

nack

nack

Dealing with the conflict:
• Both can abort – livelock!
• P1 can abort… it is possible that
P2 also tries to read an
uncommitted write of P1 and also
aborts – livelock!

• P2 can abort… as above, can
lead to livelock

• P1 waits for a while and re-tries; if
T2 has finished, A is available; can
cause deadlock as P2 may also
wait for P1; eventually a software
contention manager kicks in

4

Handling Writes

• The same rules apply, whether A is in P2’s read or write set

P1 P2
Rd-set: AWr A

Dir
A: S @ P2

Rdexc
Inval

nack

nack

Dealing with the conflict:
• Both can abort – livelock!
• P1 can abort… it is possible that
P2 also tries to read an
uncommitted write of P1 and also
aborts – livelock!

• P2 can abort… as above, can
lead to livelock

• P1 waits for a while and re-tries; if
T2 has finished, A is available; can
cause deadlock as P2 may also
wait for P1; eventually a software
contention manager kicks in

5

Block Replacement

• If a block in a transaction’s rd/wr-set is evicted, the data
is written back to memory if necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction
has committed before proceeding)

• The sticky pointers are lazily removed over time (commits
continue to be fast)

6

Versioning

• Every write first requires a read and a write to log the old
value – the log is maintained in virtual memory and will
likely be found in cache

• Aborts are uncommon – typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

• If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

• Log writes can be placed in a write buffer to reduce
contention for L1 cache ports

7

Results

8

Results

Few stalls and aborts Small write log buffer will avoid L1 port contention

Writes are preceded by reads, so
a log imposes low overhead

9

LogTM-SE

• Motivation: decouple conflict detection from cache
implementation: maintain a signature to capture read
and write sets

eliminates R and W bits for every cache block
eliminates the need to flash-clear above bits on commit
easy to save transaction state (simplifies nesting,
context switching, etc.)

• Conflict detection can now yield false positives: signature
indicates there is a conflict, but in reality, none exists

10

Signatures

11

Signature Behavior

P : perfect (rd and write sets)
BS : bit select (2048 bit signature)
CBS : coarse bit select
DBS : double bit select
BS_64 : bit select (64 bit signature)

12

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

